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EXCHANGEABLE SEQUENCES DRIVEN BY AN ABSOLUTELY
CONTINUOUS RANDOM MEASURE

BY PATRIZIA BERTI, LUCA PRATELLI AND PIETRO RIGO

Universita’ di Modena e Reggio-Emilia, Accademia Navale di Livorno
and Universita’ di Pavia

Let S be a Polish space and (Xn :n ≥ 1) an exchangeable sequence of S-
valued random variables. Let αn(·) = P(Xn+1 ∈ · | X1, . . . ,Xn) be the pre-

dictive measure and α a random probability measure on S such that αn
weak−→ α

a.s. Two (related) problems are addressed. One is to give conditions for α � λ

a.s., where λ is a (nonrandom) σ -finite Borel measure on S. Such conditions
should concern the finite dimensional distributions L(X1, . . . ,Xn), n ≥ 1,

only. The other problem is to investigate whether ‖αn − α‖ a.s.−→ 0, where
‖ ·‖ is total variation norm. Various results are obtained. Some of them do not
require exchangeability, but hold under the weaker assumption that (Xn) is
conditionally identically distributed, in the sense of [Ann. Probab. 32 (2004)
2029–2052].

1. Two related problems. Throughout, S is a Polish space and

X = (X1,X2, . . .)

a sequence of S-valued random variables on the probability space (�, A,P ). We
let B denote the Borel σ -field on S and S the set of probability measures on B.
A random probability measure on S is a map α :� → S such that σ(α) ⊂ A, where
σ(α) is the σ -field on � generated by ω �→ α(ω)(B) for all B ∈ B.

For each n ≥ 1, let αn be the nth predictive measure. Thus, αn is a random
probability measure on S, and αn(·)(B) is a version of P(Xn+1 ∈ B | X1, . . . ,Xn)

for all B ∈ B. Define also α0(·) = P(X1 ∈ ·).
If X is exchangeable, as assumed in this section, there is a random probability

measure α on S such that

αn(ω)
weak−→ α(ω) for almost all ω ∈ �.

Such an α can also be viewed as

μn(ω)
weak−→ α(ω) for almost all ω ∈ �,
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where μn = 1
n

∑n
i=1 δXi

is the empirical measure. Further, α grants the usual rep-
resentation

P(X ∈ B) =
∫

α(ω)∞(B)P (dω) for every Borel set B ⊂ S∞,

where α(ω)∞ = α(ω) × α(ω) × · · ·.
Let λ be a σ -finite measure on B. Our first problem is to give conditions for

α(ω) � λ for almost all ω ∈ �.(1)

The conditions should concern the finite dimensional distributions L(X1, . . . ,Xn),
n ≥ 1, only.

While investigating (1), one meets another problem, of possible independent
interest. Let ‖ · ‖ denote total variation norm on (S, B). Our second problem is to
give conditions for

‖αn − α‖ a.s.−→ 0.

2. Motivations. Again, let X = (X1,X2, . . .) be exchangeable.
Reasonable conditions for (1) look of theoretical interest. They are of practical

interest as well thanks to Bayesian nonparametrics. In this framework, the starting
point is a prior π on S. Since π = P ◦ α−1, condition (1) is equivalent to

π{ν ∈ S :ν � λ} = 1.

This is a basic information for the subsequent statistical analysis. Roughly speak-
ing, it means that the “underlying statistical model” consists of absolutely contin-
uous laws.

Notwithstanding the significance of (1), however, there is a growing literature
which gets around the first problem of this paper. Indeed, in a plenty of Bayesian
nonparametric problems, condition (1) is just a crude assumption and the prior π

is directly assessed on a set of densities (with respect to λ). See, for example,
[11] and references therein. Instead, it seems reasonable to get (1) as a consequence
of explicit assumptions on the finite dimensional distributions L(X1, . . . ,Xn),
n ≥ 1. From a foundational point of view, in fact, only assumptions on observ-
able facts make sense. This attitude is strongly supported by de Finetti, among
others. When dealing with the sequence X, the observable facts are events of the
type {(X1, . . . ,Xn) ∈ B} for some n ≥ 1 and B ∈ Bn. This is why, in this paper,
the conditions for (1) are requested to concern L(X1, . . . ,Xn), n ≥ 1, only.

