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GENERALIZED FIDUCIAL INFERENCE FOR NORMAL LINEAR
MIXED MODELS

BY JESSI CISEWSKI1 AND JAN HANNIG

Carnegie Mellon University and University of North Carolina at Chapel Hill

While linear mixed modeling methods are foundational concepts intro-
duced in any statistical education, adequate general methods for interval es-
timation involving models with more than a few variance components are
lacking, especially in the unbalanced setting. Generalized fiducial inference
provides a possible framework that accommodates this absence of method-
ology. Under the fabric of generalized fiducial inference along with sequen-
tial Monte Carlo methods, we present an approach for interval estimation for
both balanced and unbalanced Gaussian linear mixed models. We compare
the proposed method to classical and Bayesian results in the literature in a
simulation study of two-fold nested models and two-factor crossed designs
with an interaction term. The proposed method is found to be competitive or
better when evaluated based on frequentist criteria of empirical coverage and
average length of confidence intervals for small sample sizes. A MATLAB
implementation of the proposed algorithm is available from the authors.

1. Introduction. Inference on parameters of normal linear mixed models
has an extensive history; see Khuri and Sahai (1985) for a survey of variance
component methodology, or Chapter 2 of Searle, Casella and McCulloch (1992)
for a summary. There are many inference methods for variance components
such as ANOVA-based methods [Burdick and Graybill (1992), Hernandez, Bur-
dick and Birch (1992), Hernandez and Burdick (1993), Jeyaratnam and Graybill
(1980)], maximum likelihood estimation (MLE) and restricted maximum likeli-
hood (REML) [Hartley and Rao (1967), Searle, Casella and McCulloch (1992)]
along with Bayesian methods [Gelman (2006), Gelman et al. (2004), Wolfinger
and Kass (2000)]. Many of the ANOVA-based methods become quite complex
with complicated models (e.g., due to nesting or crossing data structures), and
are not guaranteed to perform adequately when the designs become unbalanced.
When the model design is not balanced, the decomposition of the sum-of-squares
for ANOVA-based methods is not generally unique, chi-squared or independent.
Furthermore, “exact” ANOVA-based confidence intervals are typically for linear
combinations of variance components, but not the individual variance compo-
nents even for simple models [Burdick and Graybill (1992), pages 67 and 68,
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Jiang (2007)]; however, approximate intervals do exist. With notable optimality
properties for point estimation, MLE and REML methods are less useful when
it comes to confidence interval estimation for small samples because the asymp-
totic REML-based confidence intervals tend to have lower than stated empirical
coverage [Burch (2011), Burdick and Graybill (1992), Searle, Casella and McCul-
loch (1992)]. Bayesian methods, in particular, hierarchical modeling, can be an
effective resolution to complicated models, but the delicate question of selecting
appropriate prior distributions must be addressed.

There are numerous applications of normal linear mixed models related to top-
ics such as animal breeding studies [Burch and Iyer (1997), E, Hannig and Iyer
(2008)], multilevel studies [O’Connell and McCoach (2008)] and longitudinal
studies [Laird and Ware (1982)]. Many implemented methods do not go beyond
two variance components or are designed for a very specific setting. We propose
a solution based on generalized fiducial inference that easily allows for inference
beyond two variance components and for the general normal linear mixed model
settings.

The proposed generalized fiducial approach is designed specifically for interval
data (e.g., due to the measuring instrument’s resolution, rounding for storage on
a computer or bid-ask spread in financial data). There are several reasons to con-
sider interval data. First, there are many examples where it is critical [or required
per the regulations outlined in GUM (1995)] to incorporate all known sources of
uncertainty [Elster (2000), Frenkel and Kirkup (2005), Hannig, Iyer and Wang
(2007), Lira and Woger (1997), Taraldsen (2006), Willink (2007)]. Second, our
simulation results for the normal linear mixed model show that even when con-
sidering this extra source of uncertainty, the proposed method is competitive or
better than classical and Bayesian methods that assume the data are exact; see Sec-
tion 3. [The proposed method is also appropriate for noninterval, or standard, data
simply by artificially discretizing the observation space into a fixed grid of narrow
intervals; Hannig (2012) proves that as the interval width decreases to zero, the
generalized fiducial distribution converges to the generalized fiducial distribution
for exact data.] Finally, on a purely philosophical level, all continuous data has
some degree of uncertainty, as noted previously, due to the resolution of the mea-
suring instrument or truncation for storage on a computer. Note that we are not
suggesting that all methods should incorporate this known uncertainty; however,
we were able to appeal to this known uncertainty for the computational aspect of
the proposed method.

A general form of a normal linear mixed model is

Y = Xβ + VZ + ε,(1.1)

where Y is an n× 1 vector of data, X is a known n×p fixed effects design matrix,
β is a p × 1 vector of unknown fixed effects, VZ = ∑r−1

i=1 ViZi , where Zi is a
vector of effects representing each level of random effect i such that E(Zi) = 0
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and var(Zi) = G, Vi is the known design matrix for random effect i, and ε is an
n × 1 vector representing the error and E(ε) = 0 and var(ε) = R [Jiang (2007)].
Note that there are r total random components in this model, and covariance ma-
trices G and R contain unknown parameters known as variance components. It is
often assumed that Z and ε are independent and normally distributed. Additional
assumptions on this model for the proposed method are addressed in Section 2.

Except where noted, the notational convention that will be used for matrices,
vectors, and single values will be, respectively, bold and capital letters for matrices,
capital letters for vectors and lowercase letters for single values (e.g., A, A, a).

The focus of this paper is the construction of confidence intervals for the un-
known parameters of (1.1), with emphasis on the variance components of matrices
G and R. In this paper, inferences are derived from the generalized fiducial dis-
tributions of the unknown parameters, and we propose a sequential Monte Carlo
(SMC) algorithm to obtain these samples. Like a Bayesian posterior, this proce-
dure produces a distribution on the parameter space, but does so without assuming
a prior distribution. We evaluate the quality of the simulated generalized fiducial
distribution based on the quality of the confidence intervals—a concept analogous
to confidence distributions [Schweder and Hjort (2002), Xie, Singh and Strawder-
man (2011)]. We begin by introducing the two main techniques of the proposed
method: generalized fiducial inference and SMC methods. Then we introduce the
proposed method, and state and prove a theorem concluding the convergence of
the algorithm. To demonstrate small sample performance, we perform a simula-
tion study on two different types of models (unbalanced two-fold nested models
and two-factor crossed with interaction models), and include a real-data applica-
tion for the two-fold nested model. We finish with concluding remarks. Additional
information can be found in the supplemental document [Cisewski and Hannig
(2012)].

1.1. Generalized fiducial inference. Fiducial inference was introduced by
Fisher (1930) to rectify what he saw as a weakness in the Bayesian philoso-
phy, where a prior distribution is assumed without sufficient prior knowledge.
While Fisher made several attempts at justifying his definition of fiducial infer-
ence [Fisher (1933, 1935)], it was not fully developed. Fiducial inference fell into
disrepute when it was discovered that some of the properties Fisher claimed did not
hold [Lindley (1958), Zabell (1992)]. Efforts were made to revitalize fiducial in-
ference by drawing connections to other areas such as Fraser’s structural inference
[Fraser (1961a, 1961b, 1966, 1968)], and more recently Hannig, Iyer and Patterson
(2006) connect Fisher’s fiducial inference to generalized inference introduced in
Tsui and Weerahandi (1989) and Weerahandi (1993). In this paper, we propose a
method for inference on parameters of normal linear mixed models using the ideas
of generalized fiducial inference.
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The main idea of fiducial inference is a transference of randomness from the
model space to the parameter space. A thorough introduction to generalized fidu-
cial inference can be found in Hannig (2009), but here we consider a simple exam-
ple. Let y be a realization of a random variable Y ∼ N(μ,1) [where N(μ,1) rep-
resents a normal distribution with unknown mean μ and standard deviation 1]. The
random variable Y can be represented as Y = μ + Z where Z ∼ N(0,1). Given
the observed value y, the fiducial argument solves this equation for the unknown
parameter μ to get μ = y − Z; for example, suppose y = 4.8, then μ = 4.8 − Z

would suggest μ ∼ N(4.8,1). While the actual value of Z is unknown, the distri-
bution of Z is fully known and can be used to frame a distribution on the unknown
parameter μ. This distribution on μ is known as the fiducial distribution.

