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THE OBSTACLE PROBLEM FOR QUASILINEAR STOCHASTIC
PDES: ANALYTICAL APPROACH

BY LAURENT DENISI, ANIS MATOUSSI? AND JING ZHANG

Université d’Evry Val d’Essonne, Université du Maine and CMAP,
and Université d’Evry Val d’Essonne

We prove an existence and uniqueness result for quasilinear Stochas-
tic PDEs with obstacle (OSPDE in short). Our method is based on analyti-
cal technics coming from the parabolic potential theory. The solution is ex-
pressed as a pair (u, v) where u is a predictable continuous process which
takes values in a proper Sobolev space and v is a random regular measure
satisfying the minimal Skohorod condition.

1. Introduction. The starting point of this work is the following parabolic
stochastic partial differential equation (in short, SPDE):

du; (x) = 3 (ai, j(x)jus (x) + gi (¢, x, ur (x), Vuy(x))) dt
(1) + f(t, x, us(x), Vuy(x)) dt

+o00

+ Ykt x,u (x), Vg (x)) dB/
j=1

where a is a symmetric bounded measurable matrix which defines a second or-
der operator on an open domain @ C R¢, with Dirichlet boundary condition. The
initial condition is given as ug =&, a L2(O)-valued random variable, and f,
g=1(g1,...,8q) and h = (hy,..., h;,...) are nonlinear random functions. Given
an obstacle S: Q2 x [0, T] x O — R, we study the obstacle problem for SPDE (1),
that is, we want to find a solution of (1) which satisfies “u > S where the obsta-
cle S is regular in some sense and controlled by the solution of a SPDE.

Nualart and Pardoux [16] have studied the obstacle problem for a nonlinear heat
equation on the spatial interval [0, 1] with Dirichlet boundary conditions, driven
by an additive space—time white noise. They proved the existence and uniqueness
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of the solution and their method relied heavily on the results for a deterministic
variational inequality. Donati-Martin and Pardoux [9] generalized the model of
Nualart and Pardoux. The nonlinearity appears both in the drift and in the diffusion
coefficients. They proved the existence of the solution by penalization method but
they did not obtain the uniqueness result. And then in 2009, Xu and Zhang solved
the problem of the uniqueness; see [21]. However, in all their models, there is not
the term of divergence and they do not consider the case where the coefficients
depend on Vu.

The work of El Karoui et al. [10] treats the obstacle problem for deterministic
semilinear PDE’s within the framework of backward stochastic differential equa-
tions (BSDE in short). Namely, the equation (1) is considered with f depending
on u and Vu, while the function g is null (as well /) and the obstacle v is contin-
uous. They considered the viscosity solution of the obstacle problem for the equa-
tion (1), they represented this solution stochastically as a process and the main new
object of this BSDE framework is a continuous increasing process that controls the
set {u = v}. Bally et al. [3] (see also [14]) point out that the continuity of this pro-
cess allows one to extend the classical notion of a strong variational solution (see
Theorem 2.2 of [4], page 238) and express the solution to the obstacle as a pair
(u, v) where v is supported by the set {u = v}.

Matoussi and Stoica [13] have proved an existence and uniqueness result for
the obstacle problem of backward quasilinear stochastic PDE on the whole space
R? and driven by a finite dimensional Brownian motion. The method is based
on the probabilistic interpretation of the solution by using the backward doubly
stochastic differential equation (BDSDE in short). They have also proved that the
solution is a pair (u, v) where u is a predictable continuous process which takes
values in a proper Sobolev space and v is a random regular measure satisfying the
minimal Skohorod condition. In particular, they gave for the regular measure v a
probabilistic interpretation in terms of the continuous increasing process K where
(Y, Z, K) is the solution of a reflected generalized BDSDE.

Michel Pierre [17, 18] has studied the parabolic PDE with obstacle using the
parabolic potential as a tool. He proved that the solution uniquely exists and is
quasi-continuous. With the help of Pierre’s result, under suitable assumptions on
f, g and h, our aim is to prove existence and uniqueness for the following SPDE
with given obstacle S that we write formally as

du;(x) = 0 (a;, j(x)djur(x) + gi (t, x, ur (x), Vuy (x))) dt
+ f(t, x, ur (x), Vuy(x)) dt
+00 .
+ 3yt x, i (x), Vg (x)) d B
=1
ur(x) = S (x), V(t,x) e Rt x O,
up(x) =§&(x), Vx € O,
us(x) =0, V(t,x) e RT x 90.

2
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To give a rigorous definition to the notion of a solution to this equation, we
will use the technics of parabolic potential theory developed by M. Pierre in the
stochastic framework. We first prove a quasi-continuity result for the solution of
the SPDE (1) with null Dirichlet condition on given domain O and driven by an
infinite dimensional Brownian motion. This result is not obvious and is based on a
mixing pathwise argument and Mignot and Puel [15] existence result of the obsta-
cle problem for some deterministic PDEs. Moreover, we prove in our context that
the reflected measure v is a regular random measure and we give the analytical
representation of such a measure in terms of parabolic potential in the sense given
by M. Pierre in [17]. The main theorem we obtain is the following:

THEOREM 1. Assume that f, g and h satisfy some Lipschitz continuity and
integrability hypotheses, & € L2(Q x 0), S is quasi-continuous and S; < St’,
where S’ is the solution of the linear SPDE with null boundary condition

d +00 )
dS{=LS/dt+ f/dt+ d;g;,dt+ ) I, dB],
i=1 j=1
§'(0) = Sy,
where S) € L*(Q2 x O), and f', g’ and I’ are square integrable adapted processes.
Then there exists a unique solution (u,v) of the obstacle problem for the
SPDE (2) associated to (&, f, g, h, S), that is, u is a predictable continuous process

which takes values in a proper Sobolev space, u > S and v is a random regular
measure such that:

(1) The following relation holds almost surely, for all t € [0, T] and Vo €
CX(RT) ® C2(0),

t t
(s @) — (£, 90) —fo (us,assos>ds+/0 Eus. ¢5) ds

d

t .
+ ZA (g;(”m Vuy), 8i(/)s) ds

i=l

t o .
:_/(‘) (fs(us’vus)vgos)ds'i‘Z/(; (h§(us,vus)v§0s)stj
j=1

+/()t/;9<ps(x)v(dx,ds).

(2) u admits a quasi-continuous version, u, and we have the mininal Skohorod
condition

T ~
/0 '/O(u(s,x) — S(s,x))v(dx,ds) =0 a.s.
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This paper is divided as follows: in the second section we set the assumptions,
then we introduce in the third section the notion of a regular measure associated
to parabolic potentials. The fourth section is devoted to prove the quasi-continuity
of the solution of SPDE without obstacle. The fifth section is the main part of the
paper in which we prove existence and uniqueness of the solution. To do that, we
begin with the linear case, and then by Picard iteration we get the result in the
nonlinear case; we also establish an It6 formula. Finally, in the sixth section we
prove a comparison theorem for the solution of SPDE with obstacle.

2. Preliminaries. We consider a sequence ((B'(t));>0)ien+ of independent
Brownian motions defined on a standard filtered probability space (€2, F, (F;)s=>0,
P) satisfying the usual conditions.

Let O C R? be an open domain and L2 () the set of square integrable functions
with respect to the Lebesgue measure on O. It is a Hilbert space equipped with the
usual scalar product and norm as follows:

(u,v) = /(;u(x)v(x) dx, |ul| = (./O uz(x)d)C)l/z.

Let A be a symmetric second order differential operator, with domain D(A), given
by
d PR
A=—L=— Z di(a"’ (x)d;).
i,j=1
We assume that a(x) = (a"*/ (x)) i,j 1s ameasurable symmetric matrix defined on O
which satisfies the uniform ellipticity condition

d
AMEP < Y ad0EE < AEP VxeO,EeRY,
i,j=1
where A and A are positive constants.

Let (F, &) be the associated Dirichlet form given by F := D(A!/?) = H(} (0)

and

Ew,v):=(A"%u, AV?) and Ew)=|A"%u|* Vu,veF,
where H(} (O) is the first order Sobolev space of functions vanishing at the bound-
ary. As usual, we shall denote H~'(0) its dual space.

We consider the quasilinear stochastic partial differential equation (1) with ini-
tial condition u# (0, -) = £(-) and Dirichlet boundary condition u (¢, x) =0, V(t, x) €
R* x 90.

