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1. Introduction. It is my pleasure to congratulate the authors for an innova-
tive and inspiring piece of work. Chandrasekaran, Parrilo and Willsky (hereafter
CPW) have come up with a novel approach, combining ideas from convex opti-
mization and algebraic geometry, to the long-standing problem of Gaussian graph-
ical model selection with latent variables. Their method is intuitive and simple
to implement, based on solving a convex log-determinant program with suitable
choices of regularization. In addition, they establish a number of attractive theoret-
ical guarantees that hold under high-dimensional scaling, meaning that the graph
size p and sample size n are allowed to grow simultaneously.

1.1. Background. Recall that an undirected graphical model (also known as a
Markov random field) consists of a family of probability distributions that factor-
ize according to the structure of undirected graph G = (V, E). In the multivariate
Gaussian case, the factorization translates into a sparsity assumption on the inverse
covariance or precision matrix [9]. In particular, given a multivariate Gaussian ran-
dom vector (X1, ..., X,) with covariance matrix X, it is said to be Markov with
respect to the graph G if its precision matrix K = ¥ ~! has zeroes for each distinct
pair of indices (j, k) not in the edge set E of the graph. Consequently, the spar-
sity pattern of the inverse covariance K encodes the edge structure of the graph.
The goal of Gaussian graphical model selection is to determine this unknown edge
structure, and hence the sparsity pattern of the inverse covariance matrix. It can
also be of interest to estimate the matrices K or X, for instance, in the Frobenius
or {>-operator norm sense. In recent years, under the assumption that all entries
of X are fully observed, a number of practical methods have been proposed and
shown to perform well under high-dimensional scaling (e.g., [2, 5-7]).

Chandrasekaran et al. tackle a challenging extension of this problem, in which
one observes only p coordinates of a larger p + h dimensional Gaussian random
vector. In this case, the p x p precision matrix K of the observed components need
not be sparse, but rather, by an application of the Schur complement formula, can
be written as the difference K = S* — L*. The first matrix S* is sparse, whereas
the second matrix L* is not sparse (at least in general), but has rank at most %, cor-
responding to the number of latent or hidden variables. Consequently, the problem
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of latent Gaussian graphical model selection can be cast as a form of matrix de-
composition, involving a splitting of the precision matrix into sparse and low-rank
components. Based on this nice insight, CPW propose a natural M -estimator for
this problem, based on minimizing a regularized form of the (negative) log like-
lihood for a multivariate Gaussian, where the elementwise £1-norm is used as a
proxy for sparsity, and the nuclear or trace norm as a proxy for rank. Overall, the
method is based on the convex program

(1) (S, L) € argmin{—£(S — L; ") 4 A, (¥ [ S|I1 + trace(L)))
such that S > L > 0,

where £(S — L; £") is the Gaussian log-likelihood as a function of the precision
matrix § — L and the empirical covariance matrix X" of the observed variables.

1.2. Sharpness of rates. On one hand, the paper provides attractive guaran-
tees on the procedure (1)—namely, that under suitable incoherence conditions (to
be discussed below) and a sample size n 7 p, the method is guaranteed with high
probability: (a) to correctly recover the signed support of the sparse matrix S*, and
hence the full graph structure; (b) to correctly recover the rank of the component
L*, and hence the number of latent variables; and (c) to yield operator norm con-
sistency of the order \/g . The proof itself involves a clever use of the primal-dual
witness method [6], in which one analyzes an M -estimator by constructing a pri-
mal solution and an associated dual pair, and uses the construction to show that
the optimum has desired properties (in this case, support and rank recovery) with
high probability. A major challenge, not present in the simpler problem without
latent variables, is dealing with the potential nonidentifiability of the matrix de-
composition problem (see below for further discussion); the authors overcome this
challenge via a delicate analysis of the tangent spaces associated with the sparse
and low-rank components.

