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CONDITIONING SUPER-BROWNIAN MOTION ON ITS BOUNDARY
STATISTICS, AND FRAGMENTATION

BY THOMAS S. SALISBURY1 AND A. DENIZ SEZER2

York University and University of Calgary

We condition super-Brownian motion on “boundary statistics” of the exit
measure XD from a bounded domain D. These are random variables de-
fined on an auxiliary probability space generated by sampling from the exit
measure XD . Two particular examples are: conditioning on a Poisson ran-
dom measure with intensity βXD and conditioning on XD itself. We find the
conditional laws as h-transforms of the original SBM law using Dynkin’s
formulation of X-harmonic functions. We give explicit expression for the
(extended) X-harmonic functions considered. We also obtain explicit con-
structions of these conditional laws in terms of branching particle systems.
For example, we give a fragmentation system description of the law of SBM
conditioned on XD = ν, in terms of a particle system, called the backbone.
Each particle in the backbone is labeled by a measure ν̃, representing its de-
scendants’ total contribution to the exit measure. The particle’s spatial motion
is an h-transform of Brownian motion, where h depends on ν̃. At the parti-
cle’s death two new particles are born, and ν̃ is passed to the newborns by
fragmentation.

1. Introduction. Studying conditioned Markov processes is a kind of inverse
problem—given information about how the process ends up, one tries to infer how
it got there, at least in terms of probabilities. In the context of Brownian motion
and finite-dimensional Markov processes, one can make very explicit calculations,
starting with the work of Doob (1959). Attempts to make similar calculations for
super Brownian motion are more recent. These studies typically aim to recover the
conditional law of a superprocess as the law of a distinct probabilistic object. Sev-
eral authors have succeeded in coming up with such descriptions for certain con-
ditionings, and produced models with remarkably rich structure. The first of these
models was the immortal particle system of Evans and Perkins (1990) and Evans
(1993), for super-Brownian motion in R

d conditioned on survival. In this model, an
immortal particle moves according to a Brownian motion, and throws off mass at
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a uniform rate, and then this mass evolves in the space as an unconditioned super-
Brownian motion. Following Evans and Perkins, Salisbury and Verzani (1999)
considered a super Brownian motion X in a domain D, with conditioning based
on the exit measure XD from D. More specifically, they conditioned X on the
event that the support of XD contains certain points z1, . . . , zk , and recovered the
resulting conditional law in terms of a branching backbone system. The branching
backbone is a random tree with k leaves reaching the points z1, . . . , zk . Similar to
Evans and Perkins’s model, there is mass uniformly created along the branching
backbone which follows the law of an unconditioned super-process independent
of the points z1, . . . , zk . Giving such an explicit characterization of a conditioned
process is an interesting problem from a probabilistic modeling point of view. For
example, in population dynamics, one can view it as an analogue of a host of bi-
ological problems in which one has information about the state of the population
at certain times or locations, and one wishes to infer the genealogical structure
of the populations of the ancestors (e.g., the “out of Africa” problem of human
origins). For explicit representations of other related conditioned processes, see
Roelly-Coppoletta and Rouault (1989), Overbeck (1993, 1994), Etheridge (1993)
or Etheridge and Williams (2003).

It turns out that there is more to the conditioning problem than described above.
A conditioned process represents a special case of a Girsanov transformation, or
a martingale change of measure. For concreteness, let us consider the following
example: let ξ be Brownian motion in a domain E. Let τE be the exit time from E.
We compute the conditional law, �z

x of ξ given ξτE
= z, by a martingale change

of measure from �x , the law of ξ . This martingale change of measure is given
in terms of a certain harmonic function hz(·). More precisely, for any domain D

compactly contained in E, and any Y measurable with respect to FτD
, we have

�z
x(Y ) = �x(Yhz(ξτD

)/hz(x)). A Girsanov transformation defined in terms of
a harmonic function is called an h-transform, and typically conditional laws of
Markov processes are formulated as h-transforms of their original laws. This clas-
sical relationship between harmonic functions and conditioning a Markov process
leads to an elegant probabilistic formulation of the Martin boundary theory for
elliptic differential operators.

