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AN M-ESTIMATOR FOR TAIL DEPENDENCE
IN ARBITRARY DIMENSIONS
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Tilburg University, University of Göttingen and
Université Catholique de Louvain

Consider a random sample in the max-domain of attraction of a multi-
variate extreme value distribution such that the dependence structure of the
attractor belongs to a parametric model. A new estimator for the unknown
parameter is defined as the value that minimizes the distance between a vec-
tor of weighted integrals of the tail dependence function and their empiri-
cal counterparts. The minimization problem has, with probability tending to
one, a unique, global solution. The estimator is consistent and asymptotically
normal. The spectral measures of the tail dependence models to which the
method applies can be discrete or continuous. Examples demonstrate the ap-
plicability and the performance of the method.

1. Introduction. Statistics of multivariate extremes finds important applica-
tions in fields like finance, insurance, environmental sciences, aviation safety, hy-
drology and meteorology. When considering multivariate extreme events, the esti-
mation of the tail dependence structure is the key part of the statistical inference.
This tail dependence structure, represented by the stable tail dependence function l,
becomes rather complex if the dimension increases. Therefore, it is customary to
model this multivariate function l parametrically, which leads to a semiparamet-
ric model. The interest in parametric tail dependence models has existed since the
early sixties of the 20th century [Gumbel (1960)], but new models are still be-
ing proposed [Ballani and Schlather (2011), Boldi and Davison (2007), Cooley,
Davis and Naveau (2010)]. Most of the existing estimators of the parameter, θ ,
are likelihood-based and their asymptotic behavior is only known in dimension
two [Coles and Tawn (1991), de Haan, Neves and Peng (2008), Guillotte, Perron
and Segers (2011), Joe, Smith and Weissman (1992), Ledford and Tawn (1996),
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Smith (1994)]. For many applications, the bivariate setup is too restrictive. Also,
the likelihood-based estimation methods exclude models that entail a nondifferen-
tiable function l, like the widely used factor models; see (1.1) below.

It is the goal of this paper to present and provide a comprehensive treatment
of novel M-estimators of θ . The estimators can be used in arbitrary dimension d .
Moreover, not relying on the differentiability of l, the estimators are broadly ap-
plicable. We establish, again for arbitrary dimension d , the asymptotic normality
of our estimators, which yields asymptotic confidence regions and tests for the pa-
rameter θ . The results in this paper make statistical inference possible for many
multivariate extreme value models that either cannot be handled at all by currently
available methods or for which statistical theory has only been provided for the bi-
variate case. Monte Carlo simulation studies confirm that our estimators perform
well in practice; see Sections 5 and 6.

The present estimators are a major extension of the method of moments estima-
tors for dimension two [Einmahl, Krajina and Segers (2008)]. For applications, the
crucial difference is that it is now possible to handle truly multivariate data. Also,
theoretically, extreme value analysis in dimensions larger than two is quite chal-
lenging, which explains why in many papers attention is restricted to the bivariate
case. In particular, we establish the asymptotic behavior of the nonparametric esti-
mator of l in arbitrary dimensions and under nonrestrictive smoothness conditions;
compare, for instance, with Drees and Huang (1998) in the bivariate case. An-
other novel aspect is that the method of moments technique is replaced by general
M-estimation, that is, allowing for more estimating equations than the dimension
of the parameter space. This more flexible procedure may serve to increase the
efficiency of the estimator.

The absence of smoothness assumptions on l makes it possible to estimate the
tail dependence structure of factor models like X = (X1, . . . ,Xd), with

Xj =
r∑

i=1

aijZi + εj , j = 1, . . . , d,(1.1)

consisting of the following ingredients: nonnegative factor loadings aij and in-
dependent, heavy-tailed random variables Zi called factors; independent random
variables εj whose tails are lighter than the ones of the factors and which are inde-
pendent of them. This kind of factor model is often used in finance, for example,
in modeling market or credit risk [Fama and French (1993), Geluk, de Haan and
de Vries (2007), Malevergne and Sornette (2004)]. From equation (6.3) below, we
see that the stable tail dependence function l of such a factor model is not every-
where differentiable, causing likelihood-based methods to break down.

The organization of the paper is as follows. The basics of the tail dependence
structures in multivariate models are presented in Section 2. The M-estimator is de-
fined in Section 3. Section 4 contains the main theoretical results: consistency and
asymptotic normality of the M-estimator, and some consequences of the asymp-
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totic normality result that can be used for construction of confidence regions and
for testing. This section also contains the asymptotic normality result for l̂n. In
Section 5 we apply the M-estimator to the well-known logistic stable tail depen-
dence function (5.1). The tail dependence structure of factor models is studied in
Section 6. Both models are illustrated with simulated and real data. The proofs are
deferred to Section 7.

2. Tail dependence. We will write points in R
d as x = (x1, . . . , xd) and ran-

dom vectors as Xi = (Xi1, . . . ,Xid), for i = 1, . . . , n. Let X1, . . . ,Xn be inde-
pendent random vectors in R

d with common continuous distribution function F

and marginal distribution functions F1, . . . ,Fd . For j = 1, . . . , d , write M
(j)
n :=

maxi=1,...,n Xij . We say that F is in the max-domain of attraction of an extreme

value distribution G if there exist sequences a
(j)
n > 0, b

(j)
n ∈ R, j = 1, . . . , d , such

that

lim
n→∞ P

(
M

(1)
n − b

(1)
n

a
(1)
n

≤ x1, . . . ,
M

(d)
n − b

(d)
n

a
(d)
n

≤ xd

)
= G(x)(2.1)

for all continuity points x ∈ R
d of G. The margins G1, . . . ,Gd of G must be

univariate extreme value distributions and the dependence structure of G is deter-
mined by the relation

− logG(x) = l
(− logG1(x1), . . . ,− logGd(xd)

)
for all points x such that Gj(xj ) > 0 for all j = 1, . . . , d . The stable tail depen-
dence function l : [0,∞)d → [0,∞) can be retrieved from F via

l(x) = lim
t↓0

t−1
P
{
1 − F1(X11) ≤ tx1 or . . . or 1 − Fd(X1d) ≤ txd

}
.(2.2)

In fact, the joint convergence in (2.1) is equivalent to convergence of the d marginal
distributions together with (2.2).

In this paper we will only assume the weaker relation (2.2). By itself, (2.2) holds
if and only if the random vector (1/{1 −F1(X1j )})dj=1 belongs to the max-domain
of attraction of the extreme value distribution G0(x) = exp{−l(1/x1, . . . ,1/xd)}
for x ∈ (0,∞)d . Alternatively, the existence of the limit in (2.2) is equivalent to
multivariate regular variation of the random vector (1/{1 − F1(X1j )})dj=1 on the

cone [0,∞]d \ {(0, . . . ,0)} with limit measure or exponent measure μ given by

μ
({

z ∈ [0,∞]d : z1 ≥ x1 or . . . or zd ≥ xd

})= l(1/x1, . . . ,1/xd)

[Beirlant et al. (2004), de Haan and Ferreira (2006), Resnick (1987)]. The mea-
sure μ is homogeneous, that is, μ(tA) = t−1μ(A), for any t > 0 and any rel-
atively compact Borel set A ⊂ [0,∞]d \ {(0, . . . ,0)}, where tA := {tz : z ∈ A}.
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This homogeneity property yields a decomposition of μ into a radial and an an-
gular part [de Haan and Resnick (1977), Resnick (1987)]. Let �d−1 := {w ∈
[0,1]d :w1 + · · · + wd = 1} be the unit simplex in R

d . Associated to B ⊂ �d−1

and t > 0 is the set

Bt =
{
x ∈ [0,∞)d \ {(0, . . . ,0)

}
:

d∑
j=1

xj ≥ t, x
/ d∑

j=1

xj ∈ B

}
.

By the homogeneity property of the exponent measure, it holds that μ(Bt) =
t−1μ(B1). Writing H(B) = μ(B1) defines a finite measure H on �d−1, called the
spectral or angular measure. Any finite measure satisfying the moment conditions

∫
�d−1

wjH(dw) = 1, j = 1, . . . , d,(2.3)

is a spectral measure. Adding up the d constraints in (2.3) shows that H/d is a
probability measure.