The generalized fiducial recipe starts with a data-generating equation, also re-
ferred to as the structural equation, which defines the relationship between the data
and the parameters. Let Y be a random vector indexed by parameter(s) ξ ∈ �, and
then assume Y can be represented as Y = G(ξ,U), where G is a jointly measur-
able function indicating the structural equation, and U is a random element with a
fully known distribution (void of unknown parameters). In this paper, the function
G will take the form of a normal linear mixed model, and the random compo-
nents U will be standard normal random variables; see equation (2.1). Following
the fiducial argument, we define a set-valued function, the inverse image of G, as
Q(y,u) = {ξ : y = G(ξ,u)}, where y is the observed data, and u is an arbitrary
realization of U . The set-function Q(y,u) is then used to define the fiducial dis-
tribution on the parameter space. Since the distribution of U is completely known,
independent copies of U , U∗, can be generated to produce a random sample of
Q(y,u∗) for the given data y (where u∗ is a realization of U∗). There are several
sources of nonuniqueness in this framework. In particular, nonuniqueness could
occur if Q has more than one element, if Q is empty, or due to the definition of the
structural equation. Nonuniqueness due to the definition of the structural equation
will not be addressed here as we assume the form of the model is known (i.e., nor-
mal linear mixed model). To resolve the case when there is more than one element
in Q, we can define a rule, call it V , for selecting an element of Q. Furthermore,
since the parameters ξ are fixed but unknown, there must be some realization of
the random variable U such that y = G(ξ,u) has occurred [i.e., {Q(y,u) �= ∅}].
The generalized fiducial distribution of ξ is defined as

V
(
Q

(
y,U∗)) | {

Q
(
y,U∗) �= ∅

}
.(1.2)

Obtaining a random sample from the generalized fiducial distribution as defined
in (1.2) where the structural equation, G, takes the form of a normal linear mixed
model is the focus of the proposed algorithm.

Defining the generalized fiducial distribution as (1.2) leads to a potential source
of nonuniqueness due to conditioning on events with zero probability [i.e., if
P({Q(y,u) �= ∅}) = 0]. This is known as the Borel Paradox [Casella and Berger
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(2002)]. Fortunately this can be resolved by noting that most data has some de-
gree of known uncertainty due, for example, to the resolution of the instrument
collecting the data or computer storage. Because of this, instead of considering the
value of a datum, an interval around the value can be used [Hannig (2012), Hannig,
Iyer and Wang (2007)]. For example, suppose the datum value is y = 1.632 me-
ters measuring the height of a woman. If the resolution of the instrument used to
measure the woman is 0.001 m (i.e., 1 mm), then her actual height is between
1.631 meters and 1.632 meters (or between 1.632 meters and 1.633 meters, de-
pending on the practice of the measurer).

By considering interval data, the issue of nonuniqueness due to the Borel Para-
dox is resolved since the probability of observing our data will never be zero since
P(Q((a, b),U∗) �= ∅) ≥ P(Y ∈ (a, b)) > 0 where a < b are the endpoints of the
interval.

Interval data is not explicitly required for generalized fiducial inference, but is
useful in the proposed setting of normal linear mixed models. Generalized fiducial
inference has a number of other applications in various settings such as wavelet re-
gression [Hannig and Lee (2009)], confidence intervals for extremes [Wandler and
Hannig (2012)], metrology [Hannig, Iyer and Wang (2007)] and variance compo-
nent models [E, Hannig and Iyer (2008)], which applies the generalized fiducial
framework to unbalanced normal linear mixed models with two variance compo-
nents.

1.2. Sequential Monte Carlo. When integrals of interest are very complex or
unsolvable by analytical methods, simulation-based methods can be used. SMC,
or particle filters, is a collection of simulation methods used to sample from an
evolving target distribution (i.e., the distribution of interest) accomplished by prop-
agating a system of weighted particles through time or some other index. A solid
introduction of and applications to SMC methods can be found in Doucet, de Fre-
itas and Gordon (2001). There are many dimensions to the theory and applications
of SMC algorithms [Chopin (2002, 2004), Del Moral, Doucet and Jasra (2006),
Douc and Moulines (2008), Kong, Liu and Wong (1994), Liu and Chen (1998),
Liu and West (2001)], but a simplified introduction is presented below.

Suppose one desires to make inferences about some population based on data Y .
A particle system {z(J ),w(J )} for J = 1, . . . ,N particles is a collection of N

weighted random variables (with weights w(J)) such that

lim
N−→∞

∑N
J=1 w(J)γ (z(J ))∑N

J=1 w(J)
−→ Eπ

{
γ (z)

} =
∫

γ (z) dπ(z),

where π is the target distribution, and γ is some measurable function, when this
expectation exists. Since it is often difficult to sample directly from the target dis-
tribution π , it becomes necessary to find some proposal distribution π̃ to sample
the particles. The weights w(J) are determined in order to re-weight the sampled
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particles back to the target density [i.e., w(J) = π(z(J ))/π̃(z(J ))]. This is the gen-
eral idea of importance sampling (IS). If the target distribution is evolving with
some time index, an iterative approach to calculating the weights is performed.
This is known as sequential importance sampling (SIS). Unfortunately, with each
time step, more variation is incorporated into the particle system, and the weights
degenerate, leaving most particles with weights of essentially zero. The degen-
eracy is often measured by the effective sample size (ESS), which is a measure
of the distribution of the weights of the particles. Kong, Liu and Wong (1994)
presents the ESS as having an inverse relation with the coefficient of variation of
the particle weights, and proved that this coefficient of variation increases as the
time index increases (i.e., as more data becomes available) in the SIS setting. An
intuitive explanation of ESS can be found in Liu and Chen (1995).

SMC builds on ideas of sequential importance sampling (SIS) by incorporating
a resampling step to resolve issues with the degeneracy of the particle system. Once
the ESS for the particle system has dropped below some designated threshold or
at some pre-specified time, the particle system is resampled, removing inefficient
particles with low weights and replicating the particles with higher weights [Liu
and Chen (1995)]. There are various methods for resampling with the most basic
being multinomial resampling, which resamples particles based on the normalized
importance weights; see Douc, Cappé and Moulines (2005) for a comparison of
several resampling methods.

Examples of general SMC algorithms can be found in Del Moral, Doucet and
Jasra (2006) or Jasra, Stephens and Holmes (2007). The main idea of SMC meth-
ods is to iteratively target a sequence of distributions {πt }t∈Z+ , where πt is often
some distribution based on the data available up to time t . The algorithm com-
prises three main sections after the initialization step: sampling, correction and re-
sampling. The sampling step arises at a new time step t when particles are sampled
from some evolving proposal distribution π̃t . The correction step is concerned with
the calculation of the weights and the idea of reweighting the particles to target the
desired distribution at time t , πt . The resampling step is performed when the ESS
of the particle system falls below some desired threshold T (e.g., T = N/2). The
asymptotic correctness for SMC algorithms can be found in Douc and Moulines
(2008).

