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CLUSTER SETS FOR PARTIAL SUMS AND PARTIAL
SUM PROCESSES

BY UWE EINMAHL1 AND JIM KUELBS

Vrije Universiteit Brussel and University of Wisconsin

Let X,X1,X2, . . . be i.i.d. mean zero random vectors with values in
a separable Banach space B, Sn = X1 + · · · + Xn for n ≥ 1, and assume
{cn :n ≥ 1} is a suitably regular sequence of constants. Furthermore, let
S(n)(t),0 ≤ t ≤ 1 be the corresponding linearly interpolated partial sum pro-
cesses. We study the cluster sets A = C({Sn/cn}) and A = C({S(n)(·)/cn}).
In particular, A and A are shown to be nonrandom, and we derive criteria
when elements in B and continuous functions f : [0,1] → B belong to A

and A, respectively. When B = R
d we refine our clustering criteria to show

both A and A are compact, symmetric, and star-like, and also obtain both
upper and lower bound sets for A. When the coordinates of X in R

d are
independent random variables, we are able to represent A in terms of A

and the classical Strassen set K, and, except for degenerate cases, show A
is strictly larger than the lower bound set whenever d ≥ 2. In addition, we
show that for any compact, symmetric, star-like subset A of R

d , there exists
an X such that the corresponding functional cluster set A is always the lower
bound subset. If d = 2, then additional refinements identify A as a subset of
{(x1g1, x2g2) : (x1, x2) ∈ A,g1, g2 ∈ K}, which is the functional cluster set
obtained when the coordinates are assumed to be independent.

1. Introduction. Let X,X1,X2, . . . be i.i.d. d-dimensional random vectors,
and let Sn := ∑n

j=1 Xj,n ≥ 1. Denote the Euclidean norm on R
d by | · | and write

cl(M) for the closure of a subset M of a topological space.
Assuming E|X|2 < ∞ and EX = 0, it follows from the d-dimensional version

of the Hartman–Wintner LIL that with probability one,

lim sup
n→∞

|Sn|/
√

2n log logn = σ,(1.1)

where σ 2 is the largest eigenvalue of the covariance matrix of X.
For a sequence {xn :n ≥ 1} ⊂ R

d the set of its limit points is given by⋂∞
m=1 cl({xn :n ≥ m}). We denote this set by C({xn :n ≥ 1}), and we call it the

cluster set of this sequence. This is obviously a closed subset of R
d .

Equation (1.1) then implies that with probability one, C({Sn/
√

2n log logn :n ≥
3}) is a compact subset of the Euclidean ball with center 0 and radius σ which must
contain at least one point from the boundary of this ball.
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It is known for sums of i.i.d. random vectors and for any sequence cn ↗ ∞ that
the cluster set C({Sn/cn :n ≥ 1}) is deterministic; see [13]. So if cn is a sequence
of that type such that with probability one,

lim sup
n→∞

|Sn|/cn < ∞,

we have C({Sn/cn :n ≥ 1}) = A with probability one, where A is a nonempty
compact subset of R

d .
It is an interesting question to determine the cluster sets in such cases. In the

classical setting considered above it is well known that A = {�x : |x| ≤ 1}, where
� is the unique positive semi-definite symmetric matrix satisfying �2 = covariance
matrix of X.

A number of authors have investigated when one has LIL-type results for ran-
dom vectors X with E|X|2 = ∞. We mention the work of Kuelbs [14] which
implies among other things that if X is a mean zero random vector such that Sn/an

converges in distribution to a d-dimensional normal distribution, one has for the
normalizing sequence cn = a[2n/ log logn] log logn,n ≥ 3, and for σ 2 equal to the
largest eigenvalue of the covariance matrix of the limit distribution, with probabil-
ity one,

lim sup
n→∞

|Sn|/cn = σ

if and only if
∑∞

n=1 P{|X| ≥ cn} < ∞.
Moreover, the cluster set C({Sn/cn :n ≥ 1}) is in this case again equal to

{�x : |x| ≤ 1}, with � being chosen so that �2 is equal to the covariance ma-
trix of the limit distribution of Sn/an. It is easy to see that this result implies the
d-dimensional Hartman–Wintner LIL (just choose an = √

n) so that this is an ex-
tension of (1.1).

This last result was generalized in [3] where an infinite-dimensional version of
the Klass LIL [12] is given. The normalizing sequence γn used in this result spe-
cializes in the domain of attraction case to σa[2n/ log logn] log logn, but can also be
applied for certain random vectors which are not in the domain of attraction of
a normal distribution. In these cases it was not clear at all what the cluster sets
C({Sn/γn :n ≥ 1}) could be, given that there is no limit distribution with covari-
ance matrix available.

In [4] it was shown that the cluster sets for this result have to be subsets of the
Euclidean unit ball which are star-like and symmetric with respect to 0. Somewhat
surprisingly, it also turned out that any closed set of this type which contains a
vector a with |a| = 1 actually occurs as a cluster set.

Furthermore, it was shown in [4] that if X = (X(1), . . . ,X(d)) and the variables
X(1), . . . ,X(d) are independent, then the cluster sets are from the subclass of sets
which are the closures of at most countable unions of standard ellipsoids. Moreover
all sets of this type also occur as cluster sets in this case. Here we call an ellipsoid
“standard” if the main axes coincide with the coordinate axes. Another way to say
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this is that a standard ellipsoid is a set of the form {Dx : |x| ≤ 1} where D is a
diagonal matrix.

The following result follows from Theorem 4.1 in Einmahl and Li [9] noticing
that condition (1.4) below for R

d valued random vectors implies that β0 is equal
to 0 in this theorem.

THEOREM A. Let X,X1,X2, . . . be i.i.d. mean zero random vectors, and let
{cn} be sequence of positive constants such that

cn/
√

n ↗ ∞,(1.2)

and for every ε > 0 there exists an mε ≥ 1 such that

cn/cm ≤ (1 + ε)n/m for mε ≤ m < n.(1.3)

Assume further that

∞∑
n=1

P
{|X| ≥ cn

}
< ∞.(1.4)

Then we have for the sums Sn = ∑n
j=1 Xj,n ≥ 1 with probability one,

lim sup
n→∞

|Sn|/cn = α0,(1.5)

where

α0 = sup

{
α ≥ 0 :

∞∑
n=1

n−1 exp
(
− α2c2

n

2nH(cn)

)
= ∞

}
,(1.6)

with H(t) := sup{E[〈v,X〉2I {|X| ≤ t}] : |v| ≤ 1}, t ≥ 0.

All aforementioned LIL results and also the law of a very slowly varying func-
tion (see Theorem 2 in [8]) follow from this theorem.

The purpose of the present paper is to investigate whether there are also gen-
eral functional LIL-type results available in this case and what the corresponding
cluster sets are. In the 1-dimensional case this question has been completely set-
tled in [5] where it has been shown that whenever α0 < ∞ and assumption (1.4) is
satisfied, the functional LIL holds with cluster set α0K, where K is the cluster set
as in the Strassen LIL.

Much less is known in the multidimensional setting. We refer to [14] where an
infinite-dimensional functional LIL is established for Banach space valued ran-
dom vectors in the domain of attraction of a Gaussian law. Nothing seems to
be known—even in the finite-dimensional case—for random vectors outside the
domain of attraction of a Gaussian law. Given the complexity of the cluster sets
C({Sn/cn :n ≥ 1}) in this case, one cannot expect a simple answer as in the 1-
dimensional setting.
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2. Statement of main results. To formulate our results we need somewhat
more notation. Throughout, X,X1,X2, . . . are i.i.d. mean zero random vectors,
and except for the results of Section 3 they are R

d valued. Let Cd [0,1] be the
continuous functions from [0,1] to R

d with sup-norm ‖f ‖ = sup0≤t≤1 |f (t)|, f ∈
Cd [0,1].

The partial sum process S(n) :� → Cd [0,1] of order n is defined by

S(n)(t) = S[nt] + (
nt − [nt])X[nt]+1, 0 ≤ t ≤ 1.

The cluster set C({S(n)/cn :n ≥ 1}) is defined as for sums, that is, as the set of all
limit points of the sequence S(n)/cn in Cd [0,1]. We shall show (see Propositon 3.1
below) that this set is also deterministic.

Furthermore, we say the partial sum process sequence {S(n)(·)} converges
and clusters compactly with respect to a sequence cn ↗ ∞ if we have that
C({S(n)/cn :n ≥ 1}) =: A is a compact subset of Cd [0,1] and with probability one
limn→∞ d(S(n)/cn, A) = 0, where the distance between a function f ∈ Cd [0,1]
and A is defined as d(f, A) = infg∈A ‖f − g‖. We write in this case {S(n)/cn} �
A.

If AC0[0,1] denotes the absolutely continuous real valued functions on [0,1]
which are zero when t = 0, then for g ∈ C[0,1], we define

I (g) =
⎧⎨
⎩
∫ 1

0

(
g′(s)

)2
ds, g ∈ AC0[0,1],

∫ 1

0

(
g′(s)

)2
ds < ∞,

+∞, otherwise.

One important fact about the I -functional is that it has a unique minimum over
closed balls. More precisely, suppose g ∈ C[0,1] and ε > 0. Then there exists a
unique function, which we denote by gε , such that ‖g − gε‖ ≤ ε and

I (gε) = inf
h:‖g−h‖≤ε

I (h).

The existence of this minimum is well known, and details, as well as further refer-
ences, can be found in [10] and [15]. Letting K be the subclass of all functions in
AC0[0,1] where I (g) ≤ 1, we get the cluster set in Strassen’s functional LIL for
real-valued random variables.

If E|X|2 < ∞, the d-dimensional version of Strassen’s functional LIL applies
which says that then with probability one,

{S(n)/
√

2n log logn} is relatively compact in Cd [0,1](2.1)

and

A = C
({S(n)/

√
2n log logn}) =

{
�(f1, . . . , fd)t :

d∑
i=1

I (fi) ≤ 1

}
,(2.2)

where again � is the positive semi-definite symmetric matrix satisfying �2 = co-
variance matrix of X.
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It is known that one can obtain the cluster sets A = C({Sn/
√

2n log logn})
from (2.2) since A = {f (1) :f ∈ A}. Interestingly this implication can be reversed.
A small calculation shows that if the covariance matrix is diagonal, we also have
A = {x1K × · · · × xd K :x = (x1, . . . , xd) ∈ A}. This can also be proved in general
after replacing the canonical basis in R

d by an orthonormal basis which diagonal-
izes the covariance matrix of X.

One might wonder whether a related phenomenon can be true if E|X|2 = ∞.
A necessary condition for having A as in the diagonal covariance matrix case
would be that A has an extended symmetry property, namely x = (x1, . . . , xd) ∈
A ⇒ (±x1, . . . ,±xd) ∈ A as one can choose functions fi ∈ K with fi(1) =
±1,1 ≤ i ≤ d .

So one might hope that the above result holds in general if A has this prop-
erty. But it will turn out that this is not the case. For any possible cluster set
A = C({Sn/cn :n ≥ 1}), there exists a distribution such that the functional clus-
ter set is equal to the smaller set {xg :x ∈ A,g ∈ K} which only for very special
cases matches the function set above. This also shows that relation (2.5) in the
subsequent Theorem 2.1 gives an optimal result.

THEOREM 2.1. Let X,X1,X2, . . . be i.i.d. mean zero random vectors in R
d ,

and assume that
∑∞

n=1 P(|X| ≥ cn) < ∞, where {cn} satisfies (1.2) and (1.3). If
α0 = lim supn→∞ |Sn|/cn < ∞, we have with probability one,

{S(n)/cn} is relatively compact in Cd [0,1].(2.3)

Consequently, the cluster set A = C({S(n)(·)/cn :n ≥ 1}) is compact in Cd [0,1].
Furthermore, we have

A ⊂ α1K × · · · × αd K,(2.4)

where αi = lim supn→∞ |S(i)
n |/cn,1 ≤ i ≤ d and

A ⊃ {xg :x ∈ A,g ∈ K},(2.5)

where A = C({Sn/cn :n ≥ 1}) ⊂ R
d .

Finally, A is star-like and symmetric with respect to zero. If f ∈ A, then
f : [0,1] → A continuously and for 0 ≤ t ≤ 1, f (t) ∈ √

tA.

REMARK. Using once more the fact that A = {f (1) :f ∈ A}, we can con-
clude that these cluster sets are compact subsets of R

d , which are star-like and
symmetric with respect to zero. This has been proven in [4] only for a special case
of Theorem A. We now see that this is always the case when the assumptions of
Theorem A are satisfied.