Sometimes it is more convenient to work with the measure � obtained from μ

after the transformation (x1, . . . , xd) 	→ (1/x1, . . . ,1/xd). The measure � is also
called the exponent measure and it satisfies the homogeneity property �(tA) =
t�(A), for any t > 0 and Borel set A ⊂ [0,∞]d \ {(∞, . . . ,∞)}.

There is a one-to-one correspondence between the stable tail dependence func-
tion l, the exponent measures μ and �, and the spectral measure H . In particular,
we have

l(x) = μ
({

(z1, . . . , zd) ∈ [0,∞]d : z1 ≥ 1/x1 or . . . or zd ≥ 1/xd

})
(2.4)

= �
({

(u1, . . . , ud) ∈ [0,∞]d :u1 ≤ x1 or . . . or ud ≤ xd

})
(2.5)

=
∫
�d−1

max
j=1,...,d

{wjxj }H(dw).(2.6)

From the above representations and the moment constraints (2.3), it follows that
the function l has the following properties:

• max{x1, . . . , xd} ≤ l(x) ≤ x1 + · · · + xd for all x ∈ [0,∞)d ; in particular,
l(z,0, . . . ,0) = · · · = l(0, . . . ,0, z) = z for all z ≥ 0;

• l is convex; and
• l is homogeneous of order one: l(tx1, . . . , txd) = t l(x1, . . . , xd), for all t > 0

and all x ∈ [0,∞)d .

The function l is connected to the function V in Coles and Tawn (1991) through
l(x) = V (1/x1, . . . ,1/xd) for x ∈ (0,∞)d .
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The right-hand partial derivatives of l always exist; indeed, by bounded conver-
gence it follows that for j = 1, . . . , d , as h ↓ 0,

1

h

(
l(x1, . . . , xj−1, xj + h,xj+1, . . . , xd) − l(x1, . . . , xj−1, xj , xj+1, . . . , xd)

)

=
∫
�d−1

1

h

(
max

{
wjxj + wjh,max

s 
=j
{wsxs}

}
(2.7)

− max
{
wjxj ,max

s 
=j
{wsxs}

})
H(dw)

→
∫
�d−1

wj 1
{
wjxj ≥ max

s 
=j
{wsxs}

}
H(dw).

Similarly, the left-hand partial derivatives exist for all x ∈ (0,∞)d . By convexity,
the function l is almost everywhere continuously differentiable, with its gradient
vector of (the right-hand) partial derivatives as in (2.7).

3. Estimation. Let R
j
i denote the rank of Xij among X1j , . . . ,Xnj , i =

1, . . . , n, j = 1, . . . , d . For k ∈ {1, . . . , n}, define a nonparametric estimator of l

by

l̂n(x) = l̂k,n(x)
(3.1)

:= 1

k

n∑
i=1

1
{
R1

i > n + 1

2
− kx1 or . . . or Rd

i > n + 1

2
− kxd

}
;

see Huang (1992) and Drees and Huang (1998) for the bivariate case. This defini-
tion follows from (2.2), with all the distribution functions replaced by their empir-
ical counterparts, and with t replaced by k/n. Here k = kn is such that k → ∞ and
k/n → 0 as n → ∞. The constant 1/2 in the argument of the indicator function
helps to improve the finite-sample properties of the estimator.

In the literature, the stable tail dependence function is often modeled paramet-
rically. We impose that the stable tail dependence function l belongs to some para-
metric family {l(·; θ) : θ ∈ �}, where � ⊂ R

p , p ≥ 1. Note that this is still a large,
flexible model since there is no restriction on the marginal distributions and the
copula is constrained only through l; see (2.2).

We propose an M-estimator of θ . Let q ≥ p. Let g ≡ (g1, . . . , gq)
T : [0,1]d →

R
q be a column vector of integrable functions such that ϕ :� → R

q defined by

ϕ(θ) :=
∫
[0,1]d

g(x)l(x; θ)dx(3.2)

is a homeomorphism between � and its image ϕ(�). Let θ0 denote the true pa-
rameter value. The M-estimator θ̂n of θ0 is defined as a minimizer of the criterion
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function

Qk,n(θ) =
∥∥∥∥ϕ(θ) −

∫
gl̂n

∥∥∥∥
2

=
q∑

m=1

(∫
[0,1]d

gm(x)
(
l̂n(x) − l(x; θ)

)
dx

)2

,(3.3)

where ‖ · ‖ is the Euclidean norm. In other words, if Ŷn = arg miny∈ϕ(�)‖y −∫
gl̂n‖, then θ̂n ∈ ϕ−1(Ŷn). Later we show that θ̂n is, with probability tending to

one, unique.
The fact that our model assumption only concerns a limit relation in the tail

shows up in the estimation procedure through the choice of k, which determines
the effective sample size. When we study asymptotic properties of either l̂n or θ̂n,
k = kn is an intermediate sequence, that is, k → ∞ and k/n → 0 as n → ∞. In
practice, the choice of optimal k is a notorious problem, and here we address this
issue in the usual way: we present the finite sample results over a wide range of k;
see Sections 5 and 6.

REMARK 3.1. The estimator θ̂n depends on g. In line with the classical
method of moments and for computational feasibility, we will choose g to be a
vector of low degree polynomials. In Sections 5 and 6 we will see that the obtained
estimators have a good performance and a wide applicability. Finding an optimal
g is very difficult and statistically not very useful since such a g depends on the
true, unknown θ0. For example, when p = q = 1, a function g that minimizes the
asymptotic variance is (∂/∂θ)l(x; θ0). For two-dimensional and five-dimensional
data, a sensitivity analysis on the choice of g is performed in Section 5. Simple
functions like 1 or x1 lead to estimators that perform approximately the same as
the pseudo-estimator based on the optimal g. This supports our choices of g and
also suggests that the estimator is not so sensitive to the choice of g.

REMARK 3.2. Since l, part of the model, is parametrically specified, in princi-
ple, pseudo maximum likelihood estimation could be used. This method, however,
does not apply to many interesting models where l is not differentiable, like the
factor model in (1.1). Moreover, no theory is known for dimensions higher than 2,
unless the limit relation (2.2) is replaced by an equality for all sufficiently small t .
In this paper, the emphasis is on higher dimensions and for a large part on the
factor model. Therefore, the pseudo MLE is not an available competitor.

4. Asymptotic results. Let �̂n be the set of minimizers of Qk,n in (3.3), that
is,

�̂n := arg min
θ∈�

∥∥∥∥ϕ(θ) −
∫

gl̂n

∥∥∥∥
2

.

Note that �̂n may be empty or may contain more than one element. We show
that under suitable conditions, a minimizer exists, that it is unique with probability
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tending to one, and that it is a consistent and asymptotically normal estimator of θ0.
In addition, we show that the nonparametric estimator l̂n in (3.1) is asymptotically
normal.