Some references related to the above remarks are [3] and [5–10]. In particular,
in [6] and [7], Diaconis and Freedman have an exchangeable sequence of indica-
tors and give conditions for the mixing measure (i.e., the prior π ) to be absolutely
continuous with respect to Lebesgue measure. The present paper is much in the
spirit of [6] and [7]. The main difference is that we give conditions for the mixands
{α(ω) :ω ∈ �}, and not for the mixing measure π , to be absolutely continuous.
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Next, a necessary condition for (1) is

L(X1, . . . ,Xn) � λn for all n ≥ 1,(2)

where λn = λ × · · · × λ. Condition (2) clearly involves the finite dimensional dis-
tributions only. Thus, a (natural) question is whether (2) suffices for (1) as well.

The answer is yes provided α can be approximated by the predictive measures
αn in some stronger sense. In fact, condition (2) can be written as

αn(ω) � λ for all n ≥ 0 and almost all ω ∈ �.

Hence, if (2) holds and ‖αn − α‖ a.s.−→ 0, the set

A = {‖αn − α‖ → 0
} ∩ {αn � λ for all n ≥ 0}

has probability 1. And, for each ω ∈ A, one obtains

α(ω)(B) = lim
n

αn(ω)(B) = 0 whenever B ∈ B and λ(B) = 0.

Therefore, (1) follows from (2) and ‖αn − α‖ a.s.−→ 0. In addition, a martingale
argument implies the converse implication, that is,

α � λ a.s. ⇐⇒ ‖αn − α‖ a.s.−→ 0 and L(X1, . . . ,Xn) � λn for all n;
see Theorem 1. Thus, our first problem turns into the second one.

The question of whether ‖αn − α‖ a.s.−→ 0 is of independent interest. Among
other things, it is connected to Bayesian consistency. Surprisingly, however, this
question seems not answered so far. To the best of our knowledge, ‖αn −α‖ a.s.−→ 0
in every example known so far. And in fact, for some time, we conjectured that
‖αn − α‖ a.s.−→ 0 under condition (2). But this is not true. As shown in Example 5,
when S = R and λ = Lebesgue measure, it may be that L(X1, . . . ,Xn) � λn for
all n, and yet α is singular continuous a.s. Indeed, the (topological) support of
α(ω) has Hausdorff dimension 0 for almost all ω ∈ �.

Thus, (2) does not suffice for (1). To get (1), in addition to (2), one needs some
growth conditions on the conditional densities. We refer to forthcoming Theorem 4
for such conditions. Here, we mention a result on the second problem. Actually,
for ‖αn − α‖ a.s.−→ 0, it suffices that

P
{
ω :αc(ω) � λ

} = 1,

where αc(ω) denotes the continuous part of α(ω); see Theorem 2.
Finally, most results mentioned above do not need exchangeability of X, but the

weaker assumption

(X1, . . . ,Xn,Xn+2) ∼ (X1, . . . ,Xn,Xn+1) for all n ≥ 0.

Those sequences X satisfying the above condition, investigated in [2], are called
conditionally identically distributed (c.i.d.).
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3. Mixtures of i.i.d. absolutely continuous sequences. In this section, G0 =
{∅,�}, Gn = σ(X1, . . . ,Xn) for n ≥ 1 and G∞ = σ(

⋃
n Gn). If μ is a random prob-

ability measure on S, we write μ(B) to denote the real random variable μ(·)(B),
B ∈ B. Similarly, if h :S → R is a Borel function, integrable with respect to μ(ω)

for almost all ω ∈ �, we write μ(h) to denote
∫

h(x)μ(·)(dx).

3.1. Preliminaries. Let X = (X1,X2, . . .) be c.i.d., as defined in Section 2.
Since X needs not be exchangeable, the representation P(X ∈ ·) =∫

α(ω)∞(·)P (dω) can fail for any α. However, there is a random probability mea-
sure α on S such that

σ(α) ⊂ G∞ and αn(B) = E
{
α(B) | Gn

}
a.s.(3)

for all B ∈ B. In particular, αn
weak−→ α a.s. Also, letting

μn = 1

n

n∑
i=1

δXi

be the empirical measure, one obtains μn
weak−→ α a.s. Such an α is of interest for

one more reason. There is an exchangeable sequence Y = (Y1, Y2, . . .) of S-valued
random variables on (�, A,P ) such that

(Xn,Xn+1, . . .)
d−→ Y and P(Y ∈ ·) =

∫
α(ω)∞(·)P (dω).