If the coordinates X(1), . . . ,X(d) of X are independent, our next result gives the
complete answer showing that in this case we again have a 1–1 correspondence be-
tween the functional cluster sets A = C({S(n)/cn :n ≥ 1}) and A = C({Sn/cn :n ≥
1}).
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THEOREM 2.2. Let X = (X(1), . . . ,X(d)) :� → R
d be a mean zero random

vector with independent components and suppose that {cn} satisfies (1.2) and (1.3).
If α0 < ∞ and

∑∞
n=1 P(|X| ≥ cn) < ∞, then with probability one we have (2.3)

and A = {x1K × · · · × xd K :x = (x1, . . . , xd) ∈ A}.
Interestingly it turns out that if d = 2, the last set is also the maximal set for the

cluster sets in the general case. It is not clear whether this is also the case in higher
dimensions.

THEOREM 2.3. Let X be a mean zero random vector in R
2, and assume that∑∞

n=1 P(|X| ≥ cn) < ∞, where {cn} satisfies (1.2) and (1.3). If α0 < ∞, we always
have A ⊂ {x1K × x2K :x ∈ A}.

The remaining part of the paper is organized as follows: In Section 3 we prove
some general results on cluster sets in the functional LIL. Though the present pa-
per considers mainly the finite-dimensional case we establish these results in the
infinite-dimensional setting so that they can be used in future work on the func-
tional LIL problem in this more general setting. In Section 4 we then derive via
a strong approximation result of Sakhanenko [18] criteria for clustering in R

d

in terms of Brownian motion probabilities. This enables us in Sections 5–7 to
prove Theorems 2.1, 2.2 and 2.3 using results on Gaussian probabilities of balls in
(Cd [0,1],‖ · ‖). Finally, in Section 8 we shall provide an example where the clus-
ter set A = C({Sn/cn :n ≥ 1}) is equal to an arbitrary given closed, star-like and
symmetric set Ã with max

x∈Ã
|x| = 1 and at the same time the functional cluster

set A is equal to {xg :x ∈ Ã, g ∈ K}.
3. Some general results on cluster sets. Here we present results for the clus-

ter sets C({S(n)/cn :n ≥ 1}) and C({Sn/cn :n ≥ 1}). They include their behavior
when the sequences {S(n)/cn} and {Sn/cn} are relatively compact with probability
one. Moreover, we provide a necessary and sufficient series condition character-
izing the functions f in the functional cluster sets C({S(n)/cn :n ≥ 1}). As our
proofs work also in the infinite-dimensional setting, we now consider B-valued
random variables X,X1,X2, . . . , where (B, | · |) is a separable Banach space with
norm | · |.

3.1. Nonrandomness of the functional cluster sets. Our first result is a zero-
one law showing the cluster set C({S(n)/cn :n ≥ 1}) is deterministic with proba-
bility one, and is the analogue of Lemma 1 in [13].

Let for 0 ≤ m ≤ n

S(n,m)(t) =
⎧⎪⎨
⎪⎩

0, 0 ≤ t ≤ m/n,
Sk − Sm, t = k/n,m ≤ k ≤ n,
linearly interpolated elsewhere,

(0 ≤ t ≤ 1).
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Obviously, the choice m = 0 gives us the partial sum process S(n) of order n,
and these processes are random elements in the space C0([0,1],B) of all continu-
ous functions f : [0,1] → B satisfying f (0) = 0. We denote the sup-norm on this
space by ‖ · ‖.

PROPOSITION 3.1. Let {cn} be a positive sequence such that cn ↗ ∞. Then,
there exists a nonrandom set A in C0([0,1],B) such that with probability one

C
({

S(n)(·)/cn :n ≥ 1
}) = A.(3.1)

PROOF. First of all observe that the Banach space C0([0,1],B) is separa-
ble. This follows since B separable implies one can embed B into C[0,1]. Then
C0([0,1],B) is embedded isometrically into C0([0,1],C[0,1]), and the polyno-
mials in two variables and rational coefficients are dense in this space. Hence there
exists a countable base B for the norm topology of C0([0,1],B).

Let

B1 =
{
U ∈ B : P

(
lim inf
n→∞ d(S(n)/cn,U) = 0

)
= 1

}
and

B2 =
{
U ∈ B : P

(
lim inf
n→∞ d(S(n)/cn,U) = 0

)
= 0

}
.

As we have for any fixed m and n ≥ m, ‖S(n) −S(n,m)‖/cn → 0 as n → ∞, we see
that {

lim inf
n→∞ d(S(n)/cn,U) = 0

}
=

{
lim inf
n→∞ d(S(n,m)/cn,U) = 0

}
, U ∈ B.

The event on the right-hand side is measurable with respect to the σ -field generated
by Xm+1,Xm+2, . . . and this holds for any m.

Thus {lim infn→∞ d(S(n)/cn,U) = 0} is a tail event, and by Kolmogorov’s zero
one law we have B = B1 ∪ B2.

Let V = ⋃
U∈B2

U and A = C0([0,1],B) \ V . Then A is nonrandom, and we
set

�1 = ⋂
U∈B1

{
ω : lim inf

n→∞ d
(
S(n)(ω, ·)/cn,U

) = 0
}

and

�2 = ⋂
U∈B2

{
ω : lim inf

n→∞ d
(
S(n)(ω, ·)/cn,U

)
> 0

}
.

Then �1 ∩ �2 is the countable intersection of sets of probability one, so it has
probability one. So it is sufficient to prove that we have for ω ∈ �1 ∩ �2,

D(ω) ≡
∞⋂

m=1

cl
({

S(n)(ω, ·)/cn :n ≥ m
}) = A.(3.2)
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To prove (3.2), we first note that for g ∈ A and ε > 0 there is a U ∈ B with g ∈
U ⊂ Uε(g), where as usual Uε(g) = {f ∈ C0([0,1],B) :‖f − g‖ < ε}. As g /∈ V ,
this implies U /∈ B2 so U ∈ B1. Hence by definition of �1 we have S(n)(ω, ·)/cn ∈
U2ε(g) infinitely often. Therefore, since ε is arbitrary, g ∈ D(ω) and hence A ⊂
D(ω) for all ω ∈ �1 ∩ �2.

On the other hand, if g /∈ A or equivalently, g ∈ V there is a U ∈ B2 with g ∈ U .
By definition of �1 ∩�2 we have S(n)(ω, ·)/cn ∈ Uc eventually. Hence g /∈ D(ω),
and therefore D(ω) ⊂ A and (3.2) has been proven. �

3.2. Compactness of the functional cluster sets.

PROPOSITION 3.2. Let {cn} be a positive sequence such that cn ↗ ∞, and
assume A is the deterministic cluster set of S(n)/cn determined as in (3.1). If
{S(n)/cn} is relatively compact in C0([0,1],B) with probability one, then A is
a compact nonempty subset of C0([0,1],B) and with probability one S(n)/cn con-
verges and clusters compactly to A, that is, with probability one {S(n)/cn} � A.

PROOF. Let A be the deterministic cluster set of {S(n)/cn}. We claim
that {S(n)/cn} relatively compact in C0([0,1],B) with probability one implies
limn→∞ d(S(n)/cn, A) = 0 with probability one.

To see this, suppose that lim supn→∞ d(S(n)/cn, A) > 0 with positive probabil-
ity. Then there is a δ > 0 such that with positive probability lim supn→∞ d(S(n)/

cn, A) ≥ 2δ. Now the set E = {x :d(x, A) ≥ δ} is closed, and with positive proba-
bility the relatively compact sequence {S(n)/cn} would be infinitely often in E and
would have limit points in E which is impossible since A ∩ E = ∅.

Finally, A is compact and nonempty as A = ⋂
m≥1 cl({S(n)(ω)/cn :n ≥ m})

with probability one. Choosing ω so that this holds and at the same time
cl({S(n)(ω)/cn :n ≥ 1}) is compact, we readily obtain that the closed set A is com-
pact as well. �

Our next proposition relates the clustering and compactness of {Sn/cn} to the
clustering and compactness of {S(n)(·)/cn} in Banach spaces where one has finite
rank operators that approximate the identity. More precisely, a Banach space B has
the approximation property if for each compact subset K of B and ε > 0 there is a
finite rank operator T :B → B such that

sup
x∈K

∣∣x − T (x)
∣∣ < ε.

This property is less restrictive than requiring B have a Schauder basis, and hence
many (but not all) Banach spaces have the approximation property. Information
about this property is easily found, and two classical references are [1] and [17].
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PROPOSITION 3.3. Let {cn} satisfy (1.2) and (1.3), and assume

∞∑
n=1

P
(|X| > cn

)
< ∞.(3.3)

If (B, | · |) has the approximation property and {Sn/cn} is relatively compact in B

with probability one, then {S(n)(·)/cn} is relatively compact in C0([0,1],B) with
probability one. Moreover, if A is the deterministic cluster set for {S(n)(·)/cn}
given in (3.1), then A is nonempty and compact and we have with probability
one, {S(n)/cn} � A.

PROOF. To verify this let ε > 0 be given. Since {Sn/cn} is relatively compact
in B with probability one, then by the same argument as in Proposition 3.2 the
deterministic cluster set A of {Sn} with respect to {cn} is compact and such that
with probability one

P

(
lim sup
n→∞

d(Sn/cn,A) = 0
)

= 1

and

P
(
C
({Sn/cn :n ≥ 1}) = A

) = 1.

Since (B, | · |) has the approximation property, given ε > 0 there exists a finite rank
operator

�(x) =
d∑

i=1

fi(x)xi

mapping B into B , with x1, . . . , xd ∈ B and f1, . . . , fd ∈ B∗
1 , the unit ball of B∗,

such that

sup
x∈A

∣∣x − �(x)
∣∣ < ε.

Then, with probability one

lim sup
n→∞

∣∣Sn/cn − �(Sn/cn)
∣∣ ≤ ε,

and hence we also have

lim sup
n→∞

sup
0≤t≤1

∣∣S(n)(t)/cn − �
(
S(n)(t)/cn

)∣∣ ≤ ε

with probability one.
Now let

σ 2
n,i = E

(
fi(X)2I

(∣∣fi(X)
∣∣ ≤ cn

))
, 1 ≤ i ≤ d,(3.4)
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and define

αi = sup
{
α ≥ 0 :

∑
n≥1

n−1 exp
{
− α2c2

n

2nσ 2
n,i

}
= ∞

}
(3.5)

for i = 1, . . . , d . Also let K denote the limit set in the functional law of the iterated
logarithm for Brownian motion as defined in Section 2.

Each random variable fi(X), i = 1, . . . , d , is such that E(|fi(Sn/cn)|) → 0
since the real line is a type 2 Banach space. See Lemma 4.1 in [9]. In addition,
since the fi’s are continuous linear functionals in B∗

1 , and Sn/cn is relatively com-
pact in B with probability one, we have from (3.3) that for i = 1, . . . , d

∞∑
n=1

P
(∣∣fi(X)

∣∣ > cn

)
< ∞,

and with probability one

lim sup
n→∞

∣∣fi(Sn/cn)
∣∣ < ∞, i = 1, . . . , d.

Hence (4.4) of Theorem 5 of [9] implies with probability one that

lim sup
n→∞

∣∣fi(Sn/cn)
∣∣ = αi,

and since this lim sup is finite with probability one we have αi < ∞, i = 1, . . . , d .
Thus Theorem 1 of [5] implies that for every ε > 0

P

(
d⋂

i=1

{
fi

(
S(n)(·)/cn

) ∈ (αi K)ε eventually
}) = 1,

and hence by the equivalence of norms on finite dimensional Banach spaces we
also have

P
(
�
(
S(n)(·)/cn

) ∈ (α1K × · · · × αd K)ε eventually
) = 1

for all ε > 0. Therefore, we have {S(n)(·)/cn :n ≥ 1} totally bounded, and thus rel-
atively compact, in C0([0,1],B) with probability one. Proposition 3.1 now implies
A is a nonempty compact set and that {S(n)/cn} � A with probability one. �

3.3. The functional LIL version of a result of Kesten [11]. The purpose of this
part of the paper is to derive a necessary and sufficient condition that a function f ∈
C0([0,1],B) is in the deterministic cluster set A = C({S(n)/cn :n ≥ 1}), where we
use the same notation as in Section 3.1. The corresponding result for the cluster
set A = C({Sn/cn :n ≥ 1) (see Lemma 1 in [4]) reads as follows:

x ∈ C
({Sn/cn}) a.s. ⇐⇒

∞∑
n=1

n−1
P
{|Sn/cn − x| < ε

} = ∞, ε > 0,

(3.6)
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where one has to assume that Sn/cn is stochastically bounded, and cn satisfies
conditions (1.2) and (1.3). This result for real-valued random variables goes back
to Theorem 3 in Kesten [11] who actually considers somewhat more general se-
quences {cn}.

We now prove such a result for partial sum processes based on i.i.d. mean zero
random variables taking values in a separable Banach space (B, | · |). To simplify
notation we set sn = S(n)/cn, n ≥ 1, and we denote the sup-norm of any continuous
function f : [0,1] → B by ‖f ‖.

