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Abstract. We give the spectral decomposition and inverse of multinomial
and negative multinomial covariances and related matrices.

1 Introduction

Multinomial and negative multinomial distributions are two of the most popular
models for multivariate discrete data (Johnson et al., 1997). Their applications
have been widespread. We mention: models to cluster Internet traffic (Jorgensen,
2004), funding source and research report quality in nutrition practice-related re-
search, crash-prediction models for multilane roads, pollen counts, changepoints
in the north Atlantic tropical cyclone record, magazine and Internet exposure,
genome analysis (Chang and Wang, 2011), fish diet compositions from multiple
data sources, statistical alarm method for mobile gamma spectrometry, stylometric
analyses, clinical trials (Ganju and Zhou, 2011), impacts of movie reviews on box
office, amount individuals withdraw at cash machines, soil microbial community,
longline hook selectivity for red tilefish Branchiostegus japonicus in the East China
Sea (Yamashita et al., 2009), gambling by auctions, automatic image annotation,
and probabilities for the first division Spanish soccer league (Diaz-Emparanza and
Nunez-Anton, 2010).

One of the most important properties of any multivariate distribution is the
structure of the inverse of its covariance. It can be used to determine indepen-
dence or complete dependence among variables. It can also be used to estimate
standard errors, construct confidence intervals and construct tests of hypotheses.

The aim of this short note is to derive explicit expressions for the structure of the
inverse covariance for a class of distributions containing the multinomial and neg-
ative multinomial distributions. An explicit expression for the inverse covariance
of the latter distribution has not been known.

The contents of this short note are organized as follows. In Section 2, we give
the spectral decomposition and inverse of the nonsingular matrix V ∈ C

s×s with
(i, j) element

Vij = piδij + αqiqj ,
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where δij is the Kronecker delta function. In Section 3, this is applied to the multi-
nomial and negative multinomial covariances.

2 Main results

Let α,p1, . . . , ps be nonzero.

Theorem 2.1. The s × s matrix V = (Vij ), where

Vij = piδij + αqiqj , (2.1)

has inverse V −1 = (V ij ), where

V ij = p−1
i δij − (

α−1 + ν
)−1

q̃i q̃j , (2.2)

where

q̃i = p−1
i qi, ν =

s∑
k=1

p−1
k q2

k , (2.3)

provided that α−1 + ν �= 0.

Proof. Note that
s∑

k=1

VikVkj =
s∑

k=1

(piδik + αqiqk)
(
p−1

k δkj − (
α−1 + ν

)−1
q̃kq̃j

)

= pi

s∑
k=1

δikp
−1
k δkj − (

α−1 + ν
)−1

piq̃j

s∑
k=1

δikq̃k + αqi

s∑
k=1

qkp
−1
k δkj

− α
(
α−1 + ν

)−1
qiq̃j

s∑
k=1

qkq̃k

= pi

s∑
k=1

δikp
−1
k δkj − (

α−1 + ν
)−1

piq̃j q̃i + αqiqjp
−1
j

− α
(
α−1 + ν

)−1
qiq̃j

s∑
k=1

p−1
k q2

k

= pi

s∑
k=1

δikp
−1
k δkj .

Hence, the result. �

A different approach to finding the inverse is to adapt the method of Watson
(1996).
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Theorem 2.2. The s × s matrix V of (2.1) has eigenvalues {λj } equal to the roots
of

s∑
i=1

q2
i (pi − λ)−1 = −α−1. (2.4)

Also the eigenvector corresponding to the eigenvalue λ = λj is x = xj with ith
component

γjqi(λ − pi)
−1,

where

γj =
[

s∑
i=1

q2
i (λ − pi)

−2

]−1/2

.

So,

x′
ixj = δij , V =

s∑
j=1

λjxjx
′
j , V −1 =

s∑
j=1

λ−1
j xjx

′
j .