2. Method.

2.1. Introduction. The form of the normal linear mixed model from equation
(1.1) is adapted to work in the generalized fiducial inference setting as

Y = Xβ +
r∑

i=1

σi

li∑
j=1

Vi,j zi,j ,(2.1)

where X is a known n × p fixed-effects design matrix, β is the p × 1 vector of
fixed effects, Vi,j is the n × 1 design vector for level j of random effect i, li is
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the number of levels per random effect i, σ 2
i is the variance of random effect i

and the zi,j are independent and identically distributed standard normal random
variables. We will derive a framework for inference on the unknown parameters
(β and σi, i = 1, . . . , r) of this model, which will be applicable to both the bal-
anced and the unbalanced case. (The design is balanced if there is an equal number
of observations in each level of each effect, otherwise the design is unbalanced.)
In addition, the covariance matrices for the random components (G and R above)
are identity matrices with a rank equal to the number of levels of its correspond-
ing random effect with lr = n. The Vi , i = 1, . . . , r , allow for coefficients for the
random effects, and correlation structure can be incorporated into the model by
including additional effects with design matrices that account for the correlation.
We note that these additional assumptions are related to the implementation of the
proposed algorithm, and are not restrictions of the generalized fiducial framework.

Consider the following example illustrating the connection between (1.1) and
(2.1) in the case of a one-way random effects model. A one-way random effects
model is conventionally written as

yij = μ + αi + εij , i = 1, . . . , a, j = 1, . . . , ni,(2.2)

with unknown mean μ, random effect α ∼ N(0, σ 2
α ) where σ 2

α is unknown, a is the
number of levels of α, ni is the number of observations in level i and error terms
εij ∼ N(0, σ 2

ε ) where σ 2
ε is also unknown, and α and ε are independent [Jiang

(2007)]. This can be structured in the form of equation (2.1) as

Y = Xβ + σ1

l1∑
j=1

V1,j z1,j + σ2

n∑
j=1

V2,j z2,j ,

where β = μ is the overall mean, X = 1n (an n × 1 vector of ones), l1 = a is the
number of levels for the first random effect and V1,j indicates which observations
are in level j with random effect variance σ 2

1 = σ 2
α . The second random effect cor-

responds to the error, and hence V2,· = In with σ 2
ε as the error variance component.

The z1,· and z2,· are the i.i.d. standard normal random variables.
The SMC algorithm presented in this section is seeking a weighted sample of

particles {Z(J)
1:t ,W

(J )
1:t }NJ=1 (where W

(J)
1:t is the unnormalized importance weight for

particle Z
(J)
1:t ) from the generalized fiducial distribution of the unknown parameters

in the normal linear mixed model. Once this sample of N weighted particles is ob-
tained, inference procedures such as confidence intervals and parameter estimates
can be performed on any of the unknown parameters or functions of parameters.
For example, parameter estimates can be determined by taking a weighted average
of the particles with the associated (normalized) weights. A C% confidence inter-
val can be found easily for each parameter by ordering the particles and finding
the particle values θL and θU such that the sum of the normalized weights for the
particles between θL and θU is C%.



GFI FOR NORMAL LMM 2109

2.2. Algorithm. The algorithm to obtain a generalized fiducial sample for the
unknown parameters of normal linear mixed models is outlined below. As dis-
cussed earlier, the data Y are not observed exactly, but rather intervals around the
data are determined by the level of uncertainty of the measurement (e.g. due to the
resolution of the instrument used). The structural equation formed as interval data
for t = 1, . . . , n with i = 1, . . . , r random effects is

at < Yt = Xtβ +
r∑

i=1

σi

li∑
j=1

vi,j,t zi,j ≤ bt ,(2.3)

where the random effect design vector component vi,j,t indicates the j th level of
a random effect i for the t th element of the data vector, Xt is the t th row of the
fixed effect design matrix X and zi,j is a normal random variable for level j of
random effect i. Each datum can have one or more random components, and so
we write Z1:t = (Z1, . . . ,Zt ) with capital letters to indicate the possible vector
nature of each Zk for k = 1, . . . , t . In the case that r > 1, Z1:t is vectorized to be
a

∑r
i=1 li × 1 vector. Also, for notational convenience, Zk will represent all zi,j

for i = 1, . . . , r and j = 1, . . . , li that are not present or shared with any datum
less than k, which will always at least include the error effect, denoted zk,r . It will
be necessary at times to reference the nonerror random effects, and they will be
denoted Zk,1:r−1, representing all the nonerror random effects first introduced at
time k. The goal is to generate a sample of the zi,j for i = 1, . . . , r and j = 1, . . . , li
such that at < Yt ≤ bt for t = 1, . . . , n.

With a sample of size n, the generalized fiducial distribution on the parameter
space can be described as

V
(
Q

(
(a,b]1:n,Z1:n

)) | {
Q

(
(a,b]1:n,Z1:n

) �= ∅

}
,(2.4)

where we define the set function Q as the set containing the values of the param-
eters that satisfy equation (2.3), given the data and random component Z. Gener-
ating a sample from (2.4) is equivalent to generating the Z such that the set Q is
nonempty, and this results in a target distribution at time t written as

π1:t
(
Z1:t | (a,b]1:t

) = π1:t (Z1:t ) ∝ exp
(−(

ZT
1:t · Z1:t

)
/2

) · ICt
(Z1:t ),(2.5)

where ICt
(·) is an indicator random variable for the set Ct , where Ct is the set

of Z1:t such that Qt is not empty. This is equivalent to Ct = {Z1:t :∃β,σi so that
ak < Xkβ + ∑r

i=1 σi

∑li
j=1 vi,j,kzi,j ≤ bk, k = 1, . . . , t}. The restriction that Q

(J)
t

is nonempty can be translated into truncating the possible values of the particle
corresponding to the error random effect to the interval defined by

mt

(
Z

(J)
1:t−1,Z

(J )
t,1:r−1

)
= min

(a
(J )
t − (Xtβ + ∑r−1

i=1 σi

∑li
j=1 vi,j,t z

(J )
i,j )

σr

, (β, σ ) ∈ Q
(J)
t−1

)
,
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Mt

(
Z

(J)
1:t−1,Z

(J )
t,1:r−1

)
= max

(b
(J )
t − (Xtβ + ∑r−1

i=1 σi

∑li
j=1 vi,j,t z

(J )
i,j )

σr

, (β, σ ) ∈ Q
(J)
t−1

)
.

That is, mt(Z
(J )
1:t−1,Z

(J )
t,1:r−1) and Mt(Z

(J )
1:t−1,Z

(J )
t,1:r−1) are the minimum and max-

imum possible values of z
(J )
t,r .

The proposal distribution used is the standard Cauchy distribution due to im-
proved computational stability of sampling in the tails over the more natural choice
of a standard normal distribution. Specifically, the z

(J )
t,r are sampled from a standard

Cauchy truncated to (mt (Z
(J )
1:t−1,Z

(J )
t,1:r−1),Mt(Z

(J )
1:t−1,Z

(J )
t,1:r−1)) for t > p + r

(i.e., for t greater than the dimension of the parameter space); otherwise z
(J )
t,r , like

Z
(J)
t,1:r−1, is sampled from a standard normal distribution. The conditional proposal

density at time t for t > p + r is defined as

π̃t |1:t−1
(
Zt | Z1:t−1, (a,b]1:t

)
= π̃t |1:t−1(Zt )

∝ exp
(−(

ZT
t,1:r−1 · Zt,1:r−1

)
/2

) × I(mt (Z1:t−1,Zt,1:r−1),Mt (Z1:t−1,Zt,1:r−1))(zt,r )

× [(
1 + z2

t,r

)(
F

(
Mt(Z1:t−1,Zt,1:r−1)

) − F
(
mt(Z1:t−1,Zt,1:r−1)

))]−1
,

where F is the standard Cauchy cumulative distribution function. Then the full
proposal density at time t is

π̃1:t
(
Z1:t | (a,b]1:t

) = π̃1:t (Z1:t ) = π̃1

t∏
i=2

π̃i|1:i−1
(
Zi | Z1:i−1, (a,b]1:i

)
.(2.6)

The weights are defined as the ratio of the full joint target density to the full
joint proposal density at time t. More specifically, the weights are derived as

W1:t = π1:t /π̃1:t .(2.7)

The resulting sequential updating factor to W1:t−1 is Wt = exp(−z2
t,r/2)(1 +

z2
t,r )(F (Mt(Z1:t−1,Zt,1:r−1)) − F(mt(Z1:t−1,Zt,1:r−1))) where F is the standard

Cauchy cumulative distribution functions. More details regarding the derivation of
these weights can be found in Appendix C.