In the context of super-processes, the analogue of harmonic functions are X-
harmonic functions. Following the definition of Dynkin (2002), let us consider a
super-Brownian motion X = (XD,Pμ), a family of random measures (exit mea-
sures) and their associated probability laws where D is an open subset of a given
domain E in R

d , and μ is a finite measure on E. Write D � E if D is open and its
closure is a compact subset of E. A nonnegative function H is X-harmonic if for
any D � E and any finite measure μ with support in D,

Pμ

(
H(XD)

)= H(μ).(1)

Note that this property resembles the mean value property of a harmonic function,
hence the name X-harmonic. Moreover, the X-harmonic functions are related to
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conditioning super-Brownian motion in the same way as harmonic functions are
related to conditioning Brownian motion; they give us the explicit Girsanov trans-
formation to switch from the unconditioned probability law to the conditioned
probability law. An H -transform P H

μ is obtained from Pμ by setting

P H
μ (Y ) = 1

H(μ)
Pμ

(
H(XD)Y

)
for Y nonnegative and F⊂D-measurable, where F⊂D is the σ -algebra generated
by XD′,D′ ⊂ D. In his book, Dynkin (2002) suggests a new direction for investi-
gating the solutions of the p.d.e. 1

2� = 2u2, namely to explore X-harmonic func-
tions (thinking them as the analogue of harmonic functions) and ultimately, to
build a Martin boundary theory for this nonlinear p.d.e. In this case, the Martin
boundary is defined as the set of extreme elements of the convex set of all X-
harmonic functions. Dynkin points out that a concrete understanding of extreme
X-harmonic functions might yield further insights about the solutions of the p.d.e.
1
2�u = 2u2. Since then major progress has been made on the study of the solu-
tions of this p.d.e. using other approaches. For example, Mselati (2004) classified
the solutions as σ -moderate in the case of a smooth domain (solving a conjec-
ture of Dynkin and Kuznetsov). However, the relationship between X-harmonic
functions and solutions remains largely unexplored. Dynkin, in a series of pa-
pers, has taken concrete steps to better formulate and understand extreme X-
harmonic functions. Dynkin (2006b) obtains the extreme X-harmonic functions

by a limiting procedure from the Radon–Nykodym densities Hν
D(μ) = dPμ,XD

dPc,XD
(ν)

of Pμ,XD
(dν) = Pμ(XD ∈ dν) with respect to Pc,XD

(dν) = Pc(XD ∈ dν). Dynkin
(2006a) derives a formula for Hν

D(μ) using diagram description of moments. The
functions Hν

D will be central to our analysis as well; we will run into them while
studying conditionings of SBM, and use them to derive results about the structure
of conditioned SBM.

Our goal in this paper is to explore various ways of conditioning a super-
Brownian motion. We are motivated by the rich structure of the underlying prob-
abilistic objects as well as its potential connection to Dynkin’s research program
on Martin boundary theory of SBM. Here is a summary of our contributions: we
develop a way of conditioning a super-Brownian motion, which we call “condi-
tioning on boundary statistics.” The random variables which we condition on are
defined on an auxiliary probability space, and generated by sampling from the exit
measure XD . We find representations of these conditionings as H -transforms of
unconditioned SBM. In general, we identify the functions H as “extended” X-
harmonic. The term “extended” is used because, even though we show that these
functions satisfy the mean value property (1), in general, we do not know whether
they are finite for all μ. An example of a boundary statistic is a Poisson random
measure with intensity βXD , where β > 0. It turns out that for this kind of con-
ditioning the resulting H -transform is through an X-harmonic family of functions
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studied earlier in the literature. Another important and more complex example we
studied is conditioning SBM on its exit measure XD , which is what most of our
paper is devoted to. We find that the corresponding H -transform uses the fam-

ily Hν
D(μ) = dPμ,XD

dPc,XD
(ν), densities first introduced in Dynkin (2006b). This paper

shows that one can choose a version of this family such that for each ν, Hν(μ) will
satisfy the mean value property (1) for each μ. Although this family is claimed to
be X-harmonic in Dynkin (2006b), we are not aware of any results that actually
show that Hν will be a finite function of μ. In this paper we shall classify Hν

