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TIGHT CONDITIONS FOR CONSISTENCY OF VARIABLE
SELECTION IN THE CONTEXT OF HIGH DIMENSIONALITY1

BY LAËTITIA COMMINGES AND ARNAK S. DALALYAN

Université Paris Est/ENPC and ENSAE-CREST

We address the issue of variable selection in the regression model with
very high ambient dimension, that is, when the number of variables is very
large. The main focus is on the situation where the number of relevant vari-
ables, called intrinsic dimension, is much smaller than the ambient dimen-
sion d. Without assuming any parametric form of the underlying regression
function, we get tight conditions making it possible to consistently estimate
the set of relevant variables. These conditions relate the intrinsic dimension
to the ambient dimension and to the sample size. The procedure that is prov-
ably consistent under these tight conditions is based on comparing quadratic
functionals of the empirical Fourier coefficients with appropriately chosen
threshold values.

The asymptotic analysis reveals the presence of two quite different re-
gimes. The first regime is when the intrinsic dimension is fixed. In this case
the situation in nonparametric regression is the same as in linear regression,
that is, consistent variable selection is possible if and only if logd is small
compared to the sample size n. The picture is different in the second regime,
that is, when the number of relevant variables denoted by s tends to infinity
as n → ∞. Then we prove that consistent variable selection in nonparametric
set-up is possible only if s + log logd is small compared to logn. We apply
these results to derive minimax separation rates for the problem of variable
selection.

1. Introduction. Real-world data such as those obtained from neuroscience,
chemometrics, data mining or sensor-rich environments are often extremely high-
dimensional, severely underconstrained (few data samples compared to the dimen-
sionality of the data) and interspersed with a large number of irrelevant or redun-
dant features. Furthermore, in most situations the data is contaminated by noise,
making it even more difficult to retrieve useful information from the data. Relevant
variable selection is a compelling approach for addressing statistical issues in the
scenario of high-dimensional and noisy data with small sample size. Starting from
Mallows [29], Akaike [1], Schwarz [36] who introduced, respectively, the famous
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criteria Cp , AIC and BIC, the problem of variable selection was extensively stud-
ied in the statistical and machine learning literature both from the theoretical and
algorithmic viewpoints. It appears, however, that the theoretical limits of perform-
ing variable selection in the context of nonparametric regression are still poorly
understood, especially when the number of variables, denoted by d and referred
to as ambient dimension, is much larger than the sample size n. The purpose of
the present work is to explore this setting under the assumption that the number
of relevant variables, hereafter called intrinsic dimension and denoted by d∗, may
grow with the sample size but remains much smaller than d .

In the important particular case of linear regression, the latter scenario was the
subject of a number of recent studies. Many of them rely on �1-norm penaliza-
tion [31, 38, 47] and constitute an attractive alternative to iterative variable selec-
tion procedures [2, 45] and to marginal regression or correlation screening [18,
42]. Promising results for feature selection are also obtained by conformal pre-
diction [20], (minimax) concave penalties [16, 17, 44], Bayesian approach [37]
and higher criticism [15]. Extensions to other settings including logistic regres-
sion, generalized linear model and Ising model were carried out in [8, 18, 34],
respectively. Variable selection in the context of groups of variables with disjoint
or overlapping groups was studied by [21, 24, 28, 32, 43]. Hierarchical procedures
for selection of relevant variables were proposed by [3, 5, 46].

It is now well understood that in the Gaussian sequence model and in the high-
dimensional linear regression with a Gram matrix satisfying some variant of irrep-
resentable condition, consistent estimation of the pattern of relevant variables—
also called the sparsity pattern—is possible under the condition d∗ log(d/d∗) =
o(n) as n → ∞ [41]. Furthermore, it is well known that if (d∗ log(d/d∗))/n re-
mains bounded from below by some positive constant when n → ∞, then it is
impossible to consistently recover the sparsity pattern [40]. Thus, a tight condition
exists that describes in an exhaustive manner the interplay between the quanti-
ties d∗, d and n that guarantees the existence of consistent estimators. The situa-
tion is very different in the case of nonlinear regression, since, to our knowledge,
there is no result providing tight conditions for consistent estimation of the sparsity
pattern.

Lafferty and Wasserman [26] and Bertin and Lecué [4], in papers closely re-
lated to the present work, considered the problem of variable selection in nonpara-
metric Gaussian regression model. They proved the consistency of the proposed
procedures under some assumptions that—in the light of the present work—turn
out to be suboptimal. More precisely, Lafferty and Wasserman [26] assumed the
unknown regression function to be four times continuously differentiable with
bounded derivatives. The algorithm they proposed, termed Rodeo, is a greedy pro-
cedure performing simultaneously local bandwidth choice and variable selection.
Rodeo is shown to converge when the ambient dimension d is O(logn/log logn)

while the intrinsic dimension d∗ does not increase with n. On the other hand,
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Bertin and Lecué [4] proposed a procedure based on the �1-penalization of lo-
cal polynomial estimators and proved its consistency when d∗ = O(1), but d is
allowed to be as large as logn, up to a constant. They also had a weaker assump-
tion on the regression function merely assumed to belong to the Holder class with
smoothness β > 1. To complete the picture, let us mention that estimation and
hypotheses testing problems for high-dimensional nonparametric regression under
sparse additive modeling were recently addressed in [19, 25, 33].

This brief review of the literature reveals that there is an important gap in consis-
tency conditions for the linear regression and for the nonlinear one. For instance,
if the intrinsic dimension d∗ is fixed, then the condition guaranteeing consistent
estimation of the sparsity pattern is (logd)/n → 0 in linear regression, whereas
it is d = O(logn) in the nonparametric case. While it is undeniable that the non-
parametric regression is much more complex than the linear one, it is, however, not
easy to find a justification to such an important gap between two conditions. The
situation is even worse in the case where d∗ → ∞. In fact, for the linear model
with at most polynomially increasing ambient dimension d = O(nk), it is possible
to estimate the sparsity pattern for intrinsic dimensions d∗ as large as n1−ε , for
some ε > 0. In other words, the sparsity index can be almost on the same order
as the sample size. In contrast, in nonparametric regression, there is no procedure
that is proved to converge to the true sparsity pattern when both n and d∗ tend to
infinity, even if d∗ grows extremely slowly.

In the present work, we fill this gap by introducing a simple variable selection
procedure that selects the relevant variables by comparing some quadratic func-
tionals of empirical Fourier coefficients to prescribed significance levels. Con-
sistency of this procedure is established under some conditions on the triplet
(d∗, d, n), and the tightness of these conditions is proved. The main take-away
messages deduced from our results are the following:

• When the number of relevant variables d∗ is fixed and the sample size n tends to
infinity, there exist positive real numbers c∗ and c∗ such that (a) if (logd)/n ≤ c∗
the estimator proposed in Section 3 is consistent and (b) no estimator of the
sparsity pattern may be consistent if (logd)/n ≥ c∗.

• When the number of relevant variables d∗ tends to infinity with n → ∞, then
there exist real numbers ci and c̄i , i = 1,2 such that c1 > 0, c̄1 > 0 and
(a) if c1d

∗ + log log(d/d∗) − logn < c2 the estimator proposed in Section 3
is consistent and (b) no estimator of the sparsity pattern may be consistent if
c̄1d

∗ + log log(d/d∗) − logn > c̄2.
• In particular, if d grows not faster than a polynomial in n, then there exist posi-

tive real numbers c0 and c0 such that (a) if d∗ ≤ c0 logn, the estimator proposed
in Section 3 is consistent, and (b) no estimator of the sparsity pattern may be
consistent if d∗ ≥ c0 logn.

In the regime of a growing intrinsic dimension d∗ → ∞ and a moderately large
ambient dimension d = O(nC), for some C > 0, we make a concentrated effort
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to get the constant c0 as close as possible to the constant c0. This goal is reached
for the model of Gaussian white noise and, very surprisingly, it required from us
to apply some tools from complex analysis, such as the Jacobi θ -function and the
saddle point method, in order to evaluate the number of lattice points lying in a
ball of an Euclidean space with increasing dimension.

The rest of the paper is organized as follows. The notation and assumptions
necessary for stating our main results are presented in Section 2. In Section 3, an
estimator of the set of relevant variables is introduced and its consistency is estab-
lished, in the case where the data come from the Gaussian white noise model. The
main condition required in the consistency result involves the number of lattice
points in a ball of a high-dimensional Euclidean space. An asymptotic equivalent
for this number is presented in Section 4. Results on impossibility of consistent
estimation of the sparsity pattern are derived in Section 5. Section 6 is devoted to
exploring adaptation to the unknown parameters (smoothness and degree of signif-
icance) and recovering minimax rates of separation. Then, in Section 7, we show
that some of our results can be extended to the model of nonparametric regres-
sion. The relations between consistency and inconsistency results are discussed in
Section 8. The technical parts of the proofs are postponed to the Appendix.

2. The problem formulation and the assumptions. We are interested in the
variable selection task (also known as model selection, feature selection, sparsity
pattern estimation) in the context of high-dimensional nonlinear regression. Let
f : [0,1]d → R denote the unknown regression function. We assume that the num-
ber of variables d is very large, possibly much larger than the sample size n, but
only a small number of these variables contribute to the fluctuations of the regres-
sion function f.

