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A ROBBINS–MONRO PROCEDURE FOR ESTIMATION IN
SEMIPARAMETRIC REGRESSION MODELS

BY BERNARD BERCU AND PHILIPPE FRAYSSE

Université de Bordeaux

This paper is devoted to the parametric estimation of a shift together with
the nonparametric estimation of a regression function in a semiparametric re-
gression model. We implement a very efficient and easy to handle Robbins–
Monro procedure. On the one hand, we propose a stochastic algorithm similar
to that of Robbins–Monro in order to estimate the shift parameter. A prelimi-
nary evaluation of the regression function is not necessary to estimate the shift
parameter. On the other hand, we make use of a recursive Nadaraya–Watson
estimator for the estimation of the regression function. This kernel estimator
takes into account the previous estimation of the shift parameter. We establish
the almost sure convergence for both Robbins–Monro and Nadaraya–Watson
estimators. The asymptotic normality of our estimates is also provided. Fi-
nally, we illustrate our semiparametric estimation procedure on simulated and
real data.

1. Introduction. A wide range of real-life phenomena occur periodically.
One can think about meteorology with daily or annual cycles of temperature [19],
astronomy with the famous 11-year cycles of solar geomagnetic activity [23],
medicine with human circadian rhythms [39] or ECG signals [36], econometry
[2, 26], communication [11], etc. Statistical analysis of periodic data is of great in-
terest in order to design suitable models for those cyclic phenomena. An important
literature is available on the so-called periodic shape-invariant model introduced
by Lawton, Sylvestre and Maggio [24]. Theoretical advances on shape-invariant
models together with statistical applications may be found in [17, 19–21, 38, 39].
A periodic shape-invariant model is a semiparametric regression model with an
unknown periodic shape function. It is given, for all n ≥ 0, by

Yn = h(Xn) + εn,(1.1)

where the inputs (Xn) are known observation times, the output (Yn) are the obser-
vations, and (εn) are unknown random errors. The function h is periodic and takes
the form

h(x) = m +
p∑

k=1

akf (x − θk),
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where f represents the unknown characteristic shape function, m is the overall
mean, while θ = (θ1, . . . , θp) and a = (a1, . . . , ap) are unknown shift and scale
parameters.

In this paper, we shall focus our attention on the particular case p = 1, m = 0
and a = 1 by studying the semiparametric regression model given, for all n ≥ 0,
by

Yn = f (Xn − θ) + εn,(1.2)

where (Xn) and (εn) are two independent sequences of independent and identically
distributed random variables. We are dealing with random observation times in
contrast with the previous literature where (Xn) are assumed to be known and
equidistributed over a given interval. We are interested in the parametric estimation
of the shift parameter θ together with the nonparametric estimation of the shape
function f . However, one has to keep in mind that our main interest lies in the
estimation of the parameter θ . We are also motivated by a statistical application on
the detection of atrial fibrillation using ECG analysis [6, 36].

First of all, we implement a Robbins–Monro procedure in order to estimate
the unknown parameter θ without any preliminary evaluation of the regression
function f . Our approach is very easy to handle and it performs very well. More-
over, our approach is totally different from the one recently proposed by Dalalyan,
Golubev and Tsybakov [7] in the Gaussian white-noise case. First, a penalized
maximum likelihood estimator of θ is proposed in [7] with an appropriately cho-
sen penalty based on a Fourier series approximation of the function f . Second,
the asymptotic behavior of the mean squared risk of this estimator is investigated.
One can observe that our estimator is much easier to calculate. In addition, we
do not require any assumption on the derivatives of the function f . In the situa-
tion where the parameter θ is random, Castillo and Loubes [3] propose a plug-in
version of the Parzen–Rosenblatt [30, 33] density estimator of θ . The construc-
tion of this estimate also relies on the penalized maximum likelihood estimator
of θ given in [7]. Furthermore, in the case where one observes several Gaussian
functions differing from each other by a translation parameter, Gamboa, Loubes
and Maza [11] propose to transform the starting model by using a discrete Fourier
transform. Hence, from the resulting model, they estimate the shift parameters by
minimizing a quadratic functional. This approach is very interesting by the few as-
sumptions made on the regression function. In a more general framework, Vimond
[38] makes use of a truncated Fourier approximation of f in order to evaluate
the profile log-likelihood score function associated with the shift and scale pa-
rameters. This two-step strategy requires, as in [11], the estimation of the Fourier
coefficients of f . However, it performs pretty well as it leads to consistent and
asymptotically efficient estimators of the shift and scale parameters. Our alterna-
tive approach to estimate θ is associated to a stochastic recursive algorithm similar
to that of Robbins–Monro [32, 33].
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Assume that one can find a function φ, free of the parameter θ , such that
φ(θ) = 0. Then, it is possible to estimate θ by the Robbins–Monro algorithm

θ̂n+1 = θ̂n + γnTn+1,(1.3)

where (γn) is a positive sequence of real numbers decreasing toward zero and (Tn)

is a sequence of random variables such that E[Tn+1|Fn] = φ(θ̂n) where Fn stands
for the σ -algebra of the events occurring up to time n. Under standard conditions
on the function φ and on the sequence (γn), it is well known [9, 22] that θ̂n tends to
θ almost surely. The asymptotic normality of θ̂n together with the quadratic strong
law may also be found in [13, 27] and [31]. A randomly truncated version of the
Robbins–Monro algorithm is also given in [4, 25].

Our second goal is the estimation of the unknown regression function f . A wide
range of literature is available on nonparametric estimation of a regression func-
tion. We refer the reader to [8, 37] for two excellent books on density and regres-
sion function estimation. Here, we focus our attention on the Nadaraya–Watson
estimator of f . The almost sure convergence of the Nadaraya–Watson estimator
[28, 40] without the shift θ was established by Noda [29]; see also Härdle et al.
[15, 16] for the law of iterated logarithm and the uniform strong law. A nice ex-
tension of the previous results may be found in [18]. The asymptotic normality
of the Nadaraya–Watson estimator was proved by Schuster [34]. Moreover, Choi,
Hall and Rousson [5] propose three data-sharpening versions of the Nadaraya–
Watson estimator in order to reduce the asymptotic variance in the central limit
theorem. Furthermore, in the situation where the regression function is monotone,
Hall and Huang [14] provide a method for monotonizing the Nadaraya–Watson es-
timator. For n large enough, their alternative estimator coincides with the standard
Nadaraya–Watson estimator on a compact interval where the regression function
f is monotone. In our situation, we propose to make use of a recursive Nadaraya–
Watson estimator [9] of f which takes into account the previous estimation of the
shift parameter θ . It is given, for all x ∈ R, by

f̂n(x) =
∑n

k=1 Wk(x)Yk∑n
k=1 Wk(x)

