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ON THE EXISTENCE OF PATHS BETWEEN POINTS IN HIGH
LEVEL EXCURSION SETS OF GAUSSIAN RANDOM FIELDS

BY ROBERT J. ADLER1,4, ELINA MOLDAVSKAYA3,5
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Technion, Technion and Cornell University

The structure of Gaussian random fields over high levels is a well re-
searched and well understood area, particularly if the field is smooth. How-
ever, the question as to whether or not two or more points which lie in an
excursion set belong to the same connected component has constantly eluded
analysis. We study this problem from the point of view of large deviations,
finding the asymptotic probabilities that two such points are connected by a
path laying within the excursion set, and so belong to the same component.
In addition, we obtain a characterization and descriptions of the most likely
paths, given that one exists.

1. Introduction. Let X = (X(t), t ∈ R
d) be a real-valued sample continuous

Gaussian random field. Given a level u, the excursion set of X above the level u is
the random set

Au = {
t ∈ R

d :X(t) > u
}
.(1.1)

Understanding the structure of the excursion sets of random fields is a mathemati-
cal problem with many applications, and it has generated significant interest, with
several recent books on the subject (e.g., [1] and [2]) and with considerable empha-
sis on the topology of these sets. One very natural question in this setting which has
until now eluded solution but which we study in this paper is the following: given
that two points in R

d belong to the excursion set, what is the probability that they
belong to the same path-connected component of the excursion set? Specifically,
let a,b ∈ R

d , a �= b. Recall that a path in R
d connecting a and b is a continuous

map ξ : [0,1] → R
d with ξ(0) = a, ξ(1) = b. We denote the collection of all such

paths by P(a,b) and are interested in the conditional probability

P
(∃ξ ∈ P(a,b) :X

(
ξ(v)

)
> u, for all 0 ≤ v ≤ 1|X(a) > u,X(b) > u

)
.
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It is straightforward to check that we are considering measurable collections of
outcomes, so this probability is well defined.

Of course, the conditional probability above is a ratio of two probabilities, the
denominator being no more than a bivariate Gaussian probability, which is well
understood. Therefore, we will concentrate on the unconditional probability

�a,b(u)
�= P

(∃ξ ∈ P(a,b) :X
(
ξ(v)

)
> u, for all 0 ≤ v ≤ 1

)
.(1.2)

If the random field is stationary, we may, without loss of generality, assume that
b = 0, in which case we will use the simpler notation �a in (1.2).

When the domain of a random field is restricted to a (compact) subset T ⊂ R
d ,

the points a and b will be assumed to be in T , and the entire path in (1.2) will be
required to lie in T as well (the implicit assumption being that T contains some
path between a and b). Nevertheless, we will use the same notation and also write

�a,b(u) = P
(∃ξ ∈ P(a,b) : ξ(v) ∈ T and X

(
ξ(v)

)
> u, for all 0 ≤ v ≤ 1

)
.

Which of the two interpretations of �a,b is intended at any point will be clear from
the context.

We will study the logarithmic behavior of the probability �a,b(u) for high lev-
els u, that is, as u → ∞. We start with a large deviations approach, which, as usual,
will not only describe the probability but also give us insight into the highest prob-
ability configurations. This makes up Sections 3 and 4, which follow a brief tech-
nical Section 2 collecting some results on the reproducing kernel Hilbert space of a
Gaussian process. Throughout we will treat the general and the stationary cases in
parallel, but separately, since the stationary case is somewhat more transparent and
more readily provides illustrative and illuminating special cases. In particular, we
will look at a number of one-dimensional examples in Sections 5–7, where we can
compute quite a lot. Even in this case the results are new and rather unexpected.
We look at the multidimensional case in Section 8. While this section also con-
tains some interesting and surprising examples, it turns out that typical examples
involve nonconvex optimization problems that we do not, at this stage, know how
to solve in general.

2. Some technical preliminaries. In this section we introduce much of the
notation we will use in the rest of the paper and recall certain important notions,
concentrating in particular on the reproducing kernel Hilbert (RKHS) space of a
Gaussian process.

Our main reference for the RKHS is van der Vaart and van Zanten [9], and
we use it selectively so as to prepare the background for using the large deviations
theory of Deuschel and Stroock [3]. An alternative route would be to have followed
the new notes by Lifshits [6].

We consider a real-valued centered continuous Gaussian random field X =
(X(t), t ∈ R

d). When needed (particularly, in the nonstationary case) we may re-
strict the domain of the random field to a compact subset T of R

d . We denote the
covariance function of X by RX(s, t) = cov(X(s),X(t)).
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As is customary, when the random field is stationary, we will use the single
variable notation RX(t) = RX(0, t) for the covariance function. In this case we
denote the spectral measure of X by FX, this being the symmetric, finite, Borel
probability measure on R

d satisfying

RX(t) =
∫

Rd
ei(t,x)FX(dx), t ∈ R

d .(2.1)

If X is stationary, then this and local boundedness imply that

lim‖t‖→∞
X(t)
‖t‖ = 0

with probability 1, so that almost all the sample paths of X belong to the space

C0 =
{
ω = (

ω(t), t ∈ R
d)

, continuous, such that lim‖t‖→∞ω(t)/‖t‖ = 0
}
.

Equipped with the norm

‖ω‖C0 = sup
t∈Rd

|ω(t)|
1 + ‖t‖ ,(2.2)

C0 becomes a separable Banach space, with dual space

C∗
0 =

{
finite signed Borel measures μ on R

d with
∫

Rd
‖t‖‖μ‖(dt) < ∞

}
.

We view the stationary random field X as a Gaussian random element of C0, gen-
erating a Gaussian probability measure μX on that space.

In the absence of stationarity, we will usually consider a continuous Gaussian
random field X = (X(t), t ∈ T ), for a compact set T ⊂ R

d . In that case we view
the random field X as a Gaussian random element in the space C(T ) of continuous
functions on T , equipped with the supremum norm, thus generating a Gaussian
probability measure μX on C(T ).

The reproducing kernel Hilbert space (henceforth RKHS) H of the Gaussian
measure μX (or of the random field X) is a subspace of C0 or C(T ), depending
on the parameter space of X, obtained as follows. In the general case we iden-
tify H with the closure L in the mean square norm of the space of finite linear
combinations

∑k
j=1 ajX(tj ) of the values of the process, aj ∈ R, tj ∈ R

d (or T )
for j = 1, . . . , k, k = 1,2, . . . via the injection L → C(T ) given by

H → wH = (
E

(
X(t)H

)
, t ∈ T

)
.(2.3)

When X is stationary, the RKHS H can also be identified with the subspace
of functions, with even real parts and odd imaginary parts, of the L2 space of the
spectral measure FX in (2.1), via the injection L2(FX) → C0 given by

h → S(h) =
(∫

Rd
ei(t,x)h̄(x)F (dx), t ∈ R

d

)
.(2.4)
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We denote by (·, ·)H and ‖ · ‖H the inner product and the norm in the RKHS H.
Since both injections described above are isometric, we have the important equal-
ities:

E
(
H 2) = ‖wH‖2

H.(2.5)

In the stationary case, these can be written somewhat more informatively as

‖h‖2
L2(FX)

=
∫

Rd

∥∥h(x)
∥∥2

FX(dx) = ∥∥S(h)
∥∥2

H.(2.6)

We shall use these equalities heavily in what follows.
Note that for every s ∈ R

d , the fixed s covariance function Rs = R(·, s) is in H,
and for every wH ∈ H, and t ∈ R

d , wH(t) = (wH ,Rt)H, meaning that the co-
ordinate projections are continuous operations on the RKHS. This is also the re-
producing property of the RKHS. Note also that the quadruple (C(T ), H,w,μX)

in general, or (C0, H, S,μX) in the stationary case, is a Wiener quadruple in the
sense of Section 3.4 in [3].

In the sequel we will use the notation M+(E) [resp., M+
1 (E)] for the collection

of all Borel finite (resp., probability) measures on a topological space E.

3. The basic large deviations result. We start with a large deviation result for
the probability �a,b there exists a path between a and b wholly within a connected
component of an excursion set.

THEOREM 3.1. (i) Let X = (X(t), t ∈ T ) be a continuous Gaussian random
field on a compact set T ⊂ R

d . Then

lim
u→∞

1

u2 log�a,b(u) = −1

2
CX(a,b),(3.1)

where

CX(a,b)
�= inf

{
EH 2 :H ∈ L, and, for some ξ ∈ P(a,b),

(3.2)
ξ(v) ∈ T and wH

(
ξ(v)

)
> 1,0 ≤ v ≤ 1

}
.