To be more precise, we assume that for some small subset J of the index set
{1, . . . , d} satisfying Card(J ) ≤ d∗, there is a function f̄ : RCard(J ) → R such that

f(x) = f̄(xJ ) ∀x ∈ R
d,

where xJ stands for the subvector of x obtained by removing from x all the coor-
dinates with indices lying outside J . In what follows, we allow d and d∗ to depend
on n, but we will not always indicate this dependence in notation. Note also that
the genuine intrinsic dimension is Card(J ); d∗ is merely a known upper bound
on the intrinsic dimension. In what follows, we use the standard notation for the
vector and sequence norms:

‖x‖0 =∑
j

1(xj 
= 0), ‖x‖p
p =∑

j

|xj |p ∀p ∈ [1,∞),

‖x‖∞ = sup
j

|xj |

for every x ∈ R
d or x ∈ R

N.
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Let us stress right away that the primary aim of this work is to understand when
it is possible to estimate the sparsity pattern J (with theoretical guarantees on the
convergence of the estimator) and when it is impossible. The estimator that we
will define in the next sections is intended to show the possibility of consistent
estimation, rather than to provide a practical procedure for recovering the sparsity
pattern. Therefore, the estimator will be allowed to depend on different constants
appearing in conditions imposed on the regression function f and on some charac-
teristics of the noise.

To make the consistent estimation of the set J realizable, we impose some
smoothness and identifiability assumptions on f. In order to describe the smooth-
ness assumption imposed on f, let us introduce the trigonometric Fourier basis,
ϕ0 ≡ 1 and

ϕk(x) =
{√

2 cos(2πk · x), k ∈ (Zd
)
+,√

2 sin(2πk · x), −k ∈ (Zd
)
+,

(1)

where (Zd)+ denotes the set of all k ∈ Z
d \ {0} such that the first nonzero element

of k is positive, and k · x stands for the usual inner product in R
d . In what follows,

we use the notation 〈·, ·〉 for designing the scalar product in L2([0,1]d;R), that is,
〈h, h̃〉 = ∫[0,1]d h(x)h̃(x) dx for every h, h̃ ∈ L2([0,1]d;R). Using this orthonormal
Fourier basis, we define

�L =
{
f :

∑
k∈Zd

k2
j 〈f, ϕk〉2 ≤ L; ∀j ∈ {1, . . . , d}

}
.

To ease notation, we set θk[f] = 〈f, ϕk〉 for all k ∈ Z
d . In addition to the smooth-

ness, we need also to require that the relevant variables are sufficiently relevant
for making their identification possible. This is done by means of the following
condition.

[C1(κ,L)] The regression function f belongs to �L. Furthermore, for some
subset J ⊂ {1, . . . , d} of cardinality ≤ d∗, there exists a function f̄ : RCard(J ) → R

such that f(x) = f̄(xJ ), ∀x ∈ R
d , and it holds that

Qj [f] = ∑
k:kj 
=0

θk[f]2 ≥ κ ∀j ∈ J.(2)

One easily checks that Qj [f] = 0 for every j that does not lie in the sparsity pattern.
This provides a characterization of the sparsity pattern as the set of indices of
nonzero coefficients of the vector Q[f] = (Q1[f], . . . ,Qd [f]).

Prior to describing the procedures for estimating J , let us comment on con-
dition [C1]. It is important to note that the identifiability assumption (2) can
be rewritten as

∫
[0,1]d (f(x) − ∫ 1

0 f(x) dxj )
2 dx ≥ κ and, therefore, is not intrin-

sically related to the basis we have chosen. In the case of continuously differ-
entiable and 1-periodic function f, the smoothness assumption f ∈ �L as well
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can be rewritten without using the trigonometric basis, since
∑

k∈Zd k2
j θk[f]2 =

(2π)−2 ∫[0,1]d [∂j f(x)]2 dx. Thus condition [C1] is essentially a constraint on the
function f itself and not on its representation in the specific basis of trigonometric
functions.

The results of this work can be extended with minor modifications to other
types of smoothness conditions imposed on f, such as Hölder continuity or Besov-
regularity. In these cases the trigonometric basis (1) should be replaced by a ba-
sis adapted to the smoothness condition (spline, wavelet, etc.). Furthermore, even
in the case of Sobolev smoothness, one can replace the set �L corresponding to
smoothness order 1 by any Sobolev ellipsoid of smoothness β > 0; see, for in-
stance, [10] where the case β = 2 is explored. Roughly speaking, the role of the
smoothness assumption is to reduce the statistical model with infinite-dimensional
parameter f to a finite-dimensional model having good approximation properties.
Any value of smoothness order β > 0 leads to this reduction. The value β = 1 is
chosen for simplicity of exposition only.

3. Idealized setup: Gaussian white noise model. To convey the main ideas
without taking care of some technical details, we start by focusing our attention on
the Gaussian white noise model that was proved to be asymptotically equivalent
to the model of regression [7, 35], as well as to other nonparametric models [6,
13]. Thus, we assume that the available data consists of the Gaussian process
{Y(φ) :φ ∈ L2([0,1]d;R)} such that

Ef
[
Y(φ)

]= ∫
[0,1]d

f(x)φ(x) dx, Covf

(
Y(φ),Y

(
φ′))= 1

n

∫
[0,1]d

φ(x)φ′(x) dx.

It is well known that these two properties uniquely characterize the probability
distribution of a Gaussian process. An alternative representation of Y is

dY (x) = f(x) dx + n−1/2 dW(x), x ∈ [0,1]d,

where W(x) is a d-parameter Brownian sheet. Note that minimax estimation and
detection of the function f in this set-up (but without sparsity assumption) was
studied by [23].

3.1. Estimation of J by multiple hypotheses testing. We intend to tackle the
variable selection problem by multiple hypotheses testing; each hypothesis con-
cerns a group of the Fourier coefficients of the observed signal and suggests that
all the elements within the group are zero. The rationale behind this approach is
the following simple observation: since the trigonometric basis is orthonormal and
contains the constant function,

j /∈ J ⇐⇒ θk[f] = 〈f,ϕk〉 = 0 ∀k s.t. kj 
= 0.(3)

This observation entails that if the intrinsic dimension |J | is small as compared
to d , then the sequence of Fourier coefficients is sparse. Furthermore, as explained
below, there is a sort of group sparsity with overlapping groups.
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For every � ∈ {1, . . . , d∗}, we denote by P d
� the set of all subsets I of {1, . . . , d}

having exactly � elements: P d
� = {I ⊂ {1, . . . , d} : Card(I ) = �}. For every multi-

index k ∈ Z
d , we denote by supp(k) the set of indices corresponding to nonzero

entries of k. To define the blocks of coefficients θk that will be tested for signifi-
cance, we introduce the following notation: for every I ⊂ {1, . . . , d} and for every
j ∈ I , we set

V
j
I [f] = (θk[f] : j ∈ supp(k) ⊂ I

)
.

It follows from (3) that the characterization

j /∈ J ⇐⇒ max
I

∥∥V j
I [f]∥∥p = 0,(4)

holds true for every p ∈ [0,+∞]. Furthermore, again in view of (3), the maximum
over I of the norms ‖V j

I [f]‖p is attained when I = J and is equal to the maximum
over all subsets I such that Card(I ) ≤ d∗. Summarizing these arguments, we can
formulate the problem of variable selection as a problem of testing d null hypothe-
ses

H0j :
∥∥V j

I [f]∥∥p = 0 ∀I ⊂ {1, . . . , d} such that Card(I ) ≤ d∗.(5)

If the hypothesis H0j is rejected, then the j th covariate is declared as relevant.
Note that by virtue of assumption [C1], the alternatives can be written as

H1j :
∥∥V j

I [f]∥∥2
2 ≥ κ for some I ⊂ {1, . . . , d} such that Card(I ) ≤ d∗.(6)

Our estimator is based on this characterization of the sparsity pattern. If we denote
by yk the observable random variable Y(ϕk), we have

yk = θk[f] + n−1/2ξk, θk = 〈f,ϕk〉,k ∈ Z
d,(7)

where {ξk;k ∈ Z
d} form a countable family of independent Gaussian random

variables with zero mean and variance equal to one. According to this prop-
erty, yk is a good estimate of θk[f]: it is unbiased and with a mean squared er-
ror equal to 1/n. Using the plug-in argument, this suggests to estimate V

j
I by

V̂
j
I = (yk : j ∈ supp(k) ⊂ I ) and the norm of V

j
I by the norm of V̂

j
I . However,

since this amounts to estimating an infinite-dimensional vector, the error of es-
timation will be infinitely large. To cope with this issue, we restrict the set of
indices for which θk is estimated by yk to a finite set, outside of which θk will be
merely estimated by 0. Such a restriction is justified by the fact that f is assumed
to be smooth: Fourier coefficients corresponding to very high frequencies are very
small.