(1.4)

with

Wn(x) = 1

hn

K

(
Xn − θ̂n−1 − x

hn

)
,

where the kernel K is a chosen probability density function and the bandwidth
(hn) is a sequence of positive real numbers decreasing to zero. The main difficulty
arising here is that we have to deal with the additional term θ̂n inside the kernel K .
Consequently, we are led to analyze a double stochastic algorithm with, at the
same time, the study of the asymptotic behavior of the Robbins–Monro estimator
θ̂n of θ , and the Nadaraya–Watson estimator f̂n of f .
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The paper is organized as follows. Section 2 is devoted to the parametric estima-
tion of θ . We establish the almost sure convergence of θ̂n as well as a law of iterated
logarithm and the asymptotic normality. Section 3 deals with the nonparametric es-
timation of f . Under standard regularity assumptions on the kernel K , we prove
the almost sure pointwise convergence of f̂n to f . In addition, we also establish
the asymptotic normality of f̂n. Section 4 contains some numerical experiments on
simulated and real ECG data, illustrating the performances of our semiparametric
estimation procedure. The proofs of the parametric results are given in Section 5,
while those concerning the nonparametric results are postponed to Section 6.

2. Estimation of the shift. First of all, we focus our attention on the esti-
mation of the shift parameter θ in the semiparametric regression model given by
(1.2). We assume that (εn) is a sequence of independent and identically distributed
random variables with zero mean and unknown positive variance σ 2. Moreover, it
is necessary to make several hypotheses similar to those of [7].

(H1) The observation times (Xn) are independent and identically distributed
with probability density function g, positive on its support [−1/2,1/2].
In addition, g is continuous, twice differentiable with bounded deriva-
tives.

The shape function f is symmetric, bounded, periodic with period 1.(H2)

Let X be a random variable sharing the same distribution as (Xn). In all the
sequel, the auxiliary function φ defined, for all t ∈ R, by

φ(t) = E

[
sin(2π(X − t))

g(X)
f (X − θ)

]
(2.1)

will play a prominent role. More precisely, it follows from the periodicity of f that

φ(t) =
∫ 1/2

−1/2
sin

(
2π(x − t)

)
f (x − θ) dx

=
∫ 1/2

−1/2
sin

(
2π(y + θ − t)

)
f (y) dy,

= sin
(
2π(θ − t)

) ∫ 1/2

−1/2
cos(2πy)f (y) dy

+ cos
(
2π(θ − t)

) ∫ 1/2

−1/2
sin(2πy)f (y) dy.

Consequently, the symmetry of f leads to

φ(t) = f1 sin
(
2π(θ − t)

)
,(2.2)
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where f1 is the first Fourier coefficient of f

f1 =
∫ 1/2

−1/2
cos(2πx)f (x) dx.

Throughout the paper, we assume that f1 �= 0. Obviously, φ is a continuous and
bounded function such that φ(θ) = 0. In addition, one can easily verify that for
all t ∈ R such that |t − θ | < 1/2, the product (t − θ)φ(t) has a constant sign. It
is negative if f1 > 0, while it is positive if f1 < 0. Therefore, we are in position
to implement our Robbins–Monro procedure [32, 33]. Let K = [−1/4,1/4] and
denote by πK the projection on the compact set K defined, for all x ∈ R, by

πK(x) =
⎧⎨⎩

x, if |x| ≤ 1/4,
1/4, if x ≥ 1/4,
−1/4, if x ≤ −1/4.

Let (γn) be a decreasing sequence of positive real numbers satisfying
∞∑

n=1

γn = +∞ and
∞∑

n=1

γ 2
n < +∞.(2.3)

For the sake of clarity, we shall make use of γn = 1/n. We estimate the shift pa-
rameter θ via the projected Robbins–Monro algorithm

θ̂n+1 = πK

(
θ̂n + sign(f1)γn+1Tn+1

)
,(2.4)

where the initial value θ̂0 ∈ K and the random variable Tn+1 is defined by

Tn+1 = sin(2π(Xn+1 − θ̂n))

g(Xn+1)
Yn+1.(2.5)

Our first result concerns the almost sure convergence of the estimator θ̂n.

THEOREM 2.1. Assume that (H1) and (H2) hold and that |θ | < 1/4. Then,
θ̂n converges almost surely to θ . In addition, the number of times that the random
variable θ̂n + sign(f1)γn+1Tn+1 goes outside of K is almost surely finite.

In order to establish the asymptotic normality of θ̂n, it is necessary to introduce
a second auxiliary function ϕ defined, for all t ∈ R, by

ϕ(t) = E

[
sin2(2π(X − t))

g2(X)

(
f 2(X − θ) + σ 2)]

(2.6)

=
∫ 1/2

−1/2

sin2(2π(x − t))

g(x)

(
f 2(x − θ) + σ 2)

dx.

As soon as 4π |f1| > 1, denote

ξ2(θ) = ϕ(θ)

4π |f1| − 1
.(2.7)
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THEOREM 2.2. Assume that (H1) and (H2) hold and that |θ | < 1/4. In ad-
dition, suppose that (εn) has a finite moment of order > 2 and that 4π |f1| > 1.
Then, we have the asymptotic normality

√
n(θ̂n − θ)

L−→ N (0, ξ2(θ)).(2.8)

REMARK 2.1. We clearly have φ′(t) = −2πf1 cos(2π(θ − t)). Consequently,
the value φ′(θ) = −2πf1 does not depend upon the unknown parameter θ . On
the one hand, if the first Fourier coefficient f1 of f is known, it is possible to
provide, via a slight modification of (2.4), an asymptotically efficient estimator θ̂n

of θ . More precisely, it is only necessary to replace γn = 1/n in (2.4) by γn = γ /n

where

γ = 1

2π |f1| .

Then, we deduce from the original work of Fabian [10] that θ̂n is an asymptotically
efficient estimator of θ with

√
n(θ̂n − θ)

L−→ N
(

0,
ϕ(θ)

4π2f 2
1

)
.(2.9)

On the other hand, if f1 is unknown, it is also possible to provide by the same
procedure an asymptotically efficient estimator θ̂n of θ replacing f1 by its natural
estimate

f̂1,n = 1

n

n∑
k=1

Yk cos(2π(Xk − θ̂k−1))

g(Xk)
.

REMARK 2.2. In the particular case where 4π |f1| = 1, it is also possible to
show [9] that √

n

log(n)
(θ̂n − θ)

L−→ N (0, ϕ(θ)).

Asymptotic results are also available when 0 < 4π |f1| < 1. However, we have
chosen to focus our attention on the more attractive case 4π |f1| > 1.