(ii) Let X = (X(t), t ∈ R
d) be a continuous stationary Gaussian random field,

with covariance function satisfying

lim sup
‖t‖→∞

RX(t) ≤ 0.(3.3)

Then

lim
u→∞

1

u2 log�a(u) = −1

2
CX(a),(3.4)

where

CX(a)
�= inf

{∫
Rd

∥∥h(x)
∥∥2

FX(dx) : for some ξ ∈ P(0,a)∫
Rd

ei(ξ(v),x)h̄(x)FX(dx) > 1,0 ≤ v ≤ 1
}
.
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PROOF. We start with putting our problem into the large deviation setup for
Gaussian measures of [3]. We will use the language of part (i) of the theorem, but
the setup for part (ii) is completely parallel. Observe that for u > 0

�a,b(u) = P
(
u−1X ∈ A

)
,

where A is the open subset of C(T ) given by

A ≡ Aa,b
�= {

ω ∈ C(T ) :∃ξ ∈ P(a,b) such that ω
(
ξ(v)

)
> 1,0 ≤ v ≤ 1

}
.

Therefore, by Theorem 3.4.5 in [3], we conclude that

− inf
ω∈A

I (ω) ≤ lim inf
u→∞

1

u2 log�a,b(u) ≤ lim sup
u→∞

1

u2 log�a,b(u)

(3.5)
≤ − inf

ω∈Ā
I (ω)

for the rate function I which, by Theorem 3.4.12 of [3], can be written as

I (ω) =
{

1
2‖ω‖2

H, if ω ∈ H,

∞, if ω /∈ H,
(3.6)

for ω ∈ C(T ). Then (3.5) already proves the lower limit statement

lim inf
u→∞

1

u2 log�a,b(u) ≥ −1

2
CX(a,b),

valid for both parts of the theorem. Therefore, it remains to prove the matching
upper limit. Here the argument is more involved in part (ii) of the theorem, since
noncompactness of the domain of the field requires us to rule out the possibility of
increasingly long ranging paths. We present the argument in this case. The proof
for part (i) is similar, and easier (since we do not have to worry about paths which
“escape to infinity” as in the following).

As is common with large deviation arguments, although we know that A =
A◦ �= Ā, this is not per se important. All that we need show is that the ω in the set
difference Ā \ A do not contribute to the infimum on the far right of (3.5).

We start by checking that

Ā ⊆
( ⋂

0<δ<1

(1 − δ)A

)
∪

( ⋂
0<δ<1

(1 − δ)A1

)
(3.7)

(in the sense of the usual multiplication of a set of functions by a real number),
where A1 ⊂ C0 is given by

A1 = {
ω ∈ C0 : for every r > 0 there is t ∈ R

d with ‖t‖ ≥ r

and a path ξ ∈ P(0, t) such that ω
(
ξ(v)

)
> 1,0 ≤ v ≤ 1

}
.

To see this, let ω ∈ Ā, so that there is a sequence ωn ∈ A,n = 1,2, . . . , with
ωn → ω in C0. Suppose first that there is r > 0 such that for a subsequence
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nk ↑ ∞, for each k = 1,2, . . . there is a path ξk ∈ P(0,a) satisfying ‖ξk(v)‖ ≤ r

and ωnk
(ξk(v)) > 1,0 ≤ v ≤ 1. Given 0 < δ < 1, choose k so large that

‖ωnk
− ω‖C0 ≤ δ/(1 + r).

Then for every t ∈ R
d with ‖t‖ ≤ r we have |ωnk

(t)−ω(t)| ≤ δ, so that ω(ξk(v)) >

1 − δ for 0 ≤ v ≤ 1, and ω ∈ (1 − δ)A.
Alternatively, suppose that such an r > 0 does not exist. Then for every r > 0,

for all but finitely many n, there is a path ξn ∈ P(0,a), going through a point tn
with ‖tn‖ = r , lying within the ball of radius r centered at the origin prior to hitting
the point tn, and such that ωn(ξn(v)) > 1,0 ≤ v ≤ 1. Given r > 0 and 0 < δ < 1,
choose n outside of the above exceptional finite set, and so large that

‖ωn − ω‖C0 ≤ δ/(1 + r).

As before, we conclude that there is a path connecting 0 and tn such that the
function ω takes values above 1 − δ along this path. Therefore, ω ∈ (1 − δ)A1, and
so we have shown (3.7).

Now note that since

inf
ω∈(1−δ)A

I (ω) = (1 − δ)2 inf
ω∈A

I (ω)

for any 0 < δ < 1, the upper limit part in (3.4), and so the result, will follow
from (3.7) once we check that I (ω) = ∞ for any ω ∈ A1, which we establish
by showing that A1 ∩ H = ∅.

Suppose that, to the contrary, there is a ω = S(h) ∈ A1 for some h ∈ H. Fix an
arbitrary ε > 0. Assumption (3.3) guarantees the existence of a rε > 0 such that
RX(t) ≤ ε if ‖t‖ ≥ rε . By the definition of A1, for every n = 1,2, . . . there is tn
with ‖tn‖ = nrε and a path ξ connecting 0 and tn such that ω(ξ(v)) > 1,0 ≤ v ≤ 1.
We can choose 0 < v1 < · · · < vn ≤ 1 such that ‖ξ(vj )‖ = jrε for j = 1, . . . , n.
Then

1 <
1

n

n∑
j=1

ω
(
ξ(vj )

) =
∫

Rd

(
1

n

n∑
j=1

ei(ξ(vj ),x)

)
h̄(x)FX(dx)

≤
∥∥∥∥∥1

n

n∑
j=1

ei(ξ(vj ),·)
∥∥∥∥∥
L2(FX)

‖h‖L2(FX).

However,∥∥∥∥∥1

n

n∑
j=1

ei(ξ(vj ),·)
∥∥∥∥∥

2

L2(FX)

= 1

n2

(
nRX(0) + 2

n−1∑
j1=1

n∑
j2=j1+1

RX
(
ξ(vj1) − ξ(vj2)

))

≤ 1

n
RX(0) + ε,
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so that

‖h‖2
L2(FX)

>
1

1
n
RX(0) + ε

.

Sending first n → ∞ and then ε → 0, we obtain ‖h‖L2(FX) = ∞, which is impos-
sible.

This contradiction proves the rightmost inequality in (3.4) and so we are done.
�

Theorem 3.1 describes the logarithmic asymptotic of the path existence proba-
bility �a,b in terms of a solution to an optimization problem in the Hilbert space.
The next result contains the dual version of this optimization problem and relates
�a,b to the problem of finding a path of minimal capacity between a and b.

THEOREM 3.2. (i) Let X = (X(t), t ∈ T ) be a continuous Gaussian random
field on a compact set T ⊂ R

d . Then

lim
u→∞

1

u2 log�a,b(u)

= −1

2
CX(a,b)(3.8)

= −1

2

[
sup

ξ∈P(a,b)

min
μ∈M+

1 ([0,1])

∫ 1

0

∫ 1

0
RX

(
ξ(u), ξ(v)

)
μ(du)μ(dv)

]−1

.

(ii) Let X = (X(t), t ∈ R
d) be a continuous stationary Gaussian random field,

with covariance function satisfying (3.3). Then

lim
u→∞

1

u2 log�a(u)

= −1

2
CX(a)(3.9)

= −1

2

[
sup

ξ∈P(0,a)

min
μ∈M+

1 ([0,1])

∫ 1

0

∫ 1

0
RX

(
ξ(u) − ξ(v)

)
μ(du)μ(dv)

]−1

.

Note that the space M+
1 ([0,1]) is weakly compact, and the covariance function

RX is continuous. Therefore, for a fixed path ξ , the function

μ →
∫ 1

0

∫ 1

0
RX

(
ξ(u), ξ(v)

)
μ(du)μ(dv)

is weakly continuous on compacts. Hence, it achieves its infimum, and it is legiti-
mate to write “min” in (3.8) and in (3.9).
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PROOF OF THEOREM 3.2. The proofs of the two parts are only notationally
different, so we will suffice with a proof for part (i) only. We use the Lagrange
duality approach of Section 8.6 in [7]. Writing

CX(a,b) = inf
ξ∈P(a,b)

CX(a,b; ξ),

where, for ξ ∈ P(a,b),

CX(a,b; ξ)
�= inf

{
EH 2 :H ∈ L and wH

(
ξ(v)

)
> 1,0 ≤ v ≤ 1

}
,(3.10)

we see that it is enough to prove that for every ξ ∈ P(a,b),

CX(a,b; ξ)
(3.11)

=
[

min
μ∈M+

1 ([0,1])

∫ 1

0

∫ 1

0
RX

(
ξ(u), ξ(v)

)
μ(du)μ(dv)

]−1

.

To this end, let Z = C([0,1]. Then P
�= {z ∈ Z : z(v) ≥ 0,0 ≤ v ≤ 1} is a closed

convex cone in Z. Its dual cone P⊕ ⊂ Z∗ [defined as the collection of z∗ ∈ Z∗
such that z∗(z) ≥ 0 for all z ∈ P] can be naturally identified with M+([0,1]). Fix
ξ ∈ P(a,b), and define G : L → Z by

G(H) = Gξ(H)
�= (

1 − wH

(
ξ(v)

)
,0 ≤ v ≤ 1

)
.