D

as an extended X-harmonic function and leave the question of finiteness to be re-
solved in a different paper, as this will require us to develop analytical bounds on
the densities of moment measures of SBM. In this paper we will not go beyond
describing the probabilistic structure of conditioned SBM on its exit measure; as
such we are not going to lose much generality by stating and proving our results
without assuming that Hν is finite. Indeed, for our purposes it will suffice that
H

XD

D (μ) is finite Pμ almost surely, which is true. The family Hν
D(μ) is of special

interest because it can be considered as the analogue of the Poisson kernel of D.
Also, Dynkin (2006b) showed that if H is an extreme X-harmonic function in E,
then for every μ, and for every sequence Dk exhausting E

H(μ) = lim
k→∞H

XDk

Dk
(μ)

P H
μ almost surely.
The heart of the paper is Theorem 8, which gives a new formula for Hν

D . From
this we deduce an infinite particle fragmentation system description of P ν

μ = P Hν

μ ,
the conditional law of X in D given XD = ν (Theorem 11). This is carried out in
terms of a particle system, called the backbone in Salisbury and Verzani (1999),
along which a mass is created uniformly. In the backbone, each particle is assigned
a measure ν̃ at its birth. The spatial motion of the particle is an h-transform of
Brownian motion, where h is a potential that depends on ν̃. The measure ν̃ repre-
sents the particle’s contribution to the exit measure. At the particle’s death two new
particles are born, and ν̃ is passed to the newborns by fragmentation into two bits.
Here, we use the techniques of Salisbury and Verzani (1999) applied to a more gen-
eral setting. This description connects the theory of conditioned super-processes to
the growing literature on infinite fragmentation and coalescent processes; see, for
example, Bertoin (2006) for a comprehensive exposition.

2. Preliminaries.

2.1. Super-Brownian motion. We will follow Dynkin’s definition of super-
Brownian motion (SBM). Let E be a domain of R

d , and let ME be the positive
finite measures on E. A super-Brownian motion, (XD,Pμ), is a family of ran-
dom measures (exit measures) and their associated probability laws where D is an
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open subset of a given domain E in R
d , and μ is a finite measure on E with the

following properties:

(a) Exit property: Pμ(XD(D) = 0) = 1 for every μ, and if μ(D) = 0, then
Pμ(XD = μ) = 1.

(b) Markov property: if Y ≥ 0 is measurable with respect to the σ -algebra F⊂D

generated by XD′,D′ ⊂ D and Z ≥ 0 is measurable with respect to the σ -algebra
F⊃D generated by XD′′ , D′′ ⊃ D, then

Pμ(YZ) = Pμ(YPXD
Z).

(c) Branching property: for any nonnegative Borel f ,

Pμ

(
e−〈XD,f 〉)= e−〈μ,VDf 〉 where VDf (y) = − logPy

(
e−〈XD,f 〉)

and Py = Pδy .
(d) Integral equation for the log-Laplace functional: VDf solves the integral

equation

u + GD

(
2u2)= KDf,

where GD and KD are, respectively, Green and Poisson operators for Brownian
motion in D. In other words, if ξt is a Brownian motion starting from x, under
a probability measure �x , then KDf (x) = �xf (ξτD

), where τD is the exit time
from D. Likewise, GDf (x) = �x(

∫ τD

0 f (ξt ) dt).

Under certain regularity conditions on D and f [see, e.g., Dynkin (2002)], the
integral equation in (d) is equivalent to the boundary value problem

1
2�u = 2u2,

u(x) = f (x), x ∈ ∂D.

XD represents the exit measure from D, and the first property simply means that
XD is concentrated on Dc, so that exiting is instantaneous if we start outside D.
The third property means that distinct clumps of initial mass evolve independently.
It follows from continuity of Brownian motion that XD is supported on ∂D, if
the initial measure is supported on D; see Property 2.2.A of Dynkin (2002). The
fourth property restricts attention to finite variance branching, and normalizes the
branching rate. The normalizing factor 2 in front of u2 is chosen to be consistent
with Le Gall (1999) and Salisbury and Verzani (1999).