Proof. Set P = diag(pi), A = P − λIs , u = (−α)1/2q . So, A − uu′ = V − λIs

and

det(V − λIs) = det
(
A − uu′) = (

1 − u′A−1u
)

det(A)

by page 32 of Rao (1973). So, for λ an eigenvalue of V not equal to any pi ,

1 = u′A−1u =
s∑

i=1

u2
i (pi − λ)−1,

giving (2.4).
For λ = λj and x = xj ,

0 = (V x − λx)i = (pi − λ)(x)i + αqic,

where c = q ′x and (z)i represents the ith component of a vector z. So, (x)i =
cαqi(λ − pi)

−1, where c is given by 1 = x′x. �

Note that we can have some eigenvalues of V equal to some of the pi . For a
simple example, consider the multinomial covariance, where all pi’s are equal,
that is p1 = · · · = ps = q1 = · · · = qs = p and α = −1. In this case, V = pIs −
p2zz′, where z is the unit vector of ones. If a vector y is orthogonal to z, then,
Vy = py − p2zz′y = py, that is, y is an eigenvector with eigenvalue p. Hence,
the hyperplane that is orthogonal to z is an eigenspace. In this case, (2.4) reduces
to a linear equation in λ since we have now only one eigenvalue that is not equal
to p.
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A more general example is to consider the case for which q = (q1, . . . , qs) is
an eigenvector of P = diag(p1, . . . , ps). Remembering that q , in this case, is a
member of an orthogonal basis of eigenvectors of P and that the eigenvalues of P

are p1, . . . , ps , we see that any eigenvector of P that is orthogonal to q will be an
eigenvector of V associated to one of the pi’s.

Because α is nonzero, we cannot have all eigenvalues equal to the pi’s unless
all qi ’s are zero (this follows since trace(V ) = ∑s

i=1 pi + α
∑s

i=1 q2
i = ∑s

i=1 λi).
Hence, (2.4) is really useful: all roots of (2.4) are really eigenvalues of V although
not necessarily the converse.

3 Examples

Example 3.1. For N ∼ Multinomials(n,p) with
∑s

i=1 pi < 1, 0 < pi , i =
1, . . . , s, covar(N) = nV , where V has the form (2.1) with α = −1, qi = pi . So,
its Fisher information is nI (θ), where by (2.2), I (θ) = V −1 is given by

V ij = p−1
i δij + (1 − ν)−1

and ν is given by (2.3). This form for V −1 is given on page 215 of Mood (1950).
By (2.4), the eigenvalues of V are the roots of

s∑
i=1

p2
i (pi − λ)−1 = 1. (3.1)

For a given eigenvalue λ, the corresponding eigenvector has its ith element equal
to

pi(λ − pi)
−1

[
s∑

k=1

p2
k(pk − λ)−2

]−1/2

.

If s = 1 then the root of (3.1) is λ = p1(1 −p1). If s = 2 then the roots of (3.1) are
λ = {−p1(p1 − 1) − p2(p2 − 1) ± (p4

1 − 2p3
1 + 2p2

1p
2
2 + 2p2

1p2 + p2
1 + 2p1p

2
2 −

2p1p2 + p4
2 − 2p3

2 + p2
2)

(1/2)}/2.

Example 3.2. For N ∼ NegativeMultinomials(n,p) with 0 < pi , i = 1, . . . , s,
covar(N) = nV , where V has the form (2.1) with α = 1, qi = pi . So, its Fisher
information is nI (θ), where by (2.2), I (θ) = V −1 is given by

V ij = p−1
i δij − (1 + ν)−1

and ν is given by (2.3). By (2.4), the eigenvalues of V are the roots of

s∑
i=1

p2
i (pi − λ)−1 = −1. (3.2)
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For a given eigenvalue λ, the corresponding eigenvector has its ith element equal
to

pi(λ − pi)
−1

[
s∑

k=1

p2
k(pk − λ)−2

]−1/2

.

If s = 1 then the root of (3.2) is λ = p1(1 +p1). If s = 2 then the roots of (3.2) are
λ = {p1(1 + p1) + p2(1 + p2) ± (p4

1 + 2p3
1 + 2p2

1p
2
2 − 2p2

1p2 + p2
1 − 2p1p

2
2 −

2p1p2 + p4
2 + 2p3

2 + p2
2)

(1/2)}/2. These results appear to be new.

Tanabe and Sagae (1992) gave the Moore–Penrose inverse to the full multino-
mial covariance, that is, when

∑s
i=1 pi = 1. That covariance is singular, unlike the

matrices we consider here. Watson (1996) gave the spectral decomposition of this
singular covariance, providing an alternative method for obtaining its generalized
inverse.
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