Then G is, clearly, a convex mapping. We can also write(
CX(a,b; ξ)

)1/2 = inf
{(

EH 2)1/2 :H ∈ L,G(H) ∈ −P}
,(3.12)

and so our task now is to show that (3.12) implies (3.11).
Suppose first that the feasible set in the optimization problem (3.10) is not

empty. Then there is H ∈ L such that G(H) belongs to the interior of the cone
−P, so by Theorem 1, page 224 of [7], we conclude that(

CX(a,b; ξ)
)1/2

(3.13)

= max
μ∈M+([0,1])

inf
H∈L

[(
EH 2)1/2 +

∫ 1

0
G(H)(v)μ(dv)

]
,

and we may use “max” instead of “sup” because an optimal μ ∈ M+([0,1]) exists.
For a fixed μ ∈ M+([0,1]) with total mass ‖μ‖, we let μ̂ = μ/‖μ‖ ∈ M+

1 ([0,1]).
Then

inf
H∈L

[(
EH 2)1/2 +

∫ 1

0
G(H)(v)μ(dv)

]

= ‖μ‖ + inf
H∈L

[(
EH 2)1/2 − ‖μ‖

∫ 1

0
wH

(
ξ(v)

)
μ̂(dv)

]
(3.14)
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= ‖μ‖ + inf
a≥0

a

[
1 − ‖μ‖ sup

H∈L : EH 2=1

∫ 1

0
wH

(
ξ(v)

)
μ̂(dv)

]

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−∞, if ‖μ‖ >

[
sup

H∈L : EH 2=1

∫ 1

0
wH

(
ξ(v)

)
μ̂(dv)

]−1

,

‖μ‖, if ‖μ‖ ≤
[

sup
H∈L : EH 2=1

∫ 1

0
wH

(
ξ(v)

)
μ̂(dv)

]−1

.

Therefore,

(
CX(a,b; ξ)

)1/2 =
[

inf
μ∈M+

1 ([0,1])
sup

H∈L : EH 2=1

∫ 1

0
wH

(
ξ(v)

)
μ(dv)

]−1

,

and (3.11) follows, since by the reproducing property of the RKHS, for every μ ∈
M+

1 ([0,1]),

sup
H∈L : EH 2=1

∫ 1

0
wH

(
ξ(v)

)
μ(dv) = sup

H∈L : EH 2=1

∫ 1

0

(
wH,RX

(
ξ(v), ·))Hμ(dv)

= sup
w∈H : ‖w‖H=1

(
w,

∫ 1

0
RX

(
ξ(v), ·)μ(dv)

)
H

=
(∫ 1

0

∫ 1

0
RX

(
ξ(u), ξ(v)

)
μ(du)μ(dv)

)1/2

.

In the last step we have used the fact that

wμ
�=

∫ 1

0
RX

(
ξ(v), ·)μ(dv) ∈ H,

so the supremum of the inner product is achieved at w = wμ/‖wμ‖H, and

‖wμ‖ =
(∫ 1

0

∫ 1

0
RX

(
ξ(u), ξ(v)

)
μ(du)μ(dv)

)1/2

.

This establishes (3.11) for the case that the feasible set in (3.10) is not empty.
We now turn to the case in which this set is, indeed, empty. This will complete the
proof of the theorem. In this case (3.11) reduces to the statement

I∗ �= min
μ∈M+

1 ([0,1])

∫ 1

0

∫ 1

0
RX

(
ξ(u), ξ(v)

)
μ(du)μ(dv) = 0.(3.15)

Suppose that, to the contrary, I∗ > 0. Let μ0 ∈ M+
1 ([0,1]) achieve the minimum

value in the integral defining I∗. Consider the continuous real-valued function

W(u) =
∫ 1

0
RX

(
ξ(u), ξ(v)

)
μ0(dv), 0 ≤ u ≤ 1.
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If this function never vanishes, then, by continuity and compactness, it is bounded
away from zero, so a sufficiently large in absolute value multiple of the random
variable in L given by

H =
∫ 1

0
X

(
ξ(v)

)
μ0(dv)

is feasible for the optimization problem (3.10), contradicting the assumption that
the set of feasible solutions is empty.

Hence, there is u0 ∈ [0,1] such that W(u0) = 0. For 0 < ε < 1 define a proba-
bility measure in M+

1 ([0,1]) by

με = (1 − ε)μ0 + εδu0,

where δa denotes the point mass at a. Note that

I (ε)
�=

∫ 1

0

∫ 1

0
RX

(
ξ(u), ξ(v)

)
με(du)με(dv)

= (1 − ε)2I∗ + 2ε(1 − ε)W(u0) + ε2RX(0)

= (1 − ε)2I∗ + ε2RX(0).

Since I∗ was assumed to be positive, we see that

d

dε
I (ε)

∣∣∣
ε=0

< 0,

which contradicts the minimality of I∗. This proves (3.15) and so the theorem. �

Observe that an alternative way of stating the result of Theorem 3.2 is

CX(a,b) = inf
ξ∈P(a,b)

[
min

μ∈M+
1 (ξ)

∫
ξ

∫
ξ
RX(t, s)μ(dt)μ(ds)

]−1

,(3.16)

where M+
1 (ξ) is the set of all probability measures in R

d supported by the path ξ

(strictly speaking, by the compact image of the interval [0,1] under ξ ). For a fixed
path ξ ∈ P(a,b), the quantity

CX(a,b; ξ) =
[

min
μ∈M+

1 (ξ)

∫
ξ

∫
ξ
RX(t, s)μ(dt)μ(ds)

]−1

(3.17)

is known as the capacity of the path ξ with respect to the kernel RX; see [4].
Therefore, we can treat the problem of solving (3.16) as one of finding a path
between the points a and b of minimal capacity.



1030 R. J. ADLER, E. MOLDAVSKAYA AND G. SAMORODNITSKY

4. Fixed paths and measures of minimal energy. The dual formulation (3.4)
of the optimization problem required to find the asymptotics of the path existence
probability �a,b(u) involves solving fixed path ξ optimization problems (3.10)
or (3.11). For a fixed path we have the following version of Theorems 3.1 and 3.2.

THEOREM 4.1. (i) For a ξ ∈ P(a,b) let

�a,b(u; ξ) = P
(
X

(
ξ(v)

)
> u,0 ≤ v ≤ 1

)
.

Then

lim
u→∞

1

u2 log�a,b(u; ξ) = −1

2
CX(a,b; ξ).(4.1)

(ii) The primal problem (3.10) can be rewritten in the form

CX(a,b; ξ) = inf
{
EH 2 :H ∈ L,E

[
X

(
ξ(v)

)
H

] ≥ 1,0 ≤ v ≤ 1
}
.(4.2)

Further, if the feasible set in (4.2) is nonempty, then the infimum in (4.2) is achieved
at a unique Hξ ∈ L.

(iii) The set Wξ of μ ∈ M+
1 ([0,1]) over which the minimum in the dual prob-

lem (3.11) is achieved is a weakly compact convex subset of M+
1 ([0,1]). Further-

more, if the feasible set in (4.2) is nonempty, then, for every μ ∈ Wξ ,

μ
({

0 ≤ v ≤ 1 :E
[
X

(
ξ(v)

)
Hξ

]
> 1

}) = 0.(4.3)

(iv) Suppose that the feasible set in (4.2) is nonempty. Then for every ε > 0,

P

(
sup

0≤v≤1

∣∣∣∣1

u
X

(
ξ(v)

) − xξ (v)

∣∣∣∣ ≥ ε
∣∣∣X(

ξ(v)
)
> u,0 ≤ v ≤ 1

)
→ 0(4.4)

as u → ∞. Here

xξ (v) = E
[
X

(
ξ(v)

)
Hξ

]
, 0 ≤ v ≤ 1.(4.5)

The probability measures μ ∈ Wξ are called capacitary measures, or measures
of minimal energy; see [4].

PROOF OF THEOREM 4.1. Part (i) of the theorem can be proved in the same
way as Theorem 3.1. The fact that the primal formulations (3.10) and (4.2) are
equivalent is an immediate consequence of the definition of wH . Suppose now that
the feasible set in (4.2) is nonempty, and let Hn ∈ L, n = 1,2, . . . be a sequence
of feasible solutions such that EH 2

n → CX(a,b; ξ). The weak compactness of the
unit ball in L shows that this sequence has a subsequential weak limit Hξ with
EH 2

ξ = CX(a,b; ξ). Since the set of feasible solutions is weakly closed, Hξ is
feasible. The uniqueness of the optimal solution to (4.2) follows from convexity of
the norm.
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Convexity and weak compactness of the set Wξ follow from the nonnegative
definiteness and continuity of RX; see, for example, Remark 2, page 160, in [4].
The statement (4.3) is a part of the relation between the dual and primal optimal
solutions; see Theorem 1, page 224, in [7].

For part (iv) of the theorem, note that by the Gaussian large deviation principle
of Theorem 3.4.5 in [3],

lim sup
u→∞

1

u2 logP

(
X

(
ξ(v)

)
> u,0 ≤ v ≤ 1, sup

0≤v≤1

∣∣∣∣1

u
X

(
ξ(v)

) − xξ (v)

∣∣∣∣ ≥ ε

)

≤ −1

2
inf

{
EH 2,H ∈ L :E

[
X

(
ξ(v)

)
H

] ≥ 1,0 ≤ v ≤ 1,(4.6)

sup
0≤v≤1

∣∣E[
X

(
ξ(v)

)
H

] − E
[
X

(
ξ(v)

)
Hξ

]∣∣ ≥ ε
}
.