See [2] for details.
We next recall some known facts about vector-valued martingales; see [14]. Let

(Z,‖ ·‖∗) be a separable Banach space. Also, let F = (Fn) be a filtration and (Zn)

a sequence of Z -valued random variables on (�, A,P ) such that E‖Zn‖∗ < ∞
for all n. Then, (Zn) is an F -martingale in case (φ(Zn)) is an F -martingale for
each linear continuous functional φ : Z → R. If (Zn) is an F -martingale, (‖Zn‖∗)
is a real-valued F -submartingale. So, Doob’s maximal inequality yields

E
{
sup
n

‖Zn‖p∗
}

≤
(

p

p − 1

)p

sup
n

E
{‖Zn‖p∗

}
for all p > 1.

The following martingale convergence theorem is available as well. Let Z :� → Z
be F∞-measurable and such that E‖Z‖∗ < ∞, where F∞ = σ(

⋃
n Fn). Then,

Zn
a.s.−→ Z provided φ(Zn) = E{φ(Z) | Fn} a.s. for all n and all linear continuous

functionals φ : Z → R.

3.2. Results. In the sequel, λ is a σ -finite measure on B. When S = R, it may
be natural to think of λ as the Lebesgue measure, but this is only a particular case.
Indeed, λ could be singular continuous or concentrated on any Borel subset. In
addition, X is c.i.d. (in particular, exchangeable), and α is a random probability

measure on S such that αn
weak−→ α a.s. Equivalently, α can be obtained as μn

weak−→ α

a.s. It can (and will) be assumed σ(α) ⊂ G∞.
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THEOREM 1. Suppose X = (X1,X2, . . .) is c.i.d. Then, α � λ a.s. if and only
if ‖αn − α‖ a.s.−→ 0 and L(X1, . . . ,Xn) � λn for all n.

PROOF. The “if” part can be proved exactly as in Section 2. Conversely,
suppose α � λ a.s. It can be assumed α(ω) � λ for all ω ∈ �. We let Lp =
Lp(S, B, λ) for each 1 ≤ p ≤ ∞.

Let f :� × S → [0,∞) be such that α(ω)(dx) = f (ω,x)λ(dx) for all ω ∈ �.
Since B is countably generated, f can be taken to be A ⊗ B-measurable (see [4],
V.5.58, page 52) so that

1 =
∫

1dP =
∫ ∫

f (ω,x)λ(dx)P (dω) =
∫

E
{
f (·, x)

}
λ(dx).

Thus, given n ≥ 0, E{f (·, x) | Gn} is well defined for λ-almost all x ∈ S. Since X

is c.i.d., condition (3) also implies∫
B

E
{
f (·, x) | Gn

}
λ(dx) = E

{∫
B

f (·, x)λ(dx) | Gn

}

= E
{
α(B) | Gn

} = αn(B) a.s. for fixed B ∈ B.

Since B is countably generated, the previous equality yields

αn(ω)(dx) = E
{
f (·, x) | Gn

}
(ω)λ(dx) for almost all ω ∈ �.

This proves that L(X1, . . . ,Xn) � λn for all n. In particular, up to modifying αn

on a P -null set, it can be assumed αn(ω)(dx) = fn(ω, x)λ(dx) for all n ≥ 0, all
ω ∈ �, and suitable functions fn :� × S → [0,∞).

Regard f,fn :� → L1 as L1-valued random variables. Then, f :� → L1 is
G∞-measurable for

∫
h(x)f (·, x)λ(dx) = α(h) is G∞-measurable for all h ∈ L∞.

Clearly, ‖f (ω, ·)‖L1 = ‖fn(ω, ·)‖L1 = 1 for all n and ω. Finally, X c.i.d. implies

E

{∫
h(x)f (·, x)λ(dx) | Gn

}
= E

{
α(h) | Gn

} = αn(h)

=
∫

h(x)fn(·, x)λ(dx) a.s. for all h ∈ L∞.

By the martingale convergence theorem (see Section 3.1) fn
a.s.−→ f in the

space L1, that is,
∥∥αn(ω) − α(ω)

∥∥ = 1

2

∫ ∣∣fn(ω, x) − f (ω,x)
∣∣λ(dx) −→ 0

for almost all ω ∈ �.