On the other hand, the scaling n 7 p is quite restrictive, at least in comparison
to related results without latent variables. To provide a concrete example, con-
sider a Gaussian graphical model with maximum degree d. For any such graph,
again under a set of so-called incoherence or irrepresentability conditions, the
neighborhood-based selection of approach of Meinshausen and Biihlmann [5] can
be shown to correctly specify the graph structure with high probability based on
n 7, dlog p samples. Moreover, under a similar set of assumptions, Ravikumar et
al. [6] show that the £-regularized Gaussian MLE returns an estimate of the pre-

cision matrix with operator norm error of the order 4/ 4121%. Consequently, when-
ever the maximum degree d is significantly smaller than the dimension, results of
this type allow for the sample size n to be much smaller than p. This discrepancy—
as to whether or not the sample size can be smaller than the dimension—thus
raises some interesting directions for future work. More precisely, one wonders
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whether or not the CPW analysis might be sharpened so as to reduce the sample
size requirements. Possibly this might require introducing additional structure in
the low-rank matrix. From the other direction, an alternative approach would be to
develop minimax lower bounds on latent Gaussian model selection, for instance,
by using information-theoretic techniques that have been exploited in related work
on model/graph selection and covariance estimation (e.g., [2, 8, 10]).

1.3. Relaxing assumptions. The CPW analysis also imposes lower bounds on
the minimum absolute values of the nonzero entries in $*, as well as the minimum

nonzero singular values of L*—both must scale as 2 (\/g). Clearly, some sort of

lower bound on these quantities is necessary in order to establish exact recovery
guarantees, as in the results (a) and (b) paraphrased above. It is less clear whether
lower bounds of this order are the weakest possible, and if not, to what extent
they can be relaxed. For instance, again in the setting of Gaussian graph selection
without latent variables [5, 6], the minimum values are typically allowed to be as

small as € ( l(’%). More broadly, in many applications, it might be more natural
to assume that the data is not actually drawn from a sparse graphical model, but
rather can be well-approximated by such a model. In such settings, although exact
recovery guarantees would no longer be feasible, one would like to guarantee that
a given method, either the M-estimator (1) or some variant thereof, can recover
all entries of §* with absolute value above a given threshold, and/or estimate the
number of eigenvalues of L* above a (possibly different) threshold. Such guar-
antees are possible for ordinary Gaussian graph selection, where it is known that
£1-based methods will recover all entries with absolute values above the regular-
ization parameter [5, 6].

The CPW analysis also involves various types of incoherence conditions on the
matrix decomposition. As noted by the authors, some of these assumptions are
related to the incoherence or irrepresentability conditions imposed in past work
on ordinary Gaussian graph selection [5, 6, 11]; others are unique to the latent
problem, since they are required to ensure identifiability (see discussion below). It
seems worthwhile to explore which of these incoherence conditions are artifacts
of a particular methodology and which are intrinsic to the problem. For instance,
in the case of ordinary Gaussian graph selection, there are problems for which
the neighborhood-based Lasso [5] can correctly recover the graph while the £;-
regularized log-determinant approach [4, 6] cannot. Moreover, there are problems
for which, with the same order of sample size, the neighborhood-based Lasso will
fail whereas an oracle method will succeed [10]. Such differences demonstrate
that certain aspects of the incoherence conditions are artifacts of ¢;-relaxations.
In the context of latent Gaussian graph selection, these same issues remain to be
explored. For instance, are there alternative polynomial-time methods that can per-
form latent graph selection under milder incoherence conditions? What conditions
are required by an oracle-type approach—that is, involving exact cardinality and
rank constraints?
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1.4. Toward partial identifiability. On the other hand, certain types of incoher-
ence conditions are clearly intrinsic to the problem. Even at the population level,
it is clearly not possible in general to identify the components (S*, L*) based on
observing only the sum K = §* — L*. A major contribution of the CPW paper,
building from their own pioneering work on matrix decompositions [3], is to pro-
vide sufficient conditions on the pair (S*, L*) that ensure identifiability. These
sufficient conditions are based on a detailed analysis of the algebraic structure of
the spaces of sparse and low-rank matrices, respectively.