Therefore, the statement (4.4) will follow from Parts (i) and (ii) of the theorem
once we prove that the infimum in (4.6) is strictly larger than CX(a,b; ξ). Suppose
that, to the contrary, the two infima are equal. By the weak compactness of the
unit ball in L and the fact that the feasible set in (4.6) is weakly closed, this would
imply existence of H∗ feasible for (4.6) such that EH 2∗ = EH 2

ξ . Since Hξ is not
feasible for (4.6), we know that H∗ �= Hξ . Since H∗ is feasible for (4.2), we have
obtained a contradiction to the uniqueness of Hξ proved above. This completes the
proof of the theorem. �

REMARK 4.2. Theorem 4.1 has the following important interpretation. As-
suming that the feasible set in (4.2) is nonempty, part (iv) of the theorem implies
that the nonrandom function xξ in (4.5) is the most likely choice for the normalized
sample path u−1X(ξ(v)),0 ≤ v ≤ 1 along ξ , given that {X(ξ(v)) > u,0 ≤ v ≤ 1}.
Part (iii) of the theorem implies that the values of the random field along the path
ξ have to (nearly) touch the level u at the points of the support of any measure
of minimal energy. In other words, the sample path needs to be “supported,” or
“held,” at the level u at the points of the support in order to achieve the highest
probability of exceeding the high level u along the entire path ξ . We will see ex-
plicit examples of how this works in the following section, when we more closely
investigate the one-dimensional case.

The duality relation of the optimization problems (4.2) and (3.11) immediately
provides upper and lower bounds on CX(a,b; ξ) of the form[∫ 1

0

∫ 1

0
RX

(
ξ(u), ξ(v)

)
μ(du)μ(dv)

]−1

≤ CX(a,b; ξ) ≤ EH 2(4.7)

for any μ ∈ M+
1 ([0,1]) and any H ∈ L feasible for (4.2). In particular, if[∫ 1

0

∫ 1

0
RX

(
ξ(u)ξ(v)

)
μ(du)μ(dv)

]−1

= EH 2(4.8)
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for some μ and H as above, then μ ∈ Wξ , H = Hξ , and the common value in (4.8)
is equal to CX(a,b; ξ).

Finding a measure of minimal energy, μ ∈ Wξ , is, in general, a difficult prob-
lem. The following theorem includes a characterization of these measures.

THEOREM 4.3. Assume that the feasible set in (4.2) is nonempty.

(i) For every μ ∈ Wξ we have

Hξ = CX(a,b; ξ)

∫ 1

0
X

(
ξ(v)

)
μ(dv)

with probability 1.
(ii) A probability measure μ ∈ M+

1 ([0,1]) is a measure of minimal energy (i.e.,
μ ∈ Wξ ) if and only if

min
0≤v≤1

∫ 1

0
RX

(
ξ(u), ξ(v)

)
μ(du)

(4.9)

=
∫ 1

0

∫ 1

0
RX

(
ξ(u1), ξ(u2)

)
μ(du1)μ(du2) > 0.

Note that part (ii) of the theorem also says that the integral in the left-hand side
of (4.9) is equal to the double integral in its right-hand side for μ-almost every
0 ≤ v ≤ 1.

PROOF OF THEOREM 4.3. For part (i), let μ ∈ Wξ . The calculations follow-
ing the maximization problem (3.13) show that μξ = CX(a,b; ξ)1/2μ is an opti-
mal measure for that problem. It follows from Theorem 1, page 224, in [7] that
Hξ solves the minimization problem in (3.14), when any measure in M+([0,1])
optimal for (3.13) is used. Using the measure μξ , we see that

Hξ = a

∫ 1

0
X

(
ξ(v)

)
μξ(dv) = aCX(a,b; ξ)1/2

∫ 1

0
X

(
ξ(v)

)
μ(dv)

for some a > 0. Testing all random variables of the type

Hξ = b

∫ 1

0
X

(
ξ(v)

)
μ(dv), b > 0,

in (4.2) leads to the conclusion that

b =
[

min
0≤v≤1

∫ 1

0
RX

(
ξ(u), ξ(v)

)
μ(du)

]−1

.

The fact that b = CX(a,b; ξ) follows now from the optimality of μ and the general
properties of measures of minimal energy for bounded symmetric kernels; see, for
example, Theorem 2.4 in [4].
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We now prove part (ii). Suppose first that μ satisfies (4.9), and define H ∈ L by

H = (
K(μ)

)−1
∫ 1

0
X

(
ξ(v)

)
μ(dv),

where K(μ) is the double integral in the right-hand side of (4.9). Note that for any
0 ≤ v ≤ 1,

E
[
X

(
ξ(v)

)
H

] = (
K(μ)

)−1
∫ 1

0
RX

(
ξ(u), ξ(v)

)
μ(du) ≥ 1

by (4.9). Therefore, H is feasible for (4.2). However,

EH 2 = 1

K(μ)2 E

(∫ 1

0
X

(
ξ(v)

)
μ(dv)

)2

= 1

K(μ)
,

so that μ and H satisfy the relation (4.8). Hence, μ ∈ Wξ (and H = Hξ ).
In the opposite direction, if μ ∈ Wξ , then the equality in (4.9) is a general prop-

erty of measures of minimal energy for bounded symmetric kernels, as in the proof
of part (i). The fact that the equal terms in (4.9) are positive follows from the fact
that the feasible set in (4.2) is nonempty, so CX(a,b; ξ) < ∞. �

REMARK 4.4. If the random field X is stationary, then the results of this sec-
tion can be restated in the language used in Section 3 in the stationary case. In
particular, the primal problem (4.2) becomes

CX(a; ξ) = inf
{∫

Rd

∥∥h(x)
∥∥2

FX(dx) :
∫

Rd
ei(ξ(v),x)h̄(x)FX(dx) > 1,0 ≤ v ≤ 1

}
,

while the optimal solution of the primal problem in part (i) of Theorem 4.3 be-
comes

hξ (x) = CX(a; ξ)

∫ 1

0
ei(ξ(v),x)μ(dv) for FX-almost all x ∈ R

d

and for any μ ∈ Wξ . This relation can also be restated in terms on the measures
supported by the (image of) path ξ instead of the unit interval, as in (3.17). If μ is
an optimal measure in (3.17), then we have

hξ (x) = CX(a; ξ)

∫
ξ
ei(t,x)μ(dt) for FX-almost all x ∈ R

d .(4.10)

Note that the function in the right-hand side of (4.10) is, up to a constant, the
characteristic function of the measure μ. If the support of the spectral measure FX
happens to be the entire space R

d , then the characteristic functions of all optimal
measures in (3.17) are equal and, hence, the uniqueness of a characteristic function
shows that, in this case [and as long as the feasible set in (4.2) is nonempty], there
is exactly one probability measure μ ∈ M+

1 (ξ) of minimal energy.
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REMARK 4.5. An immediate conclusion of part (ii) of Theorem 4.3 and the
assumed continuity of the covariance function is that the function

v �→
∫ 1

0
RX

(
ξ(u), ξ(v)

)
μ(du), 0 ≤ v ≤ 1,

is constant on the support of any measure μ ∈ Wξ . This seems to indicate that the
support of any measure of minimal energy may not be “large.” In the examples
below, however, this intuition holds only in some cases.

5. The one-dimensional case. In this and the following two sections we spe-
cialize to the one-dimensional case d = 1. Let a < b. As before, we are interested
in the probability

�a,b(u) = P
(
X(t) > u,a ≤ t ≤ b

)
.

There is, essentially, a single path between a and b, and the results of the previous
two sections immediately specialize to yield the following special case. [Note that
condition (3.3) is superfluous in the one-dimensional nonstationary case.]

THEOREM 5.1. Let X be a continuous Gaussian process on an interval in-
cluding [a, b]. Then the limit

−1

2
CX(a, b)

�= lim
u→∞

1

u2 log�a,b(u)

exists, and

CX(a, b)

= inf
{
EH 2 :H ∈ L,E

[
X

(
a + (b − a)v

)
H

] ≥ 1,0 ≤ v ≤ 1
}

(5.1)

=
[

min
μ∈M+

1 ([0,1])

∫ 1

0

∫ 1

0
RX

(
a + (b − a)u, a + (b − a)v

)
μ(du)μ(dv)

]−1

.(5.2)

If the process X is stationary, an alternative expression for CX(a)
�= CX(0, a),

a > 0, is given by

CX(a) = inf
{∫ ∞

−∞
∥∥h(x)

∥∥2
FX(dx) :

∫ ∞
−∞

eivaxh̄(x)FX(dx) > 1,

(5.3)

0 ≤ v ≤ 1
}
.