Let us fix an integer m > 0, the cut-off level, and denote, for j ∈ I ⊂ {1, . . . , d},
S

j
m,I = {k ∈ Z

d :‖k‖2 ≤ m and {j} ⊂ supp(k) ⊂ I
}
.
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Since the alternatives H1j are concerned with the 2-norm, we build our test statistic

on an estimate of the norm ‖V j
I [f]‖2. To this end, we introduce

Q̂
j
m,I = ∑

k∈S
j
m,I

(
y2

k − 1

n

)
,

which is an unbiased estimator of Q
j
m,I =∑

k∈S
j
m,I

θ2
k . Note that when m → ∞,

the quantity Q
j
m,I approaches ‖V j

I [f]‖2
2. It is clear that larger values of m lead to

a smaller bias while the variance get increased. Moreover, the variance of Q̂
j
m,I is

proportional to the cardinality of the set S
j
m,I . The latter is an increasing function of

Card(I ). Therefore, if we aim at getting comparable estimation accuracies when
estimating the functionals ‖V j

I [f]‖2
2 by Q̂

j
m,I for various I ’s, it is reasonable to

make the cut-off level m vary with the cardinality of I .
Thus, we consider a multivariate cut-off m = (m1, . . . ,md∗) ∈ N

d∗
. For a sub-

set I of cardinality � ≤ d∗, we test significance of the vector V
j
I [f] by comparing its

estimate Q̂
j
m�,I

with a prescribed threshold λ�. This leads us to define an estimator
of the set J by

Ĵn(m,λ) =
{
j ∈ {1, . . . , d} : max

�≤d∗ λ−1
� max

I∈P d
�

Q̂
j
m�,I

≥ 1
}
,

where m = (m1, . . . ,md∗) ∈ N
d∗

and λ = (λ1, . . . , λd∗) ∈ R
d∗
+ are two vectors of

tuning parameters. As already mentioned, the role of m is to ensure that the trun-
cated sums Q

j
m,J do not deviate too much from the complete sums Q

j
J . Quan-

titatively speaking, for a given τ > 0, we would like to choose m�’s so that
Q

j
ms,J

≥ κτ/τ + 1, where s = Card(J ). This guarantee can be achieved due to
the smoothness assumption. Indeed, as proved in (26) (cf. Appendix B), it holds
that

Q
j
ms,J

≥ κ − m−2
s Ls ∀j ∈ J.

Therefore, choosing m� = (�L(1 + τ)/κ)1/2, for every � = 1, . . . , d∗, entails the
inequality Q

j
ms,J

≥ κτ/τ +1, which indicates that the relevance of variables is not
affected too much by the truncation.

Pushing further the analogy with the hypotheses testing, we define type I er-
ror of an estimator Ĵn of J as the one of having Ĵn 
⊂ J , that is, classifying some
irrelevant variables as relevant. The type II error is then that of having J 
⊂ Ĵ ,
which amounts to classifying some relevant variables as irrelevant. As in the test-
ing problem, handling the type I error is easier since the distribution of the test
statistic is independent of f. In fact, this is the max of a finite family of random
variables drawn from translated and scaled χ2-distributions. Using the Bonferroni
adjustment leads to the following control of the first kind error.



CONSISTENT VARIABLE SELECTION IN NONPARAMETRIC REGRESSION 2675

PROPOSITION 1. Let us denote by N(�, γ ) the cardinality of the set {k ∈
Z

� :‖k‖2
2 ≤ γ � & k1 
= 0}. If for some A > 1 and for every � = 1, . . . , d∗,

λ� ≥ 2
√

AN(�,m2
�/�)d

∗ log(2ed/d∗) + 2Ad∗ log(2ed/d∗)
n

,(8)

then the type I error P(Ĵn(m,λ) 
⊂ J ) is upper-bounded by (2ed/d∗)−d∗(A−1), and
therefore tends to 0 as d → +∞.

This proposition shows that the type I error of a variable selection procedure
may be made small by choosing a sufficiently high threshold. By doing this, we
run the risk to reject H0j very often and to drastically underestimate the set of
relevant variables. The next result establishes a necessary condition, which will be
shown to be tight, ensuring that such an underestimation does not occur.

THEOREM 1. Let condition [C1(κ,L)] be satisfied with some known constants
κ > 0 and L < ∞, and let s = Card(J ). For some real numbers τ > 0 and A > 1,
set m� = (�L(1 + τ)/κ)1/2, � = 1, . . . , d∗, and define λ� to be equal to the right-
hand side of (8). If the condition

4λs ≤ κτ/(1 + τ)(9)

is fulfilled, then Ĵn(m,λ) is consistent and satisfies the inequalities P(Ĵn(m,λ) 
⊃
J ) ≤ 2(2ed/d∗)−d∗(A−1) and P(Ĵn(m,λ) 
= J ) ≤ 3(2ed/d∗)−d∗(A−1).

Condition (9), ensuring the consistency of the variable selection procedure Ĵn,
admits a very natural interpretation: It is possible to detect relevant variables if the
degree of relevance κ is larger than a multiple of the threshold λs , the latter being
chosen according to the noise level.

A first observation is that this theorem provides interesting insight to the possi-
bility of consistent recovery of the sparsity pattern J in the context of fixed intrin-
sic dimension. In fact, when d∗ remains bounded from above when n → ∞ and
d → ∞, then we get that P(Ĵ1(m,λ) = J ) →n,d→∞ 1 provided that

logd ≤ Const ·n.(10)

Although we did not find (exactly) this result in the statistical literature on variable
selection, it can be checked that (10) is a necessary and sufficient condition for re-
covering the sparsity pattern J in linear regression with fixed sparsity d∗ and grow-
ing dimension d and sample size n. Thus, in the regime of fixed or bounded d∗, the
sparsity pattern estimation in nonparametric regression is not more difficult than
in the parametric linear regression, as far as only the consistency of estimation is
considered and the precise value of the constant in (10) is neglected. Furthermore,
there is a simple estimator Ĵ

(1)
n of J (cf. equation (3) in [10]), which is prov-

ably consistent under condition (10). This estimator can be seen as a procedure
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of testing hypotheses H0j of form (5) with p = ∞ and, therefore, it does not re-
ally exploit the structure of the Fourier coefficients of the regression function. To
some extent, this is the reason why in the regime of growing intrinsic dimension
d∗ → ∞, the estimator Ĵ

(1)
n proposed by [10] is no longer optimal.

In fact, when d∗ → ∞, the term N(s,m2
s /s) present in (9) tends to infinity as

well. Furthermore, as we show in Section 4, this convergence takes place at an
exponential rate in d∗. Therefore, in this asymptotic set-up it is crucial to have the
right order of N(s,m2

s /s) in the condition that ensures the consistency. As shown
in Section 5, this is the case for condition (9).

REMARK 1. An apparent drawback of the estimator Ĵn is the large dimen-
sionality of tuning parameters involved in Ĵn. However, Theorem 1 reveals that for
achieving good selection power, it is sufficient to select the 2d∗-dimensional tuning
parameter (m,λ) on a one-dimensional curve parameterized by ϑ = L(1 + τ)/κ .
Indeed, once the value of ϑ is given, Theorem 1 advocates for choosing

m� = (�ϑ)1/2 and
(11)

λ� = 2
√

AN(�,ϑ)d∗ log(2ed/d∗) + 2Ad∗ log(2ed/d∗)
n

for every � = 1, . . . , d∗. As discussed in Section 6.1, this property allows us to re-
lax the requirement that the values L and κ involved in [C1] are known in advance.

REMARK 2. The result of the last theorem is in some sense adaptive w.r.t.
the unknown sparsity. Indeed, while the estimator Ĵn involves d∗, which is merely
a known upper bound on the true sparsity s = Card(J ) and may be significantly
larger than s, it is the true sparsity s that appears in condition (9) as a first argu-
ment of the quantity N(·, ϑ). This point is important given the exponential rate
of divergence of N(·, ϑ) when its first argument tends to infinity. On the other
hand, if condition (9) is satisfied with N(d∗, ϑ) instead of N(Card(J ),ϑ), then
the consistent estimation of J can be achieved by a slightly simpler procedure,

J̃n(m,λ) =
{
j ∈ {1, . . . , d} : max

I∈P d
d∗

Q̂
j
md∗ ,I ≥ λd∗

}
.

The proof of this statement is similar to that of Theorem 1 and will be omitted.