THEOREM 2.3. Assume that (H1) and (H2) hold and that |θ | < 1/4. In ad-
dition, suppose that (εn) has a finite moment of order > 2 and that 4π |f1| > 1.
Then, we have the law of iterated logarithm

lim sup
n→∞

(
n

2 log logn

)1/2
(θ̂n − θ) = − lim inf

n→∞

(
n

2 log logn

)1/2
(θ̂n − θ)

(2.10)
= ξ(θ) a.s.
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In particular,

lim sup
n→∞

(
n

2 log logn

)
(θ̂n − θ)2 = ξ2(θ) a.s.(2.11)

In addition, we also have the quadratic strong law

lim
n→∞

1

logn

n∑
k=1

(θ̂k − θ)2 = ξ2(θ) a.s.(2.12)

PROOF. The proofs are given in Section 5. �

REMARK 2.3. It is also possible to get rid of the symmetry assumption on f .
However, it requires the knowledge of the first Fourier coefficients of f :

f1 =
∫ 1/2

−1/2
cos(2πx)f (x) dx and g1 =

∫ 1/2

−1/2
sin(2πx)f (x) dx.

On the one hand, it is necessary to assume that f1 �= 0 or g1 �= 0, and to replace
the first auxiliary function φ defined in (2.1) by


(t) = f1E

[
sin(2π(X − t))

g(X)
f (X − θ)

]
− g1E

[
cos(2π(X − t))

g(X)
f (X − θ)

]
= (f 2

1 + g2
1) sin

(
2π(θ − t)

)
.

Then, Theorem 2.1 is true for the projected Robbins–Monro algorithm

θ̂n+1 = πK(θ̂n + γn+1Tn+1),

where the initial value θ̂0 ∈ K and the random variable Tn+1 is defined by

Tn+1 = f1 sin(2π(Xn+1 − θ̂n))

g(Xn+1)
Yn+1 − g1 cos(2π(Xn+1 − θ̂n))

g(Xn+1)
Yn+1.

On the other hand, we also have to replace the second function ϕ defined in (2.6)
by

�(t) = E

[
(f1 sin(2π(X − t)) − g1 cos(2π(X − t)))2

g2(X)

(
f 2(X − θ) + σ 2)]

=
∫ 1/2

−1/2

(f1 sin(2π(x − t)) − g1 cos(2π(x − t)))2

g(x)

(
f 2(x − θ) + σ 2)

dx.

Then, as soon as 4π(f 2
1 + g2

1) > 1, Theorems 2.2 and 2.3 hold with

ξ2(θ) = �(θ)

4π(f 2
1 + g2

1) − 1
.

In the rest of the paper, we shall not go in that direction as our strategy is to make
very few assumptions on the Fourier coefficients of f .
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3. Estimation of the regression function. This section is devoted to the non-
parametric estimation of the regression function f via a recursive Nadaraya–
Watson estimator. On the one hand, we add the standard hypothesis:

The regression function f is Lipschitz.(H3)

On the other hand, we recall that under (H2), the function f is assumed to be
symmetric. Consequently, we follow the same approach as the one developed by
Stone [35] for the estimation of a symmetric probability density function replacing
the estimator (1.4) by its symmetrized version

f̂n(x) =
∑n

k=1(Wk(x) + Wk(−x))Yk∑n
k=1(Wk(x) + Wk(−x))

,(3.1)

where

Wn(x) = 1

hn

K

(
Xn − θ̂n−1 − x

hn

)
.

The bandwidth (hn) is a sequence of positive real numbers, decreasing to zero,
such that nhn tends to infinity. For the sake of simplicity, we propose to make use
of hn = 1/nα with α ∈ ]0,1[. Moreover, we shall assume in all the sequel that the
kernel K is a positive symmetric function, bounded with compact support, twice
differentiable with bounded derivatives, satisfying∫

R

K(x)dx = 1 and
∫

R

K2(x) dx = ν2.

Our next result deals with the almost sure convergence of the estimator f̂n.

THEOREM 3.1. Assume that (H1), (H2) and (H3) hold and that |θ | < 1/4 and
the sequence (εn) has a finite moment of order > 2. Then, for any x ∈ R such that
|x| ≤ 1/2,

lim
n→∞ f̂n(x) = f (x) a.s.(3.2)

The asymptotic normality of the estimator f̂n is as follows.

THEOREM 3.2. Assume that (H1), (H2) and (H3) hold and that |θ | < 1/4 and
the sequence (εn) has a finite moment of order > 2. Then, as soon as the bandwidth
(hn) satisfies hn = 1/nα with α > 1/3, we have for any x ∈ R such that |x| ≤ 1/2
with x �= 0, the pointwise asymptotic normality√

nhn

(
f̂n(x) − f (x)

) L−→ N
(

0,
σ 2ν2

(1 + α)(g(θ + x) + g(θ − x))

)
.(3.3)

In addition, for x = 0,√
nhn

(
f̂n(0) − f (0)

) L−→ N
(

0,
σ 2ν2

(1 + α)g(θ)

)
.(3.4)

PROOF. The proofs are given in Section 6. �



674 B. BERCU AND P. FRAYSSE

4. Simulations. The goal of this section is to illustrate via some numerical
experiments the good performances of our estimation strategy. The first subsec-
tion is devoted to simulated data created according to the model (1.2) while the
second one deals with real ECG data taken from the MIT-BIH database. Our aim
is to propose an efficient and easy to handle procedure in order to detect atrial
fibrillation using ECG records. An interesting study on ECG analysis in order to
detect cardiac arrhythmia may also be found in [36].

4.1. Simulated data. Consider the semiparametric regression model

Yn = f (Xn − θ) + εn,

where θ = 1/10 and the periodic shape function f is given, for p ≥ 1 and for all
x ∈ R, by

f (x) =
p∑

k=1

cos(2kπx)

with p = 8. We have chosen (Xn) and (εn) as two independent sequences of in-
dependent random variables with U [−1/2,1/2] and N (0,1) distributions, respec-
tively. The simulated data are given in the left-hand side of Figure 1.

For the estimation of the shift parameter θ , we implement our Robbins–Monro
procedure with n = 1000 iterations. We obtain the estimate θ̂n = 0.1014 which
shows the good asymptotic behavior of the estimator θ̂n comparing to the true
value θ = 1/10. Moreover, using convergence (2.8), one can obtain confidence
intervals for the shift parameter. More precisely, they are given, for all n ≥ 1, by

In(θ) =
[
θ̂n − qβ

ξ̂n(θ)√
n

, θ̂n + qβ

ξ̂n(θ)√
n

]
,

where qβ stands for the quantile of order 0 < β < 1 of the N (0,1) distribution
and ξ̂n(θ) is a consistent estimator of ξ(θ) given by (2.7). In our particular case, it

FIG. 1. Simulated data and almost sure convergence.
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FIG. 2. Confidence intervals for θ and f .

is not necessary to estimate ξ2(θ) since via straightforward calculations, f1 = 1/2
and

ξ2(θ) = 7

8(2π − 1)
.