The set Wa,b of μ ∈ M+
1 ([0,1]) over which the minimum in (5.2) is achieved is a

weakly compact convex subset of M+
1 ([0,1]). The measures in Wa,b are charac-

terized by the relation

min
0≤v≤1

∫ 1

0
RX

(
a + (b − a)u, a + (b − a)v

)
μ(du)

(5.4)

=
∫ 1

0

∫ 1

0
RX

(
a + (b − a)u1, a + (b − a)u2

)
μ(du1)μ(du2).
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Suppose, further, that the problem (5.1) has a feasible solution. In this case the
double integral in (5.4) is positive for any μ ∈ Wa,b, and the problem (5.1) has a
unique optimal solution, Ha,b. For each μ ∈ Wa,b,

Ha,b = CX(a, b)

∫ 1

0
X

(
a + (b − a)v

)
μ(dv)

with probability 1. In the stationary case, the problem (5.3) has a unique optimal

solution, ha . For each μ ∈ Wa
�= W0,a

ha(x) = CX(a)

∫ 1

0
eiavxμ(dv) for FX-almost all −∞ < x < ∞.

The conditional law on C[a, b] of the scaled process u−1X restricted to the
interval [a, b], given that X(t) > u,a ≤ t ≤ b, converges as u → ∞ to the Dirac
measure at

xa,b(t) = CX(a, b)

∫ 1

0
RX

(
t, a + (b − a)v

)
μ(dv), a ≤ t ≤ b(5.5)

and

μ
({

0 ≤ v ≤ 1 :xa,b

(
a + (b − a)v

)
> 1

}) = 0.

Finally, if the process X is stationary, and the support of FX is the entire real
line, then the set Wa consists of a single probability measure, μa .

REMARK 5.2. Suppose that the process X is stationary. For μ ∈ M+
1 ([0,1])

define μ̂ = μ ◦ T −1 with T : [0,1] → [0,1] being the reflection map T x = 1 − x,
0 ≤ x ≤ 1. If μ ∈ Wa , then μ̂ satisfies conditions (5.4) because μ does, hence
μ̂ ∈ Wa as well. By convexity of Wa , so does the symmetric (around x = 1/2)
probability measure 1/2(μ+μ̂). Therefore, Wa always contains a symmetric mea-
sure. In particular, if Wa is a singleton, then the unique measure of minimal energy
is symmetric.

In the remainder of this section we concentrate on the stationary case. We will
investigate how the probability measure μa , the function ha and the limiting shape

xa
�= x0,a change as functions of a. This will help us understand the order of mag-

nitude of the probability �a(u) for varying lengths a of the interval and, according
to part (iv) of Theorem 4.1, it will tell us the most likely shape the process X takes
when it exceeds a high level u along the entire interval [0, a].

Our first result describes the situation occurring for some, but not all, stationary
Gaussian processes on short intervals.

PROPOSITION 5.3. Let X be a stationary continuous Gaussian process. Sup-
pose that for some a > 0 the following condition holds:

RX(t) + RX(a − t) ≥ RX(0) + RX(a) > 0 for all 0 ≤ t ≤ a.(5.6)
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Then a measure in Wa is given by

μ(1) �= 1
2δ0 + 1

2δ1.(5.7)

Furthermore,

CX(a) = 2

RX(0) + RX(a)
,(5.8)

ha(x) = 1 + eiax

RX(0) + RX(a)
for FX-almost all −∞ < x < ∞(5.9)

and

xa(t) = RX(t) + RX(a − t)

RX(0) + RX(a)
, 0 ≤ t ≤ a.(5.10)

PROOF. Once we show that μ(1) ∈ Wa , the rest of the statements will follow
from Theorem 5.1. In order to prove (5.7), we need to check conditions (5.4).
These follow immediately from (5.6) and the fact that∫ 1

0

∫ 1

0
RX

(
a(u1 − u2)

)
μ(1)(du1)μ

(1)(du2) = 1

2
RX(0) + 1

2
RX(a),

while for 0 ≤ v ≤ 1,∫ 1

0
RX

(
a(u − v)

)
μ(1)(du) = 1

2
RX(av) + 1

2
RX(a − av). �

REMARK 5.4. Note that a sufficient (but not necessary) condition for (5.6)
is concavity of the covariance function RX on the interval [0, a]. Indeed, for a
concave covariance function the derivative exists apart from a countable set of
points and is monotone. Therefore,

RX(t) − RX(0) =
∫ t

0
R′

X(s) ds ≥
∫ t

0
R′

X(a − t + s) ds = RX(a) − RX(a − t).

In particular, if the process X has a finite second spectral moment, then the sec-
ond derivative of the covariance function exists, is continuous and negative at zero
(unless the covariance function is constant). Therefore, the derivative stays nega-
tive on an interval around the origin, hence, the covariance function is concave on
[0, a], and (5.6) holds, for a > 0 small enough.

On the other hand, apart from degenerate cases, the situation described in Propo-
sition 5.3 cannot continue to hold for arbitrarily large a. For example, if the covari-
ance function vanishes at infinity, then (5.6) fails for a large enough and t = a/2,
say.

In addition, a simple calculation shows that it is always true that

lim
u→∞

1

u2 logP
(
X(0) > u,X(a) > u

) = −(
RX(0) + RX(a)

)−1
.(5.11)
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FIG. 1. Limiting shapes xa for the stationary Gaussian process with covariance function
RX(t) = exp(−t2/2) when Proposition 5.3 applies.

Combining this with (5.8) shows that, in the scenario of Proposition 5.3, the prob-
ability that X exceeds a high level over an entire interval and the probability that it
does so only at the endpoints of the interval are, at a logarithmic scale, the same.

The plots of Figure 1 show the limiting shape xa for the stationary Gaussian
process with covariance function RX(t) = exp(−t2/2), for a range of a for which
Proposition 5.3 applies. In this case the largest such a is approximately equal
to 2.2079. See Example 6.1 for more details.

The plots of Figure 1 indicate that as a approaches a critical value (approxi-
mately 2.2079 in this case), the limiting curve xa “attempts” to cross the level 1 at
the midpoint of [0, a]. Equivalently, the normalized process u−1X attempts to drop
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below level 1 at that point and so, speaking heuristically, it has to be “supported”
at the midpoint t = a/2. The interpretation of Theorem 4.1 in Remark 4.2 calls
for adding a mass to the measure μ(1) for the critical value of a at the midpoint of
the interval. The next result shows that, in certain cases, this is indeed the optimal
thing to do.

PROPOSITION 5.5. Let X be a stationary continuous Gaussian process. Sup-
pose that, for some a > 0,

RX(0) + RX(a) > 2RX(a/2),(5.12)

and let

εa = RX(0) + RX(a) − 2RX(a/2)

3RX(0) + RX(a) − 4RX(a/2)
∈ (0,1].(5.13)

Suppose that for all 0 ≤ t ≤ a/2,

RX(t) + RX(a − t) − RX(0) − RX(a)

≥ εa

[
RX(t) + RX(a − t) − RX(0) − RX(a)(5.14)

− 2
(
RX(a/2 − t) − RX(a/2)

)]
.

Then a measure in Wa is given by

μ(2) �= 1 − εa

2
δ0 + 1 − εa

2
δ1 + εaδ1/2.(5.15)

Furthermore,

CX(a) = 3RX(0) + RX(a) − 4RX(a/2)

RX(0)2 + RX(0)RX(a) − 2RX(a/2)2 ,(5.16)

ha(x) = CX(a)

[
1 − εa

2

(
1 + eiax) + εae

iax/2
]

(5.17)

for FX-almost all −∞ < x < ∞, and

xa(t) = CX(a)

[
1 − εa

2

(
RX(t) + RX(a − t)

) + εaRX
(|t − a/2|)],(5.18)

0 ≤ t ≤ a.

PROOF. The proof is identical to that of Proposition 5.3 once we observe that,
under (5.12), μ(2) is a legitimate probability measure. �

The plots of Figure 2 show the limiting shape xa for the stationary Gaussian
process with covariance function RX(t) = exp(−t2/2), for a range of a for which
Proposition 5.5 applies. In this case the range of a is, approximately, between
2.2079 and 3.9283. See Example 6.1 for more details.
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FIG. 2. Limiting shapes for RX(t) = exp(−t2/2) when Proposition 5.5 applies (the top row). The
left plot in the bottom row is a blowup of the right plot in the top row. The right plot in the bottom
row shows how the constraints are violated soon after the upper critical value of a.

6. Specific covariance functions. In the previous section we saw some gen-
eral results for one-dimensional processes, with some illustrative figures for what
happens in the case of a Gaussian covariance function. In this section we look
more carefully at this case, and also look at what can be said for an exponential
covariance.

EXAMPLE 6.1. Consider the centered stationary Gaussian process with the
Gaussian covariance function

R(t) = e−t2/2, t ∈ R.(6.1)
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For this process the spectral measure has a Gaussian spectral density which is
of full support in R. In particular, for every a > 0 there is a unique (symmetric)
measure of minimal energy. Furthermore, the second spectral moment is finite, so
that, according to Remark 5.4, for a > 0 sufficiently small this process satisfies the
conditions of Proposition 5.3. To find the range of a for which this happens, note
that conditions (5.6) become, in this case,

e−t2/2 + e−(a−t)2/2 ≥ 1 + e−a2/2, 0 ≤ t ≤ a.(6.2)

Since the function

g(t) = e−t2/2 + e−(a−t)2/2, 0 ≤ t ≤ a,

is concave if 0 ≤ a ≤ 2, and has a unique local minimum, at t = a/2, when a > 2, it
is only necessary to check (6.2) at the midpoint t = a/2. At that point the condition
becomes

ψ(a) = 2e−a2/8 − 1 − e−a2/2 ≥ 0.