Standard SMC resampling finds particles according to the distribution of
weights at a given time step, copies the particle and then assigns the resampled
particles equal weight. By copying particles in this setting, we would not end up
with an appropriate distribution on the parameter space. Intuitively, this is because
after each time step, each particle implies the set, or geometrically the polyhedron,
of possible values of the unknown parameters given the generated Z

(J)
1:t .
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If the particles are simply copied, the distribution of polyhedrons will be con-
centrated in a few areas due to particles with initially higher weight, and will not
be able to move from those regions because subsequent particles would continue
to define subsets of the copied polyhedrons, as outlined in the algorithm presented
above. Hence rather than copy the selected particles exactly, we alter them in a
certain way in order to retain properties of heavy particles, while still allowing
for an appropriate sample of {Q(J)

t }NJ=1. It can be thought of as a Gibbs-sampling
step in a noncoordinate direction determined by the selected particle. The precise
mathematics of this step can be found in Appendix A.

The proposed algorithm targets the generalized fiducial distribution of the un-
known parameters of a normal linear mixed model of (2.4) displayed in (2.5). The
following theorem confirms that the weighted particle system from the proposed
algorithm achieves this as the sample size N approaches infinity. The proof is in
Appendix C.

THEOREM 2.1. Given a weighted sample {Z(J)
1:n ,W

(J )
1:n }Nj=1 obtained using the

algorithm presented above targeting (2.5), then for any bounded, measurable func-
tion f as N −→ ∞,(

N∑
I=1

W
(I)
1:n

)−1 N∑
J=1

f
(
Z

(J)
1:n

)
W

(J)
1:n

P−→
∫

f (Z1:n)π1:n = π1:nf (Z1:n).

This result holds for slightly weaker conditions, which are outlined in Ap-
pendix C. When the data are i.i.d. (e.g., when the error effect is the only random
component), the confidence intervals based on the generalized fiducial distribution
are asymptotically correct [Hannig (2012)]. When the data are not i.i.d., previ-
ous experience and simulation results suggest that the generalized fiducial method
presented above still leads to asymptotically correct inference as the sample size
n increases; see the supplemental document [Cisewski and Hannig (2012)] for a
short simulation study investigating asymptotic properties of the proposed method
and algorithm. The asymptotic exactness of generalized fiducial intervals for two-
component normal linear mixed models was established in E, Hannig and Iyer
(2008); asymptotic exactness of generalized fiducial intervals for normal linear
mixed models is a topic of future research.

3. Simulation study and applications. This simulation study has two parts.
In the first part, we consider the unbalanced two-fold nested model with model de-
signs selected from Hernandez, Burdick and Birch (1992). In the second part, we
use the unbalanced two-factor crossed design with an interaction term with designs
selected from Hernandez and Burdick (1993); both sets of designs include varying
levels of imbalance. In addition to the classical, ANOVA-based methods proposed
in Hernandez, Burdick and Birch (1992) and Hernandez and Burdick (1993), we



2112 J. CISEWSKI AND J. HANNIG

compare the performance of our method to the h-likelihood approach of Lee and
Nelder (1996), and a Bayesian method proposed in Gelman (2006). The purpose
of this study is to compare the small-sample performance of the proposed method
with current methods using models with varying levels of imbalance. The methods
were compared using frequentist repeated sampling properties. Specifically, per-
formance will be compared based on empirical coverage of confidence intervals
and average confidence interval length. It is understood that the selection of a prior
distribution influences the behavior of the posterior; the priors were selected based
on recommendations in the literature for normal linear mixed models as noted
above. While Bayesian methods do not necessarily maintain frequentist proper-
ties, many practitioners interpret results from Bayesian analyses as approximately
frequentist (i.e., they expect repeated-sampling properties to approximately hold)
due to the Bernstein–von Mises theorem [Le Cam (1986), van der Vaart (2007)],
and so performing well in a frequentist sense has appeal. There are a number of
examples investigating frequentist performance of Bayesian methodology such as
Diaconis and Freedman (1986a, 1986b), Ghosal, Ghosh and van der Vaart (2000)
and Mossman and Berger (2001).

It is important to note that the proposed method is not restricted to the model
designs selected for this study, and can be applied to any normal linear mixed
model that satisfies the assumptions from previous sections, while the included
ANOVA methods were developed specifically for the model designs used in this
study. A more efficient algorithm than the proposed method may be possible for
specific model designs, but one of our goals was to present a mode of inference for
any normal linear mixed model design.

As presented below, the proposed method tends to be conservative with compa-
rable or shorter intervals than the nonfiducial methods used in the study.

3.1. Unbalanced two-fold nested model. For the first part of the simulation
study, we consider the unbalanced two-fold nested linear model

yijk = μ + αi + βij + εijk(3.1)

for i = 1, . . . , I , j = 1, . . . , Ji , and k = 1, . . . ,Kij , where μ is an unknown con-
stant and αi ∼ N(0, σ 2

α ), βij ∼ N(0, σ 2
β ) and εijk ∼ N(0, σ 2

ε ).
Table 1 displays the model designs used in this part of the simulation study. Five

model designs of Hernandez, Burdick and Birch (1992) were selected to cover
different levels of imbalance both in the number of nested groups (Ji) and the
number of observations within each group (Kij ). The parameters φ1 and φ2 reflect
the degree of imbalance due to Ji and Kij , respectively. The measures of imbalance
listed is based on methods presented in Khuri (1987) where values range from 0
to 1, and smaller values suggest a greater degree of imbalance. The parameters’
values used in this part of the study are μ = 0, and the following combinations of
(σ 2

α , σ 2
β , σ 2

ε ): PI-1 = (0.2,0.1,0.7), PI-2 = (0.4,0.3,0.3), PI-3 = (0.2,0.7,0.1),
PI-4 = (25,4,16) and PI-5 = (1,1,1).
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TABLE 1
Model designs used in the two-fold nested model of (3.1)

Design φ1 φ2 φ I Ji Kij n

MI-1 0.9000 0.8889 0.8090 5 2,1,1,1,1 4,4,2,2,2,2 16
MI-2 0.7778 0.7337 0.6076 3 4,2,1 1,5,5,5,1,5,1 23
MI-3 1.0000 1.0000 1.0000 3 3,3,3 2,2,2,2,2,2,2,2,2 18
MI-4 0.4444 1.0000 0.4444 6 1,1,1,1,1,7 2,2,2,2,2,2 24

2,2,2,2,2,2
MI-5 1.0000 0.4444 0.4444 3 2,2,2 1,1,1,1,1,7 12

Note: φ1 and φ2 reflect the degree of imbalance due to Ji and Kij , respectively, and φ is an overall
measure of imbalance. See (3.1) for definitions of I , Ji and Kij ; note sample size (n) = ∑

i

∑
j Kij .