PROPOSITION 3.4. Let f : [0,1] → B continuous, and let cn be a sequence
of positive real numbers satisfying conditions (1.2) and (1.3). Take a fixed ρ > 1.
Then the following are equivalent:

(a) f ∈ C({sn :n ≥ 1}) a.s.;
(b)

∑∞
k=0 P{‖sn − f ‖ < ε for some n ∈ [ρk, ρk+1[} = ∞, ε > 0.

PROOF. (b) ⇒ (a) To further simplify our notation, we set Ik = {n :ρk ≤ n <

ρk+1} and

Gk = ⋃
n∈Ik

{‖sn − f ‖ < ε
}
, k ≥ 0.

Consider also the stopping times τk defined by

τk = inf
{
n ≥ ρk :‖sn − f ‖ < ε

}
, k ≥ 0.

Then we obviously have

Gk = {
τk < ρk+1}, k ≥ 0.(3.7)

Set

Hk = {‖sn − f ‖ ≥ ε for all n ≥ ρk+r}∩ Gk,

where r > 0 is an integer which will be specified later.
Then it is obvious that

P(Hk) = ∑
m∈Ik

P
{‖sn − f ‖ ≥ ε for all n ≥ ρk+r , τk = m

}
.(3.8)

Next set for 0 ≤ m ≤ n, sn,m = S(n,m)/cn, where S(n,m) is defined as in Section 3.1.
Then we have for m ∈ Ik and n ≥ ρk+r on the event {τk = m} ⊂ {‖sm − f ‖ < ε}

‖sn,m − sn‖ ≤ ‖S(m)‖/cn ≤ (‖sm − f ‖ + ‖f ‖)cm/cn

≤ (
ε + ‖f ‖)√m/n

≤ (
ε + ‖f ‖)ρ(1−r)/2 ≤ ε

provided that we choose r = r(ε, f ) large enough.
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Due to the independence of sn,m and the event {τk = m}, we can infer that

P(Hk) ≥ ∑
m∈Ik

P
{‖sn,m − f ‖ ≥ 2ε for all n ≥ ρk+r}

P{τk = m}.(3.9)

Next observe that

S(n−m)(t)0≤t≤1
d= S(n,m)

(
αn,m(t)

)
0≤t≤1,

where αn,m(t) = (m/n) + (1 − m/n)t,0 ≤ t ≤ 1.
Set fn,m(t) = f (αn,m(t)),0 ≤ t ≤ 1. Then it is easy to see that by uniform

continuity of f we have ‖f − fn,m‖ < ε if we have chosen r large enough. We
conclude that

P(Hk) ≥ ∑
m∈Ik

P
{∥∥c−1

n S(n−m) − fn,m

∥∥ ≥ 2ε for all n ≥ ρk+r}
P{τk = m}

≥ ∑
m∈Ik

P
{∥∥c−1

n S(n−m) − f
∥∥ ≥ 3ε for all n ≥ ρk+r}

P{τk = m}.

Moreover, for ε > 0 and f fixed, we take ε̂ > 0 such that ε̂(‖f ‖ ∨ 1) < ε. Then,
for large k∥∥f − (cn−m/cn)f

∥∥ ≤ (
1 − (1 + ε̂)−1(1 − m/n)

)‖f ‖ = ‖f ‖(1 + ε̂)−1(ε̂ + m/n),

which is ≤ 2ε if we choose r large enough that ‖f ‖ρ1−r < ε.
Therefore,

P(Hk) ≥ ∑
m∈Ik

P
{‖sn−m − f ‖ ≥ 5εcn/cn−m for all n ≥ ρk+r}

P{τk = m}.

Assuming also that r is so large that for sufficiently large m,

cn/cn−m ≤ 1.1n/(n − m) ≤ 1.2 whenever m/n ≤ ρ1−r ,

we readily obtain from the last inequality

P(Hk) ≥ ∑
m∈Ik

P
{‖sn−m − f ‖ ≥ 6ε for all n ≥ ρk+r}

P{τk = m},

which in turn is

≥ P
{‖sn − f ‖ ≥ 6ε for all n ≥ ρr − ρ

}
P(Gk).

Noticing that Hk ∩H� = ∅, |k − �| > r , we see that Y = ∑∞
k=0 IHk

≤ r and conse-
quently

r ≥ E[Y ] =
∞∑

k=0

P(Hk) ≥ P
{‖sn − f ‖ ≥ 6ε,n ≥ ρr − ρ

} ∞∑
k=kε

P(Gk).(3.10)

The last series is divergent by assumption so that we must have for large r ,

P
{‖sn − f ‖ ≥ 6ε for all n ≥ ρr − ρ

} = 0.(3.11)
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It follows that

P
{‖sn − f ‖ < 6ε infinitely often

} = 1, ε > 0,(3.12)

which implies (a).
(a) ⇒ (b) This follows directly from the Borel–Cantelli lemma. �

Our next result gives a simplification of the criterion for clustering under the ad-
ditional assumption that {Sn/cn} is bounded in probability, that is, we are assuming
that

∀ε > 0 ∃Kε > 0 P
{|Sn| ≥ Kεcn

}
< ε.(3.13)

Using Theorem 1.1.5 in [2], we can infer from this assumption that also

∀ε > 0 ∃K ′
ε > 0 P

{
max

1≤k≤n
|Sk| ≥ K ′

εcn

}
< ε.(3.14)

PROPOSITION 3.5. Under assumption (3.13) the following are equivalent:

(a) f ∈ C({sn :n ≥ 1}) a.s.;
(b)

∑∞
n=1 n−1

P{‖sn − f ‖ < ε} = ∞, ε > 0.

PROOF. (a) ⇒ (b) It is obviously enough to show that (a) implies for any
ε > 0,

∞∑
n=1

n−1
P
{‖sn − f ‖ < 4ε

(
1 + ‖f ‖)} = ∞.(3.15)

Recall that by Proposition 3.4 we have for any ρ > 1,
∞∑

k=0

a(ε, ρ, k) = ∞,(3.16)

where we set

a(ε, ρ, k) = P
{‖sn − f ‖ < ε for some n ∈ [

ρk, ρk+1[}.
Therefore (b) follows once it has been proven that relation (3.16) with a small
ρ = ρ(ε) > 1 implies (3.15).

To that end we first show that for ρk ≤ m < ρk+1 ≤ n < ρk+2 and small enough
ρ > 1, {‖sn − f ‖ < 4

(
1 + ‖f ‖)ε}

(3.17)
⊃

{
max

m≤j≤n
|Sj − Sm| ≤ εcn,‖sm − f ‖ < ε

}
.

To verify (3.17) observe that

‖sn − f ‖ = sup
0≤t≤m/n

∣∣sn(t) − f (t)
∣∣∨ sup

m/n≤t≤1

∣∣sn(t) − f (t)
∣∣ =: �(m)

n,1 ∨ �
(m)
n,2 .
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Using the fact that S(m)(t) = S(n)(mt/n),0 ≤ t ≤ 1, it is easy to see that

�
(m)
n,1 ≤ ‖sm − f ‖ + sup

0≤t≤m/n

∣∣f (t) − cmc−1
n f (nt/m)

∣∣
≤ ‖sm − f ‖ + (1 − cm/cn)‖f ‖ + sup

0≤t≤m/n

∣∣f (nt/m) − f (t)
∣∣.

Recall that by condition (1.3) we have cm/cn ≥ (1 + ε)−1m/n ≥ (1 + ε)−1ρ−2 if
m ≥ mε .

Choose now ρ′
ε > 1 so small that (1 + ε)−1ρ′

ε
−2 ≥ 1 − 2ε.

Further, let δ > 0 be small enough so that |f (u)−f (v)| ≤ ε whenever |u−v| <
δ.

Setting ρε = ρ′
ε ∧ (1 + δ)1/2, we then have if m ≥ mε and 1 < ρ ≤ ρε ,

‖sm − f ‖ < ε ⇒ �
(m)
n,1 ≤ 2

(
1 + ‖f ‖)ε.(3.18)

We now turn to the variable �
(m)
n,2 for which we clearly have

�
(m)
n,2 ≤ sup

m/n≤t≤1

∣∣c−1
n

(
S(n)(t) − Sm

)∣∣+ ∣∣Sm/cm − f (1)
∣∣

+ sup
m/n≤t≤1

∣∣f (t) − (cm/cn)f (1)
∣∣.

Arguing as above we find that

‖sm − f ‖ < ε ⇒ �
(m)
n,2 ≤ max

m≤j≤n
|Sj − Sm|/cn + 2ε

(
1 + ‖f ‖),(3.19)

provided that m ≥ mε and ρ ≤ ρε .
Combining (3.18) and (3.19) we get (3.17).
Let τk and Ik be defined as in the proof of Proposition 3.4. Then we have for

large enough k,∑
n∈Ik+1

P
{‖sn − f ‖ < 4

(
1 + ‖f ‖)ε}

≥ ∑
m∈Ik

∑
n∈Ik+1

P
{‖sn − f ‖ < 4

(
1 + ‖f ‖)ε, τk = m

}

≥ ∑
m∈Ik

∑
n∈Ik+1

P

{
max

m≤j≤n
|Sj − Sm| ≤ εcn

}
P{τk = m}

≥ {
ρk(ρ − 1) − 1

}
P

{
max

1≤j≤rk
|Sj | ≤ εcnk

}
a(ε, ρ, k),

where rk ≤ ρk+2 − ρk + 2 and nk ≥ ρk+1 − 1. Noticing that cnk
/crk ≥ (nk/rk)

1/2,
with lim infk→∞(nk/rk)

1/2 ≥ ρ1/2/(ρ2 − 1)1/2, and recalling (3.14), we can
choose a constant 1 < ρ̄ε < ρε so that we have for 1 < ρ < ρ̄ε and large k,

P

{
max

1≤j≤rk
|Sj | ≤ εcnk

}
≥ P

{
max

1≤j≤rk
|Sj | ≤ Kcrk

}
≥ 1/2.
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Consequently, we have for large k and 1 < ρ < ρ̄ε ,

∑
n∈Ik+1

n−1
P
{‖sn − f ‖ < 4

(
1 + ‖f ‖)ε} ≥ 1

2ρ2

(
ρ − 1 − ρ−k)a(ε, ρ, k),

which implies (3.15) and thus (b).
(b) ⇒ (a) Noting that we have for any ρ > 1,∑

n∈Ik

n−1
P
{‖sn − f ‖ < ε

} ≤ (
ρ − 1 + ρ−k)

P
{‖sn − f ‖ < ε for some n ∈ Ik

}
,

this implication follows immediately from Proposition 3.4. �

4. Clustering in R
d . In this section we look at d-dimensional random vec-

tors, where again | · | will denote the Euclidean norm. We first provide a criterion
for clustering in the functional case in terms of Brownian motion. We use the fol-
lowing strong approximation result.

THEOREM B (Sakhanenko [18]). Let X∗
1, . . . ,X∗

n be independent mean zero
random vectors in R

d and assume that E|X∗
i |p < ∞,1 ≤ i ≤ n for some p ∈]2,3].

Let x > 0 be fixed. If the underlying probability space is rich enough, one can
construct independent normally distributed mean zero random vectors Y ∗

1 , . . . , Y ∗
n

with cov(X∗
i ) = cov(Y ∗

i ),1 ≤ i ≤ n such that

P

{
max

1≤k≤n

∣∣∣∣∣
k∑

j=1

(
X∗

j − Y ∗
j

)∣∣∣∣∣ ≥ x

}
≤ K

n∑
i=1

E
∣∣X∗

i

∣∣p/xp,

where K is a positive constant depending on d only.

Note that there is no assumption on the covariance matrices of the random vec-
tors X∗

1, . . . ,X∗
n. This will be crucial for the subsequent proof since we will apply

it to truncated random vectors where the original (“untruncated”) random vectors
do not need to have finite covariance matrices.

In this way we obtain the following criterion for clustering in the functional LIL:

THEOREM 4.1. Let X = (X(1), . . . ,X(d)) :� → R
d be a mean zero ran-

dom vector, and let {cn} be a sequence of positive real numbers satisfying
conditions (1.2) and (1.3). Set sn = S(n)/cn :� → Cd [0,1]. Assuming that∑∞

n=1 P{|X| ≥ cn} < ∞, the following are equivalent:

(a) f ∈ C({sn :n ≥ 1}) a.s.;
(b) we have for any ε > 0,

∞∑
n=1

n−1
P
{‖�nW(n)/cn − f ‖ < ε

} = ∞,
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where �n is the positive semidefinite symmetric matrix such that

�2
n = (

E
[
X(i)X(j)I

{|X| ≤ cn

}])
1≤i,j≤d

and W(n)(t) = W(nt),0 ≤ t ≤ 1 with W being a standard d-dimensional Brownian
motion.

In the proof we make extensive use of the following lemma. The easy proof of
this lemma is omitted.