�

In the exchangeable case, the argument of the previous proof yields a little bit
more. Indeed, if X is exchangeable and α � λ a.s., then

sup
B∈Bk

∣∣P {
(Xn+1, . . . ,Xn+k) ∈ B | Gn

} − αk(B)
∣∣ a.s.−→ 0,
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where k ≥ 1 is any integer and αk = α × · · · × α.
The next result deals with the second problem of Section 1. For each ν ∈ S, let νc

and νd denote the continuous and discrete parts of ν, that is, νd(B) = ∑
x∈B ν{x}

for all B ∈ B and νc = ν − νd .

THEOREM 2. Suppose X = (X1,X2, . . .) is c.i.d. and P {ω :αc(ω) � λ} = 1.
Then, ‖αn − α‖ a.s.−→ 0 if and only if

there is a set A0 ∈ A such that P(A0) = 1 and
αn(ω){x} −→ α(ω){x} for all x ∈ S and ω ∈ A0.

(4)

(Recall that A denotes the basic σ -field on �). Moreover, condition (4) is automat-
ically true if X is exchangeable, so that ‖αn − α‖ a.s.−→ 0 provided X is exchange-
able and αc � λ a.s.

PROOF. The “only if” part is trivial. Suppose condition (4) holds. For each
n ≥ 0, take functions βn and γn on � such that βn(ω) and γn(ω) are measures on
B for all ω ∈ � and

βn(B) = E
{
αc(B) | Gn

}
, γn(B) = E

{
αd(B) | Gn

}
a.s.

for all B ∈ B. Since X is c.i.d., condition (3) yields αn = βn + γn a.s.
We first prove ‖βn − αc‖ a.s.−→ 0. It can be assumed αc(ω) � λ for all ω ∈ �,

so that αc(ω)(dx) = f (ω,x)λ(dx) for all ω ∈ � and some function f :� × S →
[0,∞). For fixed B ∈ B, arguing as in the proof of Theorem 1, one has

βn(B) = E

{∫
B

f (·, x)λ(dx) | Gn

}
=

∫
B

E
(
f (·, x) | Gn

)
λ(dx) a.s.

By standard arguments, it follows that βn � λ a.s. Again, it can be assumed
βn(ω)(dx) = fn(ω, x)λ(dx) for all ω ∈ � and some function fn :�×S → [0,∞).
Define L1 = L1(S, B, λ) and regard fn,f :� → L1 as L1-valued random vari-
ables. By the same martingale argument used for Theorem 1, one obtains fn

a.s.−→ f

in the space L1. That is, ‖βn − αc‖ a.s.−→ 0.
We next prove ‖γn − αd‖ a.s.−→ 0. Take A0 as in condition (4), and define

A1 =
{
lim
n

‖fn − f ‖L1 = 0 and αn = βn + γn for all n ≥ 0
}
.

Then, P(A0 ∩ A1) = 1 and

αd(ω){x} = α(ω){x} − αc(ω){x} = α(ω){x} − f (ω,x)λ{x}
= lim

n

(
αn(ω){x} − fn(ω, x)λ{x}) = lim

n

(
αn(ω){x} − βn(ω){x})

= lim
n

γn(ω){x}
for all ω ∈ A0 ∩ A1 and x ∈ S. Define also

A = A0 ∩ A1 ∩ {
γn(S) −→ αd(S)

}
.
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Since γn(S) = 1 − βn(S)
a.s.−→ 1 − αc(S) = αd(S), then P(A) = 1. Fix ω ∈ A and

let Dω = {x ∈ S :α(ω){x} > 0}. Then

αd(ω)(Dω) ≤ lim inf
n

γn(ω)(Dω)

since Dω is countable and αd(ω){x} = limn γn(ω){x} for all x ∈ Dω. Further,

lim sup
n

γn(ω)(Dω) ≤ lim sup
n

γn(ω)(S) = αd(ω)(S) = αd(ω)(Dω).

Therefore, limn ‖γn(ω) − αd(ω)‖ = 0 is an immediate consequence of

γn(ω){x} −→ αd(ω){x} for each x ∈ Dω,

αd(ω)(Dω) = lim
n

γn(ω)(Dω), αd(ω)
(
Dc

ω

) = lim
n

γn(ω)
(
Dc

ω

) = 0.