For each model and parameter design combination, 2000 independent data
sets were generated, and 5000 particles were simulated for the proposed method.
Hernandez, Burdick and Birch (1992) present two methods for determining con-
fidence intervals for σ 2

α , and three methods for confidence intervals on σ 2
β . One

of the methods is based on the confidence interval construction presented in Ting
et al. (1990) for balanced designs (denoted TYPEI). The other method invokes un-
weighted sum of squares and is denoted USS. We do not consider the third method
presented in Hernandez, Burdick and Birch (1992) for confidence intervals on σ 2

β

because there is not an analogous method for σ 2
α . We note that for unbalanced

designs, the decomposition of the sum-of-squares is not unique and the desired
distributional properties (independence and chi-squared) do not generally hold.

The h-likelihood approach of Lee and Nelder (1996) was implemented using the
R package hglm, and the results will be referenced as HLMM. The h-likelihood
methodology is an approach for extending the likelihood in the case of additional,
unobserved, random components [Lee, Nelder and Pawitan (2006)]. In the R pack-
age hglm, inference on the variance components is performed on the log scale. This
package was selected because it allows for multiple random effects terms, and it
includes standard errors on the estimates of variance components.

A Bayesian method is also considered for comparison. Bayesian hierarchical
models provide a means of constructing confidence intervals for random-effects
models. Part of the art of the Bayesian methodology is in selecting appropriate
prior distributions for the unknown parameters. For inference on the unknown
variance component parameters when there is no prior information available (i.e.,
when seeking a noninformative prior), Gelman (2006) recommends employing a
uniform prior distribution on the standard deviation parameters when there are a
sufficient number of groups (at least 5); otherwise, a half-t distribution is sug-
gested. Per the recommendation of Gelman (2006), both uniform and half-t priors
are considered (denoted BAY11.5 and BAY13, and BAY21.5 and BAY23, respec-
tively, where the subscripts 1.5 and 3 specifies the prior scale variable as explained
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in Appendix B). The R package rjags is used to implement this method; see Ap-
pendix B for more details.

Performance is based on the empirical coverage of (1 − α)100% confidence
intervals and average interval length for the parameters of interest θ . We define
a lower-tailed (1 − α)100% confidence interval on θ as the interval (−∞,Uα]
such that P(−∞ < θ ≤ Uα) = 1 − α, an upper-tailed (1 − α)100% confidence
interval on θ as the interval [Lα,∞) such that P(Lα ≤ θ < ∞) = 1 − α and a
two-sided equal-tailed confidence interval on θ as the interval [Lα/2,Uα/2] such
that P(Lα/2 ≤ θ ≤ Uα/2) = 1 − α. Based on the normal approximation to the bi-
nomial distribution, we will consider empirical coverage between 94% and 96%
appropriate for 95% two-sided confidence intervals.

A summary of the two-sided 95% confidence interval results are displayed in
Figure 1. In addition, the supplemental document [Cisewski and Hannig (2012)]
includes figures with the results summarized by parameter along with the complete
raw data results. Average interval lengths are not included in the displayed results
for HLMM because the excessive lengths would skew the scale of the plots; how-
ever, the average lengths are displayed in the raw data results in the supplemental
document [Cisewski and Hannig (2012)].

HLMM has empirical coverage below the stated level, and the overall longest
average interval lengths. BAY11.5, BAY13, BAY21.5 and BAY23 tend to be con-
servative with the longest average interval lengths after HLMM. USS and TYPEI
maintain the stated coverage well, and FID tends to be conservative. Even though
FID is conservative, its average interval lengths are comparable or shorter than
those of USS and TYPEI. However, the average interval lengths of USS and
TYPEI for σ 2

β are surprisingly wider than BAY11.5, BAY13, BAY21.5, BAY23

and FID for MI-1, as revealed in the plot of the average lengths in Figure 1(a).
This is due to the model design; specifically, the derivation of the confidence in-
tervals results in the degrees of freedom of 1 for the nested factor (calculated as∑I

i=1 Ji − I = 1). BAY11.5, BAY13, BAY21.5, BAY23 and FID do not appear
to have this issue. Upper and lower one-sided confidence interval results for σ 2

α

and σ 2
β for USS and TYPEI tend to stay within the stated level of coverage, and

BAY11.5, BAY13, BAY21.5, BAY23 and FID range from staying within the stated
level of coverage to very conservative.

The proposed method, while maintaining conservative coverage, has average
interval lengths that are competitive or better than the other methods used in this
part of the study. The proposed method offers an easily generalizable framework
and provides intervals for fixed effects and the error variance component, unlike
the methods presented in Hernandez, Burdick and Birch (1992). While the conser-
vative coverage for the Bayesian methods can be deemed acceptable, their average
interval lengths tend to be wider than the proposed method.
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FIG. 1. Summary of simulation results. (a) Displays the combined results for σ 2
α and σ 2

β for the two-fold nested model. (b) Displays the combined

results for σ 2
α , σ 2

β and σ 2
αβ for the two-factor crossed design with interaction. The first row is the empirical coverage probabilities for 95% two-sided

confidence intervals. The second row, first column is the log10 of the average interval lengths divided by the average interval lengths of FID, and the
second row, second column is the average interval lengths divided by the average interval lengths of FID. Each value used in a box plot corresponds to a
particular model design and parameter combination for each nonerror variance component. The average interval lengths for HLMM were not included in
the displayed results due to their excessive lengths. All the simulation results are available in the supplemental document [Cisewski and Hannig (2012)].
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3.1.1. Application 1. In addition to the simulation study, we consider the ap-
plication of model (3.1) presented in Hernandez, Burdick and Birch (1992) con-
cerning the blood pH of female mice offspring. Fifteen dams were mated with 2 or
3 sires, where each sire was only used for one dam (i.e., 37 sires were used in the
experiment), and the purpose of the study was to determine if the variability in the
blood pH of the female offspring is, in part, due to the variability in the mother.
There is imbalance in the data due to the number of sires mated with each dam
(2 or 3); also note the natural imbalance in the data resulting from the number of
female offspring.

The 95% confidence intervals based on the real data are presented in Table 2.
An example of the generalized fiducial distribution for σ 2

α is displayed in Figure 2.
This highlights one of the advantages of the proposed method over classical meth-
ods (and shared with Bayesian methods), which is a distribution on the parameter
space allowing for inferences similar to those made using Bayesian posterior dis-
tributions.

In order to evaluate the empirical coverage of the proposed method, we perform
a simulation study using the REML estimates for all the parameters (μ = 44.92,
σ 2

α = 8.90, σ 2
β = 2.65 and σ 2

ε = 24.81). Simulating 2000 independent data sets
with the noted parameter values, we find the empirical coverage using USS,
TYPEI, BAY11.5, BAY13, BAY21.5, BAY23 and FID, and the average lengths of

TABLE 2
Two-fold nested model: real data example

Var. comp. Method 95% 2-sided CI 2-sided/ave. len. Upper/lower

σ 2
α USS (2.30, 28.56) 0.953/25.1 0.949/0.958

TYPEI (1.94, 26.23) 0.950/25.2 0.949/0.957
BAY11.5 (1.73, 30.72) 0.955/29.2 0.948/0.959
BAY13 (1.51, 30.21) 0.956/37.2 0.948/0.962

BAY21.5 (1.56, 30.02) 0.955/27.3 0.948/0.960
BAY23 (1.76, 30.04) 0.955/27.5 0.950/0.961

FID (1.53, 26.67) 0.947/24.5 0.958/0.947

σ 2
β USS (0.00, 11.56) 0.961/10.9 0.952/0.952

TYPEI (0.00, 11.26) 0.964/12.4 0.953/0.953
BAY11.5 (0.17, 11.81) 0.976/11.2 0.956/0.994
BAY13 (0.04, 12.55) 0.980/11.3 0.959/0.996

BAY21.5 (0.01, 12.49) 0.982/11.3 0.958/0.994
BAY23 (0.01, 11.92) 0.983/11.3 0.958/0.995

FID (0.19, 10.54) 0.974/10.7 0.951/0.986

Note: The 95% intervals are based on the actual data while the remaining information are the empiri-
cal results from 2000 independently generated data set using the REML estimates for each parameter.
The results are the empirical coverage and average interval lengths of 95% confidence intervals.
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FIG. 2. The generalized fiducial distribution of 5000 generated particles for σ 2
α using the real data

described in Section 3.1.1. The solid line is the normal kernel density estimate of the distribution
with a point mass at zero. The two vertical dashed lines represent the lower and upper bounds for
95% confidence intervals based on the weights of the generated particles.

the two-sided intervals. The results of the simulation study are also found in Ta-
ble 2.