LEMMA 4.1. Let ξn, ηn :� → Cd [0,1] be random elements such that

∞∑
n=1

n−1
P
{‖ξn − ηn‖ ≥ ε

}
< ∞, ε > 0.

Then we have for any function f ∈ Cd [0,1],
∞∑

n=1

n−1
P
{‖ξn − f ‖ < ε

}
< ∞ ∀ε > 0

if and only if

∞∑
n=1

n−1
P{‖ηn − f ‖ < ε} < ∞ ∀ε > 0.

We record the following facts which can be proved similarly as in the 1-
dimensional case (refer to Lemma 1 in [8]).

If X is a mean zero random vector such that
∑∞

n=1 P{|X| ≥ cn} < ∞, where cn

satisfies the two conditions (1.2) and (1.3), we have:
Fact 1.

∑∞
n=1 E[|X|3I {|X| ≤ cn}]/c3

n < ∞;
Fact 2. E[|X|I {|X| ≥ cn}] = o(cn/n) as n → ∞;
Fact 3. E[|X|2I {|X| ≤ cn}] = o(c2

n/n) as n → ∞.
We are ready to prove Theorem 4.1. By a slight abuse of notation we also denote

the Euclidean matrix norm by ‖ · ‖ if � is a (d, d)-matrix. That is, we set ‖�‖ =
sup|x|≤1 |�x|. Recall that if � is a symmetric matrix, ‖�‖2 is equal to the largest
eigenvalue of the matrix �2.

PROOF OF THEOREM 4.1. (i) Set X′
n,j = XjI {|Xj | ≤ cn},X∗

n,j = X′
n,j −

EX′
n,j ,1 ≤ j ≤ n,n ≥ 1, and let S∗

(n) be the partial sum process based on
X∗

n,1, . . . ,X
∗
n,n. Finally set s∗

n = S∗
(n)/cn, n ≥ 1.

Then we have
∞∑

n=1

n−1
P
{∥∥sn − s∗

n

∥∥ ≥ ε
}
< ∞, ε > 0.(4.1)
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To verify (4.1) observe that

∥∥sn − s∗
n

∥∥ ≤ max
1≤k≤n

∣∣∣∣∣
k∑

j=1

(
Xj − X∗

j

)∣∣∣∣∣
/

cn

≤
(

n∑
j=1

|Xj |I{|Xj | > cn

}+ nE|X|I{|X| > cn

})/
cn.

Recalling Fact 2 we get for large n,

P
{∥∥sn − s∗

n

∥∥ ≥ ε
} ≤ P

(
n∑

j=1

|Xj |I{|Xj | > cn

}
>

ε

2
cn

)

(4.2)
≤ nP

{|X| ≥ cn

}
,

and we see that (4.1) holds.
Noting that Facts 2 and 3 also imply that E|Sn|/cn → 0 (see Lemma 1, [9]), we

trivially have that {Sn/cn :n ≥ 1} is stochastically bounded. Consequently, Propo-
sition 3.5 can be applied which in combination with (4.1) and Lemma 4.1 gives

f ∈ C
({sn :n ≥ 1}) a.s. ⇐⇒

∞∑
n=1

n−1
P
{∥∥s∗

n − f
∥∥ < ε

} = ∞, ε > 0.

(4.3)

(ii) In this part we will use Theorem B. From Fact 1 it easily follows that one
can find a sequence c̃n ↗ ∞ so that c̃n/cn → 0 as n → ∞ and we still have

∞∑
n=1

E
[|X|3I{|X| ≤ cn

}]
/c̃3

n < ∞.(4.4)

Let n ≥ 1 be fixed. Employing the afore-mentioned result along with the cr -
inequality, we can construct independent N(0, I )-distributed random vectors
Yn,1, . . . , Yn,n such that we have

P

{
max

1≤k≤n

∣∣∣∣∣
k∑

j=1

(
X∗

j − �∗
nYn,j

)∣∣∣∣∣ ≥ c̃n

}
≤ 8KnE

[|X|3I{|X| ≤ cn

}]
/c̃3

n,(4.5)

where �∗
n is the symmetric positive semidefinite matrix such that (�∗

n)2 =
cov(X∗

n,1).
Letting T(n) be the partial sum process based on the random vectors Yn,1, . . . ,

Yn,n, tn = T(n)/cn and recalling (4.4), we find that

∞∑
n=1

n−1
P
{∥∥s∗

n − �∗
ntn

∥∥ ≥ εcn

}
< ∞, ε > 0.(4.6)
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This means in view of Lemma 4.1 and relation (4.3) that

f ∈ C
({sn :n ≥ 1}) a.s. ⇐⇒

∞∑
n=1

n−1
P
{∥∥�∗

ntn − f
∥∥ < ε

} = ∞, ε > 0.

(4.7)

(iii) Let W [n](t), t ≥ 0 be a Brownian motion satisfying

W [n](k) =
k∑

j=1

Yn,j , 1 ≤ k ≤ n.

Then we have∥∥T(n) − W
[n]
(n)

∥∥ ≤ 2 max
0≤j≤n−1

sup
0≤u≤1

∣∣W [n](j + u) − W [n](j)
∣∣,

and we can conclude for x > 0,

P
{∥∥T(n) − W

[n]
(n)

∥∥ ≥ x
} ≤ nP

{
sup

0≤u≤1

∣∣W [n](u)
∣∣ ≥ x/2

}
≤ 2dn exp

(
− x2

8d

)
.

It follows that

P
{∥∥�∗

n

(
tn − W

[n]
(n)/cn

)∥∥ ≥ ε
} ≤ 2dn exp

(
− ε2c2

n

8d‖�∗
n‖2

)
.

As ‖�∗
n‖2 ≤ E|X∗

n,1|2 ≤ E[|X|2I {|X| ≤ cn}] = o(c2
n/n) (see Fact 3), we readily

obtain that
∞∑

n=1

n−1
P
{∥∥�∗

n

(
tn − W

[n]
(n)/cn

)∥∥ ≥ ε
}
< ∞, ε > 0.

Consequently we have by Lemma 4.1 and (4.7) and since W
[n]
(n)

d= W(n), n ≥ 1,

f ∈ C
({sn :n ≥ 1}) a.s. ⇐⇒

∞∑
n=1

n−1
P
{∥∥�∗

nwn − f
∥∥ < ε

} = ∞, ε > 0,

(4.8)

where wn = W(n)/cn.
(iv) Observing that �n = �2

n − �∗2
n is a positive semidefinite symmetric matrix,

we clearly have

�nW(n)
d= �∗

nW(n) + �̄nW̄(n) =: Zn,

provided that W̄(n)(t) = W̄ (nt),0 ≤ t ≤ 1, where W̄ (s), s ≥ 0 is another Brownian
motion which is independent of W , and �̄n is the positive semidefinite symmetric
matrix satisfying �̄2

n = �n.
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It follows that

P
{∥∥Zn − �∗

nW(n)

∥∥ ≥ εcn

} ≤ P
{‖�̄n‖‖W̄(n)‖ ≥ εcn

}
.

Since we have W̄(n)(t)
d= √

nW(t),0 ≤ t ≤ 1, we find that this probability is

≤ P

{
sup

0≤t≤1

∣∣W(t)
∣∣ ≥ εcn/

(√
n‖�̄n‖)} ≤ 2d exp

(
− ε2c2

n

2dn‖�̄n‖2

)
.

By the definition of the matrix norm we further have

‖�̄n‖2 = largest eigenvalue of �n = sup
|t |=1

〈t,�nt〉.

A straightforward calculation gives if |t | ≤ 1,

〈t,�nt〉 =
(

E

d∑
i=1

tiX
(i)I

{|X| ≤ cn

})2

=
(

E

d∑
i=1

tiX
(i)I

{|X| > cn

})2

≤
(

d∑
i=1

|ti |
)2(

E|X|I{|X| > cn

})2 ≤ d
(
E|X|I{|X| > cn

})2
.

Recalling Fact 2 we see that ‖�̄n‖2 = o(c2
n/n2) as n → ∞, which in turn implies

that
∞∑

n=1

n−1
P
{∥∥�∗

nwn − Zn/cn

∥∥ ≥ ε
}
< ∞, ε > 0.(4.9)

Using once more Lemma 4.1 along with the fact that Zn/cn
d= �nwn, we get that

f ∈ C
({sn :n ≥ 1}) a.s. ⇐⇒

∞∑
n=1

n−1
P
{‖�nwn − f ‖ < ε

} = ∞, ε > 0,

(4.10)

and Theorem 4.1 has been proven. �

We next look at the case where the random vector X :� → R
d has independent

components. In this case we can prove the following:

THEOREM 4.2. Let X = (X(1), . . . ,X(d)) :� → R
d be a mean zero random

vector such that X(1), . . . ,X(d) are independent.
Assuming that

∑∞
n=1 P{|X| ≥ cn} < ∞, where cn is as in (4.1), the following

are equivalent:

(a) f = (f1, . . . , fd) ∈ C({sn :n ≥ 1}) a.s.;
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(b) we have for any ε > 0,

∞∑
n=1

n−1
d∏

i=1

P
{∥∥fi − σn,iW

′
(n)/cn

∥∥ < ε
} = ∞,

where σ 2
n,i = E[(X(i))2I {|X(i)| ≤ cn}],1 ≤ i ≤ d and W ′

(n)(t) = W ′(nt),0 ≤ t ≤ 1
with W ′ being a standard 1-dimensional Brownian motion.

The proof is similar to the previous one and we will just indicate the changes.

PROOF OF THEOREM 4.2. (i) We define the random vectors X′
n,j ,1 ≤ j ≤ n

as follows:

X′
n,j = (

X(1)I
{∣∣X(1)

∣∣ ≤ cn

}
, . . . ,X(d)I

{∣∣X(d)
∣∣ ≤ cn

})
, 1 ≤ j ≤ n,n ≥ 1.

Letting again X∗
n,j = X′

n,j − EX′
n,j ,1 ≤ j ≤ n,n ≥ 1, we have

∥∥sn − s∗
n

∥∥ = max
1≤k≤n

∣∣∣∣∣
k∑

j=1

(
Xj − X∗

j

)∣∣∣∣∣
/

cn

≤
d∑

i=1

(
n∑

j=1

∣∣X(i)
j

∣∣I{∣∣X(i)
j

∣∣ > cn

}+ nE
∣∣X(i)

∣∣I{∣∣X(i)
∣∣ > cn

})/
cn

≤ d

(
n∑

j=1

|Xj |I{|Xj | > cn

}+ nE|X|I{|X| > cn

})/
cn,

and as in the previous proof we see that we can replace sn by s∗
n .

(ii) This part remains essentially unchanged. Note that �∗
n is now a diagonal

matrix. The only difference is that we have to use a slightly different upper bound
for E|X∗

n,1|3,

E
∣∣X∗

n,1
∣∣3 ≤ 8E

∣∣X′
n,1

∣∣3 ≤ 8d1/6
d∑

i=1

E
∣∣X(i)

∣∣3I{∣∣X(i)
∣∣ ≤ cn

}
,

where the second bound easily follows from the Hölder inequality.
Applying Fact 1 for each X(i) we see that

∑∞
n=1 E|X′

n,1|3/c3
n < ∞.

(iii) Here we use the fact that ‖�∗
n‖2 ≤ max1≤i≤d E(X(i))2I {|X(i)| ≤ cn} =

o(c2
n/n) since we can employ Fact 3 for the (finitely many) random variables

X(i),1 ≤ i ≤ d as well.
(iv) Since �n is a diagonal matrix, we have that

‖�n‖ = max
1≤i≤d

(
E
[
X(i)I

{∣∣X(i)
∣∣ ≤ cn

}])2 = max
1≤i≤d

(
E
[
X(i)I

{∣∣X(i)
∣∣ > cn

}])2
,

which is of order o(c2
n/n2) due to Fact 2 [applied for the components X(i)].
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(v) (small extra step). We have shown so far that

f ∈ C
({sn :n ≥ 1}) a.s. ⇐⇒

∞∑
n=1

n−1
P
{‖Dnwn − f ‖ < ε

} = ∞, ε > 0,

(4.11)

where Dn = �n = diag(σn,1, . . . , σn,d) is a diagonal matrix.
It is trivial that we can replace the sup-norm ‖ · ‖ based on the Euclidean

norm | · | by the equivalent sup-norm ‖ · ‖+ which is based on the norm
|x|+ = max1≤i≤d |xi |. In this case we also have for g = (g1, . . . , gd) that ‖g‖+ =
max1≤i≤d sup0≤t≤1 |gi(t)|. Thus we have

f ∈ C
({sn}) a.s.

