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CHARACTERIZATION OF POSITIVELY CORRELATED SQUARED
GAUSSIAN PROCESSES

BY NATHALIE EISENBAUM

CNRS, Université Pierre et Marie Curie

We solve a conjecture raised by Evans in 1991 on the characterization
of the positively correlated squared Gaussian vectors. We extend this char-
acterization from squared Gaussian vectors to permanental vectors. As side
results, we obtain several equivalent formulations of the property of infinite
divisibility for squared Gaussian processes.

1. Introduction. A random vector (ψj )1≤j≤n of R
n is said to be “associated”

or “positively correlated” if for every couple of increasing functions F,G from R
n

into R (i.e., F and G are increasing in each variable)

E
(
FG

(
(ψj )1≤j≤n

)) ≥ E
(
F

(
(ψj )1≤j≤n

))
E

(
G

(
(ψj )1≤j≤n

))
.(1.1)

In 1982, Pitt [16] has shown that a centered Gaussian vector η = (ηi)1≤i≤n is
“positively correlated” iff the entries of its covariance matrix are all nonnegative,
which means that the Gaussian vector is positively correlated in the usual sense.
To distinguish between the two meanings for positive correlation, we will keep the
writing “positively correlated,” in inverted commas, to refer to the definition (1.1).

In 1991, Evans [9] conjectured that given a centered Gaussian vector η =
(ηi)1≤i≤n, the squared centered Gaussian vector η2 = (η2

i )1≤i≤n is “positively
correlated” iff there exists a function σ from {1 ≤ i ≤ n} into {−1,1} such that
(σ (i)ηi)1≤i≤n is positively correlated.

We prove the following:

THEOREM 1.1. A squared centered Gaussian vector is “positively corre-
lated” if and only if it is infinitely divisible.

Evans condition for a squared centered Gaussian vector to be “positively corre-
lated” is hence necessary but not sufficient. Indeed, several necessary and sufficient
conditions for a squared centered Gaussian vector to be infinitely divisible have
been established that allow to see this. The first one was found by Griffiths [12] in
1983, simplified then by Bapat [1]. This condition has been translated in terms of
Green function of Markov processes by Eisenbaum and Kaspi [6]. Another version
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of this condition has been established by Vere-Jones [17]. We will use Vere-Jones
characterization of infinitely divisible squared Gaussian vectors to establish three
other equivalent necessary and sufficient conditions for a squared centered Gaus-
sian process with continuous covariance to be “positively correlated.” One extends
the definition (1.1) from vectors to processes by saying that a process is “positively
correlated” if all its finite-dimensional marginals are “positively correlated.”

Eisenbaum and Kaspi’s characterization stems from the desire to understand
which were the Gaussian processes involved in Dynkin’s isomorphism theo-
rem [4]. Here is a brief presentation of the content of this theorem. Consider a
symmetric transient Markov process X with state space E and 0-potential den-
sity (i.e., Green function) (g(x, y), (x, y) ∈ E × E). The function g is positive
definite. Denote by (ηx)x∈E a centered Gaussian process with covariance g, inde-
pendent of X. For a, b in E such that g(a, b) > 0, denote by P̃ab the probability
under which X starts at a and dies at its last visit to b. Besides, X admits a lo-
cal time process. Denote by (L̃ab(x), x ∈ E) the process of the total accumulated
local times under P̃ab. Then according to Dynkin’s isomorphism theorem, the pro-
cess (L̃ab(x) + 1

2η2
x, x ∈ E) has the same law as (1

2η2
x, x ∈ E) under the measure

1
E[ηaηb]E[ηaηb, ·].

This identity in law immediately raises two questions: Which are the centered
Gaussian processes with a covariance equal to a Green function? Which are the
centered Gaussian processes η such that the law of η2 under E[ηaηb, ·] is a positive
measure?

An answer to the first question has been given in [6] (completed then in [5]; see
(1.3) below) under the following form. Given a centered Gaussian process (ηx)x∈E

with a continuous positive definite covariance (G(x, y), (x, y) ∈ E × E), (η2
x)x∈E

is infinitely divisible if and only if there exist a real nonnegative measurable func-
tion d on E and a function g on E2 such that

G(x,y) = d(x)g(x, y)d(y)(1.2)

and g is the Green function of a symmetric transient Markov process.
The corollary below actually provides three alternative formulations to this an-

swer. One of them is our solution to Evans conjecture for processes. Another one
answers also to the second question. To introduce the remaining one, we will use
the following definition.

DEFINITION 1.2. A random process (φt )t∈E is said to satisfy Fortuyin Kaste-
leyn Ginibre’s inequality (FKG inequality) if for some reference positive measure
m, for every integer n, every t = (t1, t2, . . . , tn) in En, (φt1, φt2, . . . , φtn) has a den-
sity with respect to m(dx1) · · ·m(dxn) product measure on R

n denoted by ht such
that for every x, y in R

n,

ht (x)ht (y) ≤ ht (x ∧ y)ht (x ∨ y),
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where x ∧ y = (x1 ∧ y1, x2 ∧ y2, . . . , xn ∧ yn) and x ∨ y = (x1 ∨ y1, x2 ∨ y2, . . . ,

xn ∨ yn).