The confidence interval coverage and average lengths for σ 2
α are comparable

for all methods with BAY13 having the longest average interval length. For σ 2
β ,

BAY11.5, BAY13, BAY21.5, BAY23 and FID tend to be more conservative while
USS and TYPEI correctly maintain the stated level of coverage. USS, TYPEI
and FID have comparable interval lengths, and the average lengths of BAY11.5,
BAY13, BAY21.5, BAY23 are slightly longer.

3.2. Unbalanced two-factor crossed design with interaction. In this part of
the simulation study, we consider the unbalanced two-factor crossed designs with
interaction written as

Yijk = μ + αi + βj + (αβ)ij + εijk(3.2)

for i = 1, . . . , I , j = 1, . . . , J and k = 1, . . . ,Kij , where μ is an unknown constant
and αi ∼ N(0, σ 2

α ), βj ∼ N(0, σ 2
β ), (αβ)ij ∼ N(0, σ 2

αβ) and εijk ∼ N(0, σ 2
ε ).

This model is presented in Hernandez and Burdick (1993), where the authors
propose a method based on unweighted sum of squares to construct confidence
intervals for σ 2

α , σ 2
β and σ 2

αβ . The method they propose is based on intervals for
balanced designs presented by Ting et al. (1990). In the simulation study, this
method will be called HB. As with (3.1), HLMM from Lee and Nelder (1996),
and BAY11.5, BAY13, BAY21.5 and BAY23 from Gelman (2006) will be used as a
comparison.

Table 3 displays the model designs used in this part of the study, and, again,
the overall measure of imbalance (φ) proposed in Khuri (1987) is displayed for
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TABLE 3
Model designs used in the two-factor crossed design with interaction model of (3.2)

Design φ I J Kij n

MII-1 0.8768 4 3 2,1,3/2,1,1/2,2,2/1,2,3 22
MII-2 0.6667 3 3 4,1,1/4,1,1/4,1,1 18
MII-3 0.6667 3 3 4,4,4/1,1,1/1,1,1 18
MII-4 0.4011 3 4 8,1,1,1/1,1,1,1/1,1,1,1 19
MII-5 0.7619 5 3 1,2,2/5,2,7/2,2,2/2,4,2/3,2,2 40
MII-6 1.000 3 3 2,2,2/2,2,2/2,2,2 18

Note: The parameter φ is an overall measure of imbalance of the model. See (3.2) for definitions of
I , J and Kij ; note sample size (n) = ∑

i

∑
j Kij .

each design. The parameters values used in this part of the study are μ = 0,
and the following combinations of (σ 2

α , σ 2
β , σ 2

αβ, σ 2
ε ): PII-1 = (0.1,0.5,0.1,0.3),

PII-2 = (0.1,0.3,0.1,0.5), PII-3 = (0.1,0.1,0.3,0.5), PII-4 = (0.1,0.1,0.5,0.3),
and PII-5 = (1,1,1,1).

For each design and set of parameter values, 2000 independent data sets were
generated, and 5000 particles were simulated for the proposed method. As be-
fore, performance is based on the empirical coverage of (1 − α)100% confidence
intervals and average interval length for the parameter of interest θ . Based on the
normal approximation to the binomial distribution, we will consider empirical cov-
erage between 94% and 96% appropriate for 95% two-sided confidence intervals.

A summary of the two-sided 95% confidence interval results for σ 2
α , σ 2

β and σ 2
αβ

are displayed in Figure 1. In addition, the supplemental document [Cisewski and
Hannig (2012)] includes figures with the results summarized by parameter along
with the complete raw data results. Average interval lengths are not included in the
displayed results for HLMM because the excessive lengths would skew the scale
of the plots; however, the average lengths are displayed in the raw data results in
the supplemental document [Cisewski and Hannig (2012)].

HLMM has empirical coverage below the stated level, and the longest average
interval lengths. While HB maintains the stated coverage and FID tends to be more
conservative, they have comparable average interval lengths. BAY11.5, BAY13,
BAY21.5, and BAY23 are conservative with the longest average interval lengths
after HLMM for σ 2

α and σ 2
β ; while still conservative for σ 2

αβ , the average inter-
val lengths are shorter than HB, but longer than FID. One-sided confidence inter-
val results for HB maintains the stated coverage, and BAY11.5, BAY13, BAY21.5,
BAY23 and FID tends to be within the stated coverage to very conservative.

4. Conclusion. Even with the long history of inference procedures for nor-
mal linear mixed models, a good-performing, unified inference method is lacking.
ANOVA-based methods offer, what tend to be, model-specific solutions. While
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Bayesian methods allow for solutions to very complex models, determining an ap-
propriate prior distribution can be confusing for the nonstatistician practitioner. In
addition, for the models considered in the simulation study and the prior selected
based on recommendations in the literature, the Bayesian interval lengths were
not generally competitive with the other methods used in the study. The proposed
method allows for confidence interval estimation for all parameters of balanced
and unbalanced normal linear mixed models. In general, our recommendation is to
use the proposed method because of its apparent robustness to design imbalance,
good small sample properties and flexibility of inference due to a fiducial distribu-
tion on the parameter space. If the design is balanced and only confidence intervals
are desired, an ANOVA-based method would provide a computationally efficient
solution.

It is interesting to note that even though more variation was incorporated into
the data for the proposed method due to its acknowledgment of known uncer-
tainty using intervals, in the simulation study, the proposed method tended to
have conservative coverage, but the average interval lengths were comparable
or shorter than the other methods that assumed the data are observed exactly.
The currently implemented algorithm is suitable for 9 or fewer total parame-
ters, but the method does not limit the number of parameters. A MATLAB im-
plementation of the proposed algorithm is available on the author’s website at
http://www.unc.edu/~hannig/download/LinearMixedModel_MATLAB.zip.