4. Counting lattice points in a ball. The aim of the present section is to
investigate the properties of the quantity N(d∗, γ ) that is involved in the condi-
tions ensuring the consistency of the proposed procedures. Quite surprisingly, the
asymptotic behavior of N(d∗, γ ) turns out to be related to the Jacobi θ -function.
To show this, let us introduce some notation. For a positive number γ , we set

C1
(
d∗, γ

)= {k ∈ Z
d∗

:k2
1 + · · · + k2

d∗ ≤ γ d∗},
C2
(
d∗, γ

)= {k ∈ C1
(
d∗, γ

)
:k1 = 0

}
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FIG. 1. Lattice points in a ball of radius R = γ d∗ = 3.2 in the three dimensional space (d∗ = 3).
Red points are those of C1(d∗, γ )\ C2(d∗, γ ) while blue stars are those of C2(d∗, γ ). In this example,
N(d∗, γ ) = N(3,1.07) = 110.

along with N1(d
∗, γ ) = Card C1(d

∗, γ ) and N2(d
∗, γ ) = Card C2(d

∗, γ ). In sim-
ple words, N1(d

∗, γ ) is the number of lattice points lying in the d∗-dimensional
ball with radius (γ d∗)1/2 and centered at the origin, while N2(d

∗, γ ) is the num-
ber of (integer) lattice points lying in the (d∗ − 1)-dimensional ball with radius
(γ d∗)1/2 and centered at the origin; see Figure 1 for an illustration. With this no-
tation, the quantity N(�, ·) of Theorem 1 can be written as N1(�, ·) − N2(�, ·).
By volumetric arguments, one can check that V (d∗)(√γ − 1)d

∗
(d∗)d∗/2 ≤

N1(d
∗, γ ) ≤ V (d∗)(√γ + 1)d

∗
(d∗)d∗/2, where V (d∗) = πd∗/2/�(1 + d∗/2) is

the volume of the unit ball in R
d∗

. Furthermore, similar bounds hold true for
N2(d

∗, γ ) as well. Unfortunately, when d∗ → ∞, these inequalities are not accu-
rate enough to yield nontrivial results in the problem of variable selection we are
dealing with. This is especially true for the results on impossibility of consistent
estimation stated in Section 5.

In order to determine the asymptotic behavior of N1(d
∗, γ ) and N2(d

∗, γ ) when
d∗ tends to infinity, we will rely on their integral representation through Jacobi’s θ -
function. Recall that the latter is given by h(z) =∑r∈Z zr2

, which is well defined
for any complex number z belonging to the unit ball |z| < 1. To briefly explain
where the relation between Ni(d

∗, γ ) and the θ -function comes from, let us denote
by {ar} the sequence of coefficients of the power series of h(z)d

∗
, that is, h(z)d

∗ =∑
r≥0 arz

r . One easily checks that ∀r ∈ N, ar = Card{k ∈ Z
d∗

:k2
1 +· · ·+k2

d∗ = r}.
Thus, for every γ such that γ d∗ is integer, we have N1(d

∗, γ ) =∑γ d∗
r=0 ar . As a

consequence of Cauchy’s theorem, we get

N1
(
d∗, γ

)= 1

2πi

∮
h(z)d

∗

zγ d∗
dz

z(1 − z)
,



2678 L. COMMINGES AND A. S. DALALYAN

where the integral is taken over any circle |z| = w with 0 < w < 1. Exploiting this
representation and applying the saddle-point method thoroughly described in [14],
we get the following result.

PROPOSITION 2. Let γ > 0 be an integer and let lγ (z) = log h(z) − γ log z.

(1) There is a unique solution zγ in (0,1) to the equation l′γ (z) = 0. Further-
more, the function γ �→ zγ is increasing and l′′γ (z) > 0.

(2) For i = 1,2, the following equivalences hold true:

Ni

(
d∗, γ

)= (h(zγ )

z
γ
γ

)d∗
1 + o(1)

h(zγ )i−1zγ (1 − zγ )(2l′′γ (zγ )πd∗)1/2

as d∗ tends to infinity.

Hereafter, it will be useful to note that the second part of Proposition 2 yields

log
(
N1
(
d∗, γ

)− N2
(
d∗, γ

))= d∗lγ (zγ ) − 1
2 logd∗ + cγ + o(1)

(12)
as d∗ → ∞,

with cγ = log(
h(zγ )−1

h(zγ )zγ (1−zγ )
√

2π l′′γ (zγ )
). Furthermore, while the asymptotic equiv-

alences of Proposition 2 are established for integer values of γ > 0, relation
log(N1(d

∗, γ ) − N2(d
∗, γ )) = d∗lγ (zγ )(1 + o(1)) holds true for any positive real

number γ [30]. In order to get an idea of how the terms zγ and lγ (zγ ) depend on γ ,
we depicted in Figure 2 the plots of these quantities as functions of γ > 0.

Combining relation (12) with Theorem 1, we get the following result.

COROLLARY 3. Let condition [C1(κ,L)] be satisfied with some known con-
stants κ > 0 and L < ∞. Consider the asymptotic set-up in which both d = dn and

FIG. 2. The plots of mappings γ �→ zγ and γ �→ lγ (zγ ). One can observe that both functions are
increasing, the first one converges to 1 very rapidly, while the second one seems to diverge very
slowly.
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d∗ = d∗
n tend to infinity as n → ∞. Assume that d grows at a sub-exponential rate

in n, that is, log logd = o(logn). If

lim sup
n→∞

d∗

logn
<

2

lγ (zγ )

with γ = L/κ , then consistent estimation of J is possible and can be achieved, for
instance, by the estimator Ĵn.

5. Tightness of the assumptions. In this section, we focus our attention on
the functional class �(κ,L) of all functions satisfying assumption [C1(κ,L)]. For
emphasizing that J is the sparsity pattern of the function f, we write Jf instead
of J . We assume that s = Card(J ) = d∗. The goal is to provide conditions under
which the consistent estimation of the sparsity support is impossible, that is, there
exists a constant c > 0 and an integer n0 ∈ N such that, if n ≥ n0,

inf
J̃

sup
f∈�(κ,L)

Pf(J̃ 
= Jf) ≥ c,

where the inf is over all possible estimators of Jf. To this end, we introduce a set
of M + 1 probability distributions μ0, . . . ,μM on �(κ,L) and use the fact that

inf
J̃

sup
f∈�̃(κ,L)

Pf(J̃ 
= Jf) ≥ inf
J̃

1

M

M∑
�=1

∫
�(κ,L)

Pf(J̃ 
= Jf)μ�(df).(13)

These measures μ� will be chosen in such a way that for each � ≥ 1 there is a set J�

of cardinality d∗ such that μ�{Jf = J�} = 1 and all the sets J1, . . . , JM are distinct.
The measure μ0 is the Dirac measure in 0. Considering these μ�s as “priors” on
�(κ,L) and defining the corresponding “posteriors” P0,P1, . . . ,PM by

P�(A) =
∫
�(κ,L)

Pf(A)μ�(df) for every measurable set A ⊂ R
n,

we can write inequality (13) as

inf
J̃

sup
f∈�(κ,L)

Pf(J̃ 
= Jf) ≥ inf
ψ

1

M

M∑
�=1

P�(ψ 
= �),(14)

where the inf is taken over all random ψ taking values in {0, . . . ,M}. The latter inf
will be controlled using a suitable version of the Fano lemma. To state it, we denote
by K(P,Q) the Kullback–Leibler divergence between two probability measures P

and Q defined on the same probability space.

LEMMA 4 (Corollary 2.6 of [39]). Let M ≥ 3 be an integer, (X , A) be a mea-
surable space and let P0, . . . ,PM be probability measures on (X , A). Let us set
p̄e,M = infψ M−1∑M

�=1 P�(ψ 
= �), where the inf is taken over all measurable
functions ψ : X → {1, . . . ,M}. If for some 0 < α < 1, 1

M+1
∑M

�=1 K(P�,P0) ≤
α logM , then p̄e,M ≥ 1

2 − α.



2680 L. COMMINGES AND A. S. DALALYAN

We apply this lemma with X being the set of all arrays y = {yk : k ∈ Z
d} such

that for some K > 0 the entries yk = 0 for every k larger than K in �2-norm. It
follows from Fano’s lemma that one can deduce a lower bound on p̄e,M , the quan-
tity we are interested in, from an upper bound on the average Kullback–Leibler
divergence between P� and P0. With these tools at hand, we are in a position to
state the main result on the impossibility of consistent estimation of the sparsity
pattern in the case when the conditions of Theorem 1 are violated.

THEOREM 2. Assume that ϑ = L/κ > 1 and (
d
d∗ ) ≥ 3. Let γϑ be the largest

integer satisfying γ (1+ (h(zγ )−1)−1) ≤ ϑ , where the Jacobi θ -function h and zγ

are those defined in Section 4.

(i) If for some α ∈ (0,1/2),

N(d∗, γϑ)d∗ log(d/d∗)
n2 ≥ ϑ

αγϑ

κ2,(15)

then, for d∗ large enough, infJ̃ supf∈� Pf(J̃ 
= Jf) ≥ 1
2 − α.

(ii) If for some α ∈ (0,1/2),

d∗ log(d/d∗)
n

≥ κ

α
,(16)

then infJ̃ supf∈� Pf(J̃ 
= Jf) ≥ 1
2 − α.

It is worth stressing here that condition (15) is the converse of condition (9)
of Theorem 1 in the case d∗ → ∞, in the sense that condition (9) amounts to
requiring that the left-hand side of (15) is smaller than some constant. There is,
however, one difference between the quantities involved in these conditions: the
term N(d∗, ϑ(1 + τ)) of (9) is replaced by N(d∗, γϑ) in condition (15). One can
wonder how close γϑ is to ϑ . To give a qualitative answer to this question, we
plotted in Figure 3 the curve of the mapping ϑ �→ γϑ along with the bisector ϑ �→
ϑ . We observe that the difference between two curves is small compared to ϑ . As
we discuss it later, this property shows that the constants involved in the necessary
condition and in the sufficient condition for consistent estimation of J are very
close, especially for large values of ϑ .