In a statistical setting, however, most models are viewed as approximations to
reality. With this mindset, it could be interesting to consider matrix decomposi-
tions that satisfy a weaker notion of partial identifiability. To provide a concrete
illustration, suppose that we begin with a matrix pair (S$*, L*) that is identifiable
based on observing the difference K = S* — L*. Now imagine that we perturb
K by a matrix that is both sparse and low-rank—for instance, a matrix of the
form E = zzT where z is a sparse vector. If we then consider the perturbed matrix
K := K +8E = §* — L* 4+ § E for some suitably small parameter §, the matrix de-
composition is longer identifiable. In particular, at the two extremes, we can choose
between the decompositions K = (S* + 8E) — L*, where the matrix (S* + §E) is
sparse, or the decomposition K = §* — (L* — §E), where the matrix L* — §E is
low-rank. Note that this nonidentifiability holds regardless of how small we choose
the scalar §. However, from a more practical perspective, if we relax our require-
ment of exact identification, then such a perturbation need not be a concern as long
as § is relatively small. Indeed, one might expect that it should be possible to re-
cover estimates of the pair (S*, L*) that are accurate up to an error proportional to
8.

In some of our own recent work [1], we have provided such guarantees for a
related class of noisy matrix decomposition problems. In particular, we consider
the observation model!

() Y=XS*—L"+W,

where X :RP*P — R"1*"2 js a known linear operator and W € R"1*"2 is a noise
matrix. In the simplest case, X is simply the identity operator. Observation models
of this form (2) arise in robust PCA, sparse factor analysis, multivariate regression
and robust covariance estimation.

Instead of enforcing incoherence conditions sufficient for identifiability, the
analysis is performed under related but milder conditions on the interaction be-
tween S* and L*. For instance, one way of controlling the radius of nonidentifia-
bility is via control on the “spikiness” of the low-rank component, as measured by

. * .
the ratio a(L*) := pm”LL* II‘I‘;O , Where || - ||o denotes the elementwise absolute max-
imum and || - ||F denotes the Frobenius norm. For any nonzero p-dimensional

matrix, this spikiness ratio ranges between 1 and p:

Here we follow the notation of the CPW paper for the sparse and low-rank components.
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e On one hand, it achieves its minimum value by a matrix that has all its entries
equal to the same nonzero constant (e.g., L* = 117, where 1 € R? is a vector of
all ones).

e On the other hand, the maximum is achieved by a matrix that concentrates all its
mass in a single position (e.g., L* = elelr, where e; € R? is the first canonical
basis vector).

Note that it is precisely this latter type of matrix that is troublesome in sparse plus
low-rank matrix decomposition, since it is simultaneously sparse and low-rank. In
this way, the spikiness ratio limits the effect of such troublesome instances, thereby
bounding the radius of nonidentifiability of the model. The paper [1] analyzes an
M -estimator, also based on elementwise ¢; and nuclear norm regularization, for
estimating the pair ($*, L*) from the noisy observation model (2). The resulting
error bounds involve both terms arising from the (possibly stochastic) noise matrix
W and additional terms associated with the radius of nonidentifiability.

The same notion of partial identifiability is applicable to latent Gaussian graph
selection. Accordingly, it seems worthwhile to explore whether similar techniques
can be used to obtain error bounds with a similar form—one component associ-
ated with the stochastic noise (induced by sampling), and a second deterministic
component. Interestingly, under the scaling n 7~ p assumed in the CPW paper,
the empirical covariance matrix " will be invertible with high probability and,
hence, it can be cast as an observation model of the form (2)—namely, we can
write (£7)~! = §* — L* + W, where the noise matrix W is induced by sampling.

1.5. Extensions to non-Gaussian variables. A final more speculative yet in-
triguing question is whether the techniques of CPW can be extended to graphical
models involving non-Gaussian variables, for instance, those with binary or multi-
nomial variables for a start. The main complication here is that factorization and
conditional independence properties for non-Gaussian variables do not translate
directly into sparsity of the inverse covariance matrix. Nonetheless, it might be
possible to reveal aspects of this factorization by some type of spectral analysis, in
which context related matrix-theoretic approaches could be brought to bear. Over-
all, we should all be thankful to Chandrasekaran, Parillo and Willsky for their in-
novative work and the exciting line of questions and possibilities that it has raised
for future research.
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