We assume that we have predictable random functions

f:R+xQxOxRde—>R,
g=10(g1,...,84):RT x QxOxRxR! - RY,

h=i,....hi,..) RTxQxOxRxR! - RV,
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In the sequel, | - | will always denote the underlying Euclidean or /2-norm. For
example,

+00
h(t, @, %, 9,27 = |hitt, 0, x, y, ).
i=1

ASSUMPTION (H). There exist nonnegative constants C, o, 8 such that for

almost all w, the following inequalities hold for all (¢, x,y,z) € RT x O x R x
RY:

(1) |f(t’w’x’yvz) - f(t’a)’x5y/’ Z/)l =< C(|)’ - )’/| + |Z _Z/|)’

@ (CL gt 0, x,y,2) =gt 0,x, ¥, D2 < Cly =y | +alz -7,
(3) (h(t, @, x,y,2) —h(t,0,x,y,2)HV?<Cly —y'|+ Blz — 2l

(4) the contraction property: 2o + 8% < 2A.

REMARK 1. This last contraction property ensures existence and uniqueness
for the solution of the SPDE without obstacle (see [8]).

With the uniform ellipticity condition we have the following equivalent condi-
tions:

| £, Vu) = f(v, V)| < Cllu — v|| + CA7 V22 (u — v),
lg@u, Vi) = g0, Vo) 120y < Cllu = vl +ar™ 22w — v),
|7, Vi) = h(, VO) | 20y < Cllu = vl + BAT2EV 2w — v).
Moreover, for simplicity, we fix a terminal time 7 > 0, and we assume the
following:
ASSUMPTION (I).
& e L%(Q2 x O) is an Fy-measurable random variable,
fCr0,00:= e L*(10, T x  x O; R),
g(, 0,00 :=g"=(g0.....89) € L*(10, T1 x @ x O;RY),
h(0,0):=h0= (R0, ... 1Y, .. ) e L(10, T] x @ x O; RY").
Now we introduce the notion of a weak solution.

We denote by H7 the space of Hol (O)-valued predictable L?(O)-continuous
processes (#;);>0 which satisfy

T
E sup lu|>+E | Euy)dt <+oo.
t€l0,T] 0
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It is the natural space for solutions.

The space of test functions is denoted by D = CP(R') ® CCZ(O), where
C°(R) is the space of all real-valued infinitely differentiable functions with com-
pact support in R and C2(O) is the set of C?-functions with compact support
in O.

Heuristically, a pair (u, v) is a solution of the obstacle problem for (1) with
Dirichlet boundary condition if we have the following:

(1) ueHr and u(t,x) > S(t,x),dP ®dt ® dx-a.e. and ug(x) =&, dP Q dx-
a.e.;

(2) v is arandom measure defined on [0, T') x O;

(3) the following relation holds almost surely, for all # € [0, T'] and V¢ € D,

t t
(s, 00) — (&, 90) — /O (g, dy0y) ds + /0 Eus. ¢y) ds
d t
+Z/0 (gfv(usv Vuy), aiws)ds
i=1

t +00 t . )
:/(; (fs(MSa Vuy), Qos)ds + Z/O (h£ (us, Vuy), (pv)stJ
=

t
+/0 /Ofps(X)V(dx,dS);
“4)

T
/(; /O(u(s, x) — S(s,x))v(dx,ds) =0 a.s.

But, the random measure, which in some sense obliges the solution to stay above
the barrier, is a local time so, in general, it is not absolutely continuous w.r.t. the
Lebesgue measure. As a consequence, for example, the condition

T
/0 /O(u(s, x) — S(s,x))v(dxds) =0

makes no sense. Hence, we need to consider a precise version of u# and S defined
v-almost surely.

In order to tackle this difficulty, we introduce in the next section the notions
of parabolic capacity on [0, T] x O and a quasi-continuous version of functions
introduced by Michel Pierre in several works (see, e.g., [17, 18]). Let us remark
that these tools were also used by Klimsiak [11] to get a probabilistic interpretation
to semilinear PDEs with obstacle.

Finally and to end this section, we give an important example of stochastic noise
which is covered by our framework:
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EXAMPLE 1. Let W be a noise white in time and colored in space, defined on
a standard filtered probability space (£2, F, (F;):>0, P) whose covariance function
is given by

Vs,t eRT,Vx,ye O  E[W(x,)W(y,1)] =8 — s)k(x,y),

where k: O x O — R is a symmetric and measurable function.
Consider the following SPDE driven by W:

d
du;(x) = ( > Biai j(x)0jur(x) + f(t,x,u,(x), Vi (x))

i,j=1
d
3) +Zaigi(t,x,u:(X),Vut(X))) dt
i=1
+ (e, x, u, (x), Vi (x)) W (dt, x),
where f and g are as above and / is a random real-valued function.
We assume that the covariance function k defines a trace class operator denoted
by K in L?(O). It is well known (see [19]) that there exists an orthogonal basis

(e;)ien+ of L2(0) consisting of eigenfunctions of K with corresponding eigenval-
ues (A;);en+ such that

400
Z Ai <400
i=1
and
400
k(x,y) =) Aiei(x)ei(y).
i=1

It is also well known that there exists a sequence ((BL(1)) +>0)ieN* of independent
standard Brownian motions such that

400 .
Wdt,) =Y 1%e; B (dr),
i=1
so that equation (3) is equivalent to (1) with & = (h;);en* Where
VieN*  hi(s,x,y,2) = VAih(s, %, y, 2)ei(x).
Assume as in [20] that for all i € N*, ||¢;]lc0 < +00 and

+o00

2
> hilleill3, < +oo.
i=1
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Since
(|h(ts w, X, y, Z) - h(t7 w, X, yl, Z/)|2)1/2

2

—+00
< (Z )"i||ei||go>|h(t’x’ Yy, Z) _h(t’xs yl7 Z/)
i=1

h satisfies the Lipschitz hypothesis (H)-(3) if & satisfies a similar Lipschitz hy-
pothesis.

3. Parabolic potential analysis.

3.1. Parabolic capacity and potentials. In this section we will recall some
important definitions and results concerning the obstacle problem for parabolic
PDE in [17] and [18].

KC denotes L°°([0, T'1; L*(O)) N L2([0, T1; HO1 (0)) equipped with the norm

2 2 2
”U”IC - ||v||L°°([0,T];L2(O)) + ”U||L2([07T];H01 0))

T

= sup ol [ (P +Ew))dr.
re[0,T[ 0

C denotes the space of continuous functions on compact support in [0, 7 [x O and,

finally,

W= {(p € L*([0, T1; Hy (0)); E;—‘f e L*([0, T1; H_I(O))},

. a
endowed with the norm [¢||},, = ”w"iz([O,T];HOI(O)) + 1152 ||iz([0’T];H,1(O)).

It is known (see [12]) that W is continuously embedded in C ([0, T]; L%(0)),
the set of L?(()-valued continuous functions on [0, T']. So without ambiguity,
we will also consider Wr = {p € W; o(T) =0}, Wt ={p e W; ¢ > 0}, Wi =
Wr N WT.

We now introduce the notion of parabolic potentials and regular measures which
permit to define the parabolic capacity.

DEFINITION 1. An element v € K is said to be a parabolic potential if it
satisfies

N T /3¢, T
Yo € Wy /()_(W’vt>dt+/o E(@r,vp)dt > 0.

We denote by P the set of all parabolic potentials.

The next representation property is crucial:
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PROPOSITION 1 (Proposition 1.1 in [18]). Let v € P, then there exists a
unique positive Radon measure on [0, T[x O, denoted by v, such that

T/ de T T
YoeWrnC / (——,vt)dt—F/ E(go,,vt)dt=/ / (t,x)dv.
0 ot 0 0o Jo

Moreover, v admits a right-continuous (resp., left-continuous) version v (resp.,
9):[0, T1+ L*(O).

Such a Radon measure v is called a regular measure and we write

av
T

v

v + Av.

REMARK 2. As a consequence, we can also define for all v € P,
vr =lim ¥, € L*(0).
1T

DEFINITION 2.  Let K C [0, T[xO be compact; v € P is said to be v-superior
than 1 on K, if there exists a sequence v, € P with v,, > 1 a.e. on a neighborhood
of K converging to v in L3([0, TT; H(; (0)).

We denote

Sx = {v € P; v is v-superior to 1 on K}.

PROPOSITION 2 (Proposition 2.1 in [18]). Let K C [0, T[xO be compact,
then Sk admits a smallest vg € P and the measure vy whose support is in K

satisfies
T T
/ /dv}é:inf{/ /dv”;veYK}.
0 (@] veP LJO (@]

DEFINITION 3 (Parabolic capacity).

e Let K C [0, T[xO be compact, and we define cap(K) = [y [ dv¥.

e Let O C [0,T[xO be open, and we define cap(O) = sup{cap(K); K C
O compact}.

e Forany Borelian £ C [0, T[x O, we define cap(E) = inf{cap(O); O D E open}.

DEFINITION 4. A property is said to hold quasi-everywhere (in short, g.e.) if
it holds outside a set of null capacity.