The function ψ crosses 0 at a1 ≈ 2.2079, which is the limit of the validity of the
situation of Proposition 5.3 in this case. The plots of Figure 1 show the limiting
shape xa for this process in the situation of Proposition 5.3.

Somewhat longer (and numerical) calculations show that the conditions of
Proposition 5.5 hold for the process with the covariance function (6.1) for an inter-
val of values of a after the conditions of Proposition 5.3 break down. The condi-
tions of Proposition 5.5 continue to hold until the second derivative at the midpoint
t = a/2 of the limiting function in (5.18) becomes negative (so that the function
takes values smaller than 1 in a neighborhood of the midpoint). To find when this
happens, we solve the equation

1 − εa

2

(
R′′

X(t) + R′′
X(a − t)

) + εaR
′′
X
(|t − a/2|) = 0

at t = a/2. The resulting equation

(1 − εa)
(
a2/4 − 1

)
e−a2/8 − εa = 0

has the solution a2 ≈ 3.9283, which is the limit of the validity of the situation of
Proposition 5.5 in this case. The plots of Figure 2 shed some light on the above
discussion. This discussion indicates, and calculations confirm, that, in the next
regime, the mass in the middle for the optimal measure splits into two parts that
start to move away from the center. Heuristically, this is needed “to support” the
trajectory that, otherwise, would “dip” below 1 outside of the midpoint.

These calculations rapidly become complicated. They seem to indicate that the
next regime continues to hold until around a3 ≈ 5.4508. In this regime the optimal
measure takes the form

μ(3) �= 1 − εa

2
δ0 + 1 − εa

2
δ1 + εa

2
δ1/2−da + εa

2
δ1/2+da ,(6.3)
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FIG. 3. The limiting shape in the case a = 4.5 for RX(t) = exp(−t2/2).

where da is the distance of two internal masses from the midpoint. When a = 4.5,
ε4.5 = 0.36632 and d4.5 = 0.12285, so that the internal atoms are at 0.37715 and
0.62285, and the rest of the support is concentrated at the endpoints of the interval
with probabilities 0.31684. Figure 3 shows the limiting shape x4.5.

It would be nice to understand all regimes, but we do not yet know how to
find a general structure. On the other hand, Section 7 gives asymptotic results for
a → ∞.

Finally, Figure 4 shows the growth of the exponent CX(a) with a for as long as
either Proposition 5.3 or Proposition 5.5 applies.

The next example shows a situation very different from that of Example 6.1.

EXAMPLE 6.2. Consider an Ornstein–Uhlenbeck process, that is, a centered
stationary Gaussian process with the covariance function

R(t) = e−|t |, t ∈ R.(6.4)

For this process the spectral measure has a Cauchy spectral density, so it is also of
full support in R. Therefore, for every a > 0 there is a unique (symmetric) measure
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FIG. 4. The exponent CX(a) as a function of a for RX(t) = exp(−t2/2).

of minimal energy. In this case, however, even the first spectral moment is infinite.
The covariance function is actually convex on the positive half-line so, in particular,
the conditions of Proposition 5.3 fail for all a > 0. In fact, it is elementary to check
that for the probability measure

μ = 1

a + 2
δ0 + 1

a + 2
δ1 + a

a + 2
λ(6.5)

[where λ is the Lebesgue measure on (0,1)], the integrals

∫ 1

0
RX

(
a(u − v)

)
μ(du), 0 ≤ v ≤ 1,

have a constant value, equal to 2/(a + 2). Therefore, the measure μ in (6.5) is the
measure of minimal energy, and CX(a) = (a + 2)/2 for all a > 0.

By Theorem 5.1 we conclude that the limiting function xa is equal to 1 almost
everywhere in [0, a] with respect to the Lebesgue measure. Since xa is continuous,
it is identically equal to 1 on [0, a].
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Examples 6.1 and 6.2 demonstrate a number of the ways a stationary Gaussian
process “prefers,” in the large deviations sense, to stay above a high level over an
interval. The process of Example 6.1 with covariance function (6.1) is smooth; the
most likely way for it to stay above a level is to force it to be “slightly” above that
level at a properly chosen finite set of time points; after that it is “held” above the
level at the rest of the interval [0, a] by the correlations of the process. The optimal
configuration of the finite set of points depends on the length of the interval [0, a],
and it appears to undergo phase transitions at certain critical interval lengths. The
complete picture of this “dynamical system” of finite sets remains unclear. On the
other hand, the Ornstein–Uhlenbeck process of Example 6.2 is continuous, but not
smooth. In fact, it behaves locally like a Brownian motion. Therefore, “holding”
it “slightly” above a level at a discrete point does not help, since it “wants” im-
mediately to go below that level. This explains the nature of the optimal measure
μ in (6.5), and this nature stays the same no matter how short or long the interval
[0, a] is. In particular, phase transitions do not happen for this process.

It remains to be investigated whether other types of behavior are possible, and
under what exact conditions on the Gaussian process each type of behavior occurs.
It is also likely that minimal energy measures in Wa carry additional information,
describing how “slightly” above the level u a Gaussian process is most likely to
be, given that it is above that level along the interval. The exact nature of this
information also remains to be investigated.

7. Asymptotics for long intervals. In this section we investigate the asymp-
totics of the exponent CX(a) for large a. We start with a result showing that, for
certain short memory stationary Gaussian processes, the exponent CX(a) grows
linearly with a over long intervals. Furthermore, the energy of the uniform distri-
bution λ on [0,1] becomes, asymptotically, minimal.

THEOREM 7.1. Let X be a stationary continuous Gaussian process. Assume
that RX is positive, and satisfies the following condition:∫ ∞

0
R(t) dt < ∞.(7.1)

Then, with λ denoting the uniform probability measure on [0,1],

lim
a→∞

1

a
CX(a) =

(
lim

a→∞a

∫ 1

0

∫ 1

0
RX

(
a(u − v)

)
λ(du)λ(dv)

)−1

(7.2)

= 1

2
∫ ∞

0 R(t) dt
.

PROOF. By Theorem 5.1, the statement of the present theorem is equivalent
to the following pair of claims:

lim
a→∞a

∫ 1

0

∫ 1

0
RX

(
a(u − v)

)
λ(du)λ(dv) = 2

∫ ∞
0

R(t) dt(7.3)
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and

lim inf
a→∞ a min

μ∈M+
1 ([0,1])

∫ 1

0

∫ 1

0
RX

(
a(u − v)

)
μ(du)μ(dv) ≥ 2

∫ ∞
0

R(t) dt.(7.4)

Since ∫ 1

0

∫ 1

0
RX

(
a(u − v)

)
λ(du)λ(dv)

= 1

a

∫ 1

0

[∫ av

0
R(t) dt +

∫ a(1−v)

0
R(t) dt

]
dv,

(7.3) immediately follows from (7.1) and the bounded convergence theorem.
Therefore, it only remains to prove (7.4). Suppose that, to the contrary, (7.4) fails,
and choose a sequence an → ∞ such that

lim
n→∞an min

μ∈M+
1 ([0,1])

∫ 1

0

∫ 1

0
RX

(
an(u − v)

)
μ(du)μ(dv) < 2

∫ ∞
0

R(t) dt.

For each n choose a symmetric μan ∈ Wan , so that

lim
n→∞an

∫ 1

0

∫ 1

0
RX

(
an(u − v)

)
μan(du)μan(dv) < 2

∫ ∞
0

R(t) dt.(7.5)

We claim that, for every γ > 0,

lim
n→∞μan

([
0, γ a−1

n

]) = 0.(7.6)

Indeed, by the positivity of RX, for any γ > 0,∫ 1

0

∫ 1

0
RX

(
an(u − v)

)
μan(du)μan(dv)

≥
∫ γ a−1

n

0

∫ γ a−1
n

0
RX

(
an(u − v)

)
μan(du)μan(dv)

≥ {
μan

([
0, γ a−1

n

])}2 inf
0≤t≤γ

R(t),

so that (7.5) necessitates (7.6). Next, define a sequence of signed measures on
[0,1] by μ̂n = μan − λ. Note that

μ̂n

([0,1]) = 0 for each n.(7.7)

By the nonnegative definiteness of RX,∫ 1

0

∫ 1

0
RX

(
an(u − v)

)
μan(du)μan(dv)

=
∫ 1

0

∫ 1

0
RX

(
an(u − v)

)
λ(du)λ(dv) +

∫ 1

0

∫ 1

0
RX

(
an(u − v)

)
μ̂n(du)μ̂n(dv)
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+ 2
∫ 1

0

∫ 1

0
RX

(
an(u − v)

)
λ(du)μ̂n(dv)

≥
∫ 1

0

∫ 1

0
RX

(
an(u − v)

)
λ(du)λ(dv)

+ 2
∫ 1

0

∫ 1

0
RX

(
an(u − v)

)
λ(du)μ̂n(dv).