COROLLARY 1.3. Let (ηx)x∈E be a centered Gaussian process with a con-
tinuous positive definite covariance (G(x, y), (x, y) ∈ E × E). The following four
properties are equivalent:

(1) η2 is infinitely divisible.
(2) η2 is “positively correlated.”
(3) η2 satisfies the FKG inequality.
(4) For every (a, b) in E2, the law of η2 under E[ηaηb, ·] is a positive measure.

Once the question of the characterization of “positively correlated” squared cen-
tered Gaussian processes is solved, one may ask the same question for shifted
Gaussian processes. In particular, given a centered Gaussian process (ηx)x∈E and a
real number r , when is the process ((ηx + r)2)x∈E “positively correlated”? Thanks
to [2] and [8], we know a sufficient condition for the realization of that property:
the infinite divisibility of ((ηx + r)2)x∈E . But there is not known characterization,
in terms of the covariance of η, of that condition for a fixed r . Nevertheless, in [5],
we have established the following characterization. Assuming that the set E con-
tains more that two elements (see Remark 4.2), let (ηx)x∈E be a centered Gaussian
process with a continuous covariance(

(ηx + r)2)
x∈E is infinitely divisible for every real r,

if and only if(1.3)

the covariance of η is the Green function of a transient Markov process.

This will be used to enunciate another sufficient condition for ((ηx + r)2)x∈E to
be “positively correlated” for every r .

The paper is organized as follows. In Section 2 we prove Theorem 1.1. We
then deduce Corollary 1.3. The proofs involve stochastic comparison of squared
centered Gaussian vectors. As a side result, for a given covariance G, we give
necessary and sufficient conditions for the stochastic monotonicity of the family
of squared Gaussian vectors with the resolvents of G for respective covariance.

In Section 3 we extend our characterization of “positively correlated” squared
Gaussian vectors to permanental vectors. This extension is legitimated by the fact
that a connection, similar to Dynkin isomorphism theorem, has been established
in [6], between permanental processes and local times of not necessarily symmetric
Markov processes.

In Section 4 we establish an equivalent formulation of (1.3).
As it will be shown in Sections 2, 3 and 4, many properties of Gaussian pro-

cesses and, more generally, of permanental processes, are hence conditioned to the
fact that their kernel is a Green function or not. So it is interesting to mention a
way to generate Green functions. This is done in Section 5.
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2. Proof of Theorem 1.1 and Corollary 1.3. The proof of Theorem 1.1 will
show some other equivalent properties to infinite divisibility for squared Gaussian
vectors. To formulate them, we make use of the following definitions.

DEFINITION 2.1. A random vector (φi)1≤i≤n of R
n stochastically dominates

another random vector (ψi)1≤i≤n of R
n if for any increasing function F from R

n

into R,

E
[
F(φ1, φ2, . . . , φn)

] ≥ E
[
F(ψ1,ψ2, . . . ,ψn)

]
.

DEFINITION 2.2. Let (φt1, φt2, . . . , φtn) and (ψt1,ψt2, . . . ,ψtn) be two ran-
dom vectors of R

n, such that there exists a positive measure m on R, such that their
laws both admit respective densities h and f with respect to m(dx1) · · ·m(dxn)

product measure on R
n. If for every x, y in R

n,

f (x)h(y) ≤ f (x ∧ y)h(x ∨ y),

then one says that (φt1, φt2, . . . , φtn) is strongly stochastically bigger than (or
strongly stochastically dominates) (ψt1,ψt2, . . . ,ψtn).

One extends this definition to a couple (φ,ψ) of real-valued processes indexed
by the same set by saying that φ is strongly stochastically bigger than ψ when all
the finite-dimensional marginals of φ and ψ satisfy the above relation.

Strong stochastic domination implies usual stochastic domination.

DEFINITION 2.3. Let C be a positive semi-definite matrix. For α > 0, one
defines the associated α-resolvent matrix as Cα = (I + αC)−1C.

We have the following corollary of Theorem 1.1.

COROLLARY 2.4. Let η = (ηi)1≤i≤n be a centered Gaussian vector with co-
variance G, an n×n-positive definite matrix. Denote by ηα = (ηα(i))1≤i≤n a cen-
tered Gaussian vector with covariance Gα . Then the four following points are
equivalent:

(i) η2 is infinitely divisible.
(ii) The family of vectors (η2

α)α≥0 is stochastically decreasing as α increases
on R

+.
(iii) The family of vectors (η2

α)α≥0 is strongly stochastically decreasing as α

increases on R
+.

(iv) For every couple (i, j), 1 ≤ i, j ≤ n, for every n × n diagonal matrix D,
(E[|ηα(i)ηα(j)|])α≥0 is decreasing as α increases on R

+ when G is replaced
by DGD.
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We adopt the following notation from the paper [13]. For C a n × n-positive
definite matrix and any measurable function F on R

n, EC[F(η)] denotes the ex-
pectation with respect to a centered Gaussian vector η with covariance matrix C.