DEFINITION 5 (Quasi-continuity). A function u:[0, T[xO — R is called

quasi-continuous, if there exists a decreasing sequence of open subsets O, of
[0, T[x O with the following:

(1) for all n, the restriction of u,, to the complement of O,, is continuous;
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() limn—>+oo Cap(On) =0.

We say that u admits a quasi-continuous version, if there exists & quasi-continuous
such that u = u a.e.

The next proposition, whose proof may be found in [17] or [18], shall play an
important role in the sequel:

PROPOSITION 3. Let K C O be a compact set, then ¥t € [0, T,
cap({t} x K) = 14(K),

where \q is the Lebesgue measure on O.

As a consequence, if u: [0, T[xO — R is a map defined quasi-everywhere, then
it defines uniquely a map from [0, T[ into L*>(O). In other words, forany t € [0, T|,
u; is defined without any ambiguity as an element in L*>(O). Moreover, if u € P,
it admits version u which is left continuous on [0, T'| with values in L?(O) so that
ut = ug- is also defined without ambiguity.

REMARK 3. The previous proposition applies if, for example, u is quasi-
continuous.

PROPOSITION 4 (Theorem III.1 in [18]). If ¢ € W, then it admits a unique
quasi-continuous version that we denote by ¢. Moreover, for all v € P, the follow-
ing relation holds:

T
f v =/ (=3, v) + E(@, v) di + (o7, V7).
[0,T[xO 0

3.2. Applications to PDEs with obstacle. For any function ¢ : [0, T[xO — R
and ug € Lz((’)), following M. Pierre [17, 18], F. Mignot and J.P. Puel [15], we
define

4) Kk (Y, up) = essinf{u € P;u > ae., u(0) > uo}.

This lower bound exists and is an element in PP. Moreover, when v is quasi-
continuous, this potential is the solution of the following reflected problem:

oK
ot

Mignot and Puel have proved in [15] that x (i, ug) is the limit [increasingly and
weakly in L2([0, TT; HO1 (O))] when ¢ tends to 0 of the solution of the following
penalized equation:

kK €P, k>, + Ak =0 on {u > vy}, x(0) = ug.

Oug + Au, — (g — )~ _
at )

ug €W, ug(0) =uyg, 0.
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Let us point out that they obtain this result in the more general case where v is
only measurable from [0, T'[ into L*(0).

For given f € L2([0, T]: H~Y(0)), we denote by K,{O the solution of the fol-
lowing problem:

dK
ot

The next theorem ensures existence and uniqueness of the solution of parabolic
PDE with obstacle; it is proved in [17], Theorem 1.1. The proof is based on a
regularization argument of the obstacle, using the results of [5].

KeW, k(0) = uop, + Ak = f.

THEOREM 2. Let v :[0, T[xO — R be quasi-continuous, suppose that there
exists £ € P with || < ¢ ae., f € L*>([0, T1; H~'(0)), and the initial value uq €
L%(O) with ug > ¥ (0), then there exists a unique u € K,{O + P quasi-continuous
such that

T :
u(0) =ug,u >, q.e.; /0 /O(ﬁ — &)du”_"ufo =0.

We end this section by a convergence lemma which plays an important role in
our approach (Lemma 3.8 in [18]):

LEMMA 1. If V"), € P is a bounded sequence in K and converges weakly
to v in L*([0,T]; HO1 (0)),and if u is a quasi-continuous function and |u| is
bounded by a element in P, then

T . T
lim f /udv” :/ /udu”.
n—+00 Jo O 0 O

REMARK 4. For the more general case one can see [18], Lemma 3.8.

4. Quasi-continuity of the solution of SPDE without obstacle. As a con-
sequence of well-known results (see, e.g., [8], Theorem 8), we know that under
Assumptions (H) and (I), SPDE (1) with zero Dirichlet boundary condition admits
a unique solution in Hr (for the definition of solution see, e.g., Definition 1 in [8]);
we denote it by U (&, f, g, h). The main theorem of this section is the following:

THEOREM 3. Under Assumptions (H) and (1), u =U(&, f, g, h) the solution
of SPDE (1) admits a quasi-continuous version denoted by u, that is,u =i dP ®
dt ® dx-a.e. and for almost all w € 2, (t, x) — u;(w, x) is quasi-continuous.

Before giving the proof of this theorem, we need the following lemmas. The
first one is proved in [18], Lemma 3.3:
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LEMMA 2. There exists C > 0 such that, for all open set v C [0, T[xO and
vePwithv>1a.eon?v,

cap® < C|lv||%.
Let k = «(u, u"(0)) be defined by relation (4). One has to note that « is a

random function. From now on, we always take for « the following measurable
version

Kk =supv”,
n

where (v"), is the nondecreasing sequence of random functions given by

vt _
{ : =Lvtn+n(v;1_ut) R

&) at

v =u"(0).
Using the results recalled in Section 3, we know that for almost all w € 2, v" (w)
converges weakly to v(w) = k(u(w), u"(0)(w)) in L%([0,T1; HOl (0)) and that
V> u.

LEMMA 3. We have the following estimate:
T
Bt} = (BN + EluolP + £ [ 121+ 11?1+ ar).
where C is a constant depending only on the structure constants of the equation.

PROOF. All along this proof, we shall denote by C or C, some constant which
may change from line to line.
The following estimate for the solution of the SPDE we consider is well known:

T
E sup |lu/*+E | EQuy)de
te[0,T] 0

(©6) .
= CE(luot+ [ (71 + 1?1 + 1111 ).

where C is a constant depending only on the structure constants of the equation.
Consider the approximation (v"), defined by (5), P-almost surely, it converges
weakly to v =« (u, u*(0)) in L2([0, T1; H} (0)).
We remark that v" — u satisfies the following equation:
d(v;l — M;) + A(U;l — I/l[)dt
d

= —filus, Vuy)dt = dig} (u;, Vuy)dt
i=1

too .
= " hl (s, Vu)dB] +n(v) —u,)” dr.
j=1
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Applying It6’s formula to (v" — u)? (see Lemma 7 in [7]), we have almost surely,
forallt € [0, T],

t
||vf—u;||2+2/0 E(W" — uy)ds

t
= ug —uol - zfo (W — uy, fyus, Viry)) ds
(7)

+ 2§/Ot(a,~ (V — uy), g;'(us, Vuy))ds + /Ot |72 (us, Vus){szs
o | o
_ 2;/0 (v — us, hl(us, Vus))dB] —I—Z/(; (n(v] —us)”, v} —uy)ds.
The last term in the right member of (7) is obviously nonpositive, so
(AR u;||2 +2At€(vf —ug)ds

t
= ””t(J)r _”0”2 _2/ (v? — Uy, fs(us,vus))ds
@®) °

t d ¢ '
* '/0 H ‘hS(us’ vuS)‘ szs + 22/(‘) (ai(v? - Ms)» g;(us, Vus)) ds
i=1
+00 ¢ . .
_ZZ/O (v§ — us, b (us, Vuy))d B} a.s.
j=1
Then taking expectation and using Cauchy—Schwarz’s inequality, we get
1
E[v} —u|? + (2 - E)E/ E(W" —uy)ds
0
+ 2 ! n 2
< Eluf —uol*+ £ [ o2 —us| ds
t 2 t 5
4 E [ stus, V) s + CE [ lgatus, V)| ds

t
+Ef0 s s, Vuiy)| | ds.

Therefore, by using the Lipschitz conditions on the coefficients, we have
n 2 £ Lol
E|v —u|” + Z_X E A E(WY —us)ds

i 2 . 2
< Eluf —uol +E [ vy —u, | as
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t
+CE [ (£ + 1P + A1 Py s + CE [ husiPds

+<k +)\+ > f E(ug)ds.
Combining with (6), this yields

t
E[v' —u|* + <2— ;)E/ E(vy —uy)ds
0

n 2 - 2
< Bl —uolf + E [ of sl ds

T
+CE(Iuol?+ [ (LR PH1180117 + 149117 dr ).

We take now ¢ small enough such that (2 — %) > 0, then, with Gronwall’s lemma,
we obtain for each r € [0, T']

E|o} —u|’
T + 2 2 Toop2 02 02
< Ce | Elug —uol™+ Elluol™+ E | - [F71" + g 17+ WA ]1" dr ).
As we a priori know that P-almost surely, (v"),, tends to « strongly in L?([0, T'] x

0), the previous estimate yields, thanks to the dominated convergence theorem,
that (v"), converges to k strongly in L?>(Q2 % [0,T] x O) and

sup E i, —uq|®
tel0,T]
< o (Elug —uol + EluolP + & [ 1501+ 1Pl + 4¢]1%ar).

Moreover, as (v"), tends to k weakly in L?([0, TT; H0 (O)) P-almost-surely, we
have forallt € [0, T'],

T
Ef E(kg —ug)ds
0
T
gliminfE/ E(V! —uy)ds

< 7Ce (Eluif —uol + Ebuol® + 5 [ L2+ 11811 + 1421 ).