4.1. Notation. Recall the definition of the measure � from Section 2. Let W�

be a mean-zero Wiener process indexed by Borel sets of [0,∞]d \ {(∞, . . . ,∞)}
with “time” �: its covariance structure is given by

E
[
W�(A1)W�(A2)

]= �(A1 ∩ A2)(4.1)

for any two Borel sets A1 and A2 in [0,∞]d \ {(∞, . . . ,∞)}. Define

Wl(x) := W�

({
u ∈ [0,∞]d \ {(∞, . . . ,∞)

}
:u1 ≤ x1 or . . . or ud ≤ xd

})
.(4.2)

Let Wl,j , j = 1, . . . , d , be the marginal processes

Wl,j (xj ) := Wl(0, . . . ,0, xj ,0, . . . ,0), xj ≥ 0.(4.3)

Define lj to be the right-hand partial derivative of l with respect to xj , where
j = 1, . . . , d [see (2.7)]; if l is differentiable, lj is equal to the corresponding partial
derivative of l. Write

B(x) := Wl(x) −
d∑

j=1

lj (x)Wl,j (xj ), B̃ :=
∫
[0,1]d

g(x)B(x)dx.(4.4)

The distribution of B̃ is zero-mean Gaussian with covariance matrix

	 :=
∫ ∫

([0,1]d )2
E
[
B(x)B(y)

]
g(x)g(y)T dx dy ∈ R

q×q.(4.5)

Note that if l is parametric, 	 depends on the parameter, that is, 	 = 	(θ).
Assuming θ is an interior point of � and ϕ is differentiable in θ , let ϕ̇(θ) ∈

R
q×p be the total derivative of ϕ at θ , and, provided ϕ̇(θ) is of full rank, put

M(θ) := (
ϕ̇(θ)T ϕ̇(θ)

)−1
ϕ̇(θ)T 	(θ)ϕ̇(θ)

(
ϕ̇(θ)T ϕ̇(θ)

)−1 ∈ R
p×p.(4.6)

4.2. Results. We state the asymptotic results for the M-estimator, θ̂n, and the
asymptotic normality of l̂n. The latter is a result of independent interest, and
requires continuous partial derivatives of l, which is not an assumption for the
asymptotic normality of the M-estimator. The proofs can be found in Section 7.

THEOREM 4.1 (Existence, uniqueness and consistency of θ̂n). Let g : [0,

1]d → R
q be integrable.

(i) If ϕ is a homeomorphism from � to ϕ(�) and if there exists ε0 > 0 such
that the set {θ ∈ � :‖θ − θ0‖ ≤ ε0} is closed, then for every ε such that ε0 ≥ ε > 0,
as n → ∞,

P
(
�̂n 
= ∅ and �̂n ⊂ {

θ ∈ � :‖θ − θ0‖ ≤ ε
})→ 1.
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(ii) If in addition to the assumptions of (i), θ0 is in the interior of the parameter
space, ϕ is twice continuously differentiable and ϕ̇(θ0) is of full rank, then, with
probability tending to one, Qk,n in (3.3) has a unique minimizer θ̂n. Hence,

θ̂n
P→ θ0 as n → ∞.

In part (i) of this theorem we assume that the set {θ ∈ � :‖θ −θ0‖ ≤ ε} is closed
for some ε > 0. This is a generalization of the usual assumption that � is open or
closed, and includes a wider range of possible parameter spaces.

THEOREM 4.2 (Asymptotic normality of θ̂n). If in addition to the assumptions
of Theorem 4.1(ii), the following two conditions hold:

(C1) t−1
P{1 − F1(X11) ≤ tx1 or . . . or 1 − Fd(X1d) ≤ txd} − l(x) = O(tα),

uniformly in x ∈ �d−1 as t ↓ 0, for some α > 0,
(C2) k = o(n2α/(1+2α)), for the positive number α of (C1), and k → ∞ as

n → ∞,

then as n → ∞, with M as in (4.6),
√

k(θ̂n − θ0)
d→ N

(
0,M(θ0)

)
.(4.7)

The following consequence of Theorem 4.2 can be used for the construction of
confidence regions. Recall from (2.6) that Hθ is the spectral measure correspond-
ing to l(·; θ). Let χ2

ν denote the χ2-distribution with ν degrees of freedom.

COROLLARY 4.3. If in addition to the conditions of Theorem 4.2, the map
θ 	→ Hθ is weakly continuous at θ0 and if the matrix M(θ0) is nonsingular, then as
n → ∞,

k(θ̂n − θ0)
T M(θ̂n)

−1(θ̂n − θ0)
d→ χ2

p.(4.8)

Let 1 ≤ r < p and θ = (θ1, θ2) ∈ � ⊂ R
p , where θ1 ∈ R

p−r , θ2 ∈ R
r . We want

to test θ2 = θ∗
2 against θ2 
= θ∗

2 , where θ∗
2 corresponds to a submodel. Denote θ̂n =

(θ̂1n, θ̂2n), and let M2(θ) be the r × r matrix corresponding to the lower right
corner of M , as below:

M =
( · · · | · · ·

· · · |M2

)
∈ R

p×p.(4.9)

COROLLARY 4.4 (Test). If the assumptions of Corollary 4.3 are satisfied, and
θ0 = (θ1, θ

∗
2 ) ∈ � for some θ1, then as n → ∞,

k
(
θ̂2n − θ∗

2
)T

M2
(
θ̂1n, θ

∗
2
)−1(

θ̂2n − θ∗
2
) d→ χ2

r .(4.10)
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The above result can be used for testing for a submodel. For example, we could
test for the symmetric logistic model of (5.3) within the asymmetric logistic one;
see Section 5.

REMARK 4.5. The matrices M and M2 are needed for the computation of
the confidence regions and the test statistics. However, computing these matrices
can be challenging. To compute M , we first need the q × p matrix ϕ̇(θ), whose
(i, j)th element is given by

∫
gi(x)(∂/∂θj )l(x; θ)dx. The expression itself will

depend on the model in use, but usually the (right-hand) partial derivatives of l

can be computed explicitly, whereas the integral is to be computed numerically in
most cases. Second, we need to calculate the covariance of the process B̃ . We see
from (4.5) that the most difficult part will be the expression E[B(x)B(y)]. It holds
that

E
[
B(x)B(y)

]= E
[
Wl(x)Wl(y)

]− d∑
j=1

lj (y)E
[
Wl(x)Wl,j (yj )

]

−
d∑

i=1

li(x)E
[
W(l,i)(xi)Wl(y)

]

+
d∑

i=1

d∑
j=1

li(x)lj (y)E
[
W(l,i)(xi)Wl,j (yj )

]
.

Using (4.1), (4.2), (4.3) and the relation between � and l, we can express this in l

and its partial derivatives. Numerical integration is then performed to obtain 	.

Finally, we show the asymptotic normality of l̂n. This result is of independent in-
terest and can be found in the literature for d = 2 only and under stronger smooth-
ness conditions on l; see Drees and Huang (1998), Huang (1992) and de Haan
and Ferreira (2006). Here, a large part of its proof is necessary for the proof of
the asymptotic normality of θ̂n, but we wish to emphasize that the asymptotic nor-
mality of θ̂n holds without any differentiability conditions on l. Note that under
assumption (C3) below, the process B in (4.4) is continuous, although lj may be
discontinuous at points x such that xj = 0.

The result is stated in an approximation setting, where l̂n and B are defined
on the same probability space obtained by a Skorohod construction. The random
quantities involved are only in distribution equal to the original ones, but for con-
venience this is not expressed in the notation.

THEOREM 4.6 (Asymptotic normality of l̂n in arbitrary dimensions). If in ad-
dition to the conditions (C1) and (C2) from Theorem 4.2, the following condition
holds:



AN M-ESTIMATOR FOR TAIL DEPENDENCE 1773

(C3) for all j = 1, . . . , d , the first-order partial derivative of l with respect to
xj exists and is continuous on the set of points x such that xj > 0,

then for every T > 0, as n → ∞,

sup
x∈[0,T ]d

∣∣√k
(
l̂n(x) − l(x)

)− B(x)
∣∣ P→ 0.(4.11)

5. Example 1: Logistic model. The multivariate logistic distribution function
with standard Fréchet margins is defined by

F(x1, . . . , xd; θ) = exp

{
−
(

d∑
j=1

x
−1/θ
j

)θ}

for x1 > 0, . . . , xd > 0 and θ ∈ [0,1], with the proper limit interpretation for θ = 0.
The corresponding stable tail dependence function is given by

l(x1, . . . , xd; θ) = (
x

1/θ
1 + · · · + x

1/θ
d

)θ
.(5.1)

Introduced in Gumbel (1960), it is one of the oldest parametric models of tail
dependence.

Sensitivity analysis. Here we observe how for the logistic model the M-
estimator changes with different choices of k, and for different functions g. Within
this model, p = 1 and in the simple case of p = q = 1, it is easy to see that the op-
timal choice for the function g is (∂/∂θ)l(x; θ0). Since it depends on the unknown
true parameter, this is not a viable option for use in practice, but, as demonstrated
below, some simple alternatives result in estimators with basically the same finite-
sample behavior.