Finally, suppose X is exchangeable. We have to prove condition (4). If S is
countable, condition (4) is trivial for αn(B)

a.s.−→ α(B) for fixed B ∈ B. If S = R,
the Glivenko–Cantelli theorem yields supx |μn(Ix) − α(Ix)| a.s.−→ 0, where Ix =
(−∞, x] and μn = 1

n

∑n
i=1 δXi

is the empirical measure. Hence, (4) follows from

sup
x

∣∣αn(Ix) − μn(Ix)
∣∣ a.s.−→ 0;

see Corollary 3.2 of [1]. If S is any uncountable Polish space, take a Borel isomor-
phism ψ :S → R. (Thus ψ is bijective with ψ and ψ−1 Borel measurable). Then
(ψ(Xn)) is an exchangeable sequence of real random variables, and condition (4)
is a straightforward consequence of

P
{
ψ(Xn+1) ∈ B | ψ(X1), . . . ,ψ(Xn)

} = P
{
ψ(Xn+1) ∈ B | Gn

}
= αn

(
ψ−1B

)
a.s.

for each Borel set B ⊂ R. This concludes the proof. �

When X is c.i.d. (but not exchangeable) ‖αn − α‖ a.s.−→ 0 needs not be true even
if αc � λ a.s.

EXAMPLE 3. Let (Zn) and (Un) be independent sequences of independent
real random variables such that Zn ∼ N (0, bn − bn−1) and Un ∼ N (0,1 − bn),
where 0 = b0 < b1 < b2 < · · · < 1 and

∑
n(1−bn) < ∞. As shown in Example 1.2

of [2],

Xn =
n∑

i=1

Zi + Un

is c.i.d. and Xn
a.s.−→ V for some real random variable V . Since μn

weak−→ δV a.s.,
then α = δV and αc � λ a.s. (in fact, αc = 0 a.s.). However, condition (4) fails.
In fact, L(X1, . . . ,Xn) � λn for all n, where λ is Lebesgue measure. Hence,
αn(ω){V (ω)} = 0 while α(ω){V (ω)} = 1 for all n and almost all ω ∈ �.
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We now turn to the first problem of Section 1. Recall that condition (2) amounts
to αn � λ a.s. for all n ≥ 0. Therefore, up to modifying αn on a P -null set, under
condition (2) one can write

αn(ω)(dx) = fn(ω, x)λ(dx)

for each ω ∈ �, each n ≥ 0 and some function fn :� × S → [0,∞). We also let

K = {
K :K compact subset of S and λ(K) < ∞}

and

λB(·) = λ(· ∩ B) for all B ∈ B.

THEOREM 4. Suppose X = (X1,X2, . . .) is c.i.d. and L(X1, . . . ,Xn) � λn

for all n. Then α � λ a.s. if and only if, for each K ∈ K,

the sequence (fn(ω, ·) :n ≥ 1) is uniformly integrable,
in the space (S, B, λK), for almost all ω ∈ �.

(5)

In particular, α � λ a.s. provided, for each K ∈ K, there is p > 1 such that

sup
n

∫
K

fn(ω, x)pλ(dx) < ∞ for almost all ω ∈ �.(6)

Moreover, for condition (6) to be true, it suffices that

sup
n

E

{∫
K

f p
n dλ

}
< ∞.

PROOF. If α � λ a.s., Theorem 1 yields ‖αn − α‖ a.s.−→ 0. Thus, fn(ω, ·) con-
verges in L1(S, B, λ), for almost all ω ∈ �, and this implies condition (5). Con-
versely, we now prove that α � λ a.s. under condition (5).

Fix a nondecreasing sequence B1 ⊂ B2 ⊂ · · · such that Bn ∈ B, λ(Bn) < ∞, and⋃
n Bn = S. Since λ(B1) < ∞ and S is Polish, there is K1 ∈ K satisfying K1 ⊂ B1

and λ(B1 ∩ Kc
1) < 1. By induction, for each n ≥ 2, there is Kn ∈ K such that

Kn−1 ⊂ Kn ⊂ Bn and λ(Bn ∩ Kc
n) < 1/n. Since X is c.i.d., condition (3) implies

α(Km) = lim
n

E
{
α(Km) | Gn

} = lim
n

αn(Km) a.s. for all m ≥ 1.

Define H = ⋃
m Km and AH = {α(H) = 1}. If ω ∈ AH , then

α(ω)(B) = α(ω)(B ∩ H) = sup
m

α(ω)(B ∩ Km) for all B ∈ B.