Moreover, for n = 1000 and for a risk β = 5%, the confidence interval is precisely
In(θ) = [0.0762;0.1266]. The length of In(θ) is 0.0504, which is rather small,
so our Robbins–Monro procedure performs pretty well. All confidence intervals
In(θ), for n = 1, . . . ,1000, are drawn in red in the left-hand side of Figure 2.

For the estimation of the regression function f , we make use of the uniform
kernel K on the interval [−1,1], and the bandwidth hn = 1/nα with α = 9/10. In
addition, it follows from convergences (3.3) and (3.4) that for n = 1000 and for all
x ∈ [−1/2,1/2], a confidence interval for f (x) is given by

Jn(x) =
[
f̂n(x) − qβ

v̂n(x, θ̂n)√
nhn

, f̂n(x) + qβ

v̂n(x, θ̂n)√
nhn

]
,

where qβ stands for the quantile of order 0 < β < 1 of the N (0,1) distribution
and v̂2

n(x, θ̂n) is a consistent estimator of the asymptotic variance v2(x, θ) in The-
orem 3.2. In our particular case, ν2 = 1/2 and

v2(x, θ) =
⎧⎨⎩

5/19, if −1/2 ≤ x < −2/ or 2/5 < x ≤ 1/2,
5/38, if −2/5 ≤ x ≤ 2/5 and x �= 0,
5/19, if x = 0.

All confidence intervals Jn(x), for all x ∈ [−1/2,1/2], are drawn in red in the
right-hand side of Figure 2. On the one hand, the simulations show that the largest
length of the confidence intervals Jn(x) is for x = −0.47 and x = 0.47 and the
length is precisely equal to 1.0066. On the other hand, the smallest length of the
confidence intervals Jn(x) is for x = −0.04 and x = 0.04 and is equal to 0.7118.
The fact that there are two values of x for the largest and the smallest length of
confidence intervals is due to the symmetry of the estimator f̂n. Then, one can
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observe on this first set of simulated data that the Robbins–Monro estimator θ̂n of
θ as well as the Nadaraya–Watson estimator f̂n of f perform pretty well.

Our second experiment deals with 30 curves according to the model

Yn = f (Xn − θ) + εn,

where θ = −1/5 for the first 10 curves and θ ′ = 1/10 for the last 20 curves. The
periodic shape function f is given, for all x ∈ [−1/2,1/2], by

f (x) = cos(2πx) + sin(2πx) + cos(2πx) sin(2πx).

Our goal is to propose a statistical procedure in order to detect a lag between
the first 10 curves with θ = −1/5 and the last 20 curves with θ ′ = 1/10. In other
words, we want to observe whether or not the value � = θ ′ − θ is far away from
zero. We have chosen (Xn) and (εn) as two independent sequences of indepen-
dent and Gaussian random variables with uniform distribution on [−1/2,1/2] and
N (0,1/5) distribution, respectively. Each curve is drawn with n = 200 points. The
different curves are given in Figure 3.

On the one hand, we estimate the first value θ = −1/5 from the first 10 curves.
We implement our Robbins–Monro procedure with n = 200 iterations for the first
estimate θ̂n of θ evaluated on the first curve, then with n = 400 iterations for the
second estimate θ̂n of θ evaluated on the two first curves, and so on, until the cal-
culation of the last estimate θ̂n of θ with n = 2000. Therefore, we obtain −0.1950
for the arithmetic mean of the first 10 estimates θ̂n of θ . We continue with the same
procedure on all the set of curves. The value of the eleven estimates with n = 2200
is 0.0986. This value is significantly different from the first 10 estimates. It corre-
sponds to the first curve simulated with θ ′ = 1/10. Furthermore, we obtain 0.0998
for the arithmetic mean of the last 20 estimates θ̂n of θ ′. Finally, our statistical pro-
cedure allows us to detect a change of parameterization from the value θ = −1/5

FIG. 3. Simulated data with two different values θ and θ ′.
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to the value θ ′ = 1/10 as �̂n = 0.0998 + 0.1950 = 0.2948. In order to compute
more accurate values of θ̂n, one can replace γn = 1/n in (2.4) by γn = 1/na where
1/2 < a < 1. This will be done for the implementation of our Robbins–Monro
procedure on real ECG data.

4.2. Real ECG data. We shall now focus our attention on real ECG data. We
have chosen the record 04015 in the Atrial Fibrillation (AF) database provided by
MIT-BIH database. Each recording consists in a continuous digitized ECG signal
measured over 1 hour in order to detect AF which is the most common cardiac
arrythmia. A stronger indicator of AF is the absence of P waves or the irregularities
of RR interval on an electrocardiogram. We refer the reader to [6] for an interesting
book on statistical methods and tools for ECG data analysis. Our aim is to propose
a statistical procedure in order to detect irregularities of RR interval on the ECG
record 04015. The record and its projection on the interval [−1/2,1/2] are given
in Figure 4. The size of the data set is 2038. We assume that the model

Yn = f (Xn − θ) + εn

fits the data, where the sequence (Xn) is uniformly distributed over the interval
[−1/2,1/2]. The periodic shape function f is clearly not symmetric. However,
we already saw in Remark 2.3 that our Robbins–Monro procedure still holds for
nonsymmetric regression function.

As for simulated data, in view of the signal, we would find two different val-
ues θ and θ ′. The first value θ is associated with the first part of the signal, while
the second value θ ′ corresponds to the second part. The difference � = θ ′ − θ

between the two parameters would explain the lag between the two parts of the
signal. A value of � far away from zero could be interpreted as the detection of
irregularities of RR interval which confirms the diagnostic of atrial fibrillation. On
this record, our Robbins–Monro procedure with n = 800 iterations leads to the
first estimate θ̂n = 0.1734 for θ and the last estimate θ̂n = −0.0092 for θ ′ with

FIG. 4. Original data.
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FIG. 5. Reconstruction of the ECG.

n = 1238. The value �̂n = −0.0092 − 0.1734 = −0.1826 explains the lag in Fig-
ure 4. Figure 5 shows that our Nadaraya–Watson procedure for the reconstruction
of ECG signals works pretty well.

5. Proofs of the parametric results.

5.1. Proof of Theorem 2.1. We can assume without loss of generality that
f1 > 0 inasmuch as the proof for f1 < 0 follows exactly the same lines. Denote by

Fn the σ -algebra of the events occurring up to time n, Fn = σ(X0, ε0, . . . ,Xn, εn).
First of all, we shall calculate the two first conditional moments of the random
variable Tn given by (2.5). It follows from (1.2) that

E[Tn+1|Fn] = E

[
sin(2π(Xn+1 − θ̂n))Yn+1

g(Xn+1)

∣∣∣Fn

]

= E

[
sin(2π(Xn+1 − θ̂n))(f (Xn+1 − θ) + εn+1)

g(Xn+1)

∣∣∣Fn

]
.