6. Adaptivity and minimax rates of separation.

6.1. Adaptation with respect to L and κ . The estimator Ĵ (m,λ) we have in-
troduced in Section 3 is clearly nonadaptive: the tuning parameters (m,λ) recom-
mended by the developed theory involve the values L and κ , which are generally
unknown. Fortunately, we can take advantage of the fact that the choice of m and λ
is governed by the one-dimensional parameter ϑ = L(1+ τ)/κ . Therefore, it is re-
alistic to assume that a finite grid of values 1 < ϑ1 ≤ · · · ≤ ϑK < ∞ is available
containing a true value of ϑ . The following result provides an adaptive procedure
of variable selection with guaranteed control of the error.
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FIG. 3. The curve of the function L �→ γL (blue) and the bisector (red).

PROPOSITION 5. Let 1 < ϑ1 ≤ · · · ≤ ϑK < ∞ and τ > 0 be given values, and
set2

i∗ = min
{
i : (1 + τ)

maxj=1,...,d

∑
k∈Zd k2

j θ
2
k

minj∈J

∑
k : kj 
=0 θ2

k

≤ ϑi

}
≤ K.

For every i, � ∈ N, let us denote Ĵn(i) = Ĵn(m(ϑi),λ(ϑi)) with m�(ϑ) = (ϑ�)1/2

and

λ�(ϑ) = 2
√

2N(�,ϑ)d∗ log(2ed/d∗) + 4d∗ log(2ed/d∗)
n

.

If the condition 4λs(ϑi∗) < κτ/(1 + τ) is fulfilled, then the estimator Ĵ ad
n =⋃K

i=1 Ĵn(i) satisfies P(Ĵ ad
n 
= J ) ≤ (K + 2)(d∗/2ed)d

∗
.

In simple words, if the grid of possible values {ϑi} has a cardinality K which
is not too large [i.e., K(d∗/d)d

∗ → 0], then declaring a variable relevant if at least
one of the procedures Ĵn(i) suggests its relevance provides a consistent and adap-
tive variable selection strategy. The proof of this statement follows immediately
from Proposition 1 and Theorem 1. Indeed, applying Proposition 1 with A = 2
yields P(Ĵ ad

n 
⊂ J ) ≤ ∑K
i=1 P(Ĵn(i) 
⊂ J ) ≤ K(d∗/2ed)d

∗
, while Theorem 1 en-

sures that P(Ĵ ad
n 
⊃ J ) ≤ P(Ĵn(i

∗) 
⊃ J ) ≤ 2(d∗/2ed)d
∗
.

6.2. Minimax rates of separation. Since the methodology of Section 3 takes
its roots in the theory of hypotheses testing, one naturally wonders what are the
minimax rates of separation in the problem of variable selection. The results stated
in foregoing sections allow us to answer this question in the case of Sobolev

2We use the convention that the minimum over an empty set equals +∞.
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smoothness 1 and alternatives separated in L2-norm. The following result, the
proof of which is postponed to the Appendix E provides minimax rates. We as-
sume herein that the true sparsity s = Card(J ) and its known upper estimate d∗
are such that d∗/s is bounded from above by some constant.

PROPOSITION 6. There is a constant D∗ depending only on L such that if

κ ≥ D∗
{(

log(d/s)

n2

)2/(4+s)

∨ s log(d/s)

n

}
,

then there exists a consistent estimator of J . Furthermore, the consistency is uni-
form in f ∈ �(κ,L). On the other hand, there is a constant D∗ depending only on
L such that if

κ ≤ D∗
{(

log(d/s)

n2

)2/(4+s)

∨ s log(d/s)

n

}
,

then uniformly consistent estimation of J is impossible.

Borrowing the terminology of the theory of hypotheses testing, we say that
(

log(d/s)

n2 )2/(4+s) ∨ s log(d/s)
n

is the minimax rate of separation in the problem of vari-
able selection for Sobolev smoothness one. These results readily extend to Sobolev
smoothness of any order β ≥ 1, in which case the rate of separation takes the form
(

log(d/s)

n2 )2β/(4β+s) ∨ s log(d/s)
n

. The first term in this maximum coincides, up to the
logarithmic term, with the minimax rate of separation in the problem of detection
of an s-dimensional signal [22]. Note, however, that in our case this logarithmic
inflation is unavoidable. It is the price to pay for not knowing in advance which s

variables are relevant.

7. Nonparametric regression with random design. So far, we have ana-
lyzed the situation in which noisy observations of the regression function f(·) are
available at all points x ∈ [0,1]d . Let us turn now to the more realistic model of
nonparametric regression, when the observed noisy values of f are sampled at ran-
dom in the unit hypercube [0,1]d . More precisely, we assume that n independent
and identically distributed pairs of input-output variables (Xi , Yi), i = 1, . . . , n are
observed that obey the regression model

Yi = f(Xi ) + σεi, i = 1, . . . , n.

The input variables X1, . . . ,Xn are assumed to take values in R
d while the output

variables Y1, . . . , Yn are scalar. As usual, ε1, . . . , εn are such that E[εi |Xi] = 0,
i = 1, . . . , n; additional conditions will be imposed later. Without requiring from f
to be of a special parametric form, we aim at recovering the set J ⊂ {1, . . . , d} of
its relevant variables. The noise magnitude σ is assumed to be known.

It is clear that the estimation of J cannot be accomplished without imposing
some further assumptions on f and on the distribution PX of the input variables.
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Roughly speaking, we will assume that f is differentiable with a squared integrable
gradient and that PX admits a density which is bounded from below. More pre-
cisely, let g denote the density of PX w.r.t. the Lebesgue measure.

[C2] g(x) = 0 for any x /∈ [0,1]d and that g(x) ≥ gmin for any x ∈ [0,1]d .

The next assumptions imposed to the regression function and to the noise re-
quire their boundedness in an appropriate sense. These assumptions are needed in
order to prove, by means of a concentration inequality, the closeness of the empir-
ical coefficients to the true ones.

[C3(L∞,L2)] The L∞([0,1]d,R,PX) and L2([0,1]d,R,PX) norms of the
function f are bounded from above, respectively, by L∞ and L2, that is, P(|f(X)| ≤
L∞) = 1 and E[f(X)2] ≤ L2

2.

[C4] The noise variables satisfy a.e. E[etεi |Xi] ≤ et2/2 for all t > 0.

We stress once again that the primary aim of this work is merely to understand
when it is possible to consistently estimate the sparsity pattern. The estimator that
we will define is intended to show the possibility of consistent estimation, rather
than being a practical procedure for recovering the sparsity pattern. Therefore, the
estimator will be allowed to depend on the parameters gmin, L, κ and L2 appearing
in conditions [C1]–[C3].

7.1. An estimator of J and its consistency. The estimator of the sparsity pat-
tern J that we are going to introduce now is based on the following simple obser-
vation: if j /∈ J , then θk[f] = 0 for every k such that kj 
= 0. In contrast, if j ∈ J ,
then there exists k ∈ Z

d with kj 
= 0 such that |θk[f]| > 0. To turn this observation
into an estimator of J , we start by estimating the Fourier coefficients θk[f] by their
empirical counterparts,

θ̂k = 1

n

n∑
i=1

ϕk(Xi )

g(Xi)
Yi, k ∈ Z

d .

Then, for every � ∈ N and for any γ > 0, we introduce the notation S
j
m,� = {k ∈

Z
d :‖k‖2 ≤ m,‖k‖0 ≤ �, kj 
= 0}. The estimator of J is defined by

Ĵ (1)
n (m,λ) = {j ∈ {1, . . . , d} : maxk∈S

j

m,d∗
|θ̂k| > λ

}
,(17)

where m and λ are some parameters to be defined later. The next result, the proof
of which is placed in the supplementary material [11], provides consistency guar-
antees for Ĵ

(1)
n (m,λ).

THEOREM 3. Let conditions [C1]–[C4] be fulfilled with some known values
gmin, ϑ = 2L/κ and L2. Assume furthermore that the design density g and an
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upper estimate on the noise magnitude σ are available. Set m = (ϑd∗)1/2 and λ =
4(σ +L2)(d

∗ log(24
√

ϑd/d∗)/ng2
min)

1/2. If the following conditions are satisfied:

d∗ log(24
√

ϑd/d∗)
n

≤ L2
2

L2∞
,

(18)
128(σ + L2)

2d∗N(d∗, ϑ) log(24
√

ϑd/d∗)
ng2

min

< κ,

then the estimator Ĵ (1)(m,λ) satisfies P(Ĵ (1)(m,λ) 
= J ) ≤ (8d/d∗)−d∗
.

If we take a look at the conditions of Theorem 3 ensuring the consistency
of Ĵ

(1)
n , it becomes clear that the strongest requirement is the second inequality

in (18). Roughly speaking, this condition requires that d∗N(d∗, ϑ) log(d/d∗)/n is
bounded from above by some constant. According to results stated in Section 4,
N(d∗, ϑ) diverges exponentially fast, making inequality (18) impossible for d∗
larger than logn up to a multiplicative constant.