PROOF OF THEOREM 1.1. Thanks to [2] or [8], we know that if the vector η2

is infinitely divisible, then it is “positively correlated.” We prove now the converse.
Assume that η2 is “positively correlated.” Denote by G = (G(i, j))1≤i,j≤n its

covariance matrix. For every decreasing function F,H on R
n we have

EG

(
FH

(
η2)) ≥ EG

(
F

(
η2))

EG

(
H

(
η2))

and, in particular, for every α, ε > 0

EG

(
e−((α+ε)/2)

∑n
i=1 η2

i
) ≥ EG

(
e−(α/2)

∑n
i=1 η2

i
)
EG

(
e−(ε/2)

∑n
i=1 η2

i
)
.(2.1)

Moreover, for any decreasing function F on R
n+, we have

EG

(
F

(
η2)

e−((α+ε)/2)
∑n

i=1 η2
i
)

(2.2)
≥ EG

(
F

(
η2)

e−(α/2)
∑n

i=1 η2
i
)
EG

(
e−(ε/2)

∑n
i=1 η2

i
)
.

We make use now of a remark of Marcus and Rosen (Remark 5.2.4, page 200
in [15]) according to which for all measurable function K on R

n,

EG

[
K(η)e−(α/2)

∑n
i=1 η2

i
] = EGα

[
K(η)

]
EG

[
e−(α/2)

∑n
i=1 η2

i
]
.(2.3)

In particular, we have

EG

[
F

(
η2)

e−(α/2)
∑n

i=1 η2
i
] = EGα

[
F

(
η2)]

EG

[
e−(α/2)

∑n
i=1 η2

i
]
.(2.4)

We mention that, unlike for (2.3), one does not need to assume that G is invertible
to obtain (2.4) (for a direct proof see the proof of Proposition 3.2 in Section 3).

Thanks to (2.4), (2.2) can be rewritten as

EGα+ε

[
F

(
η2)]

EG

[
e−((α+ε)/2)

∑n
i=1 η2

i
]

≥ EGα

[
F

(
η2)]

EG

[
e−(α/2)

∑n
i=1 η2

i
]
EG

(
e−(ε/2)

∑n
i=1 η2

i
)
.

Consequently, for every increasing function F , we obtain, thanks to (2.1),

EGα+ε

[
F

(
η2)] ≤ EGα

[
F

(
η2)]EG[e−(α/2)

∑n
i=1 η2

i ]EG(e−(ε/2)
∑n

i=1 η2
i )

EG[e−((α+ε)/2)
∑n

i=1 η2
i ]

.

Thanks to (2.1), we finally obtain for every increasing, nonnegative function F

on R
n+,

EGα+ε

[
F

(
η2)] ≤ EGα

[
F

(
η2)]

.(2.5)
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Because of the restriction on the sign of F , the above inequality does not mean
stochastic domination but will be sufficient for our purpose. Indeed, for a fixed
α > 0, note that

Gα+ε = (I + εGα)−1Gα.

Set fα(ε) = EGα+ε [F(η2)], and note that fα is decreasing at 0.
Besides, we set Cij (Gα) = Gα(i, j). We also define a function F on the set of

covariance matrices by setting

F (C) = EC

[
F

(
η2)]

.

In [13], the derivatives of functions of the form EC[H(η)] with respect to the en-
tries of the matrix are computed. The authors work with a C2(Rn)-function H

which together with its first and second derivatives satisfy a O(|x|N) growth con-
dition at ∞, for some finite N . For F measurable function on R

n+ such that the
function H defined by H(x1, . . . , xn) = F(x2

1 , . . . , x2
n) satisfies this condition, one

easily obtains for i �= j ,

∂F
∂Cij

(C) = 4EC

[
ηiηj

∂2F

∂xi ∂xj

(
η2)]

(2.6)

and

∂F
∂Cii

(C) = 2EC

[
η2

i

∂2F

∂x2
i

(
η2)] + EC

[
∂F

∂xi

(
η2)]

.(2.7)

For ε small enough, we have Gα+ε = ∑∞
k=0(−1)kεk(Gα)k+1, hence,

Cij (Gα+ε) =
∞∑

k=0

(−1)kεk(Gα)k+1(i, j),(2.8)

which is a derivable function of ε at 0. We obtain

f ′
α(ε) = ∑

1≤i≤j≤n

∂F
∂Cij

(Gα+ε)
∂Cij

∂α
(Gα+ε),(2.9)

which, thanks to (2.6), (2.7) and (2.8), leads to

f ′
α(0) = −4

∑
1≤i<j≤n

EGα

[
ηiηj

∂2F

∂xi ∂xj

(
η2)]

(Gα)2(i, j)

(2.10)

−
n∑

i=1

EGα

[
2η2

i

∂2F

∂x2
i

(
η2) + ∂F

∂xi

(
η2)]

(Gα)2(i, i)

[we mention that (Gα)2(i, j) is not (Gα(i, j))2].
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We choose now to take F(x) = √
xixj , with i �= j . We first check that (2.6)

and (2.7) still hold. Indeed, the formulas computed in [13] are still available for
H(x) = |xixj |. For this choice (2.10) gives