2.2. Infinite divisibility and Poisson representation. It is well known that XD

has an infinitely divisible distribution for each D. This property leads to the con-
struction of a new measure, Nx , called the super-Brownian excursion law starting
from x. Under Nx , X evolves as a super-Brownian motion, but Nx will be σ -finite,
not a probability. Thus, it is technically more complicated than Pμ. But Nx is ac-
tually a more basic object heuristically, under which the genealogies are simpler,
because all the mass starts from a single particle located initially at x.
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In fact Pμ can be built up from a Poisson random measure with intensity
θ(dχ) = ∫ Nx(dχ)μ(dx). More precisely, let

�(dχ) =∑
i

δχi

be such a Poisson random measure, where the χi are random measure valued
paths. Then X = ∑χi = ∫ χ�(dχ) is a super-Brownian motion with initial
state μ. In terms of XD , this yields the following formula; see Theorem 5.3.4
of Dynkin (2004): let F be a nonnegative measurable function defined on ME .
Then

Pμ

(
F(XD)

)
= e−Rμ(ME)F (0)(2)

+
∞∑

n=1

1

n!e
−Rμ(ME)

∫
Rμ(dν1) · · · Rμ(dνn)F (ν1 + · · · + νn),

where Rμ is the canonical measure of XD with respect to Pμ and can be derived
from Nx by Rμ(A) = 〈μ,N(·)(XD ∈ A,XD �= 0)〉. In other words, we obtain XD

as a superposition of a Poisson number of more “basic” exit measures, each de-
scended from a single initial individual. These “basic” exit measures arise as the
atoms of a Poisson random measure whose characteristic measure is Rμ.

Note that a special case of the above representation gives us VDf (x) = Nx(1 −
e−〈XD,f 〉). Note further that we will, in the future, write this as

Pμ

(
F(XD)

)= ∞∑
n=0

1

n!e
−Rμ(ME)

∫
Rμ(dν1) · · · Rμ(dνn)F (ν1 + · · · + νn)

by taking the convention that the n = 0 term is the first expression in (2).
The measure Nx was first considered by Le Gall (1999) in his random snake for-

mulation of super-Brownian motion. As we follow Dynkin’s framework to study
our problem, we refer the reader to Dynkin (2004) for a systematic account of the
theory of the measures Nx and their applications. Note that the latter has a general
branching function ψ , but for us, this is taken to be ψ(u) = 2u2.

2.3. Moment measures of super Brownian motion. Among the key tools in
our analysis are the recursive moment formulas of SBM. The moment measures of
SBM are the following measures:

Let φ,f1, . . . , fn be positive Borel functions and write f = (f1, . . . , fn). For
C ⊂ {1, . . . , n}, let

nC(φ,f, x) = Nxe
−〈XD,φ〉�i∈C〈XD,fi〉,(3)

pC(φ,f,μ) = Pμe−〈XD,φ〉�i∈C〈XD,fi〉.(4)



CONDITIONING SUPER-BROWNIAN MOTION 3623

Let Kl
D and Gl

D be the Poisson and Green operator for the operator

Ll = 1
2� − l,

where l(x) = 4VDφ(x). In other words, let ξt be a diffusion starting from x, with
generator Ll under a probability measure �l

x . Then Kl
Df (x) = �l

xf (ξτD
) and

Gl
Df (x) = �l

x(
∫ τD

0 f (ξt ) dt), where τD is the exit time from D.
For C = {i} we have the Palm formula

nC(φ,f, x) = Kl
Dfi(x),(5)

and for general C we have the following recursive formulas; see, for example,
Theorem 5.1.1 of Dynkin (2004), or Lemma 2.6 of Salisbury and Verzani (1999):

nC(φ,f, ·) = 1

2

∑
A⊂C,A�=∅,C

Gl
D

(
4nA(φ,f, ·)nC\A(φ,f, ·)),(6)

pC(φ,f,μ) = e−〈μ,VD(f0)〉 ∑
π(C)

〈
μ,nC1(φ,f, ·)〉 · · · 〈μ,nCr (φ,f, ·)〉.(7)

Here π(C) is the set of partitions of C. These formulas will allow us to construct
a variety of extended X-harmonic functions of polynomial type.