It is also worth stressing that although we require the PX-a.e. boundedness of f
by some constant L∞, this constant is not needed for computing the estimator
proposed in Theorem 3. Only constants related to some quadratic functionals of
the sequence of Fourier coefficients θk[f] are involved in the tuning parameters m

and λ. This point might be important for designing practical estimators of J , since
the estimation of quadratic functionals is more realistic (see, e.g., [9, 27]) than the
estimation of sup-norm.

Theorem 3 can be reformulated to characterize the level of relevance κ for the
relevant components of X making their identification possible. In fact, an alterna-
tive way of stating Theorem 3 is the following: under conditions [C1]–[C4] if ϑ is
an arbitrary tuning parameter satisfying the first inequality in (18), then the estima-
tor Ĵ

(1)
n (m,λ)—with m and λ chosen as in Theorem 3—satisfies P(Ĵ

(1)
n (m,λ) 
=

J ) ≤ (8d/d∗)−d∗
if the smallest level of relevance κ for components Xj of X with

j ∈ J is not smaller than 8λ2N(d∗,m2/d∗). This statement can be easily deduced
from the proof of Theorem 3; cf. the supplementary material [11].

7.2. Tightness of the assumptions. A natural question is now to check that the
assumptions of Theorem 3 are tight in the asymptotic regimes of fixed sparsity
and increasing ambient dimension, as well as increasing sparsity. We will only
establish an analogue of claim (ii) of Theorem 2. An attempt to prove a result
similar to claim (i) of Theorem 2 was done in [12], Theorem 2. However, the
result of [12] involves a stringent assumption on the empirical Gram matrix (cf.
condition (6) in [12]) and, unfortunately, we are unable to prove the existence of a
sampling scheme for which this assumption is fulfilled.

We assume that the errors εi are i.i.d. standard Gaussian, and we focus our
attention on the functional class �(κ,L). The following simple result shows that
the conditions of Theorem 3 are tight in the case of fixed intrinsic dimension.
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PROPOSITION 7. Let the design X1, . . . ,Xn ∈ [0,1]d be either deterministic
or random. If for some positive α < 1/2, the inequality

d∗ log(d/d∗)
n

≥ κα−1

holds true, then there is a constant c > 0 such that infJ̃n
supf∈�(κ,L) Pf(J̃n 
= Jf) ≥ c.

8. Concluding remarks. The results proved in previous sections almost ex-
haustively answer the questions on the existence of consistent estimators of the
sparsity pattern in the model of Gaussian white noise and, to a smaller extent, in
nonparametric regression. In fact as far as only rates of convergence are of interest,
the result obtained in Theorem 1 is shown in Section 5 to be unimprovable. Thus
only the problem of finding sharp constants remains open. To make these state-
ments more precise, let us consider the simplified set-up σ = κ = 1 and define the
following two regimes:

• The regime of fixed sparsity, that is, when the sample size n and the ambient
dimension d tend to infinity but the intrinsic dimension d∗ remains constant or
bounded.

• The regime of increasing sparsity, that is, when the intrinsic dimension d∗ tends
to infinity along with the sample size n and the ambient dimension d . For sim-
plicity, we will assume that d∗ = O(d1−ε) for some ε > 0.

In the fixed sparsity regime, in view of Theorems 1 and 3, consistent estimation of
the sparsity pattern can be achieved both in the Gaussian white noise model and
nonparametric regression as soon as lim supn→∞(d∗ logd)/n < c�, where c� is the
constant defined by c∗ = 1/8 for the Gaussian white noise model and

c� = min
(

L2
2

2L2∞
,

g2
min

28(1 + L2)2N(d∗,2L)

)
for the regression model. On the other hand, by Theorem 2 and Proposition 7, con-
sistent estimation of the sparsity pattern is impossible if lim infn→∞(d∗ logd)/n >

c� with c� = 2. Thus, up to multiplicative constants c� and c� (which are clearly
not sharp), the results of Theorems 1 and 3 cannot be improved in the regime of
fixed sparsity.

In the regime of increasing sparsity, the results we get in the model of Gaus-
sian white noise are much stronger than those for nonparametric regression. In the
former model, taking the logarithm of both sides of inequality (9) and using for-
mula (12) for N(d∗, ·) = N1(d

∗, ·) − N2(d
∗, ·), we see that consistent estimation

of J is possible when, for some τ > 0 and for all n, the following two conditions
are fulfilled:{

lL+τ (zL+τ )d
∗ + 1

2 logd∗ + log log
(
d/d∗)− 2 logn < c1,

logd∗ + log log
(
d/d∗)− logn ≤ c′

1
(19)
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FIG. 4. The curves of functions L �→ lL(zL) (blue curve) and L �→ lγL(zγL) (red curve).

with some constants c1 = c1(L, τ ) and c′
1 = c′

1(L, τ ). On the other hand, Theo-
rem 2 yields that there are some constants c̄1 and c̄′

1 such that it is impossible to
consistently estimate J if either one of the conditions

lγL
(zγL

)d∗ + 1
2 logd∗ + log log

(
d/d∗)− 2 logn ≥ c̄1,(20)

logd∗ + log log
(
d/d∗)− logn ≥ c̄′

1,(21)

is satisfied. First note that the left-hand side of the second condition in (19) is ex-
actly the same as the left-hand side of (21). If we compare now the left-hand side
of the first condition in (19) with the left-hand side of (20), we see that only the co-
efficients of d∗ differ. To measure the degree of difference of these two coefficients
we draw in Figure 4 the plots of the functions L �→ lL(zL) and L �→ lγL

(zγL
), with

γL as is Theorem 2. One can observe that the two curves are very close, especially
for relatively large values of L. This implies that the conditions in (19) are tight.
A simple consequence of inequalities (19) and (20) is that the consistent recovery
of the sparsity pattern is possible under the condition d∗/ logn → 0 and impossible
for d∗/ logn → ∞ as n → ∞, provided that log log(d/d∗) = o(logn).

Still in the regime of increasing sparsity, but for nonparametric regression, we
proved that consistent estimation of the sparsity pattern is possible whenever{

lL+τ (zL+τ )d
∗ + 1

2 logd∗ + log log
(
d/d∗)− logn < c2,

logd∗ + log logd − logn < c′
2

(22)

with some constants c2 = c2(gmin, σ,L2,L) and c′
2 = 2 log(L2/L∞). As we have

already mentioned, the second condition in (22) is tight, up to the choice of c′
2, in

view of Proposition 7. It is natural to expect that the first condition is tight as well,
since it is in the model of Gaussian white noise, which has the reputation of being
simpler than the model of nonparametric regression. However, we do not have a
mathematical proof of this statement.

Let us stress now that, all over this work, we have deliberately avoided any dis-
cussion on the computational aspects of the variable selection in nonparametric
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regression. The goal in this paper was to investigate the possibility of consistent
recovery without paying attention to the complexity of the selection procedure.
This lead to some conditions that could be considered a benchmark for assess-
ing the properties of sparsity pattern estimators. As for the estimators proposed
in Section 3, it is worth noting that their computational complexity is not always
prohibitively large. A recommended strategy is to compute the coefficients θ̂k in
a stepwise manner; at each step K = 1,2, . . . , d∗ only the coefficients θ̂k with
‖k‖0 = K need to be computed and compared with the threshold. If some θ̂k ex-
ceeds the threshold, then all the variables Xj corresponding to nonzero coordinates
of k are considered as relevant. We can stop this computation as soon as the num-
ber of variables classified as relevant attains d∗. While the worst-case complexity
of this procedure is exponential, there are many functions f for which the com-
plexity of the procedure will be polynomial in d . For example, this is the case
for additive models in which f(x) = f1(xi1) + · · · + fd∗(xid∗ ) for some univariate
functions f1, . . . , fd∗ .

Note also that in the present study we focused exclusively on the consistency
of variable selection without paying any attention to the consistency of regres-
sion function estimation. A thorough analysis of the latter problem being left to
a future work, let us simply remark that in the case of fixed d∗, under the con-
ditions of Theorem 3, it is straightforward to construct a consistent estimator of
the regression function. In fact, it suffices to use a projection estimator with a
properly chosen truncation parameter on the set of relevant variables. The situ-
ation is much more delicate in the case when the sparsity d∗ grows to infinity
along with the sample size n. Presumably, condition (19) is no longer sufficient
for consistently estimating the regression function. The rationale behind this con-
jecture is that the minimax rate of convergence for estimating f in our context,
if we assume in addition that the set of relevant variables is known, is equal to
n−2/(2+d∗) = exp(−2 logn/(2 + d∗)). If the left-hand side of (19) is equal to a
constant and log logd = o(logn), then the aforementioned minimax rate does not
tend to zero, making thus the estimator inconsistent.