Let us now study the stochastic term in (8). Let us define the martingales

M = Z/ —ug,h{)dB] and M= Z/ —ug, h{)dBj].
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Then

E[|M} — Mr[’]

T+00

—E / o' hy) ds

2 2
< £ [ — vt Pl Pas.

Using the strong convergence of (v"), to k, we conclude that (M"), tends to M
in the L? sense. Passing to the limit in (8), we get, almost surely, for all ¢ € [0, T],

t
ey — g2 +2/0 Eks — uy) ds

t
< Huar —uo||2—2_/0 (ks — ug, fs(ug, Vug))ds

d t .
+22/ (ai(Ks — Ug), g;(“s» Vus)) ds
i=170
+00 ¢ ) )
_22/ (Ks — Uy, hg(us, Vuv))ng
; 0
j=1

t
+/0 s G, Vues)||2 ds.

As a consequence of Burkholder—Davies—Gundy’s inequalities, we get
+00

t . .
E sup Z/ (ks — ug, hl(ug, Vug))dB]
ZE[O,T] j:1 0

T+Oo | 1
<CE / — ug, h! (us, Vuy)) ds:|

T 100 12
=<CE f > SUP e — w11 (us, V) | ds}
J ltGO

T NV
<CE| sup =l ([ et v |[ar) |

Lte[0,T]

T
<¢E sup ||K;—Ltt||2+CgE/ 7y (g, Vup) || dt.
tel[0,T] 0
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By Lipschitz conditions on 4 and (6) this yields

400 .
Z/(; (Ks — ug, hy(ug, Vus))st
j=1

E sup
te[0,T]

<eE sup |k —ul?
t€l0,T]

T
2 2 2
+C (ol + £ [ (PP + sl + 1) ae).

Hence,

T
(1—¢)E sup ||K,—ut||2+<2—£>E/ Elie, — uy) dt
1€[0,T] A 0

+ 2 2 T 02 012 012
< C| Elug —uol ™+ Elluol +E/O 1217+ e 1™+ (117l dr ).

We can take ¢ small enough such that 1 — & > 0 and 2 — % > 0, hence,

T
E sup ||Kt—ut||2+E/ (ks — up)dt
t€l0,T] 0

+ 2 2 T 02 012 012
< (Bl — wol*+ Euol®+ & 172 + 112117+ 11421 ar).
Then, combining with (6), we get the desired estimate:

T
E sup llal?+E [ Edr
t€l0,T] 0

<c(Elut 2 2 T 02 012 012
<C\Elug ™+ Eluol” + £ [ LA71"+ Hlec 1"+ A1 dr ). o

PROOF OF THEOREM 3. For simplicity, we put

f,(x)=f(t,x,u,(x),Vut(x)), gl(-x)=g(t9x’ut(-x)’vut(-x)) and
he(x) =h(t,x,u;(x), Vi (x)).

We introduce (P;) the semi-group associated to operator A and put for each n €
N*,ie{l,...,d} and each j € N*,

Then (ug), converges to ug in L?(Q2; L?(0)), and (f™),, (&™), and (h"), are
sequences of elements in L2(2 x [0, T']; D(A)) which converge, respectively, to f,
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gand hin L*(Q x [0, T1; L*(©)). For all n € N* we define

t d .t +00 )
ul = Piuf) +/0 P flds + Z/(; P_50;g; ds + Z/o P,_sh?’s dB]
i=1 j=1
' d o
= Pry1/mto +/0 Pryyny—s fsds + Z./o Pty (1/n)—50i&i,s ds
i=1

+00 t .
+ Z/ Pi(1/ny—shjsdB].
j=1""
We denote by G (¢, x, s, y) the kernel associated to P, then

1
u(t,x) = /O G(r + X 0, y)uo(y)dy

t 1
[ G(z+ —,x,s,y)ﬂs,y)dyds
0 JO n

d 1 )
+Z/ / G(l—i——,x,s,y)a,-g;(y)dyds
i=1 0 JO n

+00 ¢ 1 . .
+Z/ / G<t+—,x,s,y)h§(y)dyd3§-
ioJo Jo n

But, as A is strictly elliptic, G is uniformly continuous in space—time variables on
any compact away from the diagonal in time (see Theorem 6 in [1]) and satisfies
Gaussian estimates (see Aronson [2]); this ensures that for all n € N*, u" is P-
almost surely continuous in (¢, x).

We consider a sequence of random open sets

ﬂn={]u”+1—u”\>en}, ®p=Uz?,,.

Let k, = K(é(un—l—l —uh), é(un—i-l _ Mn)—i-(o)) + K(_é(un—i-l —u"), é(un%—l _
u")~(0)), and from the definition of « and the relation (see [18])

k(v]) <k (v, v1(0)) + k(—v, v (0)),

we know that «;, satisfy the conditions of Lemma 2, that is, x, € P et k,, > 1 a.e.
on ¥, thus, we get the following relation:

+o00 +o0
cap(®,) < > cap(®) < Y [Ikall%-
n=p n=p
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Thus, remarking that u"+! —u" = Uup™ —ull, f1H1 — 1, "+ — g gt —

h™), we apply Lemma 3 to K(sn(u”“ — u”),é(u”“ — u™7T(0)) and
K(_é(un+1 —u"), é(u"“ — ")~ (0)) and obtain
E[cap(©))]

+o0o
<Y Elrallt
n=p
P |
<203 (g~ £ [ 1 = P+ e s
n=p n

2
LB =P ).

Then, by extracting a subsequence, we can consider that

2 2
EHu"+1——uoH +—E:/ L= £ + et = g 1P + [+ = my ][> a

_2”

Then we take ¢, = n% to get

paag o
E[cap(©p)] < Z >

n=p

Therefore,

pgr}rloo Elcap(®,)] =

For almost all w € Q, u"(w) is continuous in (¢, x) on (O ,(w))‘ and (u"(w)),
converges uniformly to # on (®,(w))¢ for all p, hence, u(w) is continuous in
(t,x) on (®,(w))¢. Then from the definition of quasi-continuous, we know that
u(w) admits a quasi-continuous version since cap(® ) tends to 0 almost surely as
p tends to +oco. [

5. Existence and uniqueness of the solution of the obstacle problem.

5.1. Weak solution.

ASSUMPTION (O). The obstacle S is assumed to be an adapted process,
quasi-continuous, such that Sy < & P-almost surely and controlled by the solu-
tion of a SPDE, that is, Vt € [0, T'],

) S < St/,
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where S’ is the solution of the linear SPDE with Dirichlet boundary condition,
d +00 i
10) dS{=LS/dt+ f/dt+ 0;g;,dt+ Y I, dB],
i=1 j=1
§'(0) = 5},

where S € L?*(Q2 x O) is Fp-measurable, and f’, g’ and &’ are adapted processes,
respectively, in LZ([O, Tl x 2x O;R), Lz([O, Tl x Qx O; Rd) and LZ([O, T] x
Q x O;RYY).

REMARK 5. Here again, we know that S’ uniquely exists and satisfies the
following estimate:

T
E sup ||S;||2+E/ £(S))dr
tel0,T] 0

(1) r
<CE[ISyP+ [ (517 + Wil + 1ol a ]

Moreover, from Theorem 3, S” admits a quasi-continuous version.

Let us also remark that even if this assumption seems restrictive since S’ is
driven by the same operator and Brownian motions as u, it encompasses a large
class of examples.

We now are able to define rigorously the notion of the solution to the problem
with obstacle we consider.

DEFINITION 6. A pair (u, v) is said to be a solution of the obstacle problem
for (1) with Dirichlet boundary condition if:

(1) ue Hr and u(t,x) > S(t,x),dP ®dt ® dx-a.e. and ug(x) =&, dP Q dx-
a.e.;

(2) v is arandom regular measure defined on [0, T) x O;

(3) the following relation holds almost surely, for all # € [0, T'] and Vg € D,

t t
(uf,go»—(s,goo)—/o (us,as¢s>ds+f0 Eus. py) ds

d

t .
+ Z/O (g} (us, Vuy), igs) ds
i=1

(12) I I .
=/ (fS(MS7VMS)a(pS)dS+Z/ (hg(uS7VMS)’(pS)dBS]

+'/Oz/(‘9¢s(x)v(dx,ds);
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(4) u admits a quasi-continuous version, i, and we have
T
/ / (it (s, x) — S(s,x))v(dx,ds) =0 a.s.
0 Jo
The main result of this paper is the following:

THEOREM 4.  Under Assumptions (H), (I) and (O), there exists a unique weak
solution of the obstacle problem for the SPDE (1) associated to (§, f, g, h, S).