On the one hand, as (Xn) is a sequence of independent random variables sharing
the same distribution as a random variable X, we have

E

[
sin(2π(Xn+1 − θ̂n))f (Xn+1 − θ)

g(Xn+1)

∣∣∣Fn

]
= φ(θ̂n) a.s.,(5.1)

where φ is the function given by (2.1). On the other hand, as (Xn) and (εn) are two
independent sequences and (εn) is a sequence of independent and square integrable
random variables with zero mean, we also have

E

[
sin(2π(Xn+1 − θ̂n))εn+1

g(Xn+1)

∣∣∣Fn

]
= E

[
sin(2π(X − θ̂n))

g(X)

]
E[εn+1] = 0.
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Hence, (5.1) leads to

E[Tn+1|Fn] = φ(θ̂n) a.s.(5.2)

On the other hand,

T 2
n+1 = sin2(2π(Xn+1 − θ̂n))Y

2
n+1

g2(Xn+1)

= sin2(2π(Xn+1 − θ̂n))(f
2(Xn+1 − θ) + 2εn+1f (Xn+1 − θ) + ε2

n+1)

g2(Xn+1)
.

Consequently, as the function f is bounded, the density g is positive on
[−1/2,1/2], and E[ε2

n+1|Fn] = E[ε2
n+1] = σ 2, we obtain that

E[T 2
n+1|Fn] = E

[
sin2(2π(X − θ̂n))

g2(X)

(
f 2(X − θ) + σ 2)] = ϕ(θ̂n),(5.3)

where ϕ is given by (2.6). Therefore, as f is bounded and g does not vanish on its
support [−1/2,1/2], we deduce from (5.3) that for some constant M > 0

sup
n≥0

E[T 2
n+1|Fn] ≤ M a.s.(5.4)

Furthermore, for all n ≥ 0, let Vn = (θ̂n − θ)2. We clearly have

Vn+1 = (θ̂n+1 − θ)2

= (
πK(θ̂n + γn+1Tn+1) − θ

)2

= (
πK(θ̂n + γn+1Tn+1) − πK(θ)

)2

as we have assumed that θ belongs to K . Since πK is a Lipschitz function with
Lipschitz constant 1, we obtain that

Vn+1 ≤ (θ̂n + γn+1Tn+1 − θ)2

≤ Vn + γ 2
n+1T

2
n+1 + 2γn+1Tn+1(θ̂n − θ).

Hence, it follows from (5.2) and (5.4) that

E[Vn+1|Fn] ≤ Vn + γ 2
n+1E[T 2

n+1|Fn] + 2γn+1(θ̂n − θ)E[Tn+1|Fn]
(5.5)

≤ Vn + γ 2
n+1M + 2γn+1(θ̂n − θ)φ(θ̂n) a.s.

In addition, as θ̂n ∈ K , |θ̂n| < 1/4, |θ̂n − θ | < 1/2 which implies that (θ̂n −
θ)φ(θ̂n) < 0. Then, we deduce from (5.5) together with the Robbins–Siegmund
theorem (see Duflo [9], page 18) that the sequence (Vn) converges a.s. to a finite
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random variable V and
∞∑

n=1

γn+1(θ − θ̂n)φ(θ̂n) < +∞ a.s.(5.6)

Assume by contradiction that V �= 0 a.s. Then, one can find 0 < a < b < 1/2 such
that, for n large enough, the event {a < |θ̂n − θ | < b} is not negligible. However,
on this annulus, one can also find some constant c > 0 such that (θ − θ̂n)φ(θ̂n) > c

which, by (5.6), implies that
∞∑

n=1

γn < +∞.

This is of course in contradiction with assumption (2.3). Consequently, it follows
that V = 0 a.s. leading to the almost sure convergence of θ̂n to θ .
It remains to show that θ̂n + γn+1Tn+1 goes almost surely outside of K a finite
number of times. For all n ≥ 1, denote

Nn =
n−1∑
k=0

I{|θ̂k+γk+1Tk+1|>1/4}.

The random sequence (Nn) is nondecreasing. Assume by contradiction that Nn

goes to infinity a.s. Then, one can find a subsequence (nk) such that (Nnk
) is in-

creasing. Consequently, for all nk > 0,

|θ̂nk
+ γnk+1Tnk+1| > 1

4 a.s.,

which implies that |θ̂nk+1| = 1/4 a.s. Hence,

lim
nk→∞|θ̂nk

| = |θ | = 1

4
a.s.

leading to a contradiction as |θ | < 1/4. Finally, (Nn) converges to a finite limiting
value a.s. which completes the proof of Theorem 2.1.

5.2. Proof of Theorem 2.2. We assume without loss of generality that f1 > 0.
Our goal is to apply Theorem 2.1 of Kushner and Yin ([22], page 330). First of
all, as γn = 1/n, the condition on the decreasing step is satisfied. Moreover, we al-
ready saw that θ̂n converges almost surely to θ . Consequently, all the local assump-
tions of Theorem 2.1 of [22] are satisfied. In addition, it follows from (5.2) that
E[Tn+1|Fn] = φ(θ̂n) a.s. and the function φ is continuously differentiable since
φ(t) = f1 sin(2π(θ − t)). Hence, φ(θ) = 0 and φ′(θ) = −2πf1 and 4πf1 > 1.
Furthermore, we deduce from (5.3) that

E[T 2
n+1|Fn] = ϕ(θ̂n) a.s.,

which leads to

lim
n→∞ E[T 2

n+1|Fn] = ϕ(θ) a.s.
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Consequently, if we are able to prove that the sequence (Wn) given by

Wn = (θ̂n − θ)2

γn

is tight, then we shall deduce from Theorem 2.1 of [22] that

√
n(θ̂n − θ)

L−→ N (0, ξ2(θ)),

where

ξ2(θ) = ϕ(θ)

∫ +∞
0

exp
(
(1 − 4πf1)t

)
dt = ϕ(θ)

4πf1 − 1
.

Therefore, it remains to prove the tightness of the sequence (Wn). It follows from
(5.5) that for some constant M > 0 and for all n ≥ 1,

E[Wn+1|Fn] ≤ (1 + γn)Wn + γn+1M + 2(θ̂n − θ)φ(θ̂n).(5.7)

Moreover, we have for all x ∈ R, φ(x) = 2πf1(θ − x) + f1(θ − x)v(x) where

v(x) = sin(2π(θ − x)) − 2π(θ − x)

(θ − x)
.