We will also need extensions of these formulas for

Nxe
−(〈XD1 ,φ1〉+···+〈XDk

,φk〉)�i∈C〈XD,fi〉
and

Pμe−(〈XD1 ,φ1〉+···+〈XDk
,φk〉)�i∈C〈XD,fi〉,

where Di ⊂ Dk = D. Formulas (5), (6) and (7) give us these quantities when
k = 1 and x ∈ D. For k ≥ 2 we find them recursively as follows. Let us put I =
{D1,D2, . . . ,Dk}, φI = (φ1, . . . , φk), uI (x) = Nx(1 − exp−(〈XD1, φ1〉 + · · · +
〈XDk

,φk〉)), lI = 4uI , DI = D1 ∩ · · · ∩ Dk and Ij = I − {Dj }. We define an op-
erator nI

C(φI , f, x) as follows. For card(I ) = 1,

nI
C(φ,f, x) =

⎧⎨
⎩

Nxe
−(〈XD,φ〉)�i∈C〈XD,fi〉, x ∈ D,

fi(x), x /∈ D,C = {i},
0, x /∈ D, card(C) > 1,

(8)

and for card(I ) > 1,

nI
C(φI , f, x)

(9)

=
⎧⎨
⎩

Nxe
−(〈XD1 ,φ1〉+···+〈XDk

,φk〉)�i∈C〈XD,fi〉, x ∈ DI ,

n
Ij

C (φIj
, f, x), x /∈ Dj, j ∈ I .

We let

pI
C(φ1, φ2, . . . , φk, f,μ) = Pμe−(〈XD1 ,φ1〉+···+〈XDk

,φk〉)�i∈C〈XDk
,fi〉.(10)
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Fix an f and write nI
C(x) for nI

C(φI , f, x) and pI
C(μ) for pI

C(φI , f,μ). The fol-
lowing formulas tell us that the values of nI

C(x) on DI can be recovered from
its values at the boundary of DI and the values of the functions nI

A(x) on DI ,

with A ⊂ C and A �= ∅,C, using the Poisson and Green operators of LlI for the
domain DI . For C = {i} and card(I ) > 1,

nI
C(x) = KlI

DI

(
nI

C

)
(x), x ∈ DI ,(11)

and for card(C) > 1 and card(I ) > 1,

nI
C(x) = 1

2

∑
A⊂C,A�=∅,C

GlI

DI

(
4nI

AnI
C\A
)
(x) + KlI

DI

(
nI

C

)
(x), x ∈ DI .(12)

Then for μ compactly supported in DI

pI
C(μ) = e−〈μ,lI 〉 ∑

π(C)

〈
μ,nI

C1

〉 · · · 〈μ,nI
Cr

〉
.(13)

Since at the boundary of DI , nI
C(x) is recursively defined in terms of n

Ij

C (x), we
have now a complete recursive algorithm to compute nI

C(x), starting with I = {D},
and C = {i}, recursively first building nI

C(x) for all C keeping I the same, and
then increasing the cardinality of I by 1 and repeating the same procedure until
the desired cardinality of I is achieved.

We omit the proof of these formulas and refer the reader to the proof of
Theorem 5.1.1 of Dynkin (2004). The reader will realize that the argument in
that proof works also for the functions uλ

I (x) which are defined as follows. Set
XI = (XD1, . . . ,XDk

), so 〈XI ,φI 〉 =∑j 〈XDj
,φj 〉. For for I = {D}, set

uλ
I (x) =

⎧⎨
⎩

Nx

(
1 − exp−(〈XI ,φI 〉 + λ1〈XDk

,f1〉 + · · · + λn〈XDk
,fn〉)),

x ∈ D,

φk(x) + λ1f1(x) + · · · + λnfn(x), x /∈ D,

and recursively for card(I ) > 1 as

uλ
I (x) =

⎧⎪⎨
⎪