EGα

[
sgn(ηiηj )

]
(Gα)2(i, j) ≥ 0.(2.11)

Note that for every (λk)1≤k≤n in R
n, the vector (λ2

kη
2
k)1≤k≤n is also “positively

correlated.” Consequently, setting λ = Diag((λk)1≤k≤n), one can replace Gα by
λGαλ in (2.11) to obtain

sgn(λiλj )EGα

(
sgn(ηiηj )

)
λiλj

n∑
k=1

Gα(i, k)λ2
kGα(k, j) ≥ 0,

which is equivalent to

n∑
k=1

λ2
kEGα

(
sgn(ηiηj )

)
Gα(i, k)Gα(k, j) ≥ 0.

Since this is true for every λ, we have

EGα

(
sgn(ηiηj )

)
Gα(i, k)Gα(k, j) ≥ 0 for every i, j, k with i �= j.(2.12)

We choose to take k = i and obtain

Gα(i, j)EGα

[
sgn(ηiηj )

] ≥ 0,(2.13)

which together with (2.12) leads to

Gα(j, i)Gα(i, k)Gα(k, j) ≥ 0 for every i, j, k with i �= j.(2.14)

We show now that this condition implies that there exists σα from {1,2, . . . , n}
into {−1,1} such that for every i, j ,

σα(i)Gα(i, j)σα(j) ≥ 0.(2.15)

We do it by recurrence on the size of the matrix Gα . Assume that our claim
is true at rank n and suppose that Gα is a (n + 1) × (n + 1)-covariance ma-
trix. We just need to define σα(n + 1). For every j, k in {1,2, . . . , n}, we have
σα(j)σα(k)Gα(j, k) ≥ 0. Since Gα(n+ 1, j)Gα(j, k)Gα(k, n+ 1) ≥ 0, we obtain
σα(j)σα(k)Gα(n + 1, j)Gα(n + 1, k) ≥ 0. Consequently, σα(j)Gα(n + 1, j) has
a constant sign independent of j , 1 ≤ j ≤ n, that we denote by σα(n + 1). This
implies immediately that σα(j)Gα(n + 1, j)σα(n + 1) ≥ 0.

We then easily check that our claim holds for n = 3.
For a real positive number β and a m×m-matrix M = (Mi,j )1≤i,j≤m, the quan-

tity perβ(M) is defined as follows: perβ(M) = ∑
τ∈Sm

βν(τ) ∏m
i=1 Mi,τ(i) where

Sm is the set of the permutations on {1,2, . . . ,m}, and ν(τ ) is the signature of τ .
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For every integer m, every k1, k2, . . . , km in {1,2, . . . , n} and every β > 0, we
hence have

perβ
((

Gα(ki, kj )
)
1≤i,j≤m

) = ∑
τ∈Sm

βν(τ)
n∏

i=1

Gα(ki, kτ(i))

= ∑
τ∈Sm

βν(τ)
n∏

i=1

σα(ki)σα(kτ(i))Gα(ki, kτ(i)) ≥ 0,

which is a sufficient condition for η2 to be infinitely divisible thanks to the Vere-
Jones criteria [17] (this criteria is recalled at the beginning of Section 3). �

PROOF OF COROLLARY 1.3. One can easily notice that (1) is equivalent
to (3). Indeed, according to Bapat [1], a centered Gaussian vector (ηi)1≤i≤n with
nonsingular covariance matrix G is such that (η2

i )1≤i≤n is infinitely divisible iff
there exists a signature matrix σ [a diagonal matrix such that σ(i, i) = −1 or 1]
such that σG−1σ is a M-matrix (i.e., its off-diagonal entries are nonpositive).
Thanks to [14], we know that this is also a necessary and sufficient condition for
(η2

i )1≤i≤n to satisfy the Fortuyin–Kasteleyn–Ginibre’s inequality. Note that there
is no need of the continuity of the covariance to then conclude on the equivalence
between (1) and (3).

Thanks to Theorem 1.1, we hence immediately have the equivalence of (1), (2)
and (3). Note that we did not have to use the well-known fact that (3) implies
(2) [11].

Under the assumption of continuity of G, we know thanks to [6] that (1) is real-
ized iff for every x, y in E, G(x,y) = d(x)g(x, y)d(y), with d a nonnegative mea-
surable function on E and g the Green function of some transient Markov process.
Denote by (η̃x, x ∈ E) a centered Gaussian process with covariance g. Thanks
to Dynkin’s isomorphism theorem, we know that for every a, b in E, the law of

(η̃2
x)x∈E under E[η̃aη̃b, ·] is a positive measure. Since (ηx)x∈E

(law)= (d(x)η̃x)x∈E ,
we see that (4) is realized.