We will show that

lim
n→∞an

∫ 1

0

∫ 1

0
RX

(
an(u − v)

)
λ(du)μ̂n(dv) = 0.(7.8)

Together with (7.3) this will provide the necessary contradiction to (7.5). Let
γ > 0. Write the integral in (7.8) as

∫ 1−γ a−1
n

γ a−1
n

[∫ 1

0
RX

(
an(u − v)

)
du

]
μ̂n(dv)

+ 2
∫ γ a−1

n

0

[∫ 1

0
RX

(
an(u − v)

)
du

]
μ̂n(dv)

�= J (1)
n + 2J (2)

n .

Observe that

∣∣J (2)
n

∣∣ = 1

an

∣∣∣∣
∫ γ a−1

n

0

[∫ anv

0
RX(t) dt +

∫ an(1−v)

0
RX(t) dt

]
μ̂n(dv)

∣∣∣∣
≤ 2

∫ ∞
0 RX(t) dt

an

‖μ̂n‖([
0, γ a−1

n

])
,

so that by (7.6) we obtain

lim
n→∞anJ

(2)
n = 0(7.9)

for every γ > 0. Next, we write

J (1)
n = 1

an

∫ 1−γ a−1
n

γ a−1
n

[∫ anv

0
RX(t) dt +

∫ an(1−v)

0
RX(t) dt

]
μ̂n(dv)

= 2
∫ ∞

0 RX(t) dt

an

μ̂n

([
γ a−1

n ,1 − γ a−1
n

])

− 1

an

∫ 1−γ a−1
n

γ a−1
n

[∫ ∞
anv

RX(t) dt +
∫ ∞
an(1−v)

RX(t) dt

]
μ̂n(dv)

�= J (11)
n − J (12)

n .
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It follows from (7.7) that

∣∣anJ
(11)
n

∣∣ = 2
∫ ∞

0
RX(t) dt

∣∣μ̂n

([
0, γ a−1

n

]) + μ̂n

([
1 − γ a−1

n ,1
])∣∣ → 0(7.10)

as n → ∞, by (7.6). Finally,

∣∣anJ
(12)
n

∣∣ ≤ 4
∫ ∞
γ

RX(t) dt,(7.11)

and we obtain by (7.9), (7.10) and (7.11) that

lim sup
n→∞

an

∣∣∣∣
∫ 1

0

∫ 1

0
RX

(
an(u − v)

)
λ(du)μ̂n(dv)

∣∣∣∣ ≤ 4
∫ ∞
γ

RX(t) dt.

Letting γ → ∞ proves (7.8) and, hence, completes the proof of the theorem. �

The next theorem is the counterpart of Theorem 7.1 for certain long memory
stationary Gaussian processes. In this case, the uniform distribution on [0,1] is no
longer, asymptotically, optimal. We will assume that the covariance function of the
process is regularly varying at infinity:

RX(t) = L(t)

|t |β , 0 < β < 1,(7.12)

where L is slowly varying at infinity. Before stating the theorem, we introduce new
notation.

Consider the minimization problem

min
μ∈M+

1 ([0,1])

∫ 1

0

∫ 1

0

μ(du)μ(dv)

|u − v|β , 0 < β < 1.(7.13)

This is a minimization problem of the same nature as in (5.2) with a = 0, b = 1,
and the covariance function RX replaced by the Riesz kernel Kβ(u, v) = |u−v|−β ,
u, v ∈ [0,1]. The general theory of energy of measures in [4] applies to the Riesz
kernel. In particular, the minimum in (7.13) is well defined, is finite and positive.
Let Wβ be the set of measures in M+

1 ([0,1]) of minimal energy with respect to
the Riesz kernel. Note that the uniform measure λ /∈ Wβ since it does not satisfy
the optimality conditions in Theorem 2.4 in [4].

THEOREM 7.2. Let X be a continuous stationary Gaussian process. Assume
that RX is positive and satisfies assumption (7.12) of regular variation. Then for
any μβ ∈ Wβ ,

lim
a→∞RX(a)CX(a) =

(∫ 1

0

∫ 1

0

μβ(du)μβ(dv)

|u − v|β
)−1

.(7.14)
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PROOF. Suppose first that there is a sequence an ↑ ∞ such that

lim
n→∞

1

RX(an)
min

μ∈M+
1 ([0,1])

∫ 1

0

∫ 1

0
RX

(
an(u − v)

)
μ(du)μ(dv)

(7.15)

<

∫ 1

0

∫ 1

0

μβ(du)μβ(dv)

|u − v|β .

For each n choose μn ∈ Wan , let nk ↑ ∞ be a subsequence such that μnk
⇒ μ̂

weakly as k → ∞ for some μ̂ ∈ M+
1 ([0,1]). By Fatou’s lemma and the regular

variation of RX,

lim inf
k→∞

1

RX(ank
)

∫ 1

0

∫ 1

0
RX

(
ank

(u − v)
)
μnk

(du)μnk
(dv)

≥
∫ 1

0

∫ 1

0

μ̂(du)μ̂(dv)

|u − v|β ≥
∫ 1

0

∫ 1

0

μβ(du)μβ(dv)

|u − v|β ,

since μβ has the smallest energy with respect to the Riesz kernel. This contra-
dicts (7.15), thus proving that

lim inf
a→∞

1

RX(a)
min

μ∈M+
1 ([0,1])

∫ 1

0

∫ 1

0
RX

(
a(u − v)

)
μ(du)μ(dv)

(7.16)

≥
∫ 1

0

∫ 1

0

μβ(du)μβ(dv)

|u − v|β .

In order to finish the proof, we need to establish a matching upper limit bound.
To this end, let θ > 0 be a small number. We define a probability measure νθ ∈

M+
1 ([0,1]) by convolving μβ with the uniform distribution on [0, θ ] and rescaling

the resulting convolution back to the unit interval. More explicitly, if X and U are
independent random variables, whose laws are μβ and λ, respectively, then νθ is
the law of (X + θU)/(1 + θ). Note that

νθ � λ and
dνθ

dλ
≤ 1 + θ

θ
a.e. on [0,1].(7.17)

Given 0 < ε < 1 −β , by Potter’s bounds (see, e.g., Proposition 0.8 in [8]), there
is t0 > 0 sufficiently large to ensure

RX(tx)

RX(t)
> (1 − ε)x−β−ε

for all t ≥ t0 and x ≥ 1. We have

min
μ∈M+

1 ([0,1])

∫ 1

0

∫ 1

0
RX

(
a(u − v)

)
μ(du)μ(dv)

≤
∫ 1

0

∫ 1

0
RX

(
a(u − v)

)
νθ (du)νθ (dv)
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=
∫ 1

0

∫ 1

0
1
(|u − v| ≤ t0/a

)
RX

(
a(u − v)

)
νθ (du)νθ (dv)

+
∫ 1

0

∫ 1

0
1
(|u − v| > t0/a

)
RX

(
a(u − v)

)
νθ (du)νθ (dv)

�= I1(a) + I2(a).

By the definition of t0,

1
(|u − v| > t0/a

)RX(a(u − v))

RX(a)
≤ 1

1 + ε
|u − v|−(β+ε),

so that by the dominated convergence theorem we have

lim
a→∞

1

RX(a)
I2(a) =

∫ 1

0

∫ 1

0

νθ (du)νθ (dv)

|u − v|β .

On the other hand, by (7.17),

I1(a) ≤ RX(0)
2t0

a

1 + θ

θ
= o

(
RX(a)

)
as a → ∞. We conclude that

lim sup
a→∞

1

RX(a)
min

μ∈M+
1 ([0,1])

∫ 1

0

∫ 1

0
RX

(
a(u − v)

)
μ(du)μ(dv)

≤
∫ 1

0

∫ 1

0

νθ (du)νθ (dv)

|u − v|β .

Once we show that

lim
θ→0

∫ 1

0

∫ 1

0

νθ (du)νθ (dv)

|u − v|β =
∫ 1

0

∫ 1

0

μβ(du)μβ(dv)

|u − v|β ,(7.18)

we will have established an upper bound matching (7.16). This will complete the
proof of the theorem. Recall that (7.18) is equivalent to

lim
θ→0

E
∣∣X1 − X2 + θ(U1 − U2)

∣∣−β = E|X1 − X2|−β,

where X1,X2,U1,U2 are independent random variables, X1 and X2 with the law
μβ , while U1 and U2 are uniformly distributed on [0,1]. This, however, follows
by the dominated convergence theorem and the following fact, that can be checked
by elementary calculations: there is rβ ∈ (0,∞) such that for any 0 < b < 1 and
0 < θ < 1,

E
∣∣b + θ(U1 − U2)

∣∣−β ≤ rβb−β. �

REMARK 7.3. It follows from Proposition A.3 in [5] that the energy of the
measure μβ with respect to the Riesz kernel cannot be smaller than one half of the
energy of the uniform measure. Hence,

lim
a→∞RX(a)CX(a) ∈ (

(1 − β)(2 − β)/2, (1 − β)(2 − β)
)
.
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8. The multidimensional case. Our understanding of the one-dimensional
case described in the previous three sections, while incomplete, is nevertheless
quite significant. In contrast, there is much less we can say about the multivariate
problem of Section 3. The problem lies, in part, in the nonconvexity of the feasible
set in (3.1) which leads, in turn, to the “max-min” problem in Theorem 3.2.