Moreover, P(AH) = 1. In fact, λ(Hc) = 0 and αn � λ a.s. for all n, so that

α(H) = lim
n

E
{
α(H) | Gn

} = lim
n

αn(H) = 1 a.s.

Thus, to prove α � λ a.s., it suffices to see that α(· ∩ Km) � λ a.s. for all m.
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Suppose (5) holds. Fix m ≥ 1, define K = Km and take a set A ∈ A such that
P(A) = 1 and, for each ω ∈ A,

α(ω)(K) = lim
n

αn(ω)(K), αn(ω)
weak−→ α(ω),

(
fn(ω, ·) :n ≥ 1

)
is uniformly integrable in (S, B, λK).

Let ω ∈ A. Since λK(S) = λ(K) < ∞ and (fn(ω, ·) :n ≥ 1) is uniformly inte-
grable under λK , there is a subsequence (nj ) and a function ψω ∈ L1(S, B, λK)

such that fnj
(ω, ·) −→ ψω in the weak-topology of L1(S, B, λK). This means that∫

B∩K
ψω(x)λ(dx) = lim

j

∫
B∩K

fnj
(ω, x)λ(dx) = lim

j
αnj

(ω)(B ∩ K)

for all B ∈ B.

Therefore, ∫
K

ψω(x)λ(dx) = lim
j

αnj
(ω)(K) = α(ω)(K) and

∫
F∩K

ψω(x)λ(dx) = lim
j

αnj
(ω)(F ∩ K) ≤ α(ω)(F ∩ K)

for each closed F ⊂ S.

By standard arguments, the previous two relations yield

α(ω)(B ∩ K) =
∫
B∩K

ψω(x)λ(dx) for all B ∈ B.

Thus, α(ω)(· ∩ K) � λ. This proves that condition (5) implies α � λ a.s.
Next, since p > 1, it is obvious that (6) �⇒ (5). Hence, it remains only to see

that condition (6) follows from supn E{∫K f
p
n dλ} < ∞.

Fix B ∈ B, p > 1, and suppose supn E{∫B f
p
n dλ} < ∞. Let Lr = Lr(S, B, λB)

for all r . It can be assumed
∫
B fn(ω, x)pλ(dx) < ∞ for all ω ∈ � and n ≥ 1. Thus,

each fn :� → Lp can be seen as an Lp-valued random variable such that

E
{‖fn‖Lp

} = E

{(∫
B

f p
n dλ

)1/p}
≤

(
E

{∫
B

f p
n dλ

})1/p

< ∞.

Further,
∫

fn(·, x)h(x)λB(dx) = αn(IBh) is Gn-measurable for all h ∈ Lq , where
q = p/(p − 1). Since X is c.i.d., condition (3) also implies

E

{∫
fn+1(·, x)h(x)λB(dx) | Gn

}

= E
{
αn+1(IBh) | Gn

}
= E

{
E

(
α(IBh) | Gn+1

) | Gn

}
= E

{
α(IBh) | Gn

} = αn(IBh)

=
∫

fn(·, x)h(x)λB(dx) a.s. for all h ∈ Lq.
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Hence, (fn) is a (Gn)-martingale. By Doob’s maximal inequality,

E

{
sup
n

∫
B

f p
n dλ

}
= E

{
sup
n

‖fn‖p
Lp

}

≤ qp sup
n

E
{‖fn‖p

Lp

} = qp sup
n

E

{∫
B

f p
n dλ

}
< ∞.

In particular, supn

∫
B f

p
n dλ < ∞ a.s., and this completes the proof. �

Some remarks on Theorem 4 are in order.
First, for S = [0,1] and a particular class of exchangeable sequences, results

similar to Theorem 4 are in [12] and [13].
Second,

fn(ω, ·) = gn+1(X1(ω), . . . ,Xn(ω), ·)
gn(X1(ω), . . . ,Xn(ω))

for almost all ω ∈ �,

where each gn :Sn → [0,∞) is a density of L(X1, . . . ,Xn) with respect to λn.
Thus, more concretely, one obtains∫

K
f p

n dλ =
∫
K gn+1(X1, . . . ,Xn, x)pλ(dx)

gn(X1, . . . ,Xn)p
a.s.