By the continuity of the function v, one can find 0 < ε < 1/2 such that, if |x −θ | <
ε,

q

2f1
< v(x) < 0.(5.8)

We also deduce from (5.7) that for all n ≥ 1,

E[Wn+1|Fn] ≤ Wn + 2γnWn

(
q − f1v(θ̂n)

) + γnM(5.9)

with 2q = 1 − 4πf1 which means that q < 0. Moreover, let An and Bn be the sets
An = {|θ̂n − θ | ≤ ε} and

Bn =
n⋂

k=m

Ak

with 1 ≤ m ≤ n. Then, it follows from (5.8) that

0 < −f1v(θ̂n)IBn < −
(

q

2

)
IBn.(5.10)

Hence, we deduce from the conjunction of (5.9) and (5.10) that for all n ≥ m,

E[Wn+1IBn |Fn] ≤ WnIBn + 2γnWnIBn

(
q − q

2

)
+ γnM

(5.11)
≤ WnIBn(1 + qγn) + γnM.
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Since Bn+1 = Bn ∩ An+1, Bn+1 ⊂ Bn, and we obtain by taking the expectation on
both sides of (5.11) that for all n ≥ m,

E[Wn+1IBn+1] ≤ (1 + qγn)E[WnIBn] + γnM.(5.12)

From now on, denote αn = E[WnIBn]. We infer from (5.12) that for all n ≥ m,

αn+1 ≤ βnαm + Mβn

n∑
k=m

γk

βk

where βn =
n∏

k=m

(1 + qγk).(5.13)

As γn = 1/n, it follows from straightforward calculations that βn = O(nq) and

n∑
k=1

γk

βk

= O(n−q).

Consequently, (5.13) immediately leads to

sup
n≥m

αn < +∞.(5.14)

We are now in position to prove the tightness of the sequence (Wn). Indeed, it was
already proved in Theorem 2.1 that θ̂n converges to θ a.s. Consequently, if

Cn = ⋃
k≥n

Ak,

then P(Cn) converges to zero as n tends to infinity. Moreover, for n ≥ m, Bn ⊂ Cm

which implies that as m,n tend to infinity, P(Bn) goes to zero. For all ξ,K > 0
and for all n ≥ m with m large enough,

P(Wn > K) ≤ P(WnIBn > K/2) + P(WnIBn
> K/2)

(5.15)

≤ 2

K
E[WnIBn] + P(Bn).

We deduce from (5.14) that one can find K depending on ξ such that the first
term on the right-hand side of (5.15) is smaller than ξ/2. It is also the case for the
second term as P(Bn) goes to zero. Finally, for all ξ > 0, it exists K > 0 such that
for m large enough,

sup
n≥m

P(Wn > K) < ξ,

which implies the tightness of (Wn) and completes the proof of Theorem 2.2.

5.3. Proof of Theorem 2.3. As the number of times that the random variable
θ̂n + γn+1Tn+1 goes outside of K is almost surely finite, the sequence (θ̂n) shares
the same almost sure asymptotic properties as the classical Robbins–Monro algo-
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rithm. Consequently, we deduce the law of iterated logarithm given by (2.10) from
Theorem 1 of [12]; see also Hall and Heyde ([13], page 240), and the quadratic
strong law given by (2.12) from Theorem 3 of [31].

6. Proofs of the nonparametric results.

6.1. Proof of Theorem 3.1. In order to prove the almost sure pointwise con-
vergence of Theorem 3.1, we shall denote for all x ∈ R

ĥn(x) = 1

n

n∑
k=1

Wk(x)Yk and ĝn(x) = 1

n

n∑
k=1

Wk(x).

As in [1], we obtain from (1.2) the decomposition

nĥn(x) = Mn(x) + Pn(x) + Qn(x) + nĝn(x)f (x),(6.1)

nĝn(x) = Nn(x) + Rn(x) + ng(θ + x),(6.2)

where

Mn(x) =
n∑

k=1

Wk(x)εk,(6.3)

Nn(x) =
n∑

k=1

Wk(x) − E[Wk(x)|Fk−1](6.4)

and

Pn(x) =
n∑

k=1

Wk(x)
(
f (Xk − θ̂k−1) − f (x)

)
,(6.5)

Qn(x) =
n∑

k=1

Wk(x)
(
f (Xk − θ) − f (Xk − θ̂k−1)

)
,(6.6)

Rn(x) =
n∑

k=1

(
E[Wk(x)|Fk−1] − g(θ + x)

)
.(6.7)

On the one hand,

E[Wn(x)|Fn−1] =
∫

R

1

hn

K

(
xn − θ̂n−1 − x

hn

)
g(xn) dxn.

After the change of variables z = h−1
n (xn − θ̂n−1 − x), as the density function g is

continuous, twice differentiable with bounded derivatives, we infer from the Taylor
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formula that

E[Wn(x)|Fn−1]
=

∫
R

K(z)g(θ̂n−1 + x + hnz) dz

=
∫

R

K(z)

(
g(θ̂n−1 + x) + hnzg

′(θ̂n−1 + x)(6.8)

+ h2
nz

2

2
g′′(θ̂n−1 + x + hnzξ)

)
dz

= g(θ̂n−1 + x) + h2
n

2

∫
R

z2K(z)g′′(θ̂n−1 + x + hnzξ) dz,

where 0 < ξ < 1. Consequently, for all n ≥ 1,∣∣E[Wn(x)|Fn−1] − g(θ̂n−1 + x)
∣∣ ≤ Mgτ

2h2
n a.s.,(6.9)

where Mg = supx∈R|g′′(x)| and

τ 2 = 1

2

∫
R

x2K(x)dx.

The continuity of g together with the fact that θ̂n converges to θ a.s. leads to

lim
n→∞

1

n

n∑
k=1

E[Wk(x)|Fk−1] = g(θ + x) a.s.,(6.10)

which immediately implies that for all x ∈ R

Rn(x) = o(n) a.s.(6.11)

On the other hand, (Nn(x)) is a square integrable martingale difference sequence
with predictable quadratic variation given by

〈N(x)〉n =
n∑

k=1

E
[(

Nk(x) − Nk−1(x)
)2|Fk−1

]

=
n∑

k=1

E[W 2
k (x)|Fk−1] − E

2[Wk(x)|Fk−1].

It follows from the same calculation as in (6.8) that

E[W 2
n (x)|Fn−1] = 1

hn

∫
R

K2(z)g(θ̂n−1 + x + hnz) dz

= ν2

hn

g(θ̂n−1 + x) + hn

2

∫
R

z2K2(z)g′′(θ̂n−1 + x + hnzξ) dz,
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where 0 < ξ < 1, which leads to∣∣∣∣E[W 2
n (x)|Fn−1] − ν2

hn

g(θ̂n−1 + x)

∣∣∣∣ ≤ Mgμ
2hn a.s.(6.12)

with

ν2 =
∫

R

K2(x) dx and μ2 = 1

2

∫
R

x2K2(x) dx.