We denote by R(&, f, g, h,S) the solution of SPDE (1) with obstacle when it
exists and is unique.

As the proof of this theorem is quite long, we split it in several steps: first we
prove existence and uniqueness in the linear case, then establish an It6 formula and
finally prove the theorem thanks to a fixed point argument.

5.2. Proof of Theorem 4 in the linear case. All along this subsection, we as-
sume that f, g and & do not depend on u and Vu, so we consider that f, g and & are
adapted processes, respectively, in L2([0, T1x 2 x O: R), L2([0, T] x 2 x O; RY)
and L2([0, T] x  x O; RN,

For n € N*, let u” be the solution of the following SPDE:

d 400 )
(13) du} =Lu}dt+ fidt+> 9;gisdt+» hjdB] +n(u} —S) dt
i=1 j=1

with initial condition u = & and null Dirichlet boundary condition. We know from
Theorem 8 in [8] that this equation admits a unique solution in 7 and that the
solution admits L2(O)-continuous trajectories.

LEMMA 4. Forall n € N*, u" satisfies the following estimate:

£ sup u P+ [ dt+E/ n|(u? — )" |dr < C.
t€l0,T]

where C is a constant depending only on the structure constants of the SPDE.

PROOF. From (13) and (10), we know that u” — S’ satisfies the following
equation:

d
du? —S)) = L(u" —S;)dz+f,dz+Za,g,dz+Zh’dBf +n(uf — ;)" dt,
i=1 j=1
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where f = f— f/,§ =g—g and h = h—h'. Applying Itd’s formula to (u" — S§')2,

we have

t
Juf = s/ +2 [ £ = s)ds
_2/ ~S). fy) ds+22/ —§!), i) dB]

d . - . t _
_22/0(8,-(u?—SS),§;)ds+2/0 /(Q(M?—S;)n(u?—Ss) ds
i=1
fg 2
+ fo llis|[2ds,  as.

‘We remark first

[ = Somtu = s.)as

_// ul — Ss+ Sy — Si)n(uf — Ss) " ds

_/(; /On((u? —S‘y)—)zds+/ot/0(55 — S)n(ul — S5)” dxds;

the last term in the right member is nonpositive because S; < S, thus,

lu? — S/ +2/ W — ds+z/ n|( — 8)" |2 ds
t
52/0 " —S., f) ds—2Z/ "), &%) ds
+00 . t )
+2Z/ W — S R) ng+f lisl|?ds  as.
: 0
j=l1

Then using Cauchy—Schwarz’s inequality, we have V¢ € [0, T'],

! n r T n 7112 LT 2
2| [ s fyds| < [l = s Pds+ [CUAIRds

and

). &) ds

< /0 <|v<uz—s;>u2ds+§ [ 1airas
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Moreover, thanks to Burkholder-Davies—Gundy’s inequality, we get

+00
E sup Zf(u — S/, hl)dB]
t€l0,T] j=I1 0
- oo N 12
fclE/(; (u?—S‘é,h§)2ds:|
=1

1/2
<t ['S o 1 sPlie]

j=15¢€l

T ) 1/2
<crt s o} =Sl [ aras)
Lse[0, 0

<¢E sup |u’ — S+ <L E/ 1,2 ds.
s€[0,T]

Then using the strict ellipticity assumption and the inequalities above, we get

T
(1—26(T + 1D)E sup ||uf—S;||2+(2k—8)Ef E(u" — S!)ds
t€l0,T] 0

+2E/0TnH(u§’—Ss)”2ds

2 r . 2 ~ 2 C1 ~ 2
< C(Ensn2 + —E/ 17611+ =181 + (— + 1)H|hs||| ds)-
e Jo £ 2¢e
We take e small enough such that (1 — 2¢(7 + 1)) > 0; this yields (22 —¢) > 0,
n 712 T n ’ T n =112
E sup uf —=Si|"+E | E(uy—S)dt+E | n|(u—58)["dt=C.
t€[0,T] 0 0
Then with (11), we obtain the desired estimate. [

We now introduce z, the solution of the corresponding SPDE without obstacle:

d +00 .
dzi + Az;di = fidi+ ) 0igisdi+ ) hj.dB],
i=1 j=1
starting from zo = &, with null Dirichlet condition on the boundary. As a conse-
quence of Theorem 3, we can take for z a quasi-continuous version.
For each n € N*, we put v" = u" — z. Clearly, v" satisfies

dv + Al dt =n(V] — (S, —z,)) dt =n(u’ — S;)” dt.

Since S — z is quasi-continuous almost-surely, by the results established by Mignot
and Puel in [15], we know that P-almost surely, the sequence (v"),, is increasing
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and converges in L2([0, T] x ©) P-almost surely to v and that the sequence of
random measures vV = n(uf — S;)” dt dx converges vaguely to a measure asso-
ciated to v: v = v’. As a consequence of the previous lemma, (1"), and (v"*), are
bounded sequences in L2 (Qx[0,T]; HO1 (0)), which is a Hilbert space [equipped

the norm (E fo ||u,||H L)

struct subsequences (u"’f)/< and (v"*)y such that the first one converges weakly in
L3(Q x [0,T]; HO1 (0)) to an element that we denote u and the second one to an
element which necessarily is equal to v since (v"), is increasing. Moreover, we
can construct sequences (#"), and (v"), of convex combinations of elements of
the form

dt)!/?]. By a double extraction argument, we can con-

Nl‘l Nil

Za” " and 0" Za" "tk

converging strongly to u an v, respectively, in L>(Q2 x [0, T]; HO1 (0)).
From the fact that u” is the weak solution of (13), we get

t t
(M:ls (pt) - (5, (PO) _‘/(; (u?, 8s(/)s) ds +/(; g(u?, (Ps) ds
d

r
+ 3 [ (6l aig)ds

i=1

_/ (fs,gos)ds-l—Z/ ,¢5)dB]

(14)

+/ / s (On(uf — Sg)” dxds a.s.
0 JO

Hence,

t t d t
(@, @) — (€. 00) — /O (@", 8,0s) ds + /O £ gs)ds + Y fo (g', i) ds
i=1

(15) —/(fs,<p5>ds+2/ \0)dB]

+//(ps(x)<2nk )dxds 0.5,

We have

/tf (x) 3 ( n —S) dxds - / <8 t An>dt f g( An)dt
Qs (x E nplug xdas = —,V + @, U
0 JO : =1 s : 0 at ! 0 oo
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so that we have almost surely, at least for a subsequence,
t Nn
. ne o\
ni”foo/o f(ogps(x)(g ng (ul — Sy) )dxds
T 0
:/ (ﬂ vt)dt—i-/ E(or, vy)dr
ot
- / [ e, an.

As (4"), converges to u in L?>(Q x [0, T1; Ho (0)), by making n tend to +00
in (15), we obtain

t t d t
(ut,goo—@,soo)—/o(us,as«)s)ds+/0 5(us,¢s)ds+2/0(g;,a,-<ps)ds
i=1

—/ (fb,%)ds-i-z_/ ,@s)dB] -I-/ / s (X)v(dx, ds) a.s.

In the next subsection we will show that u satisfies an Itd6 formula. As a conse-
quence by applying it to utz, using standard arguments, we get that u € Hr so for
almost all w € , u(w) € K. And from Theorem 9 in [8], we know that for almost
all w € Q, z(w) € K. Therefore, for almost all w € Q, v(w) = u(w) — z(w) € K.
Hence, v = 9;v + Av is a regular measure by definition. Moreover, by [17, 18] we
know that v admits a quasi-continuous version v which satisfies the minimality
condition

(16) //@ _ S+ 3v(dxd) =0

z is quasi-continuous version, hence, i = z + v is a quasi-continuous version of u

and we can write (16) as
//(ft — Sv(dxdt) =0.

The fact that # > S comes from the fact that v > u — z, so at this stage we have
proved that (u, v) is a solution to the obstacle problem we consider.

Uniqueness comes from the fact that both z and v are unique, which ends the
proof of Theorem 4.

5.3. It6’s formula. The following Itd formula for the solution of the obstacle
problem is fundamental to get all the results in the nonlinear case. Let us also re-
mark that any solution of the nonlinear equation (1) may be viewed as the solution
of a linear one so that it also satisfies the It6 formula.
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THEOREM 5. Under assumptions of the previous Section 5.2, let u be the solu-
tion of SPDE (1) with obstacle and ® : Rt x R — R be a function of class C12. We
denote by ® and @ the derivatives of ® with respect to the space variables and
by % the partial derivative with respect to time. We assume that these derivatives
are bounded and ®'(t,0) =0 for all t > 0. Then P-a.s. for all t € [0, T],

/OCD(t,ut(x))dx+/t5(¢’(s,us),us)ds

_/ 0§(x) dx+// su(x) )dxds

g / ! 1
+f0 (@ (s,us),fs)ds—;fo /ch (s, us(x))dius(x)gi (x) dx ds
+00 ¢ .
@' (s, uy), h;)dB!
+ 3 [, @ hy)ds;
+oo
1 //Cb”s us(x))(h ,;(x)) dxds

+/Ot/OCI>'(s,IZS(x))v(dxds).