The following analysis is performed for the logistic model with θ0 = 0.5, in
dimensions 2 and 5. For both settings, we look at 200 replications of samples
of size n = 1500, and take the threshold parameters k ∈ {40,80, . . . ,320}. In
the bivariate case we compare g0(x1, x2) = 1, g1(x1, x2) = x1 and gopt(x1, x2) =
(∂/∂θ)l(x1, x2; θ0) as choices for g. In the five-dimensional case the functions
g0 and gopt are defined analogously, and we compare them to two other func-
tions, g1(x) =∑5

j=1 xj and g2(x) =∑5
j=1 x2

j . We use the bias and the Root Mean
Squared Error (RMSE) to assess the performance of the estimators. The results are
presented in Figure 1 for dimensions d = 2 (top) and d = 5 (bottom). All of the
above choices for g result in similar finite-sample behavior of the estimator, but
the simpler function g leads to a somewhat better performance. The RMSEs for
some of these g are even lower than the one for gopt, since they yield a smaller
bias.

Based on these findings, for the logistic model in dimensions 2 and 5, we advise
the use of the simplest choice of g given by g0(x) = 1, for all x ≥ 0. The choice of
k is slightly more delicate, but it seems that for n = 1500 in dimensions 2 and 5,
the choices of k = 150 and k = 100, respectively, are reasonable.
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FIG. 1. Logistic model: the M-estimator for different functions g in dimension d = 2 (top) and
d = 5 (bottom).

Comparison with maximum likelihood based estimators. For d = 2, we also
compare the M-estimator with g ≡ 1 with the censored maximum likelihood
method [see Ledford and Tawn (1996)] and with the maximum likelihood esti-
mator introduced in de Haan, Neves and Peng (2008). The latter two we will call
the censored MLE and the dHNP MLE, respectively. For 200 samples, we com-
pute the censored MLE using the function fitbvgpd from the R package POT
[see Ribatet (2011)]; the dHNP MLE is calculated as described in the original arti-
cle. Since the thresholds used in these two methods differ, and since for a different
choice of threshold we get a different estimator, the comparison is not straightfor-
ward. We consider the M-estimator and the dHNP MLE over the range of k values
as used above, and for the censored MLE we take the thresholds such that the ex-
pected number of joint exceedances is between 10 and 160, approximately, which
amounts to thresholds between 5 and 100. This way we observe all estimators for
their best region of thresholds. In Figure 2 we see that the methods perform roughly
the same, the RMSEs being of the same order. The lowest RMSE of the censored
MLE (0.030) is slightly smaller than the lowest RMSE of the M-estimator (0.034)
and the lowest RMSE of the dHNP estimator (0.035), but the M- and the dHNP
estimators are much more robust to the choice of the threshold.
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FIG. 2. The M-estimator with g(x, y) = g0(x, y) = 1, the MLE from de Haan, Neves and Peng
(2008) and the censored MLE, d = 2.

Further simulation results. We simulate 500 samples of size n = 1500 from a
five-dimensional logistic distribution function with θ0 = 0.5. As suggested by the
sensitivity analysis, we opt for g ≡ 1 when defining θ̂n. The bias and the RMSE of
this estimator are shown in the upper panels of Figure 3.

Also, we consider the estimation of l(1,1,1,1,1; θ), based on this M-estima-
tor θ̂n. From (5.1) it follows that l(1,1,1,1,1; θ) = 5θ . The estimator of this quan-
tity is then 5θ̂n . Since θ0 = 0.5, the true parameter is

√
5. We compare the bias and
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(a) (b)

(c) (d)

FIG. 3. Logistic model, d = 5, θ0 = 0.5, l(1,1,1,1,1; θ0) = √
5. (a) Bias of the M-estimator of θ ;

(b) RMSE of the M-estimator of θ ; (c) bias of the estimators of l(1,1,1,1,1;0.5); (d) RMSE of the
estimators of l(1,1,1,1,1;0.5).

the RMSE of this estimator and of the nonparametric estimator l̂n(1,1,1,1,1); see
(3.1). The lower panels in Figure 3 show that the M-estimator performs better than
the nonparametric estimator for almost every k.

Real data: Testing and estimation. We use the bivariate Loss-ALAE data set,
consisting of 1500 insurance claims, comprising losses and allocated loss adjust-
ment expenses; for more information, see Frees and Valdez (1998). The scatter-
plots of the data and their joint ranks are shown in Figure 4. We consider the
asymmetric logistic model described below for their tail dependence function and
we test whether a more restrictive, symmetric logistic model suffices to describe
the tail dependence of these data. The asymmetric logistic tail dependence function
was introduced in Tawn (1988) as an extension of the logistic model. In dimension
d = 2 it is given by

l(x, y; θ,ψ1,ψ2) = (1 − ψ1)x + (1 − ψ2)y + ((ψ1x)1/θ + (ψ2y)1/θ )θ(5.2)
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FIG. 4. The insurance claims Loss-ALAE data.

with the dependence parameter θ ∈ [0,1] and the asymmetry parameters ψ1,ψ2 ∈
[0,1]. This model yields a spectral measure H with atoms at (1,0) and (0,1)

whenever ψ1 < 1 and ψ2 < 1. When ψ1 = ψ2 =: ψ , we have the symmetric tail
dependence function

l(x, y; θ,ψ) = (1 − ψ)(x + y) + ψ
(
x1/θ + y1/θ )θ .(5.3)

For the given data, we test whether the use of this symmetric model is justified,
as opposed to the wider asymmetric logistic model. Setting η1 := (ψ1 + ψ2)/2 ∈
[0,1] and η2 := (ψ1 − ψ2)/2 ∈ [−1/2,1/2], we reparametrize the model in (5.2)
so that testing for symmetry amounts to testing whether η2 = 0. By Corollary 4.4,
the test statistic is given by

Sn := kη̂2
2

M2(θ̂ , η̂1,0)
.

Table 1 below shows the obtained values of Sn for the Loss-ALAE data for selected
values of k.

Since the critical value is 3.84, the null hypothesis is clearly not rejected.
Hence, we adopt the symmetric tail dependence model (5.3) and we compute the
M-estimates of (θ, η1) = (θ,ψ), the auxiliary functions being g1(x, y) = x and

TABLE 1
Values of the test statistic Sn for the Loss-ALAE data for selected

values of k

k 50 100 150 200 250
Sn 0.041 0.139 0.294 0.477 0.681
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g2(x, y) = 2(x + y). For k = 150, we obtain (θ̂ , ψ̂) = (0.65,0.95) with estimated
standard errors 0.032 for θ̂ and 0.014 for ψ̂ .

6. Example 2: Factor model. Consider the r-factor model, r ∈ N, in dimen-
sion d: X′ = (X′

1, . . . ,X
′
d) and

X′
j =

r∑
i=1

aijZi + εj , j ∈ {1, . . . , d},(6.1)

with Zi independent Fréchet(ν) random variables, ν > 0, with εj independent ran-
dom variables which have a lighter right tail than the factors and are independent
of them, and with aij nonnegative constants such that

∑
j aij > 0 for all i. Factor

models of this type are common in various applications; for example, in finance,
see Fama and French (1993), Geluk, de Haan and de Vries (2007), Malevergne
and Sornette (2004). However, for the purpose of studying the tail properties, it is
more convenient to consider the (max) factor model: X = (X1, . . . ,Xd) and

Xj = max
i=1,...,r

{aijZi}, j ∈ {1, . . . , d},(6.2)

with aij and Zi as above. Note that X′ and X have the same tail dependence func-
tion l; this essentially follows from the fact that the ratio of the probabilities of the
sum and the maximum of the aijZi exceeding x tends to 1 as x → ∞ [Embrechts,
Klüppelberg and Mikosch (1997), page 38]. Let Wi = Zν

i , i = 1, . . . , r , and ob-
serve that the Wi are standard Fréchet random variables. Define a d-dimensional
random vector Y = (Y1, . . . , Yd) by

Yj := Xν
j = max

i=1,...,r

{
aν
ijWi

}
, j ∈ {1, . . . , d}.