⇐⇒
∞∑

n=1

n−1
P
{‖Dnwn − f ‖+ < ε

} = ∞, ε > 0

⇐⇒
∞∑

n=1

n−1
P

(
d⋂

i=1

{∥∥σn,iw
(i)
n − fi

∥∥ < ε
}) = ∞, ε > 0,

and Theorem 4.2 follows by independence. �

Analogous results hold for the cluster sets A = C({Sn/cn :n ≥ 1}).

THEOREM 4.3. Let X :� → R
d be a mean zero random vector, and let {cn} be

a sequence of positive real numbers satisfying conditions (1.2) and (1.3). Assuming
that

∑∞
n=1 P{|X| ≥ cn} < ∞, the following are equivalent:

(a) x ∈ C({Sn/cn :n ≥ 1}) a.s.;
(b) we have for any ε > 0,

∞∑
n=1

n−1
P
{∣∣�nW(n)/cn − x

∣∣ < ε
} = ∞,

where �n is as in Theorem 4.1, and W is a standard d-dimensional Brownian
motion.

Furthermore, if X has independent components X(1), . . . ,X(d), (a) is also equiva-
lent to the following:

(c) we have for any ε > 0

∞∑
n=1

n−1
d∏

i=1

P
{∣∣xi − σn,iW

′(n)/cn

∣∣ < ε
} = ∞,

where σ 2
n,i ,1 ≤ i ≤ d is as in Theorem 4.2, and W ′ is a standard 1-dimensional

Brownian motion.
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PROOF. Using a version of Lemma 4.1 for random vectors and recalling rela-
tion (3.6), the equivalence of (a) and (b) follows once it has been shown that

∞∑
n=1

n−1
P
{∣∣Sn − �nW(n)

∣∣ ≥ εcn

}
< ∞, ε > 0.(4.12)

From the proof of Theorem 4.1 it follows that we actually have

∞∑
n=1

n−1
P
{‖S(n) − �nW(n)‖ ≥ εcn

}
< ∞, ε > 0,

which trivially implies (4.12).
The proof of the equivalence of (a) and (c) is similar. �

5. Proof of Theorem 2.1. Let S
(i)
n and S

(i)
(n) denote the ith coordinate of Sn

and S(n), respectively. Note that S
(i)
(n) is then the 1-dimensional partial sum process

based on the sequence S
(i)
n , n ≥ 1.

From Theorem A it follows that lim supn→∞ |Sn|/cn = α0 < ∞ with probabil-
ity one, which clearly implies that A = C({Sn/cn}) is a compact subset of R

d .
Applying Proposition 3.3 we then have A compact in Cd [0,1] and also that both
A and A are nonempty.

Furthermore, αi ≤ α0 < ∞ for i = 1, . . . , d , whence by Theorem 3 of [8] with
probability one, lim supn→∞ S

(i)
n /cn = αi, i = 1, . . . , d . This in turn implies by

Theorem 1 of [5] that with probability one

C
({

S
(i)
(n)/cn :n ≥ 1

}) = αi K

and

lim
n→∞ inf

hi∈αi K

∥∥hi − S
(i)
(n)/cn

∥∥ = 0, 1 ≤ i ≤ d.

Therefore, with probability one

lim
n→∞

d∑
i=1

inf
hi∈αi K

∥∥hi − S
(i)
(n)/cn

∥∥ = 0.

Using ‖f − g‖ ≤ ∑d
i=1 ‖fi − gi‖ for f = (f1, . . . , fd), g = (g1, . . . , gd) ∈

Cd([0,1]), we have

lim sup
n→∞

inf
h∈α1 K×···×αd K

‖h − S(n)/cn‖ ≤ lim
n→∞

d∑
i=1

inf
hi∈αi K

∥∥hi − S
(i)
(n)/cn

∥∥ = 0,

and we see that (2.4) holds since α1K × · · · × αd K is a compact subset of
Cd([0,1]).
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To prove the other inclusion in Theorem 2.1 we need more notation. As the ma-
trices �n defined in Theorem 4.1 are positive semidefinite and symmetric, we can
find orthonormal bases {un,1, . . . , un,d} of R

d consisting of eigenvectors of �n. Let
λn,i be the corresponding eigenvalues. We can assume w.l.o.g. that λn,i,1 ≤ i ≤ dn

are the nonzero eigenvalues, where 1 ≤ dn ≤ d . Set ξn = XI {|X| ≤ cn}, n ≥ 1.
Note that then by definition of �2

n, E[〈ξn, un,i〉2] = 〈un,i,�
2
nun,i〉 = λ2

n,i = 0, dn <

i ≤ d .
Thus with probability one, ξn = ∑d

i=1〈ξn, un,i〉un,i = ∑dn

i=1〈ξn, un,i〉un,i .
We see that P{ξn ∈ Vn} = 1 if Vn is the dn-dimensional subspace of R

d spanned
by un,i,1 ≤ i ≤ dn.

Further note that the sequence �2
n is monotone; that is, �2

n − �2
m is positive

semidefinite if n ≥ m. Let V ′
n be the vector space spanned by un,i, dn < i ≤ d if

dn < d and {0} otherwise. This is the zero space of the quadratic form determined
by �2

n, and thus by monotonicity of �2
n we get that V ′

1 ⊃ V ′
2 ⊃ · · · . As V ′

n is the
orthogonal complement of Vn we can conclude that V1 ⊂ V2 ⊂ · · · . Thus there are
at most d +1 different vector spaces [with 0 ≤ dim(Vni

) ≤ d] in this sequence, and
we have Vn = V eventually for some subspace V of R

d with dimension 1 ≤ d ′ ≤
d . Notice also that X is supported by this vector space as we have P{X ∈ V } =
limn→∞ P{ξn ∈ V } = 1.

We first infer from Theorem 4.1 the following lemma.

LEMMA 5.1. Under the assumptions of Theorem 2.1 we have f = (f1, . . . ,

fd) ∈ A if and only if

∑
n∈Nε

n−1 exp

(
−

dn∑
i=1

I (〈un,i, f 〉ε)c2
n

2nλ2
n,i

)
= ∞ ∀ε > 0,(5.1)

where Nε = {n ≥ 1 :‖〈un,i, f 〉‖ < ε, i > dn}.

PROOF. If Un denotes the orthogonal matrix whose ith column is the ith
eigenvector un,i , then since the probability law of W is the same as that of UnW ,
we have

P
(‖�nW(n)/cn − f ‖ < ε

) = P
(‖�nUnW(n)/cn − f ‖ < ε

)
.

In addition, since the transposed matrix U ′
n is orthogonal, it preserves distances

given by the Euclidean norm and hence

P
(‖�nUnW(n)/cn − f ‖ < ε

) = P
(∥∥U ′

n�nUnW(n)/cn − U ′
nf

∥∥ < ε
)
.

Note that Dn = U ′
n�nUn is a diagonal matrix whose ith diagonal entry is the eigen-

value λn,i . Replacing the sup-norm ‖ · ‖ in Theorem 4.1 by the equivalent norm

‖g‖+ = max
1≤i≤d

‖gi‖, g ∈ Cd [0,1],
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we can infer that f ∈ A if and only if
∞∑

n=1

n−1
P
(∥∥DnW(n)/cn − U ′

nf
∥∥+ < ε

) = ∞, ε > 0,(5.2)

which by independence is the same as

∑
n∈Nε

n−1
dn∏
i=1

P
(∥∥λn,iW

(i)
(n)/cn − 〈un,i, f 〉∥∥ < ε

) = ∞, ε > 0,(5.3)

where W
(i)
(n) is the ith coordinate of W(n).

Now eventually in n we have for 1 ≤ i ≤ dn,

P
(∥∥〈un,i, f 〉 − λn,iW

(i)
(n)/cn

∥∥ ≤ 2ε
) ≥ P

(∥∥〈un,i, f 〉ε − λn,iW
(i)
(n)/cn

∥∥ ≤ ε
)

≥ 1

2
exp

(
−I

(〈un,i, f 〉ε) c2
n

2nλ2
n,i

)
.

The second inequality above follows from (4.16) in Theorem 2 of [15] with α = 0
where we use the fact that limn→∞ cn/(

√
nλn,i) = ∞ for 1 ≤ i ≤ dn.

This last statement is true since limn→∞ cn/(
√

nσn,i) = ∞ for 1 ≤ i ≤ d , which
follows from (3.3) in Lemma 1 of [8]. Since

∑d
i=1 λ2

n,i = ∑d
i=1 σ 2

n,i we have
max1≤i≤d λn,i ≤ d1/2 max1≤i≤d σn,i whence cn/(

√
nλn,i) → ∞ for 1 ≤ i ≤ dn.

We also have from (4.17) of [15], with α = 1 and i = 1, . . . , dn that for all n

sufficiently large

P
(∥∥〈un,i, f 〉−λn,iW

(i)
(n)/cn

∥∥ < ε
) ≤ exp

(
−I

(〈un,i, f 〉ε) c2
n

2nλ2
n,i

)
, 1 ≤ i ≤ dn.

This means that (5.1) and (5.3) are equivalent. �

To further simplify the above criterion for clustering we need the following
uniform lower semicontinuity property of the I -function.

LEMMA 5.2. Let f = (f1, . . . , fd) be such that
∑d

j=1 I (fj ) < ∞ and δ > 0.
Then, there exists ε > 0 sufficiently small such that(

I 1/2(〈u,f 〉)− δ
)2
+ ≤ I

(〈u,f 〉ε)(5.4)

for all u ∈ U = {u : |u| ≤ 1}.
PROOF. Let Uδ,f = {u ∈ U : I 1/2(〈u,f 〉) ≥ δ}. Since f is fixed, I (〈u,f 〉) is

continuous and nonnegative on U , and the set Uδ,f is compact. Furthermore, for
all u ∈ U ∩Uc

δ,f the conclusion in (5.4) is obvious. Therefore, if (5.4) fails, it must
fail on Uδ,f and there exists un ∈ Uδ,f such that for all n sufficiently large(

I 1/2(〈un,f 〉)− δ
)2
+ > I

(〈un,f 〉1/n

)
.(5.5)
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Since Uδ,f is compact, there is a subsequence {unk
} in Uδ,f and u0 ∈ Uδ,f such

that unk
converges to u0 and (5.5) holds for n = nk , k ≥ 1. Using the continuity of

〈u,f 〉 and I (〈u,f 〉) again, we thus have from the left term in (5.5) that

lim
k→∞

(
I 1/2(〈unk

, f 〉)− δ
)2
+ = (

I 1/2(〈u0, f 〉)− δ
)2
+.(5.6)

Moreover, since 〈u,f 〉 is continuous on U , we have

lim
k→∞

∥∥〈unk
, f 〉1/nk

− 〈u0, f 〉∥∥ = 0.

Since the I function is lower semi-continuous and nonnegative, it follows that

lim inf
k→∞ I

(〈unk
, f 〉1/nk

) ≥ I
(〈u0, f 〉).(5.7)

Hence, combining (5.5), (5.6) and (5.7) we get(
I 1/2(〈u0, f 〉)− δ

)2
+ ≥ I

(〈u0, f 〉),
which is a contradiction since u0 ∈ Uδ,f . Hence the lemma is proven. �

We can now prove another lemma which will be the crucial tool for establishing
Theorems 2.1 and 2.3.

LEMMA 5.3. Under the assumptions of Theorem 2.1 we have f = (f1, . . . ,

fd) ∈ A if and only if

∑
n∈Nε

n−1 exp

(
−

dn∑
i=1

(I 1/2(〈un,i, f 〉) − ε)2+c2
n

2nλ2
n,i

)
= ∞ ∀ε > 0,(5.8)

where Nε = {n ≥ 1 :‖〈un,i, f 〉‖ < ε, i > dn}.
Furthermore, we have x = (x1, . . . , xd) ∈ A if and only if

∑
n∈N′

ε

n−1 exp

(
−

dn∑
i=1

(|〈un,i, x〉| − ε)2+c2
n

2nλ2
n,i

)
= ∞ ∀ε > 0,(5.9)

where N
′
ε = {n ≥ 1 : |〈un,i, x〉| < ε, i > dn}.

PROOF. Combining Lemmas 5.1 and 5.2, we immediately see that (5.8) is
necessary for f ∈ A. To show that this condition is also sufficient, it is enough to
prove that (5.8) implies (5.1); see Lemma 5.1. To that end we first note that since
f = (f1, . . . , fd) is fixed and such that

∑d
j=1 I (fj ) < ∞, we have 〈u,f 〉 and

I (〈u,f 〉) both continuous on U = {u : |u| ≤ 1}. In addition, 〈u,f 〉ε is jointly con-
tinuous in (ε, u) with the product topology on (0,∞)×U and either the sup-norm
topology or the H -norm topology on the range space; see, for instance, Proposi-
tion 2, parts (a) and (b), in [16].
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Hence fix θ > 0, and set Eθ = {u ∈ U :‖〈u,f 〉‖ ≥ θ}. We claim that there exists
a δ > 0 sufficiently small such that

I 1/2(〈u,f 〉θ ) ≤ I 1/2(〈u,f 〉)− δ ∀u ∈ Eθ .(5.10)

Since I 1/2(〈u,f 〉) is continuous on U we have that Eθ is a compact subset of U .
Moreover, for u ∈ Eθ we have I 1/2(〈u,f 〉) ≥ ‖〈u,f 〉‖ ≥ θ > 0, and consequently
I 1/2(〈u,f 〉θ ) < I 1/2(〈u,f 〉).