PROOF. We keep the same notation as in the previous subsection and so
consider the sequence (u"), approximating u and also (&#"), the sequence of
convex combinations " = Z,&la,’c’u"k converging strongly to u in L*(Q x
[0, TT; Hy (O)).

Moreover, by standard arguments such as the Banach—Saks theorem, since
(u™), is nondecreasing, we can choose the convex combinations such that ("), is
also a nondecreasing sequence. We start by a key lemma:

LEMMA 5. Lett €0, T], then
t N
: nn o - n nr __ - _
HETOOE/(; /(;(us Ss) ];aknk(us Ss) " dxds=0.

PROOF. We write as above u" = v" 4 z and we denote D" = ZI]{VLI aan(u?k —
S¢)~ so that

/OI/O(LA‘? —Ss)‘A’"WdS)=f0t/0ﬁ?ﬁ”(dxds)+/Otfo(zs — $)0" (dx ds).
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From Lemma 1, we know that

At/(Q(ZS — SV (dxds) — /Ot /O(Zs — Sy)v(dxds).

Moreover, by Lemma I1.6 in [17], we have for all n
1 ) T T
szl +/0 5(ﬁg)ds=/0 /Oﬁ?f)”(dxds)
and
1 T T
SlorlP+ [ ewyds= [ [ wovxds),
2 0 o Jo

As ("), tends to v in L2([0, T, HO1 O)),
T T
lim E(0Y)ds =/ E(vy)ds.
0

n—+0o0 Jo

Let us prove that (||0%]), tends to [Jvr||.

Since (07), is nondecreasing and bounded in L*(0), it converges in L*(O) to
m = sup, V7. Let p € HO1 (O), then the map defined by ¢(t, x) = p(x) belongs
to W, hence, as a consequence of Proposition 4,

T
/[OT[ Opda":/o E(p. 8")ds + (p, )
JT[x

and

T
f pdv =/ E(p,vs)ds + (p, v7);
[0,T[xO 0
making n tend to 400 and using one more time Lemma 1, we get
. any _

Since p is arbitrary, we have vy = m and so lim,_ o [|0} || = [lv7 |l and this yields

T T T
lim / f f);’f)"(dxds):/ / ﬁsv(dxds):/ /(Ss — zs)v(dx ds).
n—+00 Jo (@] 0 (@] 0 o
This proves that

t
lim f /(ﬁZ—Ss)ﬁn(dxds)zo.
0 JO

n—+00

We conclude by remarking that

t t
lim / /(ﬁ’;—ss)+a”(dxds)§ lim / /(us—Ss)f)”(dxds)
0oJo n—>+o00 Jo JO

n——+0o

:/ot/o(ﬁ‘ — S,)v(dxds) =0. 0
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We now end the proof of Theorem 5. We consider the penalized solution (u"),,,
and we know that its convex combination (2"),, converges strongly to u in L?(2 x
[0,T7; H(} (0)). And " satisfies the following SPDE:

d +o00 | ) Ny
di} + An}dt = fidt+ ) digidt+ > hi dB! + ) ofni(uit — S)” dt.
i=1 j=1 k=1

From the It6 formula for the solution of SPDE without obstacle (see Lemma 7
in [7]), we have, almost surely, for all ¢ € [0, T'],

/ O(z, a7 (x)) dx—f—/ Q' (s,al), uf)ds

—/ (0,&(x)) dx+/ / uy)dxds

+/ ). fs)ds

_;/0’/(‘9@//(5,ﬁ?(x))aiﬁ’;(x)gi(x)dxds

+00 ¢ ]
+§ /(cb/(s,ﬁ’;),hj)ng
X 0

Jj=1

1+OO/ / " (s, i (x))(h; (x)) dxds

t
+/ / CID/(s,LAt;’)Zoe,'(’nk(u’;k — S5) " dxds.
0

Because of the strong convergence of (i"),, the convergence of all the terms ex-
cept the last one are clear. To obtain the convergence of the last term, we do as
follows:

Nll

f/ (s, af Zaknk Ss) dxds
—f / — D'(s, Sy)) Zaknk Ss) dxds

Nﬂ

—i—/ / P’ (s, S)Zaknk Ss) dxds.
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For the first term in the right member, we have

Nn
— ®'(s, Sy)) Z“k”k —Ss) dxds

t Ny
50/ /m?—&L§)4mmy—&yumu
0 JO k=1

o C/ / (it + (a5 — S5) ) Za’,:nk(ug’k —Sy) dxds
k=1
Nn
= [ [ s S el — 5" dxas
k=1

+C// —S) Za,’(’nk(u?"—&)_dxds.
k=1

We have the following inequality because (%"), converges to u increasingly:

t N
/ / (@ = Ss)” > ogni(ufk — S5)” dxds
0 JO k=1

N

ff%—&)Z%m S,)" dxds

NN

—/ f(us—Ss)Zaknk " §) dx ds.

With Lemma 1, we know that

t Ny t
. _ n ng _ - ~ _ < J—
nlglgofo /O(us Ss)kEZIaknk(us Ss) dxds—>/0 /O(us SHv(dxds) =0.

And from Lemma 5, we have

// Za,’énk( M—8) dxds— 0.
k=1

Therefore,

t Nn
/0 /O(<I>/(s, ur) — @'(s, Sy)) Zaznk(u?k —85) dxds — 0.

k=1
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Moreover, with Lemma 1, we have

t Ny t
/ / ®'(s, S) Zaznk(u?k —8s) dxds — / / @' (s, Ss)v(dx ds)
0 Jo P 0 Jo

and

’/Oz/od(s,us)v(dxds)_/Ol/ocb/(s,Ss)v(dxds)

SC/:/OIL?S — Ss|v(dx ds)
=C/0tfo(ﬂs — So)v(dxds) =0.

Therefore, taking the limit, we get the desired 1t6 formula. [

5.4. It6’s formula for the difference of the solutions of two OSPDEs. We still
consider (u, v) the solution of the linear equation as in Section 5.2,

d oo

duy + Auydt = fdt + ) dig;dt + Y hi dB] + v(dt, x),
i=1 j=1

u=>S,

and consider another linear equation with adapted coefficients f, g, i, respectively,
in L2([0, T]1 x © x O; R), L*([0, T] x @ x O; RY) and L2([0, T] x Q@ x O; RY")
and obstacle S which satisfies the same hypotheses (O) as S, thatis, Sop <& and §
is dominated by the solution of an SPDE (not necessarily the same as §). We
denote by (y, v) the unique solution to the associated SPDE with obstacle with
initial condition yp = ug =é&:
~ d . too )
dy;+ Ay dt = frdt +)_0;g;dt + Y h{ dB] +v(dt,x),
i=1 j=l1
y=>5,

THEOREM 6. Let @ as in Theorem 5, then the difference of the two solutions
satisfy the following Ito formula for all t € [0, T]:

t
/Od>(t,ut(x)—y,(x))dx+f0 E(P' (s, us — ys), us — ys)ds

t _
:/(; (CD/(S, Ug — yS)v fV - f?) ds

d ¢ ' '
a7 =3[ @ s = 300 = (g} — ) dxds
i=1
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+0o0 t ) . )
+ 3 [ (@ =300 i) dB]
j=1

1+OO t .
+ = //CD” s, ug — ) (h?
2; )@ ys)(h]

— id)*dx ds

! Jad
+/ / —(s,uy —ys)dxds
0o Jo ds

+/0’/Oq>/(s,ﬁs—j?s)(v—f))(dx,ds) ws.

PROOF.
tion equations are

d

dul + Aul'dt = fdi + Y digldr+ > hi dB] +n(u

i=1
and

dy" + Ay dt =
i=1

d
ﬁdz+Za,g,dt+thdBf +m(y"

We begin with the penalized solutions. The corresponding penaliza-

400
=S8 dt
j=1

—8;) dr.
j=l1

From the proofs above, we know that the penalized solution converges weakly to

the solution and we can take convex combinations #”"

_ N n sno_
= ou" and y

vaz”l B! y”; such that ("), and (3"), are nondecreasing and converge strongly to
u and y, respectively, in LZ(Q x [0, T1], HO1 (0)) as n tends to +o00.
As in the proof of Theorem 5, we first establish a key lemma:

LEMMA 6. Forallt e [0 T1],

nETooEf / Zﬂk”k

and

t Ny
lim E/ / iy ol ng (u
n—+00 0 oys I; k k( $

PROOF. We put for all n,
Nn
Vi(ds,dx) =) apni(u]
k=1
v (ds, dx) = Zﬁk s

_ t
Ss)_ddeZE/ / uv(ds, dx)
0 JO

t
—Ss)_dxds:E/ / yv(ds, dx).
0 JO

—Ss) dxds and

— 8) dxds.
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As in the proof of Lemma 5, we write for all n € N*: 4" =z + v".
In the same spirit, we introduce z the solution of the linear SPDE:

d
dZ,+AZt=ﬁdt+zalgtdt+ZthBtj,

with initial condition Zo = & and put Vn € N*, " = y" — 7, 0" = " —Z and v =
y—2z.