It is easily seen that, as x → ∞,

1 − FYj
(x) = 1 − exp

{
−
∑r

i=1 aν
ij

x

}
∼
∑r

i=1 aν
ij

x
.

Since the Xj variables are increasing transformations of the Yj variables, the
(tail) dependence structures of X and Y coincide. We will determine the tail de-
pendence function l and the spectral measure H of X.

LEMMA 6.1. Let X follow a factor model given by (6.1) or (6.2). Then its
stable tail dependence function is given by

l(x1, . . . , xd) =
r∑

i=1

max
j=1,...,d

{bij xj }, (x1, . . . , xd) ∈ [0,∞)d,(6.3)

where bij := aν
ij /
∑r

i=1 aν
ij .
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Next, we are looking for a measure H on the unit simplex �d−1 = {w ∈
[0,∞)d :w1 + · · · + wd = 1} such that for all x ∈ [0,∞)d ,

r∑
i=1

max
j=1,...,d

{bij xj } = l(x1, . . . , xd) =
∫
�d−1

max
j=1,...,d

{wjxj }H(dw).

This H is a discrete measure with r atoms given by
(

bi1∑
j bij

, . . . ,
bid∑
j bij

)
, i ∈ {1, . . . , r},(6.4)

the atom receiving mass
∑

j bij , which is positive by assumption. Such measure
H is indeed a spectral measure, for

∫
�d−1

wjH(dw) =
r∑

i=1

bij = 1, j ∈ {1, . . . , d}.(6.5)

Every discrete spectral measure can arise in this way. This model for tail depen-
dence is considered also in Ledford and Tawn (1998). Extensions to random fields
are considered, for instance, in Wang and Stoev (2011).

The spectral measure is completely determined by the r × d parameters bij ,
but by the d moment conditions from (6.5), the actual number of parameters is
p = (r − 1)d . The parameter vector θ ∈ R

p , which is to be estimated, can be
constructed in many ways. For identification purposes, the definition of θ should
be unambiguous. We opt for the following approach. Consider the matrix of the
coefficients bij ,

⎛
⎜⎝

b11 · · · br1
...

. . .
...

b1d · · · brd

⎞
⎟⎠ ∈ R

d×r .

The coefficients corresponding to the ith factor, i = 1, . . . , r , are in the ith column
of this matrix. We define θ by stacking the above columns in decreasing order of
their sums, leaving out the column with the lowest sum. (If two columns have the
same sum, we order them then in decreasing order lexicographically.)

The definition of the M-estimator of θ involves integrals of the form

∫
[0,1]d

gm(x)l(x)dx =
r∑

i=1

∫
[0,1]d

gm(x) max
j=1,...,d

{bij xj }dx,

where gm : [0,1]d → R is integrable and m = 1, . . . , q . A possible choice is
gm(x) = xs

k , where k ∈ {1, . . . , d} and s ≥ 0.
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LEMMA 6.2. If l is the tail dependence function of a factor model such that
all bij > 0, then∫

[0,1]d
xs
kl(x)dx

(6.6)

=
r∑

i=1

d∑
j=1

bij

1 + s(1 − δjk)

∫ 1

0

(
bij

bik

x ∧ 1
)s d∏

l=1

(
bij

bil

x ∧ 1
)

dx,

where δjk is 1 if j = k and 0 if j 
= k.

We illustrate the performance of the M-estimator on two factor models: a four-
dimensional model with 2 factors (p = 1 × 4 = 4), for simulated data sets, and a
three-dimensional model with 3 factors (p = 2 × 3 = 6), for real financial data.

The integral on the right-hand side of (6.6) is to be computed numerically. For
the factor model, the dependence of the matrix M(θ0) on g is too complicated to
obtain a general solution for the optimal function g. Since in the previous examples
low degree polynomials gave very good results, and since by the previous lemma
such a choice simplifies the calculations significantly (numerical integration in
dimension 1, instead of in dimension d), we considered such functions g in a
sensitivity analysis. It showed that the simplest cases give very good results in
terms of root mean squared errors and that the performance of the M-estimator is
quite robust to the particular choices of g. Hence, we suggest using simple, low
degree polynomials for the functions g. The functions g in the following examples
are exactly of that type.

Simulation study: Four-dimensional model with two factors. We simulated 500
samples of size n = 5000 from a four-dimensional model:

X1 = 0.2Z1 ∨ 0.8Z2,

X2 = 0.5Z1 ∨ 0.5Z2,

X3 = 0.7Z1 ∨ 0.3Z2,

X4 = 0.9Z1 ∨ 0.1Z2

with independent standard Fréchet factors Z1 and Z2. We have θ = (0.2,0.5,

0.7,0.9).
In Figure 5 we show the bias and the RMSE of the M-estimator based on

q = 5 moment equations, with auxiliary functions gi(x) = xi , for i = 1,2,3,4
and g5 ≡ 1. The M-estimator performs very well. For relatively small k, the four
components of θ are estimated equally well, whereas for larger k the estimator per-
forms somewhat better for parameter values in the “middle” of the interval (0,1)

than for values near 0 or 1.
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FIG. 5. Four-dimensional 2-factor model, estimation of θ = (0.2,0.5,0.7,0.9).

Real data: Three-dimensional model with three factors. We consider monthly
negative returns (losses) of three industry portfolios (Telecommunications, Fi-
nance and Oil) over the period July 1, 1926, until December 31, 2009. See Fig-
ure 6(a) for the scatterplot of the data; the sample size n = 1002. The data are
available at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french. We are inter-
ested in modeling the losses by a factor model. In the asset pricing literature [see,
e.g., Fama and French (1993, 1996)], it is common to model the returns by linear

(a) (b)

FIG. 6. (a) Scatterplot of the original data; (b) plot of the pseudo-data and the three centers.

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french
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factor models of type (6.1), with three underlying economic factors. Based on that
line of literature, we also consider a three-factor model for the tails of the three
industry portfolios above; see also Kleibergen (2011).

To estimate the parameter vector with p = 2 × 3 = 6 components, we need to
find a minimum of a 6-dimensional nonlinear criterion function. To solve such a
difficult minimization problem, it is important to have good starting values. We
find a starting parameter vector by applying the 3-means clustering algorithm [see,
e.g., Pollard (1984), page 9] to the following pseudo-data: we transform the data
(Telcm, Fin, Oil) to(

n/(n + 1 − RT i), n/(n + 1 − RFi), n/(n + 1 − ROi)
)
, i = 1, . . . , n,

where RT i , RFi and ROi are the ranks of the components of the ith observation.
Only the entries such that the sum of their values is greater than the threshold n/75
are taken into account, and subsequently normalized so that they belong to the unit
simplex �3−1; see Figure 6(b). We compute the 3-means cluster centers for these
data. Using equation (6.4), we compute from these three centers the 6-dimensional
starting parameter [as described below equation (6.5)] for the minimization rou-
tine. For the criterion function we use q = 7 functions gi as follows: gi(x) = xi

for i = 1,2,3, gi(x) = x2
i−3 for i = 4,5,6, and g7 ≡ 1. For different choices of k,

we obtain the estimates presented in Table 2. For each k, we estimate the loading
of the first two factors. This corresponds to the first two columns of estimated bij

for each k. The third columns follow from the conditions in (6.5).
Observe that the estimates do hardly depend on the choice of k. We see that all

three portfolios load substantially on the first factor (the first column of estimated
coefficients, for each k), but Telecommunications loads more on the second factor
(the first lines of estimated coefficients), and Oil more on the third factor (the
third lines of estimated coefficients). This indicates that even for only these three
portfolios, three factors are required.