Hence, since

lim
n→∞

1

n1+α

n∑
k=1

h−1
k = 1

1 + α

we deduce from (6.9) and (6.12) together with the Toeplitz lemma and the almost
sure convergence of g(θ̂n + x) to g(θ + x) that

lim
n→∞

〈N(x)〉n
n1+α

= ν2g(θ + x)

1 + α
a.s.(6.13)

Consequently, we obtain from the strong law of large numbers for martingales
given, for example, by Theorem 1.3.15 of [9] that for any γ > 0, (Nn(x))2 =
o(n1+α(logn)1+γ ) a.s. which ensures that, for all x ∈ R

Nn(x) = o(n) a.s.(6.14)

Therefore, it follows from (6.2), (6.11) and (6.14) that for all x ∈ R

lim
n→∞ ĝn(x) = g(θ + x) a.s.(6.15)

Moreover, the kernel K is compactly supported which means that one can find a
positive constant A such that K vanishes outside the interval [−A,A]. Thus, for
all n ≥ 1 and all x ∈ R,

Wn(x) = 1

hn

K

(
Xn − θ̂n−1 − x

hn

)
I{|Xn−θ̂n−1−x|≤Ahn}.

In addition, the function f is Lipschitz, so there exists a positive constant Cf such
that for all n ≥ 1

|f (Xn − θ̂n−1) − f (x)| ≤ Cf |Xn − θ̂n−1 − x|.
Consequently, we obtain from (6.5) that for all x ∈ R

|Pn(x)| ≤ Cf

n∑
k=1

Wk(x)|Xk − θ̂k−1 − x|
(6.16)

≤ ACf

n∑
k=1

hkWk(x).
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Hence, it follows from convergence (6.10) together with (6.14) and (6.16) that for
all x ∈ R

Pn(x) = o(n) a.s.(6.17)

Furthermore, we obtain from (6.6) that for all x ∈ R

|Qn(x)| ≤ Cf

n∑
k=1

Wk(x)|θ̂k−1 − θ |.(6.18)

Then, it follows from the Cauchy–Schwarz inequality that

Q2
n(x) ≤ C2

f

n∑
k=1

W 2
k (x)

n∑
k=1

|θ̂k−1 − θ |2.(6.19)

We can split the first sum at the right-hand side of (6.19) into two terms,

n∑
k=1

W 2
k (x) = In(x) + Jn(x),

where

In(x) =
n∑

k=1

W 2
k (x) − E[W 2

k (x)|Fk−1],

Jn(x) =
n∑

k=1

E[W 2
k (x)|Fk−1].

Following the same lines as in the proof of (6.14), it is not hard to see that

In(x) = o(n1+α) a.s.

We also deduce from convergence (6.13) that

Jn(x) = O(n1+α) a.s.

Consequently, we obtain that for all x ∈ R

n∑
k=1

W 2
k (x) = O(n1+α) a.s.(6.20)

Therefore, we infer from the quadratic strong law given by (2.12) together with
(6.19) and (6.20) that Q2

n(x) = O(n1+α logn) a.s. which implies that for all x ∈ R

Qn(x) = o(n) a.s.(6.21)

It now remains to study the asymptotic behavior of Mn(x) given by (6.3). As (Xn)

and (εn) are two independent sequences of independent and identically distributed
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random variables, (Mn(x)) is a square integrable martingale difference sequence
with predictable quadratic variation given by

〈M(x)〉n =
n∑

k=1

E
[(

Mk(x) − Mk−1(x)
)2|Fk−1

]

= σ 2
n∑

k=1

E[W 2
k (x)|Fk−1].

Then, it follows from convergence (6.13) that

lim
n→∞

〈M(x)〉n
n1+α

= σ 2ν2g(θ + x)

1 + α
a.s.(6.22)

Consequently, we obtain from the strong law of large numbers for martingales that
for any γ > 0, (Mn(x))2 = o(n1+α(logn)1+γ ) a.s. which leads to

Mn(x) = o(n) a.s.(6.23)

Therefore, we deduce from (6.1) and (6.15) together with the conjunction of (6.17),
(6.21) and (6.23) that for all x ∈ R

lim
n→∞ ĥn(x) = f (x)g(θ + x) a.s.(6.24)

Finally, we can conclude from the identity

f̂n(x) = ĥn(x) + ĥn(−x)

ĝn(x) + ĝn(−x)
(6.25)

and the parity of the function f that, for all x ∈ R such that |x| ≤ 1/2,

lim
n→∞ f̂n(x) = f (x) a.s.(6.26)

6.2. Proof of Theorem 3.2. We shall now proceed to the proof of the asymp-
totic normality of f̂n. It follows from (6.1), (6.2) and (6.25) that for all x ∈ R

f̂n(x) − f (x) = Mn(x) + Pn(x) + Qn(x)

nGn(x)
,(6.27)

where Gn(x) = ĝn(x) + ĝn(−x) and

Mn(x) = Mn(x) + Mn(−x),

Pn(x) = Pn(x) + Pn(−x),

Qn(x) = Qn(x) + Qn(−x)

with Mn(x), Pn(x) and Qn(x) given by (6.3), (6.5) and (6.6), respectively. We
already saw from (6.15) that for all x ∈ R

lim
n→∞ Gn(x) = g(θ + x) + g(θ − x) a.s.(6.28)
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In order to establish the asymptotic normality, it is now necessary to be more pre-
cise in the almost sure rates of convergence given in (6.17) and (6.21). It follows
from (6.16) that for all x ∈ R

|Pn(x)| ≤ ACf

(
Ln(x) + �n(x)

)
,(6.29)

where

Ln(x) =
n∑

k=1

hk

(
Wk(x) − E[Wk(x)|Fk−1]),

�n(x) =
n∑

k=1

hkE[Wk(x)|Fk−1].

On the one hand, we infer from (6.9) that

�n(x) = O

(
n∑

k=1

hk

)
= O(n1−α) a.s.(6.30)

On the other hand, (Ln(x)) is a square integrable martingale difference sequence
with predictable quadratic variation given by

〈L(x)〉n =
n∑

k=1

h2
k

(
E[W 2

k (x)|Fk−1] − E
2[Wk(x)|Fk−1]).