As a consequence of Lemma I1.6 in [18], we have for all n € N*, P-almost
surely,

t A
—Hvt—v;’H +/ (0" — ™) a’s=/O /O(f);’—v)(v — ") (dx, ds)

and
1 t t .
—||vt—ﬁ,||2+/ 5(vs—as>ds=/ f(ﬁs—ﬁs)w—ﬁ)(dx,ds).
2 0 0 Jo

But, as in the proof of Lemma 5, we get that (0 — ﬁ?)n tends to v; — vy in L2(O)
almost surely and

hm/ / 0"V (dx, ds) = / / Usv(dx, ds),
lign./(; /Oﬁ’;a"(dx,ds):/() /Oésr)(dx,ds).

t topo
lim(/ / ﬁga"(dx,ds)Jr/ / a’;v"(dx,ds)>
n 0 JO 0 JO

! t oo
=f / f)st_)(dx,ds)—i-/ f vyv(dx, ds).
0o JO 0 JO
But, we have
t t
limsup/ / ﬁff)"(dx,ds)slimsup/ / v V" (dx, ds)
n 0 JO n 0o JO

t
=/ / Usv(dx,ds),
0 JO
and in the same way

t N t o
limsup/ / vtV (dx, ds) 5/ / vsv(dx, ds).
nJo Jo 0 Jo

Let us remark that these inequalities also hold for any subsequence. From this, it
is easy to deduce that necessarily

t t
lim/ / oy " (dx, ds) =/ / Osv(dx, ds)
nJo Jo 0 JO

This yields
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t N t -
lim/ / vV (dx, ds) :/ / vsv(dx, ds).
nJo Jo 0 JO

We end the proof of this lemma by using similar arguments as in the proof of
Lemma5. O

and

We now end the proof of Theorem 6. We begin with the equation which " — 3"
satisfies

d(ay —37) + Ay —ﬁ?)df

=(fi — ﬁ)dt+Za — g dt—l—z hi —il)dB] + (V" — ") (x, dr).

j=l1
Applying 1t6’s formula to & (4" — y"), we have

t
/Od>(r,ﬁ;’<x)—&?(x))dx+/o E(D(s, iy — 35). ey — Fy) ds
t
= [ (@i =57 £ = Fds
d ot
=30 [ ot = sy - 5 (e! - &) dxds
i=170 70
+0o0 t
+ 3 [ (@i = 52 = 7)) B
j=1

13X 1 Lo
b2 / o (s, & — §7)(hI — hI)* dx ds

+/ / =0 — ) drdD as

Because (4"), and (3"), converge strongly to u and y, respectively, the conver-
gence of all the terms except the last term are clear. For the convergence of the last
term, we do as follows:

‘/t/ [ (s, df — 3) — D' (s, us — 1)V (dx ds)
—I—[ f (s, us — 7)) — @' (s, us — ys) V" (dx ds)

t
§C/ /}ﬁ?—us|v”(dxds)+/ /|§7§’—ys{v"(dx,ds).
0 JO 0 JO
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As a consequence of Lemma 5 and using the fact that u" < u,

t t
lim/ / i — ug|v" (dx ds) =limf / (us — @)W (dx ds) =0.
nJo Jo nJo Jo

By Lemma 6 and the fact that " <y,

hm/ /|ys — ys|V" (dx, ds)_hm/ / -y (dx,ds) =0.
This yields
lim /0’ /O(@/(s, 0 — 51 — @' (s, 1y — yo))v" (dx, dt) =0,
but, by Lemma 1, we know that

t t
lim / / O (5, us — )" (dx, di) = / / O (s, dis — §,)B(dx, dn),
n 0 JO 0o JO

SO
t t
lim/ f Q' (s, ulf — )" (dx,dr) :/ / @' (s, ity — y5)v(dx, dt).
nJo JoO 0 JO
In the same way, we prove
t t
lim/ / q>/(s,ﬁg—yg)a"(dx,dr)=f / O/ (s, iy — 55)9(dx, di).
nJo Jo 0 JO
The proof is now complete. [J

5.5. Proof of Theorem 4 in the nonlinear case. Let y and § be 2 positive con-
stants. On LZ(Q x [0, TT; HO1 (0)), we introduce the norm

T
||u||y,,s=E(/O e—”(6||us||2+||Vus||2)ds),

which clearly defines an equivalent norm on L>(Q2x[0,T]; HOl 0)).

Let us consider the Picard sequence (u"),, defined by u® = £ and for all n € N*
we denote by (u"t1, v +1) the solution of the linear SPDE with obstacle

@ vt = R(E, f(u", Vu), g, Vu"), h(u", Vu"), S).

Then, by Itd’s formula (17), we have almost surely

T
_VTHM”H u'%||2+2/(; e_ysé'(uf"'l—uf)ds
_ Tfys n+1_n2d
==v) e |us™ — ug | ds

T A
w2 [ e (frurt - ds—zz e s
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+2Z/ eV (hi, utt —ul)dB]

. T
+f0 e_y3]||hs|||2ds+2/0 /Oe_”s(uf'H —u") (V" — V") (dx ds),

where f = f(u",Vu") — f@""', Vu" 1), § = gu", Vu") — g1, Vu"")
and h = h(u", Vu™) — hu"~!, Vu"~1). Clearly, the last term is nonpositive, so
using Cauchy—Schwarz’s inequality and the Lipschitz conditions on f, g and 4,
we have

T ~
2/0 eV —ul, f\)ds

l T —ys|,n+l _  n|2 roa 2
< eV | uf ul|“ds+e | Nfsll7ds
e Jo 0
l ! —ys|, nt+l _ 0?2 r —ys||,,n _ n—1)2
< eV | ul ul|“ds+Ce | eV |ulf —ul™ | ds
e Jo 0

r 2
+Ce [ eV —ur P ds
0
and
22 / e (G0 (T — ut)) ds
<2 [ eIV - (el o eVl - ) ) ds
T c T
sce Lot —aPas+ S [T et as
0 e Jo
T —ys n+1 ny (12 T —ys||,,n n—1)2
+a 0 € ”V(Ms _Ms)” ds+a 0 € ”Ms_us ” ds

and

r ~ 2
[ (AR

1 T _ —112
§C(1+—>/ eV uf —ul 7| ds
&/ J0

T
+B0 o [ |V ) s
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where C, « and § are the constants in the Lipschitz conditions. Using the elliptic
condition and taking expectation, we get

1 r_ +1 2 - +1 2
(V—;)E/O e it —u ds+<2x—a>E/0 eV (T — )| ds

2 T _ —112
SC<1+8+—)/ eV ull —ui " ds
£/ JO

T
+(Ce+a+p21+ 8))E/ e |V (ul — ") ds.
0

We choose ¢ small enough and then y such that

y—1/e  C+e+2/e)
2 —a Cet+a+p2(1+e)

Ce+a+p2(1+6)<2h—a and

If we set § = g;{f , we have the following inequality:

||Mn+l_un|| <C8+0‘+,32(1+8)

" —u" ], 5=

.8 = 20—«
Ceta+p*(1+e)\", |
< — lu’], 5
20—«
Ce+a+p2(14¢)

whenn — o0, (T)" — 0, and we deduce that (#"*),, converges strongly
tou in L3(Q x [0, T1; H} (0)).

Moreover, as (u"t!, vty = R(E, f", Vu™), g™, Vu"), hu", Vu™), S),
we have for any ¢ € D,

W™, 0) — (. g0) /O

t

t
(uf, ds¢p5) ds —i—/o Ew™!, gy)ds

d

r
+ Z/O (g; (u?’ Vu?)’ 8i(ps) ds

i=l

t +o0o t ) )
= [ @) s+ 3 [0t u). ) ]
j=1

+/(;t/;9(ps(x)v”+l(dxds) a.s.