TABLE 2
Estimates for the factor loadings bij in the three-factor model fitted to the tail of the

Telcm/Fin/Oil data

k = 60 k = 90

0.394 0.593 0.013 0.344 0.616 0.040
0.691 0.211 0.098 0.701 0.216 0.083
0.358 0.062 0.580 0.368 0.052 0.580

k = 120 k = 150

0.387 0.586 0.027 0.388 0.581 0.031
0.695 0.215 0.090 0.699 0.211 0.090
0.348 0.058 0.594 0.364 0.086 0.550
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7. Proofs. The asymptotic properties of the nonparametric estimator l̂n are
required for the proofs of the asymptotic properties of the M-estimator θ̂n. Consis-
tency of l̂n [see (7.1)] for dimension d = 2 was shown in Huang (1992); cf. Drees
and Huang (1998). In particular, it holds that for every T > 0, as n → ∞, k → ∞
and k/n → 0,

sup
(x1,x2)∈[0,T ]2

∣∣l̂n(x1, x2) − l(x1, x2)
∣∣ P→ 0.

The proof translates straightforwardly to general dimension d , and together with
integrability of g yields consistency of

∫
gl̂n for

∫
gl = ϕ(θ0). For the proof of

Theorem 4.1, a technical result is needed.
Let Hk,n(θ) ∈ R

p×p denote the Hessian matrix of Qk,n as a function of θ .
Let H(θ) be the deterministic, symmetric p × p matrix whose (i, j)th element,
i, j ∈ {1, . . . , p}, is equal to

(
H(θ)

)
ij = 2

(
∂

∂θi

ϕ(θ)

)T ( ∂

∂θj

ϕ(θ)

)

− 2
(

∂2

∂θi ∂θj

ϕ(θ)

)T (
ϕ(θ0) − ϕ(θ)

)
.

LEMMA 7.1. If k/n → 0 and if the assumptions of Theorem 4.1(ii) are satis-
fied, then as n → ∞ and k → ∞, on some closed neighborhood of θ0,

(i) Hk,n(θ)
P→ H(θ) uniformly in θ , and

(ii) P(Hk,n(θ) is positive definite) → 1.

PROOF. (i) The Hessian matrix of Qk,n in θ is a p × p matrix Hk,n(θ) with
elements (Hk,n(θ))ij = ∂2Qk,n(θ)/∂θj ∂θi , for i, j ∈ {1, . . . , p}, given by

(
Hk,n(θ)

)
ij = 2

q∑
m=1

∫
[0,1]d

gm(x)
∂

∂θj

l(x; θ)dx ·
∫
[0,1]d

gm(x)
∂

∂θi

l(x; θ)dx

− 2
q∑

m=1

∫
[0,1]d

gm(x)
∂2

∂θj ∂θi

l(x; θ)dx

×
∫
[0,1]d

gm(x)
(
l̂n(x) − l(x; θ)

)
dx

= 2
(

∂

∂θi

ϕ(θ)

)T ( ∂

∂θj

ϕ(θ)

)
− 2

(
∂2

∂θi ∂θj

ϕ(θ)

)T

×
(∫

[0,1]d
g(x)l̂n(x)dx − ϕ(θ)

)
.
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The consistency of
∫

gl̂n for ϕ(θ0) implies

(
Hk,n(θ)

)
ij

P→ 2
(

∂

∂θi

ϕ(θ)

)T ( ∂

∂θj

ϕ(θ)

)

− 2
(

∂2

∂θi ∂θj

ϕ(θ)

)T (
ϕ(θ0) − ϕ(θ)

)
= (

H(θ)
)
ij .

Since we assumed that there exists ε0 > 0 such that the set {θ ∈ � :‖θ − θ0‖ ≤
ε0} =: Bε0(θ0) is closed and thus compact, and since ϕ is assumed to be twice
continuously differentiable, the second derivatives of ϕ are uniformly bounded on
Bε0(θ0) and, hence, the convergence above is uniform on Bε0(θ0).

(ii) For θ = θ0 we get

(
H(θ0)

)
ij = 2

(
∂

∂θi

ϕ(θ)

∣∣∣∣
θ=θ0

)T ( ∂

∂θj

ϕ(θ)

∣∣∣∣
θ=θ0

)
,

that is,

H(θ0) = 2ϕ̇(θ0)
T ϕ̇(θ0).

Since ϕ̇(θ0) is assumed to be of full rank, H(θ0) is positive definite. For θ close
to θ0, H(θ) is also positive definite. Due to the uniform convergence of Hk,n(θ)

to H(θ) on Bε0(θ0), the matrix Hk,n(θ) is also positive definite on Bε0(θ0) with
probability tending to one. �

PROOF OF THEOREM 4.1. (i) Fix ε > 0 such that 0 < ε ≤ ε0. Since ϕ is
a homeomorphism, there exists δ > 0 such that θ ∈ � and ‖ϕ(θ) − ϕ(θ0)‖ ≤ δ

implies ‖θ − θ0‖ ≤ ε. In other words, for every θ ∈ � such that ‖θ − θ0‖ > ε, we
have ‖ϕ(θ) − ϕ(θ0)‖ > δ. Hence, on the event

An =
{∥∥∥∥ϕ(θ0) −

∫
gl̂n

∥∥∥∥≤ δ/2
}

for every θ ∈ � with ‖θ − θ0‖ > ε, necessarily,∥∥∥∥ϕ(θ) −
∫

gl̂n

∥∥∥∥ ≥ ∥∥ϕ(θ) − ϕ(θ0)
∥∥−

∥∥∥∥ϕ(θ0) −
∫

gl̂n

∥∥∥∥
> δ − δ/2 = δ/2 ≥

∥∥∥∥ϕ(θ0) −
∫

gl̂n

∥∥∥∥.
As a consequence, on the event An, we have

inf
θ : ‖θ−θ0‖>ε

∥∥∥∥ϕ(θ) −
∫

gl̂n

∥∥∥∥> min
θ : ‖θ−θ0‖≤ε

∥∥∥∥ϕ(θ) −
∫

gl̂n

∥∥∥∥,
where we can write the minimum on the right-hand side since the set {θ ∈
� :‖θ − θ0‖ ≤ ε} is closed and thus compact for 0 ≤ ε ≤ ε0. Hence, on the
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event An, the “argmin” set �̂n is nonempty and is contained in the closed ball
of radius ε centered at θ0. Finally, P(An) → 1 by weak consistency of

∫
gl̂n for∫

gl = ϕ(θ0).
(ii) In the proof of (i) we have seen that, with probability tending to one, the

proposed M-estimator exists and it is contained in a closed ball around θ0. In Lem-
ma 7.1 we have shown that the criterion function is, with probability tending to
one, strictly convex on such a closed ball around θ0 and, hence, with probability
tending to one, the minimizer of the criterion function is unique. �

For i = 1, . . . , n let

Ui := (Ui1, . . . ,Uid) := (
1 − F1(Xi1), . . . ,1 − Fd(Xid)

)
and denote

Qnj (uj ) := U�nuj � : n,j , j = 1, . . . , d,

Snj (xj ) := n

k
Qnj

(
kxj

n

)
, j = 1, . . . , d,

Sn(x) := (
Sn1(x1), . . . , Snd(xd)

)
,

where U1 : n,j ≤ · · · ≤ Un : n,j are the order statistics of U1j , . . . ,Unj , j = 1, . . . , d ,
and �a� is the smallest integer not smaller than a. Write

Vn(x) := n

k
P

(
U11 ≤ kx1

n
or . . . or U1d ≤ kxd

n

)
,

Tn(x) := 1

k

n∑
i=1

1
{
Ui1 <

kx1

n
or . . . or Uid <

kxd

n

}
,

L̂n(x) := 1

k

n∑
i=1

1
{
Ui1 <

k

n
Sn1(x1) or . . . or Uid <

k

n
Snd(xd)

}

= 1

k

n∑
i=1

1
{
R1

i > n + 1 − kx1 or . . . or Rd
i > n + 1 − kxd

}
and note that

L̂n(x) = Tn

(
Sn(x)

)
.