To see that (4) implies (1), note first that for every x, y in E, G(x,y) ≥ 0.
Denote by G the matrix (G(xi, xj ))1≤i,j≤n for x1, x2, . . . , xn in E and denote by
Gα the α-resolvent matrix associated to G. We note that, thanks to (2.3), for every
α > 0, we have for every a and b in {x1, . . . , xn},

EG

[
ηaηbe

−(α/2)
∑n

i=1 η2
xi

] = EGα
[ηaηb]EG

[
e−(α/2)

∑n
i=1 η2

i
]

= Gα(a, b)EG

[
e−(α/2)

∑n
i=1 η2

i
]
.

Hence, for every α > 0, and every a and b, Gα(a, b) ≥ 0, which, according to
Vere-Jones (Proposition 4.5 in [17], recalled at the beginning of Section 3), is a
sufficient condition for (η2

xi
,1 ≤ i ≤ n) to be infinitely divisible. Since this is true

for every x1, . . . , xn, we conclude that η2 is infinitely divisible. �
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PROOF OF COROLLARY 2.4. We start by noting that the density fα of η2
α

with respect to the Lebesgue measure is connected to the density f0 of η2. Indeed,
thanks to (2.3), we have for a.e. x = (x1, x2, . . . , xn) in R

n+,

fα(x) = e−(α/2)
∑n

i=1 xi

E[exp{−(α/2)
∑n

i=1 η2
i }]

f0(x).(2.16)

Assume now that (i) is satisfied. Thanks to Corollary 1.3, this implies that η2 sat-
isfies the FKG inequality. Thanks to (2.16), one obtains for α < β and every x, y

in R
n+,

fα(x)fβ(y) ≤ fα(x ∨ y)fβ(x ∧ y),

which leads to (iii).
Now (iii) implies (ii) and (ii) implies (iv). The proof of Theorem 1.1 shows that

(iv) implies (i). �

3. The nonsymmetric case. A real-valued positive vector (ψi,1 ≤ i ≤ n) is
a permanental vector if its Laplace transform satisfies for every (α1, α2, . . . , αn)

in R
n+,

E

[
exp

{
−1

2

n∑
i=1

αiψi

}]
= |I + αG|−1/β,(3.1)

where I is the n × n-identity matrix, α is the diagonal matrix Diag((αi)1≤i≤n),
G = (G(i, j))1≤i,j≤n and β is a fixed positive number.

Such a vector (ψi,1 ≤ i ≤ n) is a permanental vector with kernel (G(i, j),1 ≤
i, j ≤ n) and index β .

Permanental vectors represent a natural extension of squared centered Gaussian
vectors. Indeed, for β = 2 and G covariance matrix, (3.1) is the Laplace transform
of a squared centered Gaussian vector.

Thanks to Vere-Jones (Proposition 4.5 in [17]), we know that there exists a
nonnegative random vector with Laplace transform given by (3.1) if and only if:

(I) All the real eigenvalues of G are nonnegative.
(II) For every α > 0, set Gα = (I + αG)−1G, then Gα is β-positive.

A n × n-matrix M = (M(i, j))1≤i,j≤n is said to be β-positive if for every inte-
ger m, every k1, k2, . . . , km in {1,2, . . . , n}

perβ
((

M(ki, kj )
)
1≤i,j≤m

) ≥ 0,

where for any m×m-matrix A = (A(i, j))1≤i,j≤m, the quantity perβ(A) is defined
as follows: perβ(A) = ∑

τ∈Sm
βν(τ) ∏m

i=1 Ai,τ(i), with Sm the set of the permuta-
tions on {1,2, . . . ,m}, and ν(τ ) the signature of τ .

Obviously, a permanental vector with kernel G is infinitely divisible if and only
if it satisfies the Vere-Jones conditions for every β > 0.
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Note that the kernel of a permanental vector is not uniquely determined. We
have proved in [6] that a permanental vector is infinitely divisible iff it admits as
kernel the Green function of some transient Markov process.

THEOREM 3.1. Let ψ be a permanental vector with index 2 and kernel G.
The two following properties are equivalent:

(1) ψ is infinitely divisible.
(2) ψ is “positively correlated.”

To prove Theorem 3.1, we need the following preliminary proposition, that will
be established at the end of this section.

PROPOSITION 3.2. For β > 0, let M be a n×n matrix such that there exists a
random nonnegative vector ψ = (ψ(1),ψ(2), . . . ,ψ(n)) with Laplace transform

E
(
e−(1/2)

∑n
i=1 xiψ(i)) = |I + xM|−1/β

for every (x1, x2, . . . , xn) in Rn+. Set for every α ≥ 0, Mα = M(I + αM)−1.
There exists a nonnegative random vector ψα = (ψα(1),ψα(2), . . . ,ψα(n))

with Laplace transform

E
(
e−(1/2)

∑n
i=1 xiψα(i)) = |I + xMα|−1/β .

The law of ψα is absolutely continuous with respect to the law of ψ . Moreover, for
every bounded measurable functional F on R

n+, we have

E
[
F(ψα)

] = E

[
exp{−(α/2)

∑n
i=1 ψ(i)}

E[exp{−(α/2)
∑n

i=1 ψ(i)}]F(ψ)

]
.