Next define for k ≥ 1,

Vk = {
u ∈ U : I 1/2(〈u,f 〉θ ) < I 1/2(〈u,f 〉)− 1/k

}
.

Then Vk is open by the continuity properties mentioned above, and Eθ = ⋃
k≥1 Vk ,

so the compactness of Eθ implies Eθ ⊂ Vk0 for some k0 < ∞. Thus (5.10) holds
for u ∈ Eθ for δ = 1/k0.

If u ∈ U ∩ Ec
θ , then we have trivially, I 1/2(〈u,f 〉θ ) = 0. Combining this with

relation (5.10) and setting θ = ε, we can conclude that uniformly on U ,

I
(〈u,f 〉ε) ≤ (

I 1/2(〈u,f 〉)− δ
)2
+,

and we see that indeed (5.8) implies (5.1).
To prove the second part of Lemma 5.3 we conclude by an obvious modification

of the argument used in Lemma 5.1 that x ∈ A if and only if

∞∑
n=1

n−1
d∏

i=1

P
(∣∣λn,iW

(i)(n)/cn − 〈un,i, x〉∣∣ < ε
) = ∞, ε > 0,(5.11)

where W(i)(n)
d= √

nZ with Z standard normal. Consequently we have x ∈ A if
and only if

∑
n∈N′

ε

n−1
dn∏
i=1

P
(∣∣λn,i

√
nZ − cn〈un,i, x〉∣∣ < εcn

) = ∞, ε > 0.(5.12)

Using a standard argument (see, e.g., part (iii) of the proof of Proposition 1 in [4])
we have that (5.12) holds for all ε > 0 if and only if

∑
n∈N′

ε

n−1 exp

(
−

dn∑
i=1

(|〈un,i, x〉| − ε)2+c2
n

2nλ2
n,i

)
= ∞, ε > 0.

Therefore, x = (x1, . . . , xd) ∈ A if and only if (5.9) holds for all ε > 0. �

We are ready to prove (2.5). Take x = (x1, . . . , xd) ∈ A and consider the func-
tion g = (x1, . . . , xd)f , where f ∈ K. Then we have for any vector u ∈ R

d and
ε > 0,

I
(〈u,g〉) = I

(〈u,x〉f ) = 〈u,x〉2I (f ) ≤ 〈u,x〉2,
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which trivially implies for any ε > 0, (I 1/2(〈u,g〉) − ε)+ ≤ (|〈u,x〉| − ε)+.
Finally noting that Nε ⊃ N

′
ε for this choice of x and g (recall that we have

‖f ‖ ≤ 1, f ∈ K), we see that the series for g in (5.8) must diverge whenever the
series for x in (5.9) diverge. This is of course the case since we are assuming that
x ∈ A. Thus we have by Lemma 5.3 that g ∈ A and relation (2.5) has been proven.

We next show that A is star-like and symmetric about zero. Both properties are
direct consequences of Lemma 5.3. The symmetry of A follows since

I
(〈f,u〉) = I

(〈−f,u〉), f ∈ Cd [0,1], u ∈ R
d .

To prove that A is star-like, we use the simple inequality I (〈λf,u〉) = λ2I (〈f,

u〉) ≤ I (〈f,u〉) which holds for u ∈ R
d , 0 ≤ λ ≤ 1 and f = (f1, . . . , fd) ∈

Cd [0,1]. It is then obvious that if f ∈ A and consequently the series for f in (5.8)
diverge, the series for λf must diverge as well, whence λf ∈ A.

If f = (f1, . . . , fd) ∈ A, then f (t) ∈ C({S(n)(t)/cn}) for each fixed t ∈ [0,1].
Now by Theorem 2 in [6], on a suitable probability space, one can construct a
standard Brownian motion W̃ (t), t ≥ 0 so that with probability

lim sup
n→∞

‖S(n)/cn − �nW̃(n)/cn‖ = 0.(5.13)

Since f (t) ∈ C({S(n)(t)/cn}), we can infer that with probability one

lim inf
n→∞

∣∣f (t) − �nW̃(n)(t)/cn

∣∣ = 0(5.14)

for each t ∈ [0,1]. Using the scaling property of Brownian motion and (5.14), with
0 < t ≤ 1, implies with probability one that

lim inf
n→∞

∣∣f (t)/
√

t − �nW̃(n)(1)/cn

∣∣ = 0.(5.15)

Thus by (5.13) and (5.15) we have f (t)/
√

t ∈ C({S(n)(1)/cn}) = A for 0 < t ≤ 1.
Moreover A is star-like about zero as can be seen directly from Lemma 5.3 or

from the fact that A = {f (1) :f ∈ A}, where A is star-like about zero. Therefore
f (t) ∈ A for 0 ≤ t ≤ 1. Furthermore, since f ∈ A ⊂ Cd [0,1], we have that f maps
[0,1] continuously into A, and Theorem 2.1 is proven.

6. Proof of Theorem 2.2. We can assume w.l.o.g. that E(X(i))2 > 0,1 ≤ i ≤
d so that we have for some n0 ≥ 1,

σ 2
n,i = E

(
X(i))2

I
{∣∣X(i)

∣∣ ≤ cn

}
> 0, 1 ≤ i ≤ d,n ≥ n0.

We then have the following analogue of Lemma 5.3:

LEMMA 6.1. Under the assumptions of Theorem 2.2 we have f = (f1, . . . ,

fd) ∈ A if and only if

∞∑
n=n0

1

n
exp

(
−

d∑
i=1

(I 1/2(fi) − ε)2+c2
n

2nσ 2
n,i

)
= ∞ ∀ε > 0.(6.1)
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Furthermore, we have x = (x1, . . . , xd) ∈ A if and only if

∞∑
n=n0

1

n
exp

(
−

d∑
i=1

(|xi | − ε)2+c2
n

2nσ 2
n,i

)
= ∞ ∀ε > 0.(6.2)

The proof is omitted since it is similar to that of Lemma 5.3. Simply use Theo-
rem 4.2 instead of Theorem 4.1 and part (c) of Theorem 4.3 instead of part (b).

We are ready to prove that

A = {x1K × · · · × xd K :x ∈ A}.
We first establish the inclusion “⊃.” Take x = (x1, . . . , xd) ∈ A and set f =
(x1g1, . . . , xdgd), where gi ∈ K,1 ≤ i ≤ d . Then we obviously have I (fi) =
x2
i I (gi) ≤ x2

i ,1 ≤ i ≤ d , and we see that

∞∑
n=n0

1

n
exp

(
−

d∑
i=1

(I 1/2(fi) − ε)2+c2
n

2nσ 2
n,i

)
≥

∞∑
n=n0

1

n
exp

(
−

d∑
i=1

(|xi | − ε)2+c2
n

2nσ 2
n,i

)
,

where the last series is divergent since x ∈ A. In view of Lemma 6.1 this means
that f ∈ A.

To establish the reverse inclusion “⊂,” take f = (f1, . . . , fd) ∈ A. From Theo-
rem 2.1 we know that I (fi) < ∞,1 ≤ i ≤ d . Setting gi = fi/

√
I (fi), 1 ≤ i ≤ d ,

where gi = 0 if I (fi) = 0, we have gi ∈ K,1 ≤ i ≤ d and f = (x1g1, . . . , xdgd)

if xi = √
I (fi),1 ≤ i ≤ d , and it is enough to show that x ∈ A. This is trivial with

the above choice for x since for any ε > 0,

∞∑
n=n0

1

n
exp

(
−

d∑
i=1

(|xi | − ε)2+c2
n

2nσ 2
n,i

)
=

∞∑
n=n0

1

n
exp

(
−

d∑
i=1

(I 1/2(fi) − ε)2+c2
n

2nσ 2
n,i

)
,

where the second series is divergent. Therefore, x ∈ A by Lemma 6.1, and Theo-
rem 2.2 has been proven.

7. Proof of Theorem 2.3. W.l.o.g. we can assume that there exists an n0 ≥ 1
so that all the matrices �n,n ≥ n0 have full rank which means that we have in
Lemma 5.3 dn = 2, n ≥ n0. Otherwise, X is supported by a 1-dimensional sub-
space of R

2 (see the comments before Lemma 5.1) and in this case it easily follows
from the 1-dimensional functional LIL type result in [5] that A = {xg :x ∈ A,g ∈
K} which trivially implies the assertion of Theorem 2.3.

We show that any function f ∈ A has a representation (x1g1, x2g2), where
(x1, x2) ∈ A and g1, g2 ∈ K. To that end we look first at “nonextremal” functions
f ∈ A. That is, we assume that f ∈ A is such that (1 + η)f ∈ A for some η > 0.
Also assume that f �= 0.

Rewrite f as (x1h1, x2h2), where I (hi) = 1, i = 1,2.
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Note that I (〈u,f 〉) = ∑2
i,j=1 xiuixjujαi,j , where αi,j = ∫ 1

0 h′
i (s)h

′
j (s) ds for

1 ≤ i, j ≤ 2. Then we obviously have α1,1 = α2,2 = 1 and consequently

I
(〈u,f 〉) = x2

1u2
1 + x2

2u2
2 + 2α1,2u1x1u2x2,

where |α1,2| ≤ 1 by Cauchy–Schwarz.
Similarly, we have for y ∈ R

2,

〈u,y〉2 = y2
1u2

1 + y2
2u2

2 + 2u1y1u2y2.

Set x̃ = (−x1, x2). Comparing the two expressions above we see that

I
(〈u,f 〉) ≥ 〈u,x〉2 ∧ 〈u, x̃〉2.(7.1)

Next observe that we have if {un,1, un,2} is an orthonormal basis of R
2,

2∑
i=1

I
(〈un,i, f 〉) =

∫ 1

0

2∑
i=1

〈
un,i, f

′(s)
〉2

ds =
∫ 1

0

∣∣f ′(s)
∣∣2 ds = |x|2.(7.2)

Further note that (1 + η)f ∈ A implies via Lemma 5.3 that

∞∑
n=n0

n−1 exp

(
−

2∑
i=1

(I 1/2(〈un,i, (1 + η)f 〉) − ε)2+c2
n

2nλ2
n,i

)
= ∞, ε > 0.(7.3)

In view of relation (7.2) we can find a sequence in ∈ {1,2} so that

I
(〈un,in, f 〉) ≥ |x|2/2, n ≥ 1.

Then one must have

∑
n : in=1

n−1 exp

(
−

2∑
i=1

((1 + η)I 1/2(〈un,i, f 〉) − ε)2+c2
n

2nλ2
n,i

)
= ∞, ε > 0

or

∑
n:in=2

n−1 exp

(
−

2∑
i=1

((1 + η)I 1/2(〈un,i, f 〉) − ε)2+c2
n

2nλ2
n,i

)
= ∞, ε > 0.

We can assume w.l.o.g. that the series for in = 1 diverge. Then an easy calculation
shows that if 0 < ε < η|x|/√2,

∞∑
n=n0

n−1 exp
(
−I (〈un,1, f 〉)c2

n

2nλ2
n,1

− ((1 + η)I 1/2(〈un,2, f 〉) − ε)2+c2
n

2nλ2
n,2

)
= ∞.

Next set for β > 0,

J (β) = {
n ≥ n0 : I

(〈un,2, f 〉) ≤ β2}
and

ρ = inf
{
β > 0 :

∑
n∈J (β)

n−1 exp
(
−I (〈un,1, f 〉)c2

n

2nλ2
n,1

)
= ∞

}
.
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There are two cases:
Case 1 ρ > 0 . We then can choose an arbitrary 0 < ρ1 < ρ, and we get that

∑
n/∈J (ρ1)

n−1 exp
(
−I (〈un,1, f 〉)c2

n

2nλ2
n,1

− ((1 + η)I 1/2(〈un,2, f 〉) − ε)2+c2
n

2nλ2
n,2

)
= ∞.

Noticing that I 1/2(〈un,2, f 〉) ≥ ρ1 if n /∈ J (ρ1), we can conclude if ε < ρ1η that

∑
n/∈J (ρ1)

n−1 exp

(
−

2∑
i=1

I (〈un,i, f 〉)c2
n

2nλ2
n,i

)
= ∞.