We deduce from (6.9) and (6.12) together with the Toeplitz lemma that

lim
n→∞

〈L(x)〉n
n1−α

= ν2g(θ + x)

1 − α
a.s.(6.31)

Consequently, we obtain from the strong law of large numbers for martingales
that for any γ > 0, (Ln(x))2 = o(n1−α(logn)1+γ ) a.s. which clearly implies that
(Ln(x))2 = o(n1+α) a.s. Therefore, we find from (6.29) and (6.30) that, as soon as
α > 1/3,

(Pn(x))2 = O(n2−2α) + o(n1+α) = o(n1+α) a.s.,

which immediately leads to

(Pn(x))2 = o(n1+α) a.s.(6.32)

Proceeding as in the proof of (6.32), we obtain from (6.18) that for all x ∈ R

|Qn(x)| ≤ Cf

(
Sn(x) + �n(x)

)
,(6.33)

where

Sn(x) =
n∑

k=1

�k

(
Wk(x) − E[Wk(x)|Fk−1]),

�n(x) =
n∑

k=1

�kE[Wk(x)|Fk−1]
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with �n = |θ̂n−1 − θ |. We deduce from (6.9) together with the Cauchy–Schwarz
inequality and the quadratic strong law given by (2.12) that

�n(x) = O

(
n∑

k=1

�k

)
= O

(√
n logn

)
a.s.(6.34)

In addition, it follows from (6.12) that (Sn(x)) is a square integrable martingale
difference sequence with predictable quadratic variation satisfying

〈S(x)〉n = O(nα logn) a.s.

Consequently, we obtain from the strong law of large numbers for martingales that
for any γ > 0, (Sn(x))2 = o(nα(logn)2+γ ) a.s. so (Sn(x))2 = o(n1+α) a.s. Hence,
we find from (6.33) and (6.34) that

(Qn(x))2 = O(n logn) + o(n1+α) = o(n1+α) a.s.,

which obviously implies

(Qn(x))2 = o(n1+α) a.s.(6.35)

It remains to establish the asymptotic behavior of the dominating term Mn(x). We
already saw that (Mn(x)) is a square integrable martingale difference sequence.
Consequently, (Mn(x)) is also a square integrable martingale difference sequence
with predictable quadratic variation given by

〈M(x)〉n = σ 2
n∑

k=1

E
[(

Wk(x) + Wk(−x)
)2|Fk−1

]
.

Hence, it is necessary to evaluate the cross-term E[Wn(x)Wn(−x)|Fn−1]. It fol-
lows from the same calculation as in (6.8) that

E[Wn(x)Wn(−x)|Fn−1]
= 1

hn

∫
R

K(z)K(z + 2h−1
n x)g(θ̂n−1 + x + hnz) dz

= 1

hn

g(θ̂n−1 + x)In(x) + g′(θ̂n−1 + x)Jn(x)

+ hn

2

∫
R

z2K(z)K(z + 2h−1
n x)g′′(θ̂n−1 + x + hnzξ) dz

with 0 < ξ < 1. Consequently, we obtain that∣∣∣∣E[Wn(x)Wn(−x)|Fn−1] − 1

hn

g(θ̂n−1 + x)In(x) − g′(θ̂n−1 + x)Jn(x)

∣∣∣∣
≤ MgHn(x)hn a.s.,
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where

In(x) =
∫

R

K(z)K(z + 2h−1
n x) dz,

Jn(x) =
∫

R

zK(z)K(z + 2h−1
n x) dz,

Hn(x) =
∫

R

z2K(z)K(z + 2h−1
n x) dz.

However, as the kernel K is compactly supported, we have for all x ∈ R with
x �= 0,

lim
n→∞K(z + 2h−1

n x) = 0.

Then, we deduce from the Lebesgue dominated convergence theorem that all the
three integrals In(x), Jn(x) and Hn(x) tend to zero as n goes to infinity, which
implies that for all x ∈ R with x �= 0,

n∑
k=1

E[Wk(x)Wk(−x)|Fk−1] = o

(
n∑

k=1

h−1
k

)
= o(n1+α) a.s.(6.36)

Therefore, we find from (6.22) together with (6.36) that for all x ∈ R with x �= 0,

lim
n→∞

〈M(x)〉n
n1+α

= σ 2ν2

1 + α

(
g(θ + x) + g(θ − x)

)
a.s.(6.37)

If x = 0, it immediately follows from (6.22)

lim
n→∞

〈M(0)〉n
n1+α

= 4σ 2ν2g(θ)

1 + α
a.s.(6.38)

Furthermore, it is not hard to see that the Lindeberg condition is satisfied. As a
matter of fact, we have assumed that the sequence (εn) has a finite moment of
order a > 2. If we denote �Mn(x) = Mn(x) − Mn−1(x), we have

E[|�Mn(x)|a|Fn−1] = E[|εn|a]E[|Wn(x) − Wn(−x)|a|Fn−1],
which implies that

E[|�Mn(x)|a|Fn−1] ≤ 2a−1
E[|εn|a]E[Wa

n (x) + Wa
n (−x)|Fn−1].

However, it follows from the same calculation as in (6.8) that
n∑

k=1

E[Wa
k (x)|Fk−1] = O

(
n∑

k=1

h1−a
k

)
= O

(
n1+α(a−1)) a.s.(6.39)

In addition, for all ε > 0,

1

n1+α

n∑
k=1

E
[
(�Mk(x))2I|�Mk(x)|≥ε

√
n1+α |Fk−1

]

≤ 1

εa−2nb

n∑
k=1

E[|�Mk(x)|a|Fk−1],
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where b = a(1 + α)/2. Consequently, it follows from (6.39) that for all ε > 0,

1

n1+α

n∑
k=1

E
[
(�Mk(x))2I|�Mk(x)|≥ε

√
n1+α |Fk−1

] = O(nc) a.s.,

where c = (2 −a)(1 −α)/2. As c < 0, the Lindeberg condition is clearly satisfied.
We can conclude from the central limit theorem for martingales given, for example,
by Corollary 2.1.10 of [9] that for all x ∈ R with x �= 0,

Mn(x)√
n1+α

L−→ N
(

0,
σ 2ν2

1 + α

(
g(θ + x) + g(θ − x)

))
,(6.40)

while, for x = 0,

Mn(0)√
n1+α

L−→ N
(

0,
4σ 2ν2

1 + α
g(θ)

)
.(6.41)

Finally, it follows from (6.27) and (6.28) together with (6.32), (6.35), (6.40), (6.41)
and the Slutsky lemma that, for all x ∈ R such that |x| ≤ 1/2 with x �= 0,

√
nhn

(
f̂n(x) − f (x)

) L−→ N
(

0,
σ 2ν2

(1 + α)(g(θ + x) + g(θ − x))

)
,

while, for x = 0, √
nhn

(
f̂n(0) − f (0)

) L−→ N
(

0,
σ 2ν2

(1 + α)g(θ)

)
,

which completes the proof of Theorem 3.2.
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