PROOF OF THEOREM 3.1. Let G be a n × n-matrix such that there exists a
permanental vector with index 2 and kernel G. For any measurable function F

on R
n+, EG[F(ψ)] denotes the expectation with respect to a permanental vector ψ

with covariance matrix G and index 2.
We already know, thanks to [2] or [8], that (1) implies (2). We show that (2)

implies (1). Assume that ψ is “positively correlated.” Thanks to Proposition 3.2,
for every measurable function F on R

n+,

EG

[
F(ψ)e−(α/2)

∑n
i=1 ψi

] = EGα

[
F(ψ)

]
EG

[
e−(α/2)

∑n
i=1 ψi

]
.(3.2)

Similarly as in the proof of Theorem 1.1, one hence obtains that for every nonneg-
ative increasing function F on R

n+,

EGα

[
F(ψ)

] ≤ EG

[
F(ψ)

]
.(3.3)
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Now we use the fact noticed in [17] that for every i �= j , GijGji ≥ 0. Remark that
for every permanental vector (ψi,ψj ) with index 2 and kernel the 2 × 2-matrix C,
we have for every function F ,

EC

[
F(ψi,ψj )

] = EC

[
F

(
η2

i , η
2
j

)]
(3.4)

with the covariance matrix C defined by Cii = Cii , Cjj = Cjj and Cij = √
CijCji .

Indeed, to prove (3.4), one just compares the respective Laplace transform of
the two random couples and checks that for every 2 × 2-diagonal matrix x with
nonnegative entries,

|I + xC| = |I + xC|.
Choosing F(x) = √

xixj on R
n+, we obtain, thanks to (3.3),

EGα [
√

ψiψj ] ≤ EG[
√

ψiψj ],
which together with (3.4) leads to

EGα

[√
η2

i η
2
j

]
≤ EG

[√
η2

i η
2
j

]
,

where Gα is the 2 × 2-matrix defined by Gα(i, i) = Gα(i, i), Gα(j, j) = Gα(j, j)

and Gα(i, j) = √
Gα(i, j)Gα(j, i).

Setting f (α) = EGα
[
√

η2
i η

2
j ], we know that f is decreasing at 0. Using the same

arguments as in the proof of Theorem 1.1, for α small enough, we have f ′(α) =
−4EGα

[sgn(ηiηj )] ∂Gα(i,j)
∂α

, with ∂Gα(i,j)
∂α

= 1
2(Gα(i, j)Gα(j, i))−1/2{Gα(i, j)×

G′
α(j, i) + Gα(j, i)G′

α(i, j)}.
Hence, we obtain

f ′(0) = − 1

G(i, j)
EG

[
sgn(ηiηj )

]{
G2(i, j)G(j, i) + G2(j, i)G(i, j)

}
.

Consequently, we must have

EG

[
sgn(ηiηj )

]{
G2(i, j)G(j, i) + G2(j, i)G(i, j)

} ≥ 0.

Note that since the couple (η2
i , η

2
j ) is always infinitely divisible, we have, using

(2.13), EG[sgn(ηiηj )] ≥ 0. Hence, we have

G2(i, j)G(j, i) + G2(j, i)G(i, j) ≥ 0.(3.5)

Remark that for every (λ1, λ2, . . . , λn) in R
n+, the permanental vector (λ1ψ1, λ2ψ2,

. . . , λnψn) is also “positively correlated.” Since

E

[
exp

{
−1

2

n∑
i=1

αiλiψi

}]
= |I + αλG|−1/2,
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(λ1ψ1, λ2ψ2, . . . , λnψn) admits λG for the kernel. In particular, λG satisfies (3.5),
which gives

n∑
k=1

λk

{
G(i, j)G(j, k)G(k, i) + G(j, i)G(i, k)G(k, j)

} ≥ 0

and, consequently, we obtain for every i, j, k with i �= j ,
{
G(j, i)G(j, k)G(k, i) + G(j, i)G(i, k)G(k, j)

} ≥ 0.

Since G(i, j)G(j, i) ≥ 0, G(j, k)G(k, j) ≥ 0 and G(i, k)G(k, i) ≥ 0, the two
terms G(i, j)G(j, k)G(k, i) and G(j, i)G(i, k)G(k, j) have the same sign. Their
sum can be nonnegative only if they are both nonnegative. We have obtained for
every i, j , k

G(j, i)G(j, k)G(k, i) ≥ 0.

By substituting (α + ε) to α in (3.2), one obtains similarly for every α > 0

Gα(j, i)Gα(j, k)Gα(k, i) ≥ 0.

We can then develop the same argument as in the proof of Theorem 1.1 from
(2.14) until the conclusion that ψ has to be infinitely divisible. �

REMARK 3.3. Note that the proof of Theorem 3.1 shows that a permanental
vector (ψi)1≤i≤n is infinitely divisible if and only if for every i, j , 1 ≤ i, j ≤ n,
for every n × n nonnegative diagonal matrix λ, E(λG)α [

√
ψiψj ] is a decreasing

function of α on R
+.