Set μn,1 = λn,1 ∨λn,2, μn,2 = λn,1 ∧λn,2, and denote the corresponding eigenvec-
tors in {un,1, un,2} by vn,1 and vn,2. Then we have by (7.2),

2∑
i=1

I
(〈un,i, f 〉)/λ2

n,i = |x|2/μ2
n,1 + (

μ−2
n,2 − μ−2

n,1

)
I
(〈vn,2, f 〉),

where μ−2
n,2 − μ−2

n,1 ≥ 0.
In view of (7.1) we can find a sequence an ∈ {−1,1} so that we have for yn =

(anx1, x2),

〈vn,2, yn〉2 ≤ I
(〈vn,2, f 〉), n ≥ 1,

which then implies that

2∑
i=1

I
(〈un,i, f 〉)/λ2

n,i ≥ |yn|2/μ2
n,1+(

μ−2
n,2−μ−2

n,1

)〈vn,2, yn〉2 =
2∑

i=1

〈un,i, yn〉2/λ2
n,i .

It follows that
∞∑

n=n0

n−1 exp

(
−

2∑
i=1

〈un,i, yn〉2c2
n

2nλ2
n,i

)
= ∞.

But this implies that

∑
n : an=1

n−1 exp

(
−

2∑
i=1

〈un,i, x〉2c2
n

2nλ2
n,i

)
= ∞ or

∑
n : an=−1

n−1 exp

(
−

2∑
i=1

〈un,i, x̃〉2c2
n

2nλ2
n,i

)
= ∞.

Recalling Lemma 5.3 we see that f = (x1h1, x2h2) ∈ A implies (x1, x2) ∈ A or
x̃ = (−x1, x2) ∈ A.

Rewriting f as (−x1g1, x2g2) if x̃ ∈ A, where g1 = −h1, g2 = h2 we see that f

has always the desired form in Case 1.
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Case 2 ρ = 0 . In this case we have by definition of ρ for any ε > 0,

∑
n∈J (ε)

n−1 exp
(
−I (〈un,1, f 〉)c2

n

2nλ2
n,1

)
= ∞,

which in turn implies if ε < |x| that

∑
n∈J (ε)

n−1 exp
(
−(|x|2 − ε2)c2

n

2nλ2
n,1

)
= ∞.

Here we have again used relation (7.2) from which we can infer that

I
(〈un,1, f 〉) ≥ |x|2 − ε2, n ∈ J (ε).

Choosing yn = (±x1, x2) so that 〈un,2, yn〉2 ≤ I (〈un,2, f 〉), n ≥ 1, we get for ε <

|x| and n ∈ J (ε),

2∑
i=1

(|〈un,i, yn〉| − ε)2+
λ2

n,i

= (|〈un,1, yn〉| − ε)2+
λ2

n,1

≤ (|yn| − ε)2

λ2
n,1

≤ |x|2 − ε2

λ2
n,1

,

and we can conclude that
∞∑

n=n0

n−1 exp

(
−

2∑
i=1

(|〈un,i, yn〉| − ε)2+c2
n

2nλ2
n,i

)
= ∞, ε < |x|.

This implies as in Case 1 that (x1, x2) ∈ A or x̃ = (−x1, x2) ∈ A and finally that f

has the desired form.
If f is an extremal function we can find a sequence fn of nonextremal

functions converging to it (in sup-norm). These functions fn have the form
(xn,1gn,1, xn,2gn,2) where (xn,1, xn,2) ∈ A and gn,i ∈ K, i = 1,2. By compactness
of A and K we can find a subsequence nk so that (xnk,1, xnk,2) and gnk,i con-
verge to (x1, x2) ∈ A and gi ∈ K, i = 1,2, respectively. Consequently we have
f = limk→∞(xnk,1gnk,1, xnk,2gnk,2) = (x1g1, x2g2) and Theorem 2.3 has been
proven.

REMARKS. (1) The same proof shows that if we use an arbitrary orthonormal
basis {u, v} of R

2 to express X, then we have

A ⊂ {
f1〈x,u〉u + f2〈x, v〉v :f1, f2 ∈ K, x ∈ A

}
.

In certain cases this can lead to a smaller upper bound set than that one obtained
from Theorem 2.3, which has X given in terms of the canonical basis.

(2) One might wonder whether the result also holds in dimension d ≥ 3. In
the present proof we have used the following fact about quadratic forms in R

2

[see (7.1)] which has no direct analogue in higher dimensions: Given two sym-
metric positive semidefinite (2,2)-matrices A,B with Ai,i = Bi,i, i = 1,2 and
|A1,2| ≤ |B1,2|, one has for any x = (x1, x2) ∈ R

2: 〈x,Ax〉 ≥ 〈x,Bx〉 ∧ 〈x̃,Bx̃〉,
where x̃ = (−x1, x2).
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So clearly a different proof would be necessary in order to prove this result in
higher dimensions if this is possible at all.

8. An example. In this final section we show that for any nonempty closed
subset Ã of Rd which is star-like and symmetric w.r.t. 0 there are d-dimensional
distributions such that Ã is the cluster set for Sn/cn and at the same time the
functional cluster set A is of the form {xg :x ∈ Ã, g ∈ K}.

This can be done for the generalized LIL in [8]; that is, such distributions exist

for the normalizing sequence cn =
√

2n(log logn)1+p , where p > 0. To simplify

notation, we will prove this only if p = 1 and if the set Ã is such that max
x∈Ã

|x| =
1. It should be obvious to the reader how to do the “general” case once he or she
has seen how it works for this special case.

The point is that this phenomenon occurs for very regular normalizing se-
quences.

THEOREM 8.1. Let Ã be a set in R
d which is symmetric and star-like with

respect to zero and which satisfies max
x∈Ã

|x| = 1. Then, one can find a d-
dimensional distribution Q such that for X1,X2, . . . independent Q-distributed
random vectors and Sn = ∑n

j=1 Xj,n ≥ 1, we have with probability one,

lim sup
n→∞

|Sn|/
√

2n(log logn) = 1,(8.1)

C
({

Sn/
√

2n(log logn) :n ≥ 3
}) = Ã,(8.2)

C
({

S(n)/
√

2n(log logn) :n ≥ 3
}) = {

(x1g, . . . , xdg) :g ∈ K, x ∈ Ã
}
.(8.3)

To prove this result, we use a similar idea as in Theorem 5 of [4] and Theorem 2
of [7]: we start with the construction of a real random variable Z in the domain of
attraction of the normal distribution, and then we define a suitable random vector
X :� → R

d as a function of this variable Z. Due to the use of the normalizing
sequence cn = √

2n log logn instead of the normalizers used in [4, 7], and the
recent work of [8, 9], some simplification is possible.

PROOF OF THEOREM 8.1. Step 1. Definition of the random variable Z. We
first define a monotone right continuous function H : [0,∞[→ [0,∞[ which sat-
isfies

lim inf
t→∞ H(t)/ log log t = 0 and lim sup

t→∞
H(t)/ log log t = 1.

We set for k ≥ 1, mk = 32k3

, mk,0 = mk and mk,� = 32k3+�k
for 0 ≤ � ≤ k. Further-

more, we define mk,k+1 = mk+1 and nk,� = mk,�+1 − k3,0 ≤ � ≤ k.
We assume that H(t), t ≥ 0 satisfies

H(t) = dn, exp(n) ≤ t < exp(n + 1), n ≥ 1,
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where

dn = 0, 0 ≤ n < m1 and for k ≥ 1,

dn = dmk,�
= (log 3)2k3+�k, mk,l ≤ n ≤ nk,l,0 ≤ � ≤ k,

dnk,�+j = (log 3)2k3+�k+j/k2
, 1 ≤ j ≤ k3,0 ≤ � ≤ k − 1,

dnk,k+j = (log 3)2(2k2+3k+1)jk−3+k2+k3
, 1 ≤ j ≤ k3.

From this definition we note dn is defined for every integer n ≥ 0, and we readily
obtain H(t) ≤ log log t, t ≥ e. We also have

H
(
exp(mk,�)

) = logmk,�, 0 ≤ � ≤ k + 1, k ≥ 1,

so that indeed lim supt→∞ H(t)/ log log t = 1.
Further note that

H(t) = H
(
exp(mk,�)

)
, exp(mk,�) ≤ t < exp(nk,� + 1), 0 ≤ � ≤ k,

which implies lim inft→∞ H(t)/ log log t = 0 as lognk,�/ logmk,� ≥ 2k −1 for 0 ≤
� ≤ k.

Similarly as in Lemma 8 of [4] we define a symmetric and discrete random
variable Z :� → R with support {0,± exp(n) :n ≥ m1} such that E[Z2I {|Z| ≤
t}] = H(t), t ≥ 0.

To accomplish this we set qn = (dn − dn−1)e
−2n/2, n ≥ m1.

It is easily checked that
∑∞

n=m1
qn < 1/2. Thus there exists a discrete random

variable satisfying P{Z = exp(n)} = P{Z = − exp(n)} = qn,n ≥ m1 and P{Z =
0} = 1 − 2

∑∞
n=m1

qn.
An easy calculation then shows that E[Z2I {|Z| ≤ t}] = H(t), t ≥ 0.
Moreover, since dn+1/dn → 1 as n → ∞, we have H(et)/H(t) → 1 as t → ∞.

Consequently, the function H is slowly varying at infinity. It follows that Z is in
the domain of attraction of the normal distribution. Recall that this implies among
other things that

t2
P
{|Z| > t

}
/H(t) → 0 as t → ∞.(8.4)

Step 2. Definition of the random vector X :� → R
d . We write the set Ã as

a closure of a union of countably many symmetric line segments, that is, Ã =
cl(

⋃∞
j=1 Lj ), where Lj = {tzj : |t | ≤ σj }, |zj | = 1 and 0 < σj ≤ 1, j ≥ 1. Note

that we also have this representation if Ã is a union of finitely many symmetric line
segments Lj ,1 ≤ j ≤ m. In this case we simply set Lj = L1, j ≥ m+1. Moreover,
by repeating some of the line segments Lj in the representation of Ã if necessary,
we may assume without loss of generality that σ 2

j ≥ 1/j, j ≥ 1. Furthermore, we
can and do assume that σ1 = 1 (since there must be a line segment with σj = 1 as
max

x∈Ã
|x| = 1).
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We now can define a suitable random vector X :� → R
d as follows:

X =
∞∑

k=1

k+1∑
�=1

σ�z�ZI
{
exp(mk,�−1) < |Z| ≤ exp(mk,�)

}
.

From the definition of X and the H -function it follows that for any x ∈ R
d with

|x| = 1 and for exp(mk,�−1) ≤ t ≤ exp(mk,�),1 ≤ � ≤ k + 1, k ≥ 1

E
[〈X,x〉2I

{|Z| ≤ t
}] ≤ H

(
exp(mk,�−1)

)
(8.5)

+ σ 2
� 〈x, z�〉2[H(t) − H

(
exp(mk,�−1)

)]
,

E
[〈X,x〉2I

{|Z| ≤ t
}] ≥ σ 2

� 〈x, z�〉2[H(t) − H
(
exp(mk,�−1)

)]
.(8.6)

Step 3. Proof of the upper bound in (8.1).
Note that X has a symmetric distribution since the distribution of Z is sym-

metric. Moreover, |X| ≤ |Z| so that EX exists and it has to be equal to zero by
symmetry.

Set

HX(t) := sup
{
E
[〈v,X〉2I

{|X| ≤ t
}]

: |v| ≤ 1
}
, t ≥ 0.

Observe that we have for any vector v ∈ R
d with |v| ≤ 1,

E
[〈v,X〉2I

{|X| ≤ t
}] = E

[〈v,X〉2I
{|Z| ≤ t

}]
+ E

[〈v,X〉2I
{|X| ≤ t, |Z| > t

}]
≤ E

[
Z2I

{|Z| ≤ t
}]+ t2

P
{|Z| > t

}
= H(t) + t2

P
{|Z| > t

}
.

Recalling (8.4), we can conclude that lim supt→∞ HX(t)/H(t) ≤ 1 which in turn
implies that

lim sup
t→∞

HX(t)/ log log t ≤ 1,

and hence by using Corollary 2.5 in [6] with p = 2, we see that with probability
one,

lim sup
n→∞

|Sn|/
√

2n log logn ≤ 1.(8.7)

Moreover, the comment following Corollary 2.5 in [6] also implies

∞∑
n=1

P
(|X| ≥ √

2nlog logn
)
< ∞.(8.8)

Step 4. Proof of (8.2). Here it is enough to show “⊃.” The inclusion “⊂”
will follow from the inclusion “⊂” in (8.3) using again the fact that A =
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C({Sn/
√

2n log logn :n ≥ 3}) is equal to {f (1) :f ∈ A} where A is the cor-
responding functional cluster set. To simplify notation, we write cn instead of√

2n log logn,n ≥ 3.
Since C({Sn/cn :n ≥ 3}) is a closed subset of R

d , it is obviously enough to show
that

Lj ⊂ C
({Sn/cn :n ≥ 3}), j ≥ 1.