Finally, we would like to mention that the selection of relevant variables is a
challenging statistical task, which might be useful to perform independently of the
task of regression function estimation. Indeed, if we succeed in identifying relevant
variables on a data-set having a small sample size, we can continue the data col-
lection process more efficiently by recording only the values of relevant variables.
This may considerably reduce the memory costs related to the data storage and
the financial costs necessary for collecting new data. Then, the regression function
may be estimated more accurately on the base of this new (larger) data-set.

APPENDIX A: PROOF OF PROPOSITION 1

To ease notation, we write Ĵn instead of Ĵn(m,λ). It is clear that Ĵn 
⊂ J if
and only if ∃j ∈ J c such that max�≤d∗ λ−1

� maxI∈P d
�

Q̂
j
m,I ≥ 1, where Q

j
m,I =
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k∈S

j
m,I

θ2
k . For every j ∈ {1, . . . , d}, let us set R

j
m,I = ∑

k∈S
j
m,I

(ξ2
k − 1) and

N
j
m,I = (Q

j
m,I )

−1/2∑
k∈S

j
m,I

θkξk so that

Q̂
j
m,I = ∑

k∈S
j
m,I

(
y2

k − 1

n

)
= Q

j
m,I + 2

√
Q

j
m,I√
n

N
j
m,I + 1

n
R

j
m,I .(23)

For j ∈ J c, the first two terms of the last sum vanish and, therefore, we have

{Ĵn 
⊂ J } = ⋃
j∈J c

⋃
�≤d∗

⋃
I∈P d

�

{
R

j
m,I ≥ nλ�

}= ⋃
�≤d∗

⋃
I∈P d

�

⋃
j∈J c∩I

{
R

j
m,I ≥ nλ�

}
,

where the last equality results from the fact that R
j
m,I = 0 if j /∈ I . The random

variable R
j
m,I , being a centered sum of squares of independent standard Gaussian

random variables, follows a translated χ2-distribution. The tails of this distribution
can be evaluated using the following result.

LEMMA 8 (cf. Lemma 1 in [27]). Let ξ1, . . . , ξD be independent stan-
dard Gaussian random variables. For every x ≥ 0 and for every vector a =
(a1, . . . , aD) ∈ R

D+ , the following inequalities hold true:

P

(
D∑

i=1

ai

(
ξ2
i − 1

)≥ 2‖a‖2
√

x + 2‖a‖∞x

)
≤ exp(−x),

P

(
D∑

i=1

ai

(
ξ2
i − 1

)≤ −2‖a‖2
√

x

)
≤ exp(−x).

We apply this lemma to Ri
m�,I

, for which ‖a‖∞ = 1 and ‖a‖2
2 = N(�,m2

�/�).

Setting nλ� = 2
√

N(�,m2
�/�)x + 2x and using the union bound, we get

P(Ĵn 
⊂ J ) ≤ P

(
d∗⋃

�=1

{
max

I∈P d
� ;i∈I

Ri
m�,I

≥ nλ�

})

≤
d∗∑

�=1

�Card
(
P d

�

)
max

I∈P d
� ;i∈I

P
(
Ri

m�,I
> nλ�

)≤ e−x
d∗∑

�=1

�

(
d

�

)
.

One checks that
∑d∗

�=1 �(
d
�
) ≤ (2ed/d∗)d∗

holds true for every pair of integers
(d∗, d) such that 1 ≤ d∗ ≤ d; cf. the supplementary material [11] for a proof.
Hence, for x = Ad∗ log(2ed/d∗), we get P(Ĵn 
⊂ J ) ≤ (2ed/d∗)−(A−1)d∗

.
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APPENDIX B: PROOF OF THEOREM 1

We begin with proving a stronger result that implies the claim of Theorem 1.

PROPOSITION 9. Let α be a real number from (0,1). If for every j ∈ J and
for s = Card(J ) the inequality

Q
j
ms,J

≥
{[

λs + 2
√

N(s,m2
s /s) log(2s/α) + 1

n

]1/2
+
[

2 log(2s/α)

n

]1/2}2
(24)

holds true, then P(J 
⊂ Ĵn) ≤ α.

PROOF. To bound from above the probability of type II error, we rely on the
equivalence: J 
⊂ Ĵn if and only if ∃j ∈ J such that max�≤d∗ λ−1

� maxI∈P d
�

Q̂
j
m,I ≤

1. Recall that s = Card(J ). Using Bonferroni’s inequality, we get

P(J 
⊂ Ĵn) ≤ ∑
j∈J

P
(
max
�≤d∗ λ−1

� max
I∈P d

�

Q̂
j
m,I ≤ 1

)
(25)

≤ ∑
j∈J

P
(
Q̂

j
ms,J

≤ λs

)≤ s max
j∈J

P
(
Q̂

j
ms,J

≤ λs

)
.

By virtue of decomposition (23),

P
(
Q̂

j
ms,J

≤ λs

)= P
((√

Q
j
ms,J

+ 1√
n
N

j
ms,J

)2

+ 1

n

(
R

j
ms,J

− (Nj
ms,J

)2)≤ λs

)
.

One checks that R
j
ms,J

− (N
j
ms,J

)2 + N(s,m2
s /s) is a drawn from χ2-distribution

with N(s,m2
s /s) − 1 degrees of freedom. Therefore, using Lemma 8 stated in pre-

vious section, we get P( 1
n
(R

j
ms,J

−(N
j
ms,J

)2)+ 1
n

≤ −2
√

N(s,m2
s /s) log(2s/α)) ≤

α
2s

. Therefore, P(Q̂
j
ms,J

≤ λs) is upper-bounded by

α

2s
+ P

((√
Q

j
ms,J

+ 1√
n
N

j
ms,J

)2

≤ λs + 2
√

N(s,m2
s /s) log(2s/α) + 1

n

)
.

Using the condition of the proposition, we get P(Q̂
j
ms,J

≤ λs) ≤ α
2s

+ P(N
j
ms,J

≤
−√

2 log(2s/α)) ≤ α
s

. Combining this inequality with (25), we get the result of
Proposition 9. �

To deduce the claim of Theorem 1 from that of Proposition 9, we use the fol-
lowing lower bound:

Q
j
ms,J

= Qj − ∑
j∈supp(k)⊂J

θ2
k1{‖k‖2≥ms} ≥ κ − ∑

j∈supp(k)⊂J

θ2
k1{‖k‖2≥ms}

(26)
≥ κ − m−2

s

∑
j∈supp(k)⊂J

θ2
k‖k‖2

2 ≥ κ − m−2
s Ls
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for every j ∈ J . Our choice of ms , ms = √
sL(1 + τ)/κ , ensures that Q

j
ms,J

≥
κτ/(1 + τ). Finally, using a very rough bound (which is sufficient for our pur-
poses), the right-hand side in (24) can be upper-bounded by 4λs if α is chosen to
be equal to 2(2ed/d∗)−(A−1)d∗

. Therefore, if κτ
1+τ

≥ 4λs, then (24) holds true with

α = 2(2ed/d∗)−(A−1)d∗
and, therefore, the type II error has a probability less than

or equal to 2(2ed/d∗)−(A−1)d∗
.

APPENDIX C: PROOF OF PROPOSITION 2

Proof of the first assertion. This proof can be found in [30]; we repeat here
the arguments therein for the sake of keeping the paper self-contained. Recall that
N1(d

∗, γ ) admits an integral representation with the integrand

h(z)d
∗

zγ d∗
1

z(1 − z)
= 1

z(1 − z)
exp
[
d∗ log

(
h(z)

zγ

)]
.

For any y > 0, we define φ(y) = e−yh′(e−y)/h(e−y) = ∑
k∈Z k2e−yk2

/∑
k∈Z e−yk2

in such a way that

φ(y) = γ ⇐⇒ h′(e−y)

h(e−y)
= γ

e−y
⇐⇒ l′γ

(
e−y)= 0.

By virtue of the Cauchy–Schwarz inequality, it holds that
∑

k4e−yk2 ∑
e−yk2

>

(
∑

k2e−yk2
)2, ∀y ∈ (0,∞), implying that φ′(y) < 0 for all y ∈ (0,∞), that is, φ

is strictly decreasing. Furthermore, φ is obviously continuous with limy→0 φ(y) =
+∞ and limy→∞ φ(y) = 0. These properties imply the existence and the unique-
ness of yγ ∈ (0,∞) such that φ(yγ ) = γ . Furthermore, as the inverse of a decreas-
ing function, the function γ �→ yγ is decreasing as well. We set zγ = e−yγ so that
γ �→ zγ is increasing. We also have

l′′γ (zγ ) = h′′h − (h′)2

h2 (zγ ) + γ

z2
γ

= z−2
γ

{∑
k(k

4 − k2)zk2

γ∑
k zk2

γ

−
(∑

k k2zk2

γ∑
k zk2

γ

)2

+ γ

}
= z−2

γ

{−φ′(yγ ) − φ(yγ ) + γ
}= −z−2

γ φ′(yγ ) > 0.

Proof of the second assertion. We apply the saddle-point method to the integral
representing N1; see, for example, Chapter IX in [14]. It holds that

N1
(
d∗, γ

)= 1

2πi

∮
|z|=zγ

h(z)d
∗

zγ d∗
dz

z(1 − z)
(27)

= 1

2πi

∮
|z|=zγ

{
z(1 − z)

}−1
ed∗lγ (z) dz.