APPENDIX A: RESAMPLING ALTERATION STEP

The particle to be resampled is decomposed into an orthogonal projection onto
a certain space (discussed below) and the part orthogonal to that space, and then
the distributional properties that arise from the decomposition are used to alter the
resampled particle. The alteration step of the proposed algorithm is performed in
such a way that it still solves the system of inequalities of (2.3) up to time t us-
ing the following idea (to ease the notational complexity, we do not include the
dependence of the variables on t). Suppose particle L is selected to be resampled
(for an L between 1 and N ). For each random effect, e, let Y = X′β ′ + σVZ(L),
where X′ = [X, {∑li

j=1 Vi,j z
(L)
i,j }i �=e], β ′ = (β, {σi}i �=e)

′, σ = σe and VZ(L) =∑le
j=1 Ve,jZ

(L)
e,j . In order to alter Z(L), we first find the basis vectors, η, for the

null space N = null[−X′,V] = η where for matrix A = [−X′,V], null(A) is
the set {η : Aη = 0}, and η = (η1, η2)

T such that (i) X′ · η1 = 0, (ii) V · η2 = 0,
(iii) ηT

2 · η2 = I (i.e., η2 is orthonormal) and (iv) rank(η) = rank(η2). We perform
the following decomposition:

Z(L) = 
Z(L) + ∥∥Z(L) − 
Z(L)
∥∥ · Z(L) − 
Z(L)

‖Z(L) − 
Z(L)‖ ,(A.1)

where 
Z(L) is the projection onto the null space N (i.e., 
Z(L) = η · ηT · Z(L)),
and ‖ · ‖ is the L2 norm. Define C = ηT

2 · Z(L) (so that, η2 · C = 
Z(L)),

http://www.unc.edu/~hannig/download/LinearMixedModel_MATLAB.zip
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D = ‖Z(L) − 
Z(L)‖, and τ = Z(L)−
Z(L)

‖Z(L)−
Z(L)‖ . Then if Z(L) is standard normal,

C ∼ Nle(0, I) where le is the number of levels of random effect e of Z(L) to be

resampled at time t , and D ∼
√

χ2
t−d where d = rank(N ), and C and D are inde-

pendent by design. The alteration of Z(L) is accomplished by sampling new values
of C and D (denoted C̃ and D̃, resp.) according to their distributions determined
by the decomposition above, and the altered particle is

Z̃ = η2 · C̃ + D̃ · τ.(A.2)

Notice that if Z(L) is a standard normal conditioned on Ct , then so is Z̃, and hence
the alteration proposed still targets the correct distribution and is a Markovian step.

Furthermore, the set Q
(L)
t = {(β ′, σ ) :ai < X′β ′ + σVZ(L) ≤ bi, i = 1, . . . , t}

can be adjusted noting that if (β ′, σ ) solves ai < X′β ′ +σV(η2 ·C+D ·τ) ≤ bi for
i = 1, . . . , t , then (β̃, σ̃ ) can be found such that ai < X′β̃ + σ̃V(η2 · C̃+ D̃ · τ) ≤ bi

for i = 1, . . . , t by considering X′β + σVZ = Xβ + σV(η2 · C + τD) = X′β̃ +
σ̃V(η2 · C̃ + τ D̃) = X′β̃ + σ̃VZ̃. Examining the orthogonal parts first, σV(τD) =
σ̃V(τ D̃) implies Vτ(σD− σ̃ D̃) = 0 implies σ̃ = σ(D/D̃). The relation between β̃

and β ′ follows from the remaining portion

X′β ′ + σV(η2 · C) = X′β̃ + σ̃V(η2 · C̃) implies
(A.3)

X′(β̃ − β ′) + σVη2(C̃ · D/D̃ − C) = 0.

Noting by definition −X′η1 + Vη2 = 0, then

−X′ση1(C̃ · D/D̃ − C) + σVη2(C̃ · D/D̃ − C) = 0.(A.4)

By combining (A.3) and (A.4), we see that β̃ − β ′ = −ση1 · (C̃ · D/D̃ − C), and
hence β̃ = β ′ −ση1 · (C̃ · D/D̃ − C). Hence the sets Q

(J)
t (Z

(J )
1:t ) are easily updated

to Q
(J)
t (Z̃

(J )
1:t ). This procedure is repeated for each random effect.

APPENDIX B: PRIOR DISTRIBUTION SELECTION

The R package “rjags” was used to implement the Bayesian methods used in the
simulation study and applications. Gelman (2006) suggests using a uniform prior
[i.e., U(0, a)] on the standard deviation parameters when there are at least 5 groups
and explains that fewer than 3 groups results in an improper posterior distribution.
Calibration is necessary in selecting the parameter a in the prior distribution; we
use 1.5 and 3 times the range of the data (per the recommendation in Gelman
[(2006), page 528] to use a value that is “high but not off the scale”), which appears
reasonable when reviewing the resulting posterior distributions. In the simulation
study, the results at these scale are denoted by BAY11.5 and BAY13, respectively.
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For example, the hierarchical model for the two-fold nested model of (3.1) is

Yijk ∼ N
(
μ + αi + βij , σ

2
ε

)
, i = 1, . . . , I, j = 1, . . . , Ji, k = 1, . . . ,Kij ,

αi ∼ N(0, σα), i = 1, . . . , I, βij ∼ N(0, σβ), j = 1, . . . , Ji,

σα ∼ U(0, a), σβ ∼ U(0, a).

For the second Bayesian method, a similar hierarchical model is used. Instead of
a uniform distribution on the nonerror variance components, a half-Cauchy distri-
bution with scale parameter a set as 1.5 or 3 times the range of the data (denoted
BAY21.5 and BAY23, resp., in the simulation study) is used.

APPENDIX C: PROOF OF THEOREM

The proof of the convergence of the proposed SMC algorithm follows from
ideas presented in Douc and Moulines (2008). Theorem 2.1 will follow from prov-
ing the convergence of the generated particles after each stage of the algorithm:
sampling, resampling and alteration. The development of the particle system using
the proposed algorithm does not follow the traditional SMC algorithm as presented
in Douc and Moulines (2008), Section 2. A distinction is seen in the formulation
of the proposed weights introduced in (2.7) and discussed below.

Using the derivation of the proposal distribution in and above (2.6), the tar-
get distribution of (2.5) and noting that ICt

(Z1:t ) = ICt−1(Z1:t−1) · I�(Zt,1:r−1) ·
I(mt (Z1:t−1,Zt,1:r−1),Mt (Z1:t−1,Zt,1:r−1))(zt,r ) [where the � in I�(Zt,1:r−1) indicates the
lack of restriction to a specific set of values for Zt,1:r−1], the marginal target dis-
tribution at time t is

π̂1:t−1 =
∫

π1:t (Z1:t ) dZt =
∫ exp(−(ZT

1:t · Z1:t )/2)ICt
(Z1:t )

�1:t
dZt

∝ π1:t−1

∫
exp

(−(
ZT

t · Zt

)
/2

)
× I�(Zt,1:r−1)I(mt (Z1:t−1,Zt,1:r−1),Mt (Z1:t−1,Zt,1:r−1))(zt,r ) dZt

∝ π1:t−1 · (
�

(
Mt(Z1:t−1,Zt,1:r−1)

) − �
(
mt(Z1:t−1,Zt,1:r−1)

))
,

where F and � are the standard Cauchy and standard normal cumulative distribu-
tion functions, respectively, and �1:t is the normalization factor at time t . It then
follows that the conditional target distribution at time t is

πt |1:t−1

= π1:t (Z1:t )/π̂1:t (Z1:t )
∝ exp

(−(ZT
t · Zt)/2

) · I�(Zt,1:r−1) · I(mt (Z1:t−1,Zt,1:r−1),Mt (Z1:t−1,Zt,1:r−1))(zt,r )

/
(
�

(
Mt(Z1:t−1,Zt,1:r−1)

) − �
(
mt(Z1:t−1,Zt,1:r−1)

))
.
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Finally, following the notation just below (2.7), the derivation of the weights
at time t is W1:t = π1:t

π̃1:t = πt |1:t−1·π̂1:t−1
π̃t |1:t−1·π̃1:t−1

∝ exp(−z2
t,r/2)(1 + z2

t,r )(F (Mt(Z1:t−1,

Zt,1:r−1)) − F(mt(Z1:t−1,Zt,1:r−1))) · π1:t−1
π̃1:t−1

∝ Wt · W1:t−1. This proof will use
the above formulation and the following notation and definition.

A particle system is defined as {Z(J)
1:t ,W

(J )
1:t }NJ=1 with Z

(J)
1:t sampled from

the proposal distribution π̃1:t as defined in (2.6) targeting probability measure

π1:t on (�1:t , B(�1:t )), and un-normalized weights W
(J)
1:t as defined in (2.7).