Third, suppose X exchangeable, and fix any random probability measure γ on S

such that P(X ∈ ·) = ∫
γ (ω)∞(·)P (dω). Then γ � λ a.s. under the assumptions

of Theorem 4. In fact, α and γ have the same probability distribution, when re-
garded as S-valued random variables.

A last (and important) remark deals with condition (2). Indeed, even if X is ex-
changeable, condition (2) is not enough for α � λ a.s. We close the paper showing
this fact.

EXAMPLE 5. Let S = R and λ = Lebesgue measure. All random variables
are defined on the probability space (�, A,P ). We now exhibit an exchangeable
sequence X such that L(X1, . . . ,Xn) � λn for all n ≥ 1 and yet P(α � λ) = 0. In
fact, the support of α(ω) has Hausdorff dimension 0 for almost all ω ∈ �.

Two known facts are to be recalled. First, if T and Z are independent R
n-valued

random variables, then

P(T + Z ∈ B) =
∫

P(T + z ∈ B)PZ(dz),

where B ∈ Bn and PZ is the distribution of Z. Hence, L(T + Z) � λn provided
L(T ) � λn. The second fact is the following:

THEOREM 6 (Pratsiovytyi and Feshchenko). Let Z1,Z2, . . . be i.i.d. random
variables with P(Z1 = 0) = P(Z1 = 1) = 1/2 and b1 > b2 > · · · > 0 real numbers
such that

∑
m bm < ∞. Then the support of L(

∑
m bmZm) has Hausdorff dimen-

sion 0 whenever limm(
∑

j>m bj )
−1bm = ∞.
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Theorem 6 is a consequence of Theorem 8 of [15] (which is actually much more
general).

Next, let Um and Ym,n be independent real random variables such that:

• Um is uniformly distributed on ( 1
m+1 , 1

m
) for each m ≥ 1;

• P(Ym,n = 0) = P(Ym,n = 1) = 1
2 for all m,n ≥ 1.

Define Vm = Um
m and

Xn =
∞∑

m=1

Um
m Ym,n =

∞∑
m=1

VmYm,n.

Then, X = (X1,X2, . . .) is conditionally i.i.d. given V = σ(V1,V2, . . .). Precisely,
for ω ∈ � and B ∈ B, define

α(ω)(B) = P

{
u ∈ � :

∑
m

Vm(ω)Ym,1(u) ∈ B

}
.

Then, α(B) is a version of P(X1 ∈ B | V) and P(X ∈ ·) = ∫
α(ω)∞(·)P (dω). In

particular, X is exchangeable. Moreover, μn
weak−→ α a.s. for

P(μn
weak−→ α | V) = 1 a.s.

The (topological) support of α(ω) has Hausdorff dimension 0 for almost all
ω ∈ �. Define in fact bm = Vm(ω) and Zm = Ym,1. By Theorem 6, it suffices to
verify that

lim
m

Vm(ω)∑
j>m Vj (ω)

= ∞ for almost all ω ∈ �.(7)

And condition (7) follows immediately from

(j + 1)−j < Vj < j−j and

∑
j>m

Vj ≤ ∑
j>m

j−j ≤ ∑
j>m

(m + 1)−j = (m + 1)−m

m
a.s.

We finally prove that L(X1, . . . ,Xn) � λn for all n ≥ 1. Given the array y =
(ym,n :m,n ≥ 1), with ym,n ∈ {0,1} for all m,n, define

Xn,y = ∑
m

Vmym,n.

Fix n ≥ 1 and denote In the n × n identity matrix. If y satisfies
⎛
⎝

ym+1,1 . . . ym+1,n

. . . . . . . . .

ym+n,1 . . . ym+n,n

⎞
⎠ = In for some m ≥ 0,(8)
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then

(X1,y, . . . ,Xn,y) = (Vm+1, . . . , Vm+n) + (R1, . . . ,Rn)

with (R1, . . . ,Rn) independent of (Vm+1, . . . , Vm+n).

In this case, since L(Vm+1, . . . , Vm+n) � λn, then L(X1,y, . . . ,Xn,y) � λn.
Hence, letting Y = (Ym,n :m,n ≥ 1), the conditional distribution of (X1, . . . ,Xn)

given Y = y is absolutely continuous with respect to λn as far as y satisfies (8). To
complete the proof, it suffices to note that

P
(
Y = y for some y satisfying (8)

) = 1.
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