PROOF OF PROPOSITION 3.2. We note that

I + xMα = I + xM(I + αM)−1 = (
I + (x + α)M

)
(I + αM)−1,

where x + α means (x1 + α,x2 + α, . . . , xn + α). Taking the determinant of each
part of this equation and then the power (−1/β) gives

|I + xMα|−1/β = E
(
Xe−(1/2)

∑n
i=1 xiψ(i)),

where X is the positive random variable with expectation 1 defined by

X = exp

{
−α

2

n∑
i=1

ψ(i)

}/
E

[
exp

{
−α

2

n∑
i=1

ψ(i)

}]
.

Hence, ψα exists and has the law of ψ under E(X, ·). �
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4. The shifted case. Given a centered Gaussian process (ηx)x∈E and a real
number r , we write (η + r)2 for ((ηx + r)2)x∈E . Thanks to [2] and [8], we know
that

If (η + r)2 is infinitely divisible for every real r ,

then(4.1)

(η + r)2 is “positively correlated” for every real r .

The following theorem gives another sufficient condition for (η + r)2 to be
“positively correlated.” It can also be seen as an alternative characterization of
Gaussian processes with a covariance equal to the Green function of a Markov
process. We assume that E contains more than two elements.

THEOREM 4.1. Let (ηx)x∈E be a centered Gaussian process with a continu-
ous positive definite covariance. The following properties are equivalent:

(1) The covariance of η is the Green function of a transient Markov process.
(2) The family of processes ((η + r)2, r ≥ 0) is strongly stochastically increas-

ing as r increases on R
+.

The definition of a strong stochastic comparison is given at the beginning of
Section 2 (Definition 2.2).

PROOF OF THEOREM 4.1. (1) �⇒ (2): Assuming (1), we know that for every
positive integer n and every (xi)1≤i≤n in En, the covariance matrix G of the vector
(ηxi

)1≤i≤n is the inverse of a diagonally dominant M-matrix (see [6]), that is,
setting G−1 = M , all the entries of G are nonnegative, all the off-diagonal entries
of M are nonpositive, and for every k,

∑n
i=1 Mki ≥ 0. The fact that G−1 is an M-

matrix implies that for every β = (βi)1≤i≤n and α = (αi)1≤i≤n in R
n+, such that

αi ≥ βi , we have, using a result of Fang and Hu (Theorem 2.3 in [10]),((
ηxi

+ (Gα)i
)2)

1≤i≤n strongly stochastically dominates
((

ηxi
+ (Gβ)i

)2)
1≤i≤n.

Since G−1 is diagonally dominant, we know that the vector G−11, where 1 is the
vector (1,1, . . . ,1)t of R

n+, belongs to R
n+. Hence, we can choose to take α = rM1

and β = r ′M1, with r ≥ r ′, to obtain(
(ηxi

+ r)2)
1≤i≤n strongly stochastically dominates

((
ηxi

+ r ′)2)
1≤i≤n.

By definition, this means that the sequence of processes ((η+ r)2, r > 0) increases
with r with respect to the strong stochastic order.

(2) �⇒ (1): Conversely, for r > 0 fixed and n positive integer, denote by
(fr(x), x ∈ R

n+) the density of the vector ((ηxi
+ r)2)1≤i≤n. By assumption for

every (r, r ′) such that r > r ′, we have for every x, y in R
n+,

fr(x)fr ′(y) ≤ fr(x ∨ y)fr ′(x ∧ y).
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By integrating the above inequality with respect to 1√
2π

e−r2/2 dr , one obtains

h(x)fr ′(y) ≤ h(x ∨ y)fr ′(x ∧ y),

where (h(x), x ∈ R
n+) is the density of the vector ((ηxi

+ N)2)1≤i≤n, with N stan-
dard Gaussian variable independent of η.

One integrates then this last inequality with respect to P(N ∈ dr ′) to obtain

h(x)h(y) ≤ h(x ∨ y)h(x ∧ y),

which means that the vector ((ηxi
+ N)2,1 ≤ i ≤ n) satisfies the FKG inequality.

Thanks to Theorem 1.1, this vector is hence infinitely divisible. Since this is true
for every n and every (xi)1≤i≤n, the process ((ηx + N)2, x ∈ E) is infinitely divis-
ible. We use now the assumption on the continuity of the covariance of η to claim
that, thanks to [5], this can be so only if the covariance of η is the Green function
of a Markov process. �

REMARK 4.2. The case of Gaussian couples has to be studied as a partic-
ular case. Indeed, in [5], we have shown that, given a centered Gaussian couple
(ηx, ηy), the couple ((ηx + r)2, (ηy + r)2) is infinitely divisible for every r , if and
only if

E(ηxηy) ≥ 0 and E(ηxηy) ≤ E
(
η2

x

)
E

(
η2

y

)
.

But one can use the two-dimensional case to show that the converse of (4.1)
is false. Indeed, consider a centered Gaussian couple (ηx, ηy) with covariance
matrix

( 1
ρ

ρ
1

)
such that |ρ| < 1. Then according to Corollary 3.1 of Fang and

Hu [10], for every r ((ηx + r)2, (ηy + r)2) satisfies the FKG inequality. In par-
ticular, ((ηx + r)2, (ηy + r)2) is “positively correlated” for every r . But choosing
ρ < 0, we see that ((ηx + r)2, (ηy + r)2) cannot be infinitely divisible for every r .