Let π̃t |1:t−1 be the marginal proposal density at time t as defined above equa-
tion (2.6), which follows a Cauchy distribution truncated to the region Rt �
(mt(Z1:t−1,Zt,1:r−1),Mt(Z1:t−1,Zt,1:r−1)) defined by previously sampled par-
ticles. For notational convenience, let �t = ∑N

J=1 W
(J)
1:t . Define two sigma-

fields F0 � σ({Z(J)
1:t }NJ=1, (a, b]1:t ) and F̃J � F0 ∨ σ({Z̃(K)

1:t }1≤K≤J ,

(a, b]1:t ), for J = 1, . . . ,N . Finally, we define proper set Bt [Douc and Moulines
(2008), Section 2.1] where Bt � {f ∈ L1(�1:t , π1:t ),F (·, |f |) ∈ Bt−1} and
F(Z1:t−1, f ) = ∫

f (Z1:t−1,Zt )I�(Zt,1:r−1)IRt (zt,r )(�(Mt(Z1:t−1,Zt,1:r−1)) −
�(mt(Z1:t−1,Zt,1:r−1)))πt |1:t−1(dZt).

DEFINITION C.1. Following Definition 1 of Douc and Moulines (2008),
a weighted sample {Z(J)

1:t ,W
(J )
1:t }J=1,...,N is consistent for the probability mea-

sure π1:t and the proper set Bt if, for any f ∈ Bt , �−1
t

∑N
J=1 W

(J)
1:t f (Z

(J )
1:t )

P−→∫
f (Z1:t )π1:t (dZ1:t ) � π1:t (f ), and �−1

t maxN
J=1 W

(J)
1:t

P−→ 0.

Two additional conditions on the set Bt will be required to guarantee con-
sistency for the particle system after the alteration step. Let f ∈ Bt , and 


be the projection matrix onto the null space defined in the description of the
resampling step of the algorithm found in Appendix A. E[f (Z̃

(J )
1:t ) | F̃J−1] =∫

f (η2 · C̃ + D̃
(Z

(J )
1:t −
Z

(J)
1:t )

‖Z(J)
1:t −
Z

(J)
1:t ‖) dπC̃,D̃ = ∫

f (η2 · C̃ + D̃τ
(J )
1:t ) dπC̃,D̃ � hf (Z

(J )
1:t ),

where C̃ and D̃ are as defined above (A.2). For hf to be in Bt , f must be selected
so that the following two conditions hold for any direction τ1:t :∫ ∣∣hf (Z̃1:t )

∣∣dπ1:t =
∫ ∣∣∣∣∫ f (η2 · C̃ + D̃τ1:t ) dπC̃,D̃

∣∣∣∣dπ1:t < ∞,(C.1)

F(Z̃1:t−1, hf ) =
∫ (∫

f
(
η2 · C̃ + D̃τ ′

1:t
)
dπC̃,D̃

)
· ICt (Z1:t )

(C.2)
× (

�(Mt) − �(mt)
)
πt |1:t−1(dZt) < ∞,

where τ ′
1:t = ([Z1:t−1,Zt ]−
[Z1:t−1,Zt ])

‖[Z1:t−1,Zt ]−
[Z1:t−1,Zt ]‖ . Let B̃t be the set of f ∈ Bt such that (C.1)

and (C.2) hold. Then, B̃t ⊂ Bt , and we replace Bt with B̃t in the definition of Bt+1.
Finally, since all bounded functions satisfy (C.1) and (C.2), B̃t is nonempty.
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The goal is to show the particle system generated from the presented algorithm
is consistent. This requires the particle system after sampling and reweighting to
be consistent, after resampling to be consistent and after the alteration to be con-
sistent.

After noting (i) for f ∈ Bt , E(W
(J)
1:t f (Z

(J )
1:t ) | FJ−1) = W

(J)
1:t−1E(W

(J)
t f (Z

(J )
1:t ) |

FJ−1) = W
(J)
1:t−1 · F(Z1:t−1, f ) for J = 1, . . . ,N , with F is defined above

and FJ−1 � σ({Z(J)
1:t−1}NJ=1, (a, b]1:t ) ∨ σ({Z(K)

1:t }1≤K≤J−1, (a, b]1:t ), and (ii)
Wtπ̃t |1:t−1 = (�(Mt) − �(mt))πt |1:t−1, consistency after sampling and reweight-
ing closely follows the proof of Theorem 1 in Douc and Moulines (2008). Con-
sistency after resampling follows directly from Theorem 3 in Douc and Moulines
(2008) and consistency after the alteration step is addressed below in Lemma C.1.

LEMMA C.1 (Alteration). Assuming the uniformly weighted sample {Z(J)
1:t ,

1}NJ=1 is consistent for (π1:t ,Bt ), then the altered uniformly weighted sample

{Z̃(J )
1:t ,1}NJ=1 is consistent for (π1:t , B̃t ).

PROOF. Note that the {Z̃(J )
1:t ,1}NJ=1 is the altered particle system, while

{Z(J)
1:t ,1}NJ=1 are the resampled particles. We note that hf is a function of Z1:t

because τ1:t is a function of Z1:t , and, at times, it will be necessary to write
τ

(J )
1:t = τ1:t (Z(J )

1:t ). Recall that C and D are defined by a decomposition of the orig-
inal particle selected to be resampled and are independent by design. The C̃ and D̃

are the random variables to be resampled according to the target distributions of C

and D with the τ
(J )
1:t considered fixed so that Z̃1:t = η2 · C̃ + D̃τ1:t .

The lemma will follow once we show

N−1
N∑

J=1

E
[
f

(
Z̃

(J )
1:t

) | F̃J−1
] = N−1

N∑
J=1

hf

(
Z

(J)
1:t

)
−→

∫
hf (Z1:t )π1:t (dZ1:t ) =

∫
f (Z1:t )π1:t (dZ1:t ).

This is because trivially E[f (Z̃
(J )
1:t ) | F̃J−1] = f (Z̃

(J )
1:t ), so all that is needed is for:

(i) N−1 ∑N
J=1 hf (Z

(J )
1:t ) −→ ∫

hf (Z1:t )π1:t (dZ1:t ) and
(ii)

∫
hf (Z1:t ) dπ1:t (Z1:t ) = ∫

f (Z1:t )π1:t (dZ1:t ).
Point (i) follows from (C.1), (C.2), and because f ∈ B̃t so that hf ∈ Bt . Now

we only need to show point (ii) that
∫

hf (Z1:t )π1:t (dZ1:t ) = ∫
f (Z1:t )π1:t (dZ1:t ).

This holds because∫
hf (Z1:t ) dπ1:t =

∫
h∗

f (τ1:t ) dπτ

=
∫ (∫

f (η2 · C̃ + D̃τ1:t ) dπC̃,D̃

)
dπτ
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=
∫ (∫

f (η2 · C + Dτ1:t ) dπC,D

)
dπτ

=
∫

f (η2 · C + Dτ1:t ) dπC,D × dπτ

=
∫

f (Z1:t ) dπ1:t = Eπ1:t
[
f (Z1:t )

]
,

where h∗
f (τ1:t ) = hf (Z1:t ), the equality from line one to line three follows because

τ(Z1:t ) = τ(Z̃1:t ) and the equality in the third and fourth lines follows by Fubini’s
theorem because C̃ and D̃ are independent of τ . �
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SUPPLEMENTARY MATERIAL

Additional simulation results (DOI: 10.1214/12-AOS1030SUPP; .pdf). The
asymptotic stability of the algorithm, with respect to the sample size and the par-
ticle sample size, was tested, and the simulation results are included in this doc-
ument. The raw results for the simulation study in Section 3 are also displayed,
along with additional summary figures.
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