The first assertion of the proposition provided us with a real number zγ such that
l′γ (zγ ) = 0 and l′′γ (zγ ) > 0. The tangent to the steepest descent curve at zγ is ver-
tical. The path we choose for integration is the circle with center 0 and radius zγ .
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As this circle and the steepest descent curve have the same tangent at zγ , applying
formula (1.8.1) of [14] [with α = 0 since l′′(zγ ) is real and positive], we get that∮

|z|=zγ

{
z(1 − z)

}−1
ed∗ lγ (z) dz

=
√√√√ 2π

d∗l′′γ (zγ )
eiπ/2{zγ (1 − zγ )

}−1
ed∗lγ (zγ )(1 + o(1)

)
,

when d∗ → ∞, as soon as the condition3 �[lγ (z) − lγ (zγ )] ≤ −μ is satisfied for
some μ > 0 and for any z belonging to the circle |z| = |zγ | and lying not too close
to zγ . To check that this is indeed the case, we remark that �[lγ (z)] = log |h(z)

zγ |.
Hence, if z = zγ eiω with ω ∈ [ω0,2π − ω0] for some ω0 ∈]0, π[, then∣∣∣∣h(z)

zγ

∣∣∣∣= |1 + 2z + 2
∑

k>1 zk2 |
z
γ
γ

≤ |1 + z| + zγ + 2
∑

k>1 zk2

γ

z
γ
γ

≤ |1 + eiω0zγ | + zγ + 2
∑

k>1 zk2

γ

z
γ
γ

.

Therefore �[lγ (z) − �lγ (zγ )] ≤ −μ with μ = log(
1+2zγ +2

∑
k>1 zk2

γ

|1+zγ eiω0 |+zγ +2
∑

k>1 zk2
γ

) > 0.

This completes the proof for the term N1(d
∗, γ ). The term N2(d

∗, γ ) can be dealt
in the same way.

APPENDIX D: PROOF OF THEOREM 2

To prove (i) we apply Lemma 4 with M = (
d
d∗ ) in conjunction with a standard

result, the proof of which can be found in [12] and in the supplementary mate-
rial [11].

LEMMA 10. Let S be a subset of Z
d of cardinality |S| and A be a constant.

Define μS as a discrete measure supported on the finite set of functions {fω =∑
k∈S Aωkϕk :ω ∈ {±1}S} such that μS(f = fω) = 2−|S| for every ω ∈ {±1}S . If

we define the probability measure PS by PS(A) = ∫
�(κ,L) Pf(A)μS(df), for every

measurable set A ⊂ R
n, and P0 = Pf0 , then K(PS,P0) ≤ |S|A4n2.

Without loss of generality, we can assume κ = 1 (the general case can be re-
duced to this one by replacing L and n, respectively, by L/κ and nκ). Thus,
ϑ = L. We denote the set �(1,L) by �L and choose μ0, . . . ,μM as follows: μ0
is the Dirac measure δ0, μ1 is defined as in Lemma 10 with S = C1(d

∗, γL) and

3�u stands for the real part of the complex number u.
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A = [N(d∗, γL)]−1/2. The measures μ2, . . . ,μM are defined similarly and corre-
spond to the M − 1 remaining sparsity patterns of cardinality d∗.

In view of inequality (14) and Lemma 4, it suffices to show that the mea-
sures μ� satisfy μ�(�L) = 1 and

∑M
�=0 K(P�,P0) ≤ (M + 1)α logM . Combining

Lemma 10 with Card(S) = N1(d
∗, γL) and inequality (15), we get K(P�,P0) ≤

n2N1(d
∗,γL)

N(d∗,γL)2 ≤ n2L
γLN(d∗,γL)

≤ α logM . Now, let us show that μ1(�L) = 1. By sym-
metry, this will imply that μ�(�L) = 1 for every �. Since μ1 is supported by
the set {fω :ω ∈ {±1}C1(d

∗,γL)}, it is clear that
∑

k1 
=0 θ2
k [fω] = A2[N1(d

∗, γL) −
N2(d

∗, γL)] = 1 and

∑
k∈Zd

k2
j θ

2
k [fω] = ∑

k∈C1(d
∗,γL)

k2
jA

2 = 1

d∗
d∗∑

j=1

∑
k∈C1(d

∗,γL)

k2
jA

2 ≤ A2γLN1
(
d∗, γL

)

≤ γL

N1(d
∗, γL)

N(d∗, γL)
, j = 1, . . . , d∗.

The results stated in Section 4 imply that N1(d
∗, γL)/N(d∗, γL) ∼d∗→∞ 1 +

(h(zγ ) − 1)−1. Our choice of γL ensures that, for d∗ large enough, fω ∈ �L.
This completes the proof of claim (i). To prove (ii), we still use Lemma 4 with
μ0 = δ0 and μ� = δf� , where for every � ∈ {1, . . . ,M}, f� is chosen as follows.
Let I1, . . . , IM be all the subsets of {1, . . . , d} containing exactly d∗ elements. We
define f�, for � 
= 0, by its Fourier coefficients {θ�

k : k ∈ Z
d} as follows:

θ�
k =

{
1, k = (k1, . . . , kd) = (11∈I�

, . . . ,1d∈I�
),

0, otherwise.

Obviously, all the functions f� belong to � and, moreover, each f� has I� as sparsity
pattern. One easily checks that our choice of f� implies K(Pf�,Pf0) = n‖f� − f0‖2

2 =
n. Therefore, if α logM = α log(

d
d∗ ) ≥ n, the desired inequality is satisfied. To

conclude, it suffices to note that log(
d
d∗ ) ≥ d∗ log(d/d∗).

APPENDIX E: PROOF OF PROPOSITION 6

In view of Theorem 1, applied with A = 2 and τ = 1, the consistent [uniformly
in f ∈ �(κ,L)] estimation of J is possible if

8
√

2N(s,2L/κ)d∗ log(d/d∗) + 16d∗ log(d/d∗)
n

≤ κ

2
.

Since d∗/s is upper-bounded by some constant, there is a constant D∗
1 such that

the left-hand side of the last display is upper-bounded by

D∗
1

{√
N(s,2L/κ)s log(d/s)

n
∨ s log(d/s)

n

}
.
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As proved in Lemma 11 below, N(s,2L/κ) ≤ 0.3(18πeL/κ)s/2. Thus there is a
constant D2 such that{√

N(s,2L/κ)s log(d/s)

n
∨ s log(d/s)

n

}
≤ Ds

2κ
−s/4√s log(d/s)

n
∨ s log(d/s)

n
.

Combining these results, we see that under the conditions 2D∗
1s log(d/s)/n ≤ κ

and

2D∗
1
Ds

2
√

s log(d/s)

n
≤ κ1+s/4,

consistent estimation of J is possible. Taking D∗ = 2D∗
1(1 + D4

2), we complete
the proof of the first claim of the proposition. To prove the second assertion, we
apply Theorem 2. Since it holds that 2γϑ ≥ γϑ + 1 ≥ ϑ

1+(h(zγϑ+1)−1)−1 ≥ ϑ
1+(2z1)

−1 ,

we deduce from Theorem 2 that there are some constants D3 and D4 such that if

D3

{√
N(s,D4/κ)s log(d/s)

n
∨ s log(d/s)

n

}
≥ κ,

then consistent estimation of J is impossible. Since the s-dimensional L2 ball
with radius

√
sγ contains the L∞ ball of radius

√
γ , N(s,D4/κ) ≥ (D5)

sκ−s/2

for some constant D5. By rearranging different terms, we get the desired result.

LEMMA 11. For every γ ≥ 1 and d∗ ∈ N, N1(d
∗, γ ) ≤ 0.3(9πeγ )d

∗/2.

PROOF. One readily checks that if ‖k‖2
2 ≤ d∗γ , then the hypercube cen-

tered at k with side of length 1 is included in the ball centered at the ori-
gin and having radius

√
d∗γ + 0.5

√
d∗. Therefore, N1(d

∗, γ ) ≤ (
√

d∗γ +
0.5

√
d∗)d∗

Vol[Bd∗(0;1)], where Vol[Bd∗(0;1)] stands for the volume of the unit
ball in R

d∗
. Using the well-known formula for the latter and the Stirling approx-

imation, for every d∗ ≥ 1, we get Vol[Bd∗(0;1)] = 2πd∗/2

d∗�(d∗/2)
≤ 0.4 (4πe/d∗)d∗/2√

2d∗ .

This implies that N1(d
∗, γ ) ≤ 0.4(

9γ d∗
4 )d

∗/2 (4πe/d∗)d∗/2√
2d∗ ≤ 0.3(9πeγ )d

∗/2 and the
result follows. �
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SUPPLEMENTARY MATERIAL

Proofs of some results (DOI: 10.1214/12-AOS1046SUPP; .pdf). The supple-
mentary material provides the proof of Theorem 3, Proposition 7, Lemma 10 and
Corollary 3, as well as those of some technical lemmas.

http://dx.doi.org/10.1214/12-AOS1046SUPP
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