5. A stability property for Green functions.

THEOREM 5.1. Let (g(x, y), (x, y) ∈ E × E) be the Green function of
a transient Markov process. Assume g is continuous, then for every β ≥ 1,
(gβ(x, y), (x, y) ∈ E × E) is also the Green function of a transient Markov pro-
cess.

In the case E is finite, the above fact has already been established by Dellacherie
et al. [3]. To establish the general case, we first show the following characterization
of Green functions, which is an extension of a result on symmetric Green functions
(see Theorems 1.2 and 1.3 in [5]).

THEOREM 5.2. Let G be a continuous function on E ×E. The three following
points are equivalent:
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(i) G is the Green function of some Markov process.
(ii) For every positive real c, G + c is the kernel of an infinitely divisible per-

manental process.
(iii) G + 1 is the kernel of an infinitely divisible permanental process.

PROOF. We follow the proof of Theorem 1.2 and Theorem 1.3 in [5]. We insist
only on the arguments that are specific to the nonsymmetric case.

(i) ⇒ (ii): Making use of the arguments developed in [5], there exists a re-
current Markov process X such that G represents the 0 potential densities of X

killed at its first hitting time of a, a point outside E. We set then G(a, a) = 0 =
G(a,x) = G(x,a) for every x in E. We use then an isomorphism theorem for re-
current Markov processes (Corollary 3.5 in [7]) to claim that for every c > 0, there
exists a permanental process (ψx, x ∈ E ∪ {a}) with kernel G + c and index 2,
satisfying for every r > 0

((1
2ψx,x ∈ E ∪ {a})|ψa = r

) (law)= (1
2φx + Lx

τr
, x ∈ E ∪ {a}),(5.1)

where (φx, x ∈ E ∪ {a}) is a permanental process with kernel G and index 2 inde-
pendent of X, and (Lx

τr
, x ∈ E ∪ {a}) is the local time process of X starting at a,

at time τr = inf{s ≥ 0 :La
s > r}.

Since G is a Green function, the process φ is infinitely divisible (see [7]). Be-
sides, one easily checks that Lτr is infinitely divisible. Actually, (Lτr )r>0 is a Lévy
process and for every α = (αi)1≤i≤n in R

n+ and (xi)1≤i≤n in (E ∪ {a})n, we have

E

(
exp

{
−

n∑
i=1

αiL
xi
τr

})
= e−rF (G,α),(5.2)

where F(G,α) is a nonnegative constant.
Hence, for every r > 0, (ψ |ψa = r) is also infinitely divisible. But (ii) requires

the infinite divisibility of ψ . We hence integrate (5.1) with respect to the law of ψa

to obtain, thanks to (5.2),

E

(
exp

{
−1

2

n∑
i=1

αiψxi

})
= E

(
exp

{
−1

2

n∑
i=1

αiφxi

})
E

(
e−F(G,α)ψa

)
.

Now, ψa has the law of a squared Gaussian variable and is hence infinitely divisi-
ble. Consequently, for every positive δ, there exists a nonnegative variable Yδ that
we can choose independent of X, such that(

E
(
e−F(G,α)ψa

))δ = E
(
e−F(G,α)Yδ

)
.

We hence obtain

E

(
exp

{
−1

2

n∑
i=1

αiψxi

})δ

= E

(
exp

{
−1

2

n∑
i=1

αiφxi

})δ

E

(
exp

{
−

n∑
i=1

αiL
xi
τYδ

})
,
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which shows the infinite divisibility of ψ .
To prove that (iii) implies (i), we can directly use the argument given in [5],

since symmetry is not required there. And, finally, (ii) obviously implies (iii). �

The following equivalence will help us to show Theorem 5.1.

THEOREM 5.3. Let G be a continuous function on E × E. Then G is the
Green function of a Markov process if and only if for every finite subset F of E the
restriction of G to F × F is the Green function of a Markov process.

PROOF. One has to establish it only in the nonsymmetric case (in the symmet-
ric case it is a consequence of [6] and [5]). The direct way is known. Conversely,
assume that for every finite set F , G|F×F is a Green function, then thanks to Theo-
rem 5.2, (G+ 1)|F×F is the kernel of an infinitely divisible permanental processes
with index 2. Hence, there exists a permanental process (ψx, x ∈ E) with kernel
(G(x, y) + 1, (x, y) ∈ E × E) and index 2. Thanks to Theorem 5.2, all the finite-
dimensional marginals of ψ are infinitely divisible. Consequently, ψ is infinitely
divisible. This implies, thanks to Theorem 5.2, that (G(x, y) + 1, (x, y), (x, y) ∈
E × E) is the Green function of a Markov process. �

PROOF OF THEOREM 5.1. Thanks to [3], we know that for every finite subset
F of E, (gβ(x, y), (x, y) ∈ F × F) is the Green function of a Markov process.
This implies, thanks to Theorem 5.3, that (gβ(x, y), (x, y) ∈ E × E) is the Green
function of a Markov process. �
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