We also know that the cluster set is symmetric and star-like with respect to 0 so
that we only need to prove that

σjzj ∈ C
({Sn/cn :n ≥ 3}), j ≥ 1.(8.9)

Furthermore, it follows by a slight modification of the proof of Theorem 4.3(b) [us-
ing a different truncation level which is possible since |X| ≤ |Z| and

∑∞
n=1 P{|Z| ≥

cn} < ∞ by (8.8)], that

x ∈ C
({Sn/cn}) a.s. ⇐⇒

(8.10) ∞∑
n=3

n−1
P
{|x − √

nYn/cn| < ε
} = ∞, ε > 0,

where Yn is normal(0, (�′
n)

2)-distributed with (�′
n)

2 = cov(XI {|Z| ≤ cn}).
Set for k ≥ j ,

Ik,j = {
n : exp(mk,j ) ≤ cn ≤ exp(2mk,j )

}
.

Then we have by (8.6)

E
[〈X,zj 〉2I

{|Z| ≤ cn

}] ≥ E
[〈X,zj 〉2I

{|Z| ≤ exp(mk,j )
}]

≥ σ 2
j

[
H
(
exp(mk,j )

)− H
(
exp(mk,j−1)

)]
.

Since H(exp(mk,�)) = logmk,�, � = j − 1, j and logmk,j ≥ 2k logmk,j−1, we get
for n ∈ Ik,j ,

Var
(〈zj , Yn〉) = E

[〈X,zj 〉2I
{|Z| ≤ cn

}] ≥ σ 2
j

(
1 − 2−k) logmk,j .(8.11)

Similarly, we can infer from (8.5) for any vector w such that |w| = 1 and 〈w,zj 〉 =
0,

Var
(〈w,Yn〉) ≤ H

(
exp(mk,j−1)

) ≤ 2−k logmk,j , n ∈ Ik,j .(8.12)

Let 0 < ε < σj and recall that σj ≤ 1. Choosing an orthonormal basis {wj,1, . . . ,

wj,d} of R
d with wj,1 = zj , we then have with ε1 := ε/

√
d ,

P{|σjzj − √
nYn/cn| < ε}

≥ P
{∣∣σj − √

n〈zj , Yn〉/cn

∣∣ < ε1,
√

n
∣∣〈wj,i, Yn〉/cn

∣∣ < ε1,2 ≤ i ≤ d
}

≥ P
{∣∣σj − √

n〈zj , Yn〉/cn

∣∣ < ε1
}−

d∑
i=2

P
{∣∣〈wj,i, Yn〉

∣∣ ≥ ε1cn/
√

n
}
.
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Using the fact that log logn ≥ log log cn ≥ logmk,j , n ∈ Ik,j , we obtain from (8.12)
for 2 ≤ i ≤ d , n ∈ Ik,j and large enough k,

P
{∣∣〈wj,i, Yn〉

∣∣ ≥ ε1cn/
√

n
} ≤ exp

(−ε2
12k(log logn)2/ logmk,j

)
(8.13)

≤ m−2
k,j .

On the other hand, we have for n ∈ Ij,k and large enough k,

P
{∣∣σj − √

n〈zj , Yn〉/cn

∣∣ < ε1
} ≥ P

{〈zj , Yn〉 ≥ (σj − ε1)cn/
√

n
}
/2.

Next observe that

cn/
√

n = √
2 log logn ≤ √

2 log log c2
n ≤ √

2 log(4mk,j ), n ∈ Ik,j .

Combining (8.11) with the obvious fact that log(4mk,j )/ log(mk,j ) → 1 as k →
∞, we get for n ∈ Ij,k and large enough k that

P
{〈zj , Yn〉 ≥ (σj − ε1)cn/

√
n
} ≥ P

{
ξ > (1 − ε1/2)

√
2 logmk,j

}
,

where ξ is standard normal.
Employing the trivial inequality P{ξ ≥ t} ≥ t−1 exp(−t2/2)/

√
8π, t ≥ 1, we

get for n ∈ Ik,j and large k,

P
{∣∣σj − √

n〈zj , Yn〉/cn

∣∣ < ε1
} ≥ (64π)−1/2(logmk,j )

−1m
−1+ε1/2
k,j .

Recalling (8.13), we can conclude that for n ∈ Ik,j and large k,

P
{|σjzj − √

nYn/cn| < ε
} ≥ 16−1(logmk,j )

−1m
−1+ε1/2
k,j .

Set ak,j = min Ik,j and bk,j = max Ij,k . Then we have

∑
n∈Ik,j

n−1 =
bk,j∑

n=ak,j

n−1 ≥ log
(
(bk,j + 1)/(ak,j − 1)

)− 1.

As we have cn/cm ≤ n/m,n ≥ m, we can infer from the definition of Ik,j that∑
n∈Ik,j

n−1 ≥ mk,j − 1.

We now see that as k → ∞,∑
n∈Ik,j

n−1
P
{|σjzj − √

nYn/cn| < ε
} → ∞,

which in view of (8.10) means that σjzj ∈ C({Sn/cn}), j ≥ 1.
Thus C({Sn/

√
2n log logn :n ≥ 3}) ⊃ Ã.

Notice that this also implies

lim sup
n→∞

|Sn|/
√

2n log logn ≥ 1 a.s.
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since Ã contains the vector z1 which has norm 1. Combining this observation with
the upper bound (8.7) we see that (8.1) holds.

Step 5. Proof of (8.3). It remains only to prove the inclusion “⊂.” The other
inclusion follows directly from the inclusion “⊃” in (8.2) and (2.5), since the as-
sumptions of Theorem 2.1 hold by (8.8), and we have already verified (8.1).

As in the proof of (8.2) we set cn = √
2n log logn,n ≥ 3. Moreover, we replace

the matrices �n in Theorem 4.1 by the symmetric and positive semidefinite matri-
ces �′

n satisfying (
�′

n

)2 = cov
(
XI

{|Z| ≤ cn

})
, n ≥ 1.

That this is possible follows easily from the proof of Theorem 4.1. Recall that
|X| ≤ |Z| and that

∑∞
n=1 P{|Z| ≥ cn} < ∞.

Using again the notation sn = S(n)/
√

2n log logn,n ≥ 3, we thus have

f ∈ C
({sn}) a.s. ⇐⇒

(8.14) ∞∑
n=3

n−1
P
{∥∥�′

nW(n)/cn − f
∥∥ < ε

} = ∞ ∀ε > 0.

Setting Kj := {σjzjf :f ∈ K}, j ≥ 1, it is easy to see that

Ã := {xg :x ∈ Ã, g ∈ K} = cl

( ∞⋃
j=1

Kj

)
.

We shall show that if f /∈ Ã, then the series in (8.14) has to be finite for ε := δ/2,
where δ := d(f, Ã) is obviously positive since Ã is closed.

With this choice of ε, we clearly have

P
{∥∥�′

nW(n)/cn − f
∥∥ < ε

} ≤ P
{
d
(
�′

nW(n)/cn, Ã
) ≥ ε

}
.(8.15)

Define for k ≥ 1,

Jk,� = {
n : exp(mk,�) ≤ cn < exp(nk,�)

}
, 0 ≤ � ≤ k,

J ′
k,� = {

n : exp(nk,�) ≤ cn < exp(mk,�+1)
}
, 0 ≤ � ≤ k.

Employing once more inequality (8.5) and recalling the definition of H , we see
that for all n ∈ Jk,�,∣∣�′

nz�

∣∣2 = E
[〈X,z�〉2I

{|Z| ≤ cn

}] ≤ (
σ 2

� + 2−k) logmk,l(8.16)

and for any vector w such that 〈z�,w〉 = 0, |w| = 1,∣∣�′
nw

∣∣2 = E
[〈X,w〉2I

{|Z| ≤ cn

}] ≤ 2−k logmk,�.(8.17)

Let again {w�,1, . . . ,w�,d} be an orthonormal basis of R
d with w�,1 = z�. Then,

�′
nW(n) =

d∑
i=1

〈
w�,i,�

′
nW(n)

〉
w�,i = 〈

�′
nz�,W(n)

〉
z� +

d∑
i=2

〈
�′

nw�,i,W(n)

〉
w�,i .
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Set ε1 = ε/
√

d . Using the above representation and the trivial fact that d(f, Ã) ≤
d(f, K�) for any � ≥ 1 with K� = σ�z�K, we can infer from (8.15) that

P
{∥∥�′

nW(n)/cn − f
∥∥ < ε

} ≤ P
{
d
(〈
�′

nz�,W(n)

〉
/cn, σ�K

) ≥ ε1
}

+
d∑

i=2

P
{∥∥〈�′

nw�,i,W(n)

〉∥∥ ≥ ε1cn

}
.

To bound the first probability on the right-hand side, we make use of an inequality
for standard 1-dimensional Brownian motion W ′(t),0 ≤ t ≤ 1 which is due to
Talagrand [19] and which states that there exists an absolute constant C > 0 such
that for any λ > 0 and x > 0,

P
{
d
(
W ′, λK

) ≥ x
} ≤ exp

(
Cx−2 − xλ/2 − λ2/2

)
.

As 〈�′
nz�,W(n)〉/√n

d= |�′
nz�|W ′, we have

P
{
d
(〈
�′

nz�,W(n)

〉
/cn, σ�K

) ≥ ε1
} = P

{
d
(
W ′, λnK

) ≥ xn

}
,

where λn = σ�

√
2 log logn/|�′

nz�| and xn = ε1
√

2 log logn/|�′
nz�|.

Recalling (8.16) and noticing that logmk,� ≤ log log cn ≤ log logn,n ∈ Jk,�, we
can conclude that for n ∈ Jk,� and large enough k,

P
{
d
(〈
�′

nz�,W(n)

〉
/cn, σ�K

) ≥ ε1
}

≤ exp
(
Cε−2

1
σ 2

� + 2−k

2 log logn
− σ�(σ� + ε1)

σ 2
� + 2−k

log logn

)

≤ 2(logn)−1−ε1/2.

To see this observe that if n ∈ Jk,� and 1 ≥ σ 2
� ≥ 1/�, � ≥ 1, we have for � ≤ k + 1

and large k that

σ�(σ� + ε1)

σ 2
� + 2−k

≥ 1 + ε1

1 + 2−kσ−2
�

≥ 1 + ε1

1 + 2−k(k + 1)
≥ 1 + ε1/2.

Similarly, using the fact that 〈�′
nw�,i,W(n)〉/√n

d= |�′
nw�,i |W ′ in conjunction with

the inequality P{‖W ′‖ ≥ x} ≤ 2 exp(−x2/2), x > 0, we get from (8.17) for n ∈
Jk,� and 2 ≤ i ≤ d that

P
{∥∥〈�′

nw�,i,W(n)

〉∥∥ ≥ ε1cn

}
≤ P

{∣∣�′
nw�,i

∣∣∥∥W ′∥∥ ≥ ε1
√

2 log logn
} ≤ 2(logn)−2kε2

1 .

It follows that
∞∑

k=1

k∑
�=1

∑
n∈Jk,�

n−1
P
{∥∥�′

nW(n)/cn − f
∥∥ < ε

}
< ∞.(8.18)
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We still need that
∞∑

k=1

k∑
�=1

∑
n∈J ′

k,�

n−1
P
{∥∥�′

nW(n)/cn − f
∥∥ < ε

}
< ∞.(8.19)

To prove that, we simply note that ‖f ‖ ≥ 2ε since d(f, Ã) = 2ε and 0 ∈ Ã. Con-
sequently, we have for any n ≥ 1,

P
{∥∥�′

nW(n)/cn − f
∥∥ < ε

} ≤ P
{∥∥�′

nW(n)

∥∥ ≥ εcn

} ≤ P
{∥∥�′

n

∥∥‖W(n)‖ ≥ εcn

}
.

From the definition of X it immediately follows that ‖�′
n‖2 ≤ H(cn) ≤ log logn,

n ≥ 3. Thus we have

P
{∥∥�′

nW(n)/cn − f
∥∥ < ε

} ≤ P
{‖W(n)‖ ≥ ε

√
2n log logn

} ≤ 2d(logn)−ε2/d .

Using a similar argument as in the proof of (8.2) and c2
n/c

2
m ≥ n/m,m ≤ n, we

find that∑
n∈J ′

k,�

n−1 ≤ 2(mk,�+1 − nk,�) + 1 = 2k3 + 1, 1 ≤ � ≤ k, k ≥ 1.

As we have logmk,0 ≥ 2k3
, k ≥ 1, we can conclude that

k∑
�=1

∑
n∈J ′

k,�

n−1
P
{∥∥�′

nW(n)/cn − f
∥∥ < ε

} ≤ 2d
(
2k4 + k

)
2−ε2k3/d, k ≥ 1,

which trivially implies (8.19).
Combining (8.18) and (8.19), it follows from (8.14) that f /∈ C({sn}). We see

that (8.3) holds and the theorem has been proven. �
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