The following proposition is a multivariate version of Proposition 5.6. Note that
stationarity of the random field is not required.

PROPOSITION 8.1. Let X = (X(t), t ∈ T ) be a continuous Gaussian random
field on a compact set T ⊂ R

d , and suppose that a,b are in T . Suppose that there
is a path ξ0 in T connecting a and b such that

RX
(
a, ξ0(u)

) + RX
(
ξ0(u),b

) ≥ RX(a,a) + 2RX(a,b) + RX(b,b)

2
> 0(8.1)

for all 0 ≤ u ≤ 1. Then the supremum in (3.8) is achieved on the path ξ0 and

CX(a,b) = 4

RX(a,a) + 2RX(a,b) + RX(b,b)
.(8.2)

REMARK 8.2. Using u = 0 and u = 1 in (8.1) shows that conditions of Propo-
sition 8.1 cannot be satisfied unless RX(a,a) = RX(b,b). Correspondingly, we can
restate (8.2) as

CX(a,b) = 2

RX(a,a) + RX(a,b)
.

Recall (5.11), which shows that this implies the logarithmic equivalence of the
probabilities of X being above the level u along a curve or at its endpoints.

PROOF OF PROPOSITION 8.1. Consider the fixed path ξ0. The assump-
tion (8.1) shows that the measure

μ0 = 1
2δa + 1

2δb

satisfies conditions (4.9) and, hence, is in Wξ0 by Theorem 4.3. Therefore,

min
μ∈M+

1 ([0,1])

∫ 1

0

∫ 1

0
RX

(
ξ0(u), ξ0(v)

)
μ(du)μ(dv)

=
∫ 1

0

∫ 1

0
RX

(
ξ0(u), ξ0(v)

)
μ0(du)μ0(dv)

= RX(a,a) + 2RX(a,b) + RX(b,b)

4
.
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On the other hand, for any other path in T connecting a and b,

min
μ∈M+

1 ([0,1])

∫ 1

0

∫ 1

0
RX

(
ξ(u), ξ(v)

)
μ(du)μ(dv)

≤
∫ 1

0

∫ 1

0
RX

(
ξ(u), ξ(v)

)
μ0(du)μ0(dv)

= RX(a,a) + 2RX(a,b) + RX(b,b)

4
.

Therefore, the supremum in (3.8) is achieved on the path ξ0, and (8.2) follows by
Theorem 3.2. �

Even for the most common Gaussian random fields, the assumptions of Propo-
sition 8.1 may be satisfied on some path but not on the straight line connecting the
two points. In that case, the straight line, clearly, fails to be optimal.

EXAMPLE 8.3. Consider a Brownian sheet in d ≥ 2 dimensions. This is the
continuous centered Gaussian random field X on [0,∞)d with covariance function

RX(s, t) =
d∏

j=1

min(sj , tj ), s, t ∈ [0,∞)d .

We restrict the random field to the hypercube T = [0, d]d , and let

a = (1,2, . . . , d − 1, d), b = (d,1,2, . . . , d − 1).

It is elementary to check that the path

ξ0(u) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1 + d(d − 1)u,2, . . . , d − 1, d

)
, for 0 ≤ u ≤ 1

d
,

(d,1, . . . , j − 2,2j − 1 − du, j + 1, . . . , d), for
j − 1

d
≤ u ≤ j

d
,

j = 2, . . . , d,

satisfies (8.1) and, hence, the supremum in (3.8) is achieved on that path. There-
fore, by Proposition 8.1,

CX(a,b) = 2

d! + (d − 1)! .
On the other hand, if we consider the straight line connecting the points a and b,

ξ(u) = (
1 + (d − 1)u,2 − u,3 − u, . . . , d − u

)
, 0 ≤ u ≤ 1,

then the sum in the right-hand side of (8.1) becomes

L(u) =
d∏

j=2

(j − u) + (
1 + (d − 1)u

)
(d − 1)!, 0 ≤ u ≤ 1.
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The function L achieves the value d! + (d − 1)! at the endpoints u = 0 and u = 1,
and is strictly convex if d ≥ 3. Therefore, it takes values strictly smaller than d! +
(d − 1)! over 0 < u < 1. That is, (8.1) fails, and the straight line is not optimal.
If d = 2, however, then L is a constant function, condition (8.1) holds over the
straight line path, and the straight line is optimal.

We also note that, if d = 1, then the Brownian sheet becomes the Brownian
motion in one dimension. In that case it is, clearly, impossible to find two positive
points a < b in which the process has the same variance, so Proposition 8.1 does
not apply. In this case, however, we are in the situation of Theorem 5.1, so if
0 < a < b < ∞, then the measure μ = δa satisfies (5.4) and, hence, is optimal.

The above example notwithstanding, under certain assumptions on the random
field, the straight line path between two points turns out to be optimal for the
optimization problem (3.8). The next result describes one such situation.

Recall that a random field on R
d is isotropic if its law is invariant under rigid

motions of the parameter space. A centered Gaussian random field X is isotropic if
and only if its covariance function is a function of the Euclidian distance between
two points. With the usual abuse of notation we will write RX(a,b) = RX(‖b −
a‖), a,b ∈ R

d .

PROPOSITION 8.4. Let X be a continuous centered isotropic Gaussian ran-
dom field, such that the covariance function RX is nonincreasing. Then for any
a,b ∈ R

d , the straight path connecting the points a and b is optimal for the opti-
mization problem (3.8).

PROOF. We may and will assume, without loss of generality, that a =
(a,0, . . . ,0) and b = 0 for some a > 0. We start with showing that the supremum
over ξ ∈ P(0,a) is achieved over paths in

Pl = {
ξ : [0,1] → {

(x,0, . . . ,0) :x ≥ 0
}
, continuous, ξ(0) = 0, ξ(1) = a

}
.

To this end, it is enough to show that for each ξ ∈ P(0,a) there is ξ̂ ∈ Pl such that

min
μ∈M+

1 ([0,1])

∫ 1

0

∫ 1

0
RX

(∥∥ξ(u) − ξ(v)
∥∥)

μ(du)μ(dv)

(8.3)

≤ min
μ∈M+

1 ([0,1])

∫ 1

0

∫ 1

0
RX

(∥∥ξ̂ (u) − ξ̂ (v)
∥∥)

μ(du)μ(dv).

To see this, define for ξ ∈ P(0,a)

ξ̂ (u) = (∥∥ξ(u)
∥∥,0, . . . ,0

)
, 0 ≤ u ≤ 1.

Clearly, ξ̂ ∈ Pl , and (8.3) follows by the monotonicity of RX and the triangle in-
equality ∣∣∥∥ξ(u)

∥∥ − ∥∥ξ(v)
∥∥∣∣ ≤ ∥∥ξ(u) − ξ(v)

∥∥.
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Next, any ξ ∈ Pl is of the form

ξ(u) = (
ϕ(u),0, . . . ,0

)
, 0 ≤ u ≤ 1,(8.4)

with ϕ : [0,1] → [0,∞) a continuous function, satisfying ϕ(0) = 0, ϕ(1) = a.
Defining ϕ̂(u) = min(ϕ(u), a), 0 ≤ u ≤ 1, and

ξ̂ (u) = (
ϕ̂(u),0, . . . ,0

)
, 0 ≤ u ≤ 1,

we see that the supremum over paths in Pl is, actually, achieved over paths whose
image is exactly the interval [0, a]. Finally, for any path ξ ∈ Pl of the latter type,
given in the form (8.4), define

r(v) = inf
{
u ∈ [0,1] :ϕ(u) = av

}
, 0 ≤ v ≤ 1.

Then r is a measurable map from [0,1] to itself, so for any μ ∈ M+
1 ([0,1]), we

can define μ1 ∈ M+
1 ([0,1]) by μ1 = μ ◦ r−1. Then∫ 1

0

∫ 1

0
RX

(∣∣ϕ(u) − ϕ(v)
∣∣)μ1(du)μ1(dv)

=
∫ 1

0

∫ 1

0
RX

(∣∣ϕ(
r(u)

) − ϕ
(
r(v)

)∣∣)μ(du)μ(dv)

=
∫ 1

0

∫ 1

0
RX

(
a|u − v|)μ(du)μ(dv).

Therefore,

min
μ∈M+

1 ([0,1])

∫ 1

0

∫ 1

0
RX

(∥∥ξ(u) − ξ(v)
∥∥)

μ(du)μ(dv)

≤ min
μ∈M+

1 ([0,1])

∫ 1

0

∫ 1

0
RX

(
a|u − v|)μ(du)μ(dv),

and the statement of the proposition follows. �
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