Let v"*! be the random parabolic potential associated to v"*!:

L WL R P

We denote z"t! =y +1 — pntl

S ZU(e, £, Vu), g, Vi), b, Tu))

, SO
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converges strongly to z in L3(Q x [0, T]; HOl (0)). As a consequence of the

strong convergence of w"th,, we deduce that (v**t1), converges strongly to v
in L2(Q x [0, T1; HOl (0)). Therefore, for fixed w,

t aq s t
/ <_i, Us) ds + / 5(@5: vs)ds
0 as 0

(1 9 1 ! 1
:11111/0 (— ;);,IJ;’+ )ds—{—/(; Eps, vt ds > 0,

that is, v(w) € P. Then from Proposition 1, we obtain a regular measure associated
with v, and (V") converges vaguely to v.
Taking the limit, we obtain

t t
o) = G — [ dpds + [ E g ds
d .
+ Z/(; (gé(us’ Vug), aiws)ds

i=1

t +00 t ) .
:/(; (fs(us,Vus),gos)ds—i—Z/O (h!(us, Vus), ¢5) dB]

j=1

—I—/Otfo%(x)v(dx,ds) a.s.

From the fact that u and z are in Hr, we know that v is also in Hr, and by
definition, v is a random regular measure. g

6. Comparison theorem.

6.1. A comparison theorem in the linear case. We first establish a compari-
son theorem for the solutions of linear SPDE with obstacle in the case where the
obstacles are the same; this also gives a comparison between the regular measures.

So, for this part only, we consider the same hypotheses as in Section 5.2. So
we consider adapted processes f, g, h, respectively, in Lz([O, T] x Q x O;R),
L2([O, T] x Q2 x O; Rd) and Lz([O, Tl x Q2 x O; RN*), an obstacle S which sat-
isfies assumption (O) and & € L*(Q x ©) is an Fy-measurable random variable
such that £ < Sp. We denote by (u, v) the solution of R(&, f, g, h, S).

We are given another &’ € LZ(SZ x ) is Fy-measurable and such that £ < Sy
and another adapted process f’ in L2([0, T] x Q x O; R). We denote by (', ')
the solution of R(&¢’, f', g, h, S). We have the following comparison theorem:

THEOREM 7. Assume that the following conditions hold:

(1) E<&,dx®dP-a.e.
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Q2) f<f,dt®dxQdP-a.e.

Then for almost all w € Q, u <u’, q.e. and v > V' in the sense of distribution.

PROOF. We consider the following two penalized equations:
d . 400 | )
du} = Au}dt + frdt +) 0igydt + Y hldB] +n(u} —S;)" dt,
i=1 j=l1
d , Fooo
du’ = Aul'dt + f/dt +) " 0igidt+ Y hldB] +n(u]" —S,)" dt,
i=1 j=1
and we denote
FI(X, M?) = fi(x) +”(’/l? - St)i,
F/(x,ul) = fl(x)+n(u} —S)".

With assumption (2) we have that F; (x, u}) < F/(x,u}), dt ®dx @ d P-a.e. There-
fore, from the comparison theorem for SPDE (without obstacle, see [6]), we know
that Vr € [0, T], u}! <u",dx ® dP-a.e., thus, n(u} — S;)~ > nu;" — S;)~.

The results are an immediate consequence of the construction of (u#,v) and
(u’, V') given in Section 5.2. [J

6.2. A comparison theorem in the general case. 'We now come back to the
general setting and consider (ul, vl) = R(él, f l,g, h,S 1) the solution of the
SPDE with obstacle with null boundary condition:

dul(x) = Lu} (x)dt + f'(t, x,u} (x), Vu! (x)) dt
d
+ Y 0igi(t x, uf (x), Vi (x)) di
i=1
+00 .
+ > hj(t,x,uf (x), Vuy (x))dB] +v' (x,dp),
j=1
u' ZSl,u(l)zsl,

where we assume (& L f L g, h) satisfy hypotheses (H), (I) and (O).

We consider another coefficient f2 which satisfies the same assumptions as f!,
another obstacle S? which satisfies (O) and another initial condition &2 belong-
ing to L*(Q2 x O) and Fy adapted such that £2 > Sg. We denote by w2, v?) =
R(E2, f2, 8. h, 7).

THEOREM 8. Assume that the following conditions hold:
(1) €' <&2,dx ®dP-ae.
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Q) flw!, vuy < f2u', vu'),dt @ dx @ d P-a.e.

(3) S'< 8%, dt ®@dx @dP-a.e.
Then for almost all w € 2, ul(t,x) < uz(t, Xx),q.e.

Weputi =u' —u? E =" —£2, fy = fl(t,ul, Vu}) — f2(t,u?, Vu?), g =
g(t,ul, vuly — g(t,u?, Vu?) and h; = h(t,u}, Vu,) — h(t,u?, Vu?). The main

idea is to evaluate E||i;||?, thanks to Itd’s formula, and then apply Gronwall’s
inequality. Therefore, we start by the following lemma:

LEMMA 7. Forallt €0, T], we have
t
Ellﬁf||2+2Ef £(aF) ds
0
N t n t
(18) :E”§+H2+2E/O (ﬁf,fs)ds—2Efo (Vﬁ:,g’s)ds
' ; A
+2Ef0 /Oﬁ;*(x)(v— v/)(dxds)-l—E/O ||1{ﬁs>0}|hs|||2ds_

PROOF. We approximate the function ¥ :y € R — (yT)? by a sequence
(Yn)nen+ of regular functions: let ¢ be a C* increasing function such that

Vye]—oo,1] 9(y)=0 and Vye][2,+oo[ p(y) =1
We set for all n € N*,
VyeR  ¥u(y) =y ony).

It is easy to verify that (y,), converges uniformly to the function ¥ and that,
moreover, we have the estimates

VyeR Y, Vn 0=y, =¥ (), 0=y, (»)=<Cy, |y (M| =C.
Thanks to Theorem 6, for all n € N* and ¢ € [0, T'], we have

t
E'/;an(us)dx—l—E/O S(wn(us),us)ds
. b . t o
(19) =E/Oz/fn<s>dx+E/O (w,,ws),fs)ds—E/O (V! (@), 85) ds

t ' (@ D l ! " ~
+E/0 /Own(us(X))v(dxds)—i-zE/O '/(‘an(us(x))hs(X)dXdS

Taking the limit, thanks to the dominated convergence theorem, we obtain the
convergences of all the terms except E f(f Jo ¥y, (s (x))D(dx ds).
From (19), we know that

t
—E/O /;Qxlfn(us(x))v(dxds)fC.
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Moreover, we have the following relation:

—E/(;Z/Oi//,/l(ﬁs(x))ﬁ(dxds)
:_E/Otfow,;(sg(x) —u?(x))v!(dx ds)
+E%1L%@yw—ﬁunﬂumw
t
_ /(2 _ ¢l 1
_E./o /Own(us(x) S (x))v' (dxds)

t
R PR 2
—I—E/O /(:)lfln(us(x) S;(x))v-(dxds).
By Fatou’s lemma, we obtain
! 2,08 cliontol ! Loy @2t 2
2E/0 /O(us(x) Si(x)) v (dxds)+2E/(; /O(us(x) S;(x)) v (dxds)

< +00.

Hence, the convergence of the term E fé Jo ¥, (l5(x))D(dx ds) comes from the
dominated convergence theorem. [J

PROOF OF THEOREM 8. Applying Itd’s formula (18) to (ii;")?, we have

t
ELi [P +2E [ T -0£G)ds
_ZE/ it f) ds+2E/ at,8,)d

—I—E/(; ||I{L;s>0}|fts|||2ds+2E/o /;9(14; —u?) () = v?)(dx, ds).
As we assume that fl(ul,Vul) §f2(u1,Vu1),
i fy=af{ £ (s ufs Vug) = f2(s.u, Vuy))
+al{f2 (s, ul, vaul) — £2(s, u, Vu?))
<aH{ (s ul, vul) = (s, u2, vu?)).

Then with the Lipschitz condition, using Cauchy—Schwarz’s inequality, we have
the following relations:

E/’( fyds < <c+9)5f’uﬁs+”2ds+9E[’g i

Ef (Vat, 8) _”"‘Ef Fyds + = E/ lat|2ds,
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t . to ,32 P ro
E [ ol ds < CE [t [Pds + =" [ e(@t)as.
0 0 A 0
The last term is equal to —2F fé fo(u} — u%)+(x)v2(dx,ds) < 0, because on
{u1 < uz}, (u! — u2)+ =0 and on {u1 > uz}, vi(dx,ds) = 0. Thus, we have the
following inequality:

2 20+2 2Ce B*+e Lo T2
Elar] +(2— ST )E/O S(Mj)dsfcgfo”uju ds.
We can take ¢ small enough such thatZ—%—aﬁ—@ > (, and we have

At 112 ! A2
Ela/|"=CE A |ay (" ds.
Then we deduce the result from Gronwall’s lemma. O

REMARK 6. Applying the comparison theorem to the same obstacle gives
another proof of the uniqueness of the solution.
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