With probability one, for every x and for every j ∈ {1, . . . , d}, there is at most one
i such that n + 1

2 − kxj < R
j
i ≤ n + 1 − kxj . Hence,

sup
x∈[0,1]d

√
k
∣∣l̂n(x) − L̂n(x)

∣∣≤ d√
k

→ 0.(7.1)

This shows that the asymptotic properties of l̂n and L̂n are the same. With the
notation vn(x) = √

k(Tn(x) − Vn(x)), we have the following result.
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PROPOSITION 7.2. Let T > 0 and denote Ax := {u ∈ [0,∞]d :u1 ≤ x1 or . . .

or ud ≤ xd}. There exists a sequence of processes ṽn such that, for all n, ṽn
d= vn

and there exists a Wiener process Wl(x) := W�(Ax) such that as n → ∞,

sup
x∈[0,2T ]d

∣∣ṽn(x) − Wl(x)
∣∣ P→ 0.(7.2)

The result follows from Theorem 3.1 in Einmahl (1997). From the proofs there
it follows that a single Wiener process, instead of the sequence in the original
statement of the theorem, can be used, and that convergence holds almost surely,
instead of in probability, once the Skorohod construction is introduced. From now
on, we work on this new (Skorohod) probability space, but keep the old notation,
without the tildes. In particular, we have convergence of the marginal processes:

sup
xj∈[0,2T ]

∣∣vnj (x) − Wl,j (xj )
∣∣→ 0 a.s., j = 1, . . . , d,

where vnj (xj ) := vn((0, . . . ,0, xj ,0, . . . ,0)). The Vervaat (1972) lemma implies

sup
xj∈[0,2T ]

∣∣√k
(
Snj (xj ) − xj

)+ Wl,j (xj )
∣∣→ 0 a.s., j = 1, . . . , d.(7.3)

PROOF OF THEOREM 4.6. Write√
k
(
L̂n(x) − l(x)

)
= √

k
(
Tn

(
Sn(x)

)− Vn

(
Sn(x)

))+ √
k
(
Vn

(
Sn(x)

)− l
(
Sn(x)

))
+ √

k
(
l
(
Sn(x)

)− l(x)
)

=: D1(x) + D2(x) + D3(x).

PROOF OF supx∈[0,T ]d |D1(x) − Wl(x)| P→ 0. We have

D1(x) = √
k
(
Tn

(
Sn(x)

)− Vn

(
Sn(x)

))= vn

(
Sn(x)

)
.

It holds that

sup
x∈[0,T ]d

∣∣D1(x) − Wl(x)
∣∣

≤ sup
x∈[0,T ]d

∣∣D1(x) − Wl

(
Sn(x)

)∣∣
+ sup

x∈[0,T ]d
∣∣Wl

(
Sn(x)

)− Wl(x)
∣∣.

Because of (7.3), this is, with probability tending to one, less than or equal to

sup
y∈[0,2T ]d

∣∣vn(y) − Wl(y)
∣∣+ sup

x∈[0,T ]d
∣∣Wl

(
Sn(x)

)− Wl(x)
∣∣.
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Both terms tend to zero in probability, the first one by Proposition 7.2, the second
one because of the uniform continuity of Wl and (7.3).

PROOF OF supx∈[0,T ]d |D2(x)| P→ 0. Because of (7.3), with probability tend-
ing to one, supx∈[0,T ]d |D2(x)| is less than or equal to supy∈[0,2T ]d

√
k|Vn(y) −

l(y)|, which in turn, because of conditions (C1) and (C2), is equal to

√
kO

((
k

n

)α)
= O

((
k

n2α/(1+2α)

)1/2+α)
= o(1).

PROOF OF supx∈[0,T ]d |D3(x) +∑d
j=1 lj (x)Wl,j (xj )| P→ 0. Due to the exis-

tence of the first derivatives, we can use the mean value theorem to write

1√
k
D3(x) = l

(
Sn(x)

)− l(x) =
d∑

j=1

(
Snj (xj ) − xj

) · lj (ξn)

with ξn between x and Sn(x). Therefore,

sup
x∈[0,T ]d

∣∣∣∣∣D3(x) +
d∑

j=1

lj (x)Wl,j (xj )

∣∣∣∣∣
≤

d∑
j=1

∣∣lj (ξn)
√

k
(
Snj (xj ) − xj

)+ lj (x)Wl,j (xj )
∣∣.

Note that all the terms on the right-hand side of the above inequality can be dealt
with in the same way. Therefore, we consider only the first term. For δ ∈ (0, T ),
this term is bounded by

sup
x∈[0,T ]d

∣∣l1(ξn)
∣∣ · sup

x1∈[0,T ]
∣∣√k

(
Sn1(x1) − x1

)+ W(l,1)(x1)
∣∣

+ sup
x∈[δ,T ]×[0,T ]d−1

∣∣l1(ξn) − l1(x)
∣∣ · sup

x1∈[0,T ]
∣∣W(l,1)(x1)

∣∣
+ sup

x∈[0,δ]×[0,T ]d−1

∣∣l1(ξn) − l1(x)
∣∣ · sup

x1∈[0,δ]
∣∣W(l,1)(x1)

∣∣
=: D4 · D5 + D6 · D7 + D8 · D9.

Observe that 0 ≤ l1 ≤ 1. Also, since l1 is continuous on [δ/2, T ] × [0, T ]d−1, it

is uniformly continuous on that region. We have D5
P→ 0 by (7.3), so D4 · D5

P→
0. The uniform continuity of l1 and the fact that almost surely D7 < ∞ yield

D6 · D7
P→ 0. Finally, for every ε > 0, we can find a δ such that, with probability

at least 1 − ε, D9 < ε and, hence, D8 · D9 < ε.
Applying (7.1) completes the proof. �
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PROPOSITION 7.3. If conditions (C1) and (C2) from Theorem 4.2 hold, then
as n → ∞,

√
k

∫
[0,1]d

g(x)
(
l̂n(x) − l(x)

)
dx

d→ B̃.(7.4)

PROOF. Throughout the proof we write l(x) instead of l(x; θ0). Also, since
l does not need to be differentiable, we will use notation lj (x), j = 1, . . . , d , to
denote the right-hand partial derivatives here. Let D1(x),D2(x),D3(x) be as in
the proof of Theorem 4.6 and take T = 1. Then∣∣∣∣√k

(∫
[0,1]d

g(x)L̂n(x)dx −
∫
[0,1]d

g(x)l(x)dx

)
− B̃

∣∣∣∣
≤ sup

x∈[0,1]d
∣∣D1(x) − Wl(x)

∣∣ ∫
[0,1]d

∣∣g(x)
∣∣dx + sup

x∈[0,1]d
∣∣D2(x)

∣∣ ∫
[0,1]d

∣∣g(x)
∣∣dx

+
∫
[0,1]d

∣∣g(x, y)
∣∣ ·
∣∣∣∣∣D3(x) +

d∑
j=1

lj (x)Wl,j (xj )

∣∣∣∣∣dx.

The first two terms on the right-hand side converge to zero in probability due to
integrability of g and uniform convergence of D1(x) and D2(x), which was shown
in the proof of Theorem 4.6. The third term needs to be treated separately, as the
condition on continuity (and existence) of partial derivatives is no longer assumed
to hold.

Let ω be a point in the Skorohod probability space introduced before the proof
of Theorem 4.6 such that for all j = 1, . . . , d ,

sup
xj∈[0,1]

∣∣Wl,j (xj )
∣∣< +∞ and sup

xj∈[0,1]
∣∣√k

(
Snj (xj ) − xj

)+ Wl,j (xj )
∣∣→ 0.

For such ω we will show by means of dominated convergence that

∫
[0,1]d

∣∣g(x)
∣∣ ·
∣∣∣∣∣
√

k
(
l
(
Sn(x)

)− l(x)
)+ d∑

j=1

lj (x)Wl,j (xj )

∣∣∣∣∣dx → 0.(7.5)

PROOF OF THE POINTWISE CONVERGENCE. If l is differentiable, conver-
gence of the above integrand to zero follows from the definition of partial deriva-
tives and (7.3). Since this might fail only on a set of Lebesgue measure zero, the
convergence of the integrand to zero holds almost everywhere on [0,1]d .

PROOF OF THE DOMINATION. Note that from expressions for (one-sided)
partial derivatives (2.7), and the moment conditions (2.3), it follows that 0 ≤
lj (x) ≤ 1, for all x ∈ [0,1]d and all j = 1, . . . , d .
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We get

∣∣g(x)
∣∣ ·
∣∣∣∣∣
√

k
(
l
(
Sn(x)

)− l(x)
)+ d∑

j=1

lj (x)Wl,j (xj )

∣∣∣∣∣
≤ ∣∣g(x)

∣∣ ·
(√

k
∣∣l(Sn(x)

)− l(x)
∣∣+ d∑

j=1

∣∣Wl,j (xj )
∣∣).

Using the definition of function l and uniformity of 1 − Fj (X1j ), we have, for all
j = 1, . . . , d ,∣∣l(x1, . . . , xj−1, xj , xj+1, . . . , xd)− l

(
x1, . . . , xj−1, x

′
j , xj+1, . . . , xd

)∣∣≤ ∣∣xj −x′
j

∣∣.
Hence, we can write

sup
x∈[0,1]d

√
k
∣∣l(Sn(x)

)− l(x)
∣∣

≤ sup
x∈[0,1]d

√
k
∣∣l(Sn(x)

)− l
(
x1, Sn2(x2), . . . , Snd(xd)

)∣∣
+ sup

x∈[0,1]d
√

k
∣∣l(x1, Sn2(x2), Sn3(x3), . . . , Snd(xd)

)

− l
(
x1, x2, Sn3(x3), . . . , Snd(xd)

)∣∣+ · · ·
+ sup

x∈[0,1]d
√

k
∣∣l(x1, . . . , xd−1, Snd(xd)

)− l(x)
∣∣

≤
d∑

j=1

sup
xj∈[0,1]

√
k
∣∣Snj (xj ) − xj

∣∣= O(1).

Since for all j = 1, . . . , d we have supxj∈[0,1]|Wl,j (xj )| < +∞, the proof of (7.5)
is complete. This, together with (7.1), finishes the proof of the proposition. �

Let ∇Qk,n(θ) ∈ R
p×1 be the gradient vector of Qk,n at θ . Put

V (θ) := 4ϕ̇(θ)T 	(θ)ϕ̇(θ) ∈ R
p×p.

LEMMA 7.4. If the assumptions of Theorem 4.2 are satisfied, then as n → ∞,
√

k∇Qk,n(θ0)
d→ N

(
0,V (θ0)

)
.

PROOF. The gradient vector of Qk,n with respect to θ in θ0 is

∇Qk,n(θ0) =
(

∂

∂θ1
Qk,n(θ)

∣∣∣∣
θ=θ0

, . . . ,
∂

∂θp

Qk,n(θ)

∣∣∣∣
θ=θ0

)T

,
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where for i = 1, . . . , p,

∂

∂θi

Qk,n(θ)

∣∣∣∣
θ=θ0

= −2
q∑

m=1

∫
[0,1]d

gm(x)
∂

∂θi

l(x; θ)

∣∣∣∣
θ=θ0

dx

×
∫
[0,1]d

gm(x)
(
l̂n(x) − l(x; θ0)

)
dx.

Using vector notation, we obtain

∇Qk,n(θ0) = −2ϕ̇(θ0)
T ·
∫
[0,1]d

g(x)
(
l̂n(x) − l(x; θ0)

)
dx.

Equation (7.1) and the proof of Proposition 7.3 imply that
√

k∇Qk,n(θ0) = −2ϕ̇(θ0)
T ·
∫
[0,1]d

g(x)
√

k
(
l̂n(x) − l(x; θ0)

)
dx

d→ −2ϕ̇(θ0)
T B̃.

The limit distribution of
√

k∇Qk,n(θ0) is therefore zero-mean Gaussian with co-
variance matrix V (θ0) = 4ϕ̇(θ0)

T 	(θ0)ϕ̇(θ0). �

PROOF OF THEOREM 4.2. Consider the function f (t) := ∇Qk,n(θ0 + t (θ̂n −
θ0)), t ∈ [0,1]. The mean value theorem yields

∇Qk,n(θ̂n) = ∇Qk,n(θ0) + Hk,n(θ̃n)(θ̂n − θ0)

for some θ̃n between θ0 and θ̂n. First note that, with probability tending to one,
0 = ∇Qk,n(θ̂n), which follows from the fact that θ̂n is a minimizer of Qk,n and that,
with probability tending to one, θ̂n is in an open ball around θ0. By the consistency

of θ̂n, we have that θ̃n
P→ θ0, and since the convergence of Hk,n to H is uniform

on a neighborhood of θ0, we get that Hk,n(θ̃n)
P→ H(θ0). Hence,

√
k(θ̂n − θ0)

d→
N(0,M(θ0)). �

PROOF OF COROLLARY 4.3. As in Lemma 7.2 in Einmahl, Krajina and
Segers (2008), we can see that if θ 	→ Hθ is weakly continuous at θ0, then
θ 	→ 	(θ) is continuous at θ0. This, together with the assumption that ϕ is twice
continuously differentiable and ϕ̇(θ0) is of full rank, yields that θ 	→ V (θ) is con-
tinuous at θ0. The above assumption also implies that θ 	→ H(θ) is continuous at
θ0, which, with the positive definiteness of H(θ) in a neighborhood of θ0, shows
that if θ 	→ Hθ is weakly continuous at θ0, then θ 	→ M(θ) = H(θ)−1V (θ)H(θ)−1

is continuous at θ0. Hence, we obtain

M(θ̂n)
−1/2

√
k(θ̂n − θ0)

d→ N(0, Ip),
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which yields (4.3). �

PROOF OF THEOREM 4.4. Theorem 4.2 and the arguments used in the proof
of Corollary 4.3 imply that, as n → ∞,

M
−1/2
2

(
θ̂1, θ

∗
2
)√

k
(
θ̂2 − θ∗

2
) d→ N(0, Ir)(7.6)

and hence (4.10). �

PROOF OF LEMMA 6.1. We have

l(x1, . . . , xd) = lim
t→∞ tP

(
1 − F1(X1) ≤ x1/t or . . . or 1 − Fd(Xd) ≤ xd/t

)
= lim

t→∞ tP
(
1 − FY1(Y1) ≤ x1/t or . . . or 1 − FYd

(Yd) ≤ xd/t
)

= lim
t→∞ tP

(
Y1 ≥ t

∑r
i=1 aν

i1

x1
or . . . or Yd ≥ t

∑r
i=1 aν

id

xd

)

= lim
t→∞ tP

( ⋃
1≤j≤d

⋃
1≤i≤r

{
Wi ≥ t

∑r
i=1 aν

ij

aν
ij xj

})

= lim
t→∞ tP

( ⋃
1≤i≤r

{
Wi ≥ min

1≤j≤d

t
∑r

i=1 aν
ij

aν
ij xj

})

= lim
t→∞ t

r∑
i=1

P

(
Wi ≥ min

1≤j≤d

t
∑r

i=1 aν
ij

aν
ij xj

)

= lim
t→∞

r∑
i=1

t

(
1 − exp

{
−1

t
max

1≤j≤d

aν
ij xj∑r

i=1 aν
ij

})

=
r∑

i=1

max
1≤j≤d

{ aν
ij xj∑r

i=1 aν
ij

}
=:

r∑
i=1

max
1≤j≤d

{bij xj }

as required. �

PROOF OF LEMMA 6.2. Fix i ∈ {1, . . . , r}. We have∫
[0,1]d

xs
k max

1≤j≤d
{bij xj }dx =

d∑
j=1

∫
[0,1]d

xs
k(bij xj )1

(
bij xj ≥ max

l 
=j
{bilxl}

)
dx.

Write the integral as a double integral, the outer integral with respect to xj ∈ [0,1]
and the inner integral with respect to x−j = (xl)l 
=j ∈ R

d−1 over the relevant do-
main. We find∫

[0,1]d
xs
k max

1≤j≤d
{bij xj }dx =

d∑
j=1

∫ 1

0
bij xj

∫
0<xl<(bij /bil )xj∧1

xs
k dx−j dxj .
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After some long, but elementary computations, this simplifies to the stated expres-
sion. �
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