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The beta log-logistic distribution

Artur J. Lemonte
Universidade de São Paulo

Abstract. A new continuous distribution, so-called the beta log-logistic dis-
tribution, that extends the log-logistic distribution and some other distribu-
tions is proposed and studied. The new model is quite flexible to analyze pos-
itive data. Various structural properties of the new distribution are derived,
including explicit expressions for the moments, mean deviations and Rényi
and Shannon entropies. The score function is derived and the estimation of
the model parameters is performed by maximum likelihood. We also deter-
mine the expected information matrix. The usefulness of the new model is
illustrated by means of two real data sets. We hope that the new distribution
proposed here will serve as an alternative model to other models available in
the literature for modeling positive real data in many areas.

1 Introduction

Numerous classical distributions have been extensively used over the past decades
for modeling data in several areas. In fact, the statistics literature is filled with hun-
dreds of continuous univariate distributions (see, e.g, Johnson et al., 1994, 1995).
However, in many applied areas, such as lifetime analysis, finance and insurance,
there is a clear need for extended forms of these distributions. Consequently, a
significant progress has been made toward the generalization of some well-known
lifetime distributions and their successful application to problems in areas such
as engineering, environmetrics, economics and biomedical sciences, among oth-
ers. Recent developments focus on new techniques for building meaningful distri-
butions, including the two-piece approach introduced by Hansen (1994) and the
generator approach pioneered by Eugene et al. (2002) and Jones (2004). In par-
ticular, Eugene et al. (2002) introduced the beta normal distribution, denoted by
BN(a, b,μ,σ ), where μ ∈ R, σ > 0 and a and b are positive shape parameters,
which control skewness through the relative tail weights. The BN distribution is
symmetric if a = b, it has negative skewness when a < b and positive skewness
when a > b. For a = b > 1, it has positive excess kurtosis and, for a = b < 1, it
has negative excess kurtosis (Eugene et al., 2002).

The generator approach introduced by Eugene et al. (2002) is as follows. For
any continuous baseline cumulative distribution function (c.d.f.) G(x) = G(x;τ )
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and parameter vector τ , the cumulative function of the beta-G distribution, F(x)

say, is defined by

F(x) = IG(x)(a, b) = 1

B(a, b)

∫ G(x)

0
ωa−1(1 − ω)b−1 dω, (1.1)

where a > 0 and b > 0 are additional shape parameters to those in τ that
aim to introduce skewness and to provide greater flexibility of its tails. Here,
B(p,q) = �(p)�(q)/�(p + q) is the beta function, �(·) is the gamma func-
tion, Iy(p, q) = By(p, q)/B(p, q) is the incomplete beta function ratio and
By(p, q) = ∫ y

0 ωp−1(1 − ω)q−1 dω is the incomplete beta function. The cumula-
tive function (1.1) can also be expressed in terms of the hypergeometric function as
F(x) = G(x)a2F1(a,1 − b;a + 1;G(x)a)/[aB(a, b)]. Thus, for any parent G(x),
the properties of F(x) could, in principle, be obtained from the well established
properties of the hypergeometric function (see, Gradshteyn and Ryzhik, 2007).

The probability density function (p.d.f.) corresponding to (1.1) takes the form

f (x) = g(x)

B(a, b)
G(x)a−1[

1 − G(x)
]b−1

, (1.2)

whereas the hazard rate function associated to (1.1) is given by

r(x) = g(x)G(x)a−1[1 − G(x)]b−1

B(a, b)[1 − IG(x)(a, b)] .

The p.d.f. (1.2) will be most tractable when both functions G(x) and g(x) have
simple analytic expressions. Its major benefit is the ability of fitting skewed data
that cannot be properly fitted by existing distributions. Let QG(u) be the quantile
function of the G distribution, for u ∈ (0,1). Application of X = QG(V ) to a beta
random variable V with positive parameters a and b generates X with density
function (1.2).

By using the probability integral transform (1.1), some beta-G distributions
have been proposed in the last few years. In particular, the reader is refereed to
Nadarajah and Gupta (2004), Nadarajah and Kotz (2004, 2006), Lee et al. (2007),
Akinsete et al. (2008), Silva et al. (2010), Barreto–Souza et al. (2010), Pescim
et al. (2010), Paranaíba et al. (2011), Cordeiro et al. (2012, 2013, 2014), Cordeiro
and Lemonte (2011a, 2011b, 2011c) and Cordeiro and Brito (2012), among others.
In the same way, we can extend the log-logistic distribution because it has closed
form cumulative function.

In this article, we use the generator approach suggested by Eugene et al. (2002)
to define a new model, so-called the beta log-logistic (BLLog) distribution, which
generalizes the log-logistic (LLog) model. In addition, we investigate some struc-
tural properties of the new model, discuss maximum likelihood estimation of its
parameters and derive the expected information matrix. The proposed model is
much more flexible than the LLog distribution and can be used effectively for
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modeling positive real data sets. We shall see later that the new model may be
an appealing alternative to the log-normal, Birnbaum–Saunders, gamma, Weibull,
exponentiated Weibull, beta Weibull and Kumaraswamy Weibull models in two
applications to real data.

The LLog distribution (also known as the Fisk distribution in economics) has
c.d.f. in the form

G(x) = xβ

αβ + xβ
, x > 0, (1.3)

where α > 0 is the scale parameter and is also the median of the distribution, β > 0
is the shape parameter and the distribution is unimodal when β > 1. It has shapes
similar to the ones of the log-normal distribution but has heavier tails. This distri-
bution is used in survival analysis as a parametric model for events whose hazard
rate increases initially and decreases later, for example mortality from cancer fol-
lowing diagnosis or treatment. It has also been used in hydrology to model stream
flow and precipitation (Shoukri et al., 1988; Ashkar and Mahdi, 2006) and for mod-
eling flood frequency (Ahmad et al., 1988). Additionally, it is used in economics
as a simple model of the distribution of wealth or income (Fisk, 1961). Recently,
Dey and Kundu (2010) used the ratio of maximized likelihood for discriminating
between the log-normal and log-logistic distributions.

The p.d.f. corresponding to (1.3) is given by

g(x) = β(x/α)β−1

α[1 + (x/α)β]2 , x > 0. (1.4)

The sth moment for s < β comes from (1.4) as μ′
s = αsB(1 − s/β,1 + s/β). Let

η = π/β be for convenience, the mean can be expressed as E(X) = αη/ sin(η), for
β > 1, and the variance is var(X) = α2(2η/ sin(2η)−η2/ sin2(η)), for β > 2. As β

tends to infinity the mean tends to α, the variance and skewness tend to zero and the
excess kurtosis tends to 6/5. If X has a LLog distribution with scale parameter α

and shape parameter β , LLog(α,β) say, then Y = log(X) has a logistic distribution
with location parameter log(α) and scale parameter 1/β . If X ∼ LLog(α,β), then
kX ∼ LLog(kα,β), for k > 0.

The article is outlined as follows. In Section 2, we introduce the BLLog dis-
tribution and provide plots of the density and hazard rate functions. An explicit
expression for the moments is provided in Section 3. Section 4 deals with non-
standard measures for the skewness and kurtosis. The mean deviations are calcu-
lated in Section 5. The Rényi and Shannon entropies are determined in Section 6.
Estimation by the method of maximum likelihood and an explicit expression for
the expected information matrix are presented in Section 7. Two empirical appli-
cations to real data are considered in Section 8. Finally, Section 9 offers some
concluding remarks.
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2 The BLLog model

By inserting (1.3) and (1.4) in (1.2), we obtain the BLLog density function with
positive parameters a, b, α and β , say BLLog(a, b,α,β), given by

f (x) = (β/α)

B(a, b)

(x/α)aβ−1

[1 + (x/α)β ]a+b
, x > 0. (2.1)

Evidently, the BLLog density function does not involve any complicated function
and can be easily computed from equation (2.1). Also, there is no functional rela-
tionship between the parameters and they vary freely in the parameter space. The
c.d.f. corresponding to (2.1) is F(x) = Ixβ/(αβ+xβ)(a, b), the survival function is
S(x) = 1−Ixβ/(αβ+xβ)(a, b) and the associated hazard rate function takes the form

r(x) = (β/α)(x/α)aβ−1[1 + (x/α)β]−(a+b)

B(a, b)S(x)
, x > 0. (2.2)

The BLLog distribution can be applied in survival analysis, hydrology, eco-
nomics, among others, as the LLog distribution and can be used to model re-
liability problems. The BLLog distribution allows for greater flexibility of its
tails and can be widely applied in many areas. If X ∼ BLLog(a, b,α,β), then
kX ∼ LLog(a, b, kα,β), for k > 0, that is, the class of BLLog distributions is
closed under scale transformations, as in the case of the LLog distribution.

The study of the new density (2.1) is important since it also includes as spe-
cial sub-models some distributions not previously considered in the literature. The
LLog distribution arises as the basic exemplar when a = b = 1. The new exponen-
tiated LLog (ELLog) distribution corresponds to b = 1. Other special sub-model
arises for a = 1 as the new Lehmann type II LLog (LeLLog) distribution. For a

and b positive integers, the BLLog density function becomes the density function
of the ath order statistic from the LLog distribution in a sample of size a + b − 1.
However, equation (2.1) can also alternatively be extended, when a and b are real
non-integers, to define fractional LLog order statistics distributions.

Let Qa,b(u) be the beta quantile function with parameters a and b. The quan-
tile function of the BLLog(a, b,α,β) distribution, say x = Q(u), can be easily
obtained as

x = Q(u) = α

[
Qa,b(u)

1 − Qa,b(u)

]1/β

, u ∈ (0,1). (2.3)

This scheme is useful to generate BLLog random variates because of the ex-
istence of fast generators for beta random variables in most statistical pack-
ages, that is, if V is a beta random variable with parameters a and b, then
X = α[V/(1 − V )]1/β follows the BLLog(a, b,α,β) distribution. From (2.3), we
conclude that the median m of X is m = Q(1/2). The mode of X, ξ say, is given
by ξ = α[(aβ − 1)/(bβ + 1)]1/β , for β > a−1.
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Figure 1 Plots of the density function (2.1) for some parameter values.

Figures 1 and 2 illustrate some of the possible shapes of the density function
(2.1) and hazard rate function (2.2), respectively, for selected parameter values.
The density function and hazard rate function can take various forms depending
on the parameter values. It is evident that the BLLog distribution is much more
flexible than the LLog distribution, that is, the additional shape parameters (a and
b) allow for a high degree of flexibility of the BLLog distribution. So, the new
model can be very useful in many practical situations for modeling positive real
data sets.

3 Moments

We hardly need to emphasize the necessity and importance of moments in any sta-
tistical analysis especially in applied work. Some of the most important features
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Figure 2 Plots of the hazard rate function (2.2) for some parameter values.

and characteristics of a distribution can be studied through moments (e.g., ten-
dency, dispersion, skewness and kurtosis). Let X ∼ BLLog(a, b,α,β). We derive
a simple expression for the moments of X, μ′

s = E(Xs). The sth moment of X for
s < bβ is given by

μ′
s = αs B(b − s/β, a + s/β)

B(a, b)
. (3.1)

The moments of the ELLog and LeLLog distributions are obtained from (3.1)
when b = 1 and a = 1, respectively. For a = b = 1, expression (3.1) reduces to the
moments of the LLog distribution. The central moments (μs) and cumulants (κs)
of X can be determined from (3.1) as

μs =
s∑

k=0

(
s

k

)
(−1)kμ′s

1 μ′
s−k, κs = μ′

s −
s−1∑
k=1

(
s − 1

k − 1

)
κkμ

′
s−k,
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Table 1 Moments of the BLLog distribution for some parameter values; α = 1 and β = 15

BLLog(a, b,1,15) distribution

μ′
s a = 0.5, b = 0.5 a = 0.5, b = 1.5 a = 1.5, b = 0.5 a = 1.5, b = 1.5

μ′
1 1.02234 0.88603 1.15865 1.00417

μ′
2 1.09464 0.80273 1.38654 1.01680

μ′
3 1.23607 0.74164 1.73050 1.03830

μ′
4 1.49448 0.69742 2.29153 1.06938

μ′
5 2.00000 0.66667 3.33333 1.11111

μ′
6 3.23607 0.64721 5.82492 1.16498

Variance 0.04946 0.01769 0.04406 0.00845
Skewness 1.44159 −0.40205 2.36443 0.38901
Kurtosis 8.07763 0.72897 14.00074 1.16176

respectively, where κ1 = μ′
1. Thus, κ2 = μ′

2 − μ′2
1 , κ3 = μ′

3 − 3μ′
2μ

′
1 + 2μ′3

1 , κ4 =
μ′

4 −4μ′
3μ

′
1 −3μ′2

2 +12μ′
2μ

′2
1 −6μ′4

1 , etc. The skewness γ1 = κ3/κ
3/2
2 and kurtosis

γ2 = κ4/κ
2
2 can be calculated from the third and fourth standardized cumulants.

Table 1 lists the first six ordinary moments, variance, skewness and kurtosis for
selected parameter values of the BLLog(a, b,α,β) distribution by fixing α = 1
and β = 15.

The pth descending factorial moment of X is μ′
(p) = E[X(p)] = E[X(X − 1) ×

· · ·×(X−p+1)] = ∑p
m=0 s(p,m)μ′

m, where s(p,m) = (m!)−1[dmx(p)/dxm]x=0
is the Stirling number of the first kind. They count the number of ways to permute a
list of p items into m cycles. The factorial moments of X are given by (for m < bβ)

μ′
(p) =

p∑
m=0

αms(p,m)
B(b − m/β,a + m/β)

B(a, b)
.

Other kinds of moments related to the L-moments (Hosking, 1990) may also be ob-
tained in closed form, but we consider only these moments for reasons of space. An
expansion for the moment generating function of X, M(t) say, can be expressed
in the form (for j < bβ)

M(t) = 1

B(a, b)

∞∑
j=0

B(b − j/β, a + j/β)
(αt)j

j ! .

4 Quantile measures

The BLLog quantile function, say Q(u) = F−1(u), can be determined from the
beta quantile function as given in (2.3). The effects of the shape parameters a and
b on the skewness and kurtosis can be considered based on quantile measures. The
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shortcomings of the classical kurtosis measure are well-known. The Bowley skew-
ness (Kenney and Keeping, 1962) is one of the earliest skewness measures defined
by the average of the quartiles minus the median, divided by half the interquartile
range, namely

B = Q(3/4) + Q(1/4) − 2Q(1/2)

Q(3/4) − Q(1/4)
.

Since only the middle two quartiles are considered and the outer two quartiles are
ignored, this adds robustness to the measure. The Moors kurtosis (Moors, 1998) is
based on octiles

M = Q(3/8) − Q(1/8) + Q(7/8) − Q(5/8)

Q(6/8) − Q(2/8)
.

Clearly, M > 0 and there is good concordance with the classical kurtosis measures
for some distributions.

These measures are less sensitive to outliers and they exist even for distribu-
tions without moments. Because M is based on the octiles, it is not sensitive to
variations of the values in the tails or to variations of the values around the median.
The basic justification of M as an alternative measure of kurtosis is the following:
keeping Q(6/8) − Q(2/8) fixed, M clearly decreases as Q(3/8) − Q(1/8) and
Q(7/8)−Q(5/8) decrease. If Q(3/8)−Q(1/8) → 0 and Q(7/8)−Q(5/8) → 0,
then M → 0 and half of the total probability mass is concentrated in the neighbor-
hoods of the octiles Q(2/8) and Q(6/8). In Figures 3 and 4, we plot the measures
B and M for some parameter values. These plots indicate that both measures B
and M depend on all shape parameters.

Figure 3 Plots of the measure B for some parameter values; α = 1.5 and β = 8.
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Figure 4 Plots of the measure M for some parameter values; α = 1.5 and β = 8.

5 Mean deviations

The amount of scatter in a population is evidently measured to some extent by
the totality of deviations from the mean and median. If X ∼ BLLog(a, b,α,β),
we can derive the mean deviations about the mean and about the median from the
relations δ1(X) = E(|X − μ|) and δ2(X) = E(|X − m|), respectively, with

μ = α
B(b − 1/β, a + 1/β)

B(a, b)
, m = α

[
Qa,b(0.5)

1 − Qa,b(0.5)

]1/β

,

where Qa,b(·) is the beta quantile function with parameters a and b. The measures
δ1(X) and δ2(X) can be expressed as δ1(X) = 2μF(μ) − 2J (μ) and δ2(X) =
μ− 2J (m), where J (q) = ∫ q

0 xf (x) dx. After some algebra, the integral J (q) can
be expressed as

J (q) = αβ

B(a, b)

∫ q/α

0

zβa

(1 + zβ)a+b
dz,

which can be easily computed numerically in software such as MAPLE (Garvan,
2002), MATLAB (Sigmon and Davis, 2002), MATHEMATICA (Wolfram, 2003), Ox
(Doornik, 2006) and R (R Development Core Team, 2012). The Ox (for academic
purposes) and R are freely distributed and available at http://www.doornik.com and
http://www.r-project.org, respectively. Some numerical values of J (q) are listed in
Table 2.

From the mean deviations, we can construct Lorenz and Bonferroni curves,
which are important in several fields such as economics, reliability, demogra-
phy, insurance and medicine. They are defined (for a given probability π ) by
L(π) = J (q)/μ and B(π) = J (q)/(πμ), respectively, where q = Q(π) can be
determined from (2.3). It is easy to verify that L(π) ≥ π , L(0) = 0 and L(1) = 1.
In economics, if π = F(q) is the proportion of units whose income is lower than

http://www.doornik.com
http://www.r-project.org
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Table 2 Numerical values of J (q); α = 1, β = 2 and different values of q

BLLog(a, b,1,2) distribution

q a = 0.5, b = 0.5 a = 1.5, b = 0.5 a = 0.5, b = 1.5 a = 1.5, b = 1.5

1 0.22064 0.12296 0.31831 0.31831
2 0.51230 0.51530 0.50930 0.81487
3 0.73294 0.89291 0.57296 1.03132
4 0.90184 1.20451 0.59917 1.12785
5 1.03708 1.46203 0.61213 1.17718
6 1.14939 1.67937 0.61941 1.20535

or equal to q , L(π) gives the proportion of total income volume accumulated by
the set of units with an income lower than or equal to q .

6 Entropy measures

Entropy has been used in various situations in science as a measure of variation
of the uncertainty. Numerous measures of entropy have been studied and com-
pared in the literature. Here, we derive explicit expressions for two most important
entropies of X ∼ BLLog(a, b,α,β): Shannon entropy and Rényi entropy.

First, we consider the Shannon entropy which plays a similar role as the kurtosis
measure in comparing the shapes of various densities and measuring heaviness of
tails. It is defined by IS = E[− log(f (X))], which implies

IS = − log(β/α) + log
[
B(a, b)

] − (βa − 1)E
[
log

(
X

α

)]

+ (a + b)E
[
log

(
1 +

(
X

α

)β)]
.

We can show that

E
[
log

(
X

α

)]
= ψ(a) − ψ(b)

β
, E

[
log

(
1 +

(
X

α

)β)]
= ψ(a + b) − ψ(b),

where ψ(·) is the digamma function. Hence, IS reduces to

IS = log(α/β) + log
[
B(a, b)

] − (βa − 1)

β

[
ψ(a) − ψ(b)

]
(6.1)

+ (a + b)
[
ψ(a + b) − ψ(b)

]
.

The Rényi entropy of X can be expressed as IR = (1 − δ)−1 log(
∫ ∞

0 f (x)δ dx),
where δ > 0 and δ �= 1. We have that∫ ∞

0
f (x)δ dx = (β/α)δ

B(a, b)δ

∫ ∞
0

(x/α)δ(βa−1)

[1 + (x/α)β]δ(a+b)
dx.
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After some algebra, we can show that∫ ∞
0

f (x)δ dx = (β/α)δ−1

B(a, b)δ
B

(
δb + (δ − 1)/β, δa − (δ − 1)/β

)
,

and hence the Rényi entropy takes the form

IR = (1 − δ)−1 log
(

(β/α)δ−1

B(a, b)δ
B

(
δb + (δ − 1)/β, δa − (δ − 1)/β

))
. (6.2)

As can be seen from equations (6.1) and (6.2), the Shannon and Rényi entropies
for the BLLog model have very simple expressions and can be easily computed.
The Shannon entropy for the ELLog and LeLLog models are obtained from (6.1)
with b = 1 and a = 1, respectively. Likewise, for the Rényi entropy.

7 Maximum likelihood estimation

In what follows, we shall consider estimation of the model parameters of the
BLLog distribution by the method of maximum likelihood. However, some of the
other estimators like the percentile estimators, estimators based on order statistics,
weighted least squares and estimators based on L-moments can also be explored.
We assume that X follows the BLLog distribution and let θ = (a, b,α,β)	 be
the parameter vector of interest. The log-likelihood function � = �(θ) for a single
observation x of X is given by

� = log(β/α) − log
[
B(a, b)

] + (βa − 1) log
(

x

α

)
− (a + b) log

[
1 +

(
x

α

)β]
.

The components of the unit score vector U = U(θ) = (∂�/∂a, ∂�/∂b, ∂�/∂α,

∂�/∂β)	 are given by

∂�

∂a
= ψ(a + b) − ψ(a) + β log

(
x

α

)
− log

[
1 +

(
x

α

)β]
,

∂�

∂b
= ψ(a + b) − ψ(b) − log

[
1 +

(
x

α

)β]
,

∂�

∂α
= −βa

α
+ β(a + b)

α

(x/α)β

[1 + (x/α)β ] ,

∂�

∂β
= 1

β
+ a log

(
x

α

)
− (a + b)

(x/α)β log(x/α)

[1 + (x/α)β] .

The expected value of the score function vanishes and hence, for example, we have

E
[

(X/α)β

[1 + (X/α)β]
]

= a

a + b
.
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For interval estimation and hypotheses tests on the model parameters, we require
the 4 × 4 unit expected information matrix, K(θ) say, given by

K(θ) =

⎡⎢⎢⎣
κaa κab κaα κaβ

κab κbb κbα κbβ

κaα κbα καα καα

κaβ κbβ καβ κββ

⎤⎥⎥⎦ ,

whose elements are

κaa = ψ ′(a) − ψ ′(a + b), κab = −ψ ′(a + b), κaα = bβ

α(a + b)
,

κaβ = 1 − b[ψ(a) − ψ(b)]
β(a + b)

, κbb = ψ ′(b) − ψ ′(a + b),

κbα = − aβ

α(a + b)
, κbβ = 1 + a[ψ(a) − ψ(b)]

β(a + b)
,

καα = β2(a + b)B(a + 1, b + 1)

α2B(a, b)
,

καβ = −(a + b)B(a + 1, b + 1)

abαB(a, b)

{
b − a + ab

[
ψ(a) − ψ(b)

]}
,

κββ = 1

β2 + (a + b)B(a + 1, b + 1)

abβ2B(a, b)

{−2 + 2(a − b)
[
ψ(b) − ψ(a)

]
+ ab

[(
ψ(a) − ψ(b)

)2 + ψ ′(a) + ψ ′(b)
]}

,

where ψ ′(·) is the trigamma function.
For a random sample x = (x1, . . . , xn)

	 of size n from the BLLog model, the
total log-likelihood function for the parameter vector θ = (a, b,α,β)	 is �n(θ) =∑n

i=1 �(i), where �(i) is the log-likelihood for the ith observation (i = 1, . . . , n)

as given before. The total score function is Un(θ) = ∑n
i=1 U(i), where U(i) (i =

1, . . . , n) has the form given earlier and the total expected information matrix is
Kn(θ) = nK(θ). The maximum likelihood estimate (MLE) θ̂ = (â, b̂, α̂, β̂)	 of
θ = (a, b,α,β)	 is obtained by setting Un(θ) = 0 and solving these equations nu-
merically using iterative methods, such as Newton–Raphson and Fisher scoring
algorithms. Under conditions that are fulfilled for parameters in the interior of the
parameter space, the asymptotic distribution of

√
n(̂θ − θ) is N4(0,K(θ)−1). The

asymptotic multivariate normal N4(0,Kn(̂θ)−1) distribution can be used to con-
struct approximate confidence intervals and confidence regions for the parameters.
The asymptotic 100(1 − η)% confidence intervals for a, b, α and β are given, re-
spectively, by â ± zη/2 ×[v̂ar(â)]1/2, b̂± zη/2 ×[v̂ar(b̂)]1/2, α̂ ± zη/2 ×[v̂ar(α̂)]1/2

and β̂ ± zη/2 × [v̂ar(β̂)]1/2, where var(·) is the diagonal element of Kn(̂θ)−1 cor-
responding to each parameter, and zη/2 is the quantile (1 − η/2) of the standard
normal distribution.



The beta log-logistic distribution 325

8 Empirical illustrations

In this section, we present two applications of the proposed BLLog distribution
(and their sub-models: ELLog, LeLLog and LLog distributions) in two real data
sets to illustrate its potentiality. The first real data set corresponds to an uncensored
data set from Nichols and Padgett (2006) on breaking stress of carbon fibres (in
Gba): 3.70, 2.74, 2.73, 2.50, 3.60, 3.11, 3.27, 2.87, 1.47, 3.11, 4.42, 2.41, 3.19,
3.22, 1.69, 3.28, 3.09, 1.87, 3.15, 4.90, 3.75, 2.43, 2.95, 2.97, 3.39, 2.96, 2.53,
2.67, 2.93, 3.22, 3.39, 2.81, 4.20, 3.33, 2.55, 3.31, 3.31, 2.85, 2.56, 3.56, 3.15,
2.35, 2.55, 2.59, 2.38, 2.81, 2.77, 2.17, 2.83, 1.92, 1.41, 3.68, 2.97, 1.36, 0.98,
2.76, 4.91, 3.68, 1.84, 1.59, 3.19, 1.57, 0.81, 5.56, 1.73, 1.59, 2.00, 1.22, 1.12,
1.71, 2.17, 1.17, 5.08, 2.48, 1.18, 3.51, 2.17, 1.69, 1.25, 4.38, 1.84, 0.39, 3.68,
2.48, 0.85, 1.61, 2.79, 4.70, 2.03, 1.80, 1.57, 1.08, 2.03, 1.61, 2.12, 1.89, 2.88, 2.82,
2.05, 3.65. The second real data set represents the remission times (in months) of
a random sample of 128 bladder cancer patients reported in Lee and Wang (2003):
0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02,
13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26,
9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82,
5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34, 14.83, 34.26, 0.90,
2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75,
16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49,
7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34,
5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50,
6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07,
21.73, 2.07, 3.36, 6.93, 8.65, 12.63, 22.69.

In the following, we shall compare the proposed BLLog distribution (and their
sub-models) with several other four-, three- and two-parameter lifetime distribu-
tions, namely:

• Beta Weibull (BW) distribution (Lee et al., 2007). The BW density function is
(x > 0)

f (x) = αβ

B(a, b)
xβ−1 exp

(−bαxβ){
1 − exp

(−αxβ)}a−1
,

where a > 0, b > 0 and β > 0 are shape parameters and α > 0 is the scale
parameter.

• Kumaraswamy Weibull (KW) distribution (Cordeiro et al., 2010). The KW den-
sity function is (x > 0)

f (x) = abcλxc−1 exp
(−λxc){1 − exp

(−λxc)}a−1[
1 − {

1 − exp
(−λxc)}a]b−1

,

where a > 0, b > 0 and c > 0 are shape parameters and λ > 0 is the scale
parameter.
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• Exponentiated Weibull (EW) distribution (Mudholkar and Srivastava, 1993).
The EW density function is (x > 0)

f (x) = aαβxβ−1 exp
(−αxβ){

1 − exp
(−αxβ)}a−1

,

where a > 0 and β > 0 are shape parameters and α > 0 is the scale parameter.
• Marshall–Olkin Weibull (MOW) distribution (Ghitany et al., 2005). The MOW

survival function is (x > 0)

F̄ (x) = 1 − e−λxγ

(1 − α)e−λxγ ,

where α > 0 and γ > 0 are shape parameters and λ is the scale parameter.
• Beta half-Cauchy (BHC) distribution (Cordeiro and Lemonte, 2011c). The BHC

density function is (x > 0)

f (x) = 2a[1 + (x/φ)2]−1

φπaB(a, b)

[
arctan

(
x

φ

)]a−1{
1 − 2

π

[
arctan

(
x

φ

)]}b−1

,

where a > 0 and b > 0 are shape parameters and φ > 0 is a scale parameter.
• Weibull distribution. The Weibull cumulative function is (x > 0)

F (x) = 1 − exp
(−αxβ)

, x > 0,

where β > 0 is the shape parameter and α > 0 is the scale parameter.
• Gamma distribution. The gamma cumulative function is (x > 0)

F (x) = γ (η,λx)

�(η)
,

where η > 0 is the shape parameter, λ > 0 is the scale parameter and γ (·, ·)
denotes the lower incomplete gamma function.

• Log-normal (LN) distribution. The LN cumulative function is (x > 0)

F (x) = �

(
ln(x) − μ

σ

)
,

where �(·) is the cumulative function of the standard normal distribution, σ > 0
is the shape parameter and μ ∈ R is the location parameter.

• Birnbaum–Saunders (BS) distribution (Birnbaum and Saunders, 1969). The BS
cumulative function is (x > 0)

F (x) = �

(
1

α

[√
x

β
−

√
β

x

])
,

where α > 0 is the shape parameter and β > 0 is the scale parameter.
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We estimate the unknown parameters of each model by the maximum likeli-
hood method. All the computations were done using the Ox matrix programming
language (Doornik, 2006), which is freely distributed for academic purposes and
is available at http://www.doornik.com. In order to compare the models above
with the proposed BLLog model (and their sub-models), we shall apply formal
goodness-of-fit tests to verify which distribution fits better the real data sets. We
consider the Cramér–von Mises (W ∗) and Anderson–Darling (A∗) statistics. The
statistics W ∗ and A∗ are described in details in Chen and Balakrishnan (1995).
In general, the smaller the values of these statistics, the better the fit to the data.
Let H(x; θ) be the c.d.f., where the form of H is known but θ (a k-dimensional
parameter vector, say) is unknown. To obtain the statistics W ∗ and A∗, we can pro-
ceed as follows: (i) Compute vi = H(xi; θ̂), where the xi ’s are in ascending order,
and then yi = �−1(vi), where �(·) is the standard normal c.d.f. and �−1(·) its in-
verse; (ii) Compute ui = �{(yi − ȳ)/sy}, where ȳ = (1/n)

∑n
i=1 yi and s2

y = (n −
1)−1 ∑n

i=1(yi − ȳ)2; (iii) Calculate W 2 = ∑n
i=1{ui − (2i − 1)/(2n)}2 + 1/(12n)

and A2 = −n − (1/n)
∑n

i=1{(2i − 1) ln(ui) + (2n + 1 − 2i) ln(1 − ui)} and then
W ∗ = W 2(1 + 0.5/n) and A∗ = A2(1 + 0.75/n + 2.25/n2).

Table 3 lists the MLEs (and the corresponding standard errors in parentheses)
of the parameters of all the models for the first data set (breaking stress of carbon
fibres). The statistics W ∗ and A∗ are also listed in this table for all the models.
As can be seen from the figures of this table, the new BLLog model proposed
in this paper presents the smallest values of the statistics W ∗ and A∗ among all
the models, that is, the new model fits the breaking stress of carbon fibres data
better than all the other models considered. More information is provided by a vi-
sual comparison in Figure 5(a) of the histogram of the data with the fitted BLLog
density function. Clearly, the BLLog distribution provides a closer fit to the his-
togram. The Kaplan–Meier (K–M) estimate and the estimated survival function of
the fitted BLLog distribution is shown in Figure 5(b). From this plot, note that the
BLLog model fits the data adequately and hence can be adequate for these data.

Table 4 lists the MLEs (and the corresponding standard errors in parentheses)
of the parameters of all the models and the statistics W ∗ and A∗ for the second
data set (remission times). From Table 4, notice that the proposed ELLog model
presents the smallest values of the statistics W ∗ and A∗, and hence should be
chosen as the best model among all the distributions to fit the remission times
data. The histogram of the data with the fitted ELLog density function is presented
in Figure 6(a). The K–M estimate and the estimated survival function of the fitted
ELLog distribution is displayed in Figure 6(b), which clearly shows that the ELLog
model fits the data adequately and hence can be adequate for modeling these data.
In summary, the new BLLog model (and their sub-models) may be an interesting
alternative to the other models available in the literature for modeling positive real
data.

http://www.doornik.com
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Table 3 MLEs (standard errors in parentheses) and the statistics W∗ and A∗; first data set

Distribution Estimates W∗ A∗

BLLog(a, b,α,β) 0.0900 0.2254 3.1486 25.417 0.03867 0.27763
(0.1700) (0.4452) (0.1851) (46.670)

BW(α,β, a, b) 0.1013 2.4231 1.3080 0.8907 0.07039 0.41325
(0.3160) (0.7389) (0.6133) (3.5611)

KW(a, b, c, λ) 1.9447 12.030 1.6217 0.0561 0.06938 0.40705
(5.7460) (146.64) (4.6401) (0.1776)

ELLog(a,α,β) 0.3339 3.3815 7.4714 0.04627 0.30190
(0.0998) (0.2270) (1.4975)

LeLLog(b,α,β) 7.8795 5.6426 3.0234 0.06717 0.38989
(11.370) (3.3334) (0.3873)

EW(α,β, a) 0.0928 2.4091 1.3168 0.07036 0.41313
(0.0904) (0.5930) (0.5969)

MOW(α, γ,λ) 0.6926 3.0094 0.0309 0.07052 0.43016
(0.8310) (0.7181) (0.0472)

BHC(φ, a, b) 15.194 5.5944 46.116 0.13860 0.70838
(20.687) (0.8087) (70.775)

LLog(α,β) 2.4984 4.1179 0.23903 1.24090
(0.1051) (0.3444)

Weibull(α,β) 0.0490 2.7929 0.06227 0.41581
(0.0138) (0.2131)

Gamma(λ, η) 5.9526 2.2708 0.14802 0.75721
(0.8193) (0.3261)

LN(μ,σ ) 0.8774 0.4439 0.27734 1.48332
(0.0444) (0.0314)

BS(α,β) 0.4622 2.3660 0.29785 1.61816
(0.0327) (0.1064)

Figure 5 (a) Estimated p.d.f. of the BLLog model; (b) Empirical survival and estimated survival
function of the BLLog model; first data set.
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Table 4 MLEs (standard errors in parentheses) and the statistics W∗ and A∗; second data set

Distribution Estimates W∗ A∗

BLLog(a, b,α,β) 0.7201 1.3428 10.211 1.8291 0.01707 0.11110
(0.5668) (1.3280) (4.1701) (1.0976)

BW(α,β, a, b) 0.4697 0.6661 2.7348 0.9083 0.04362 0.28825
(0.3682) (0.2464) (1.6122) (1.5143)

KW(a, b, c, λ) 4.1178 2.9414 0.4589 0.4949 0.04149 0.27322
(6.0714) (8.2687) (0.5316) (0.5248)

ELLog(a,α,β) 0.5858 9.2282 2.1727 0.01629 0.10549
(0.1625) (1.9223) (0.3280)

LeLLog(b,α,β) 2.0701 12.033 1.4276 0.01946 0.13077
(0.9583) (5.7180) (0.1744)

EW(α,β, a) 0.4537 0.6544 2.7960 0.04367 0.28848
(0.2395) (0.1354) (1.2645)

MOW(α, γ,λ) 0.0639 1.6042 0.0033 0.02842 0.20409
(0.0627) (0.1641) (0.0039)

BHC(φ, a, b) 10.981 1.3725 2.4456 0.01766 0.11679
(3.9737) (0.2030) (0.6640)

LLog(α,β) 6.0898 1.7252 0.04301 0.31113
(0.5404) (0.1275)

Weibull(α,β) 0.0939 1.0478 0.13137 0.78648
(0.0191) (0.0675)

Gamma(λ, η) 1.1725 0.1252 0.11988 0.71928
(0.1308) (0.0173)

LN(μ,σ ) 1.7535 1.0731 0.12230 0.82632
(0.1013) (0.1030)

BS(α,β) 1.3742 4.5711 0.41359 2.56150
(0.0861) (0.4460)

Figure 6 (a) Estimated p.d.f. of the ELLog model; (b) Empirical survival and estimated survival
function of the ELLog model; second data set.
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9 Concluding remarks

In this paper, we propose a new distribution which generalizes the log-logistic dis-
tribution. Further, the new distribution includes as special sub-models other distri-
butions. We refer to the new model as the beta log-logistic (BLLog) distribution
and study some of its mathematical and statistical properties. We provide for the
new distribution explicit expressions for the moments, mean deviations, Rényi en-
tropy and Shannon entropy. The model parameters are estimated by maximum
likelihood and the expected information matrix is derived. The usefulness of the
new model is illustrated in two applications to real data using goodness-of-fit tests.
The new model provides consistently better fit than other models available in the
literature. The formulae related with the new model are manageable and may turn
into adequate tools comprising the arsenal of applied statisticians. We hope that
the proposed model may attract wider applications for modeling positive real data
sets in many areas such as engineering, survival analysis, hydrology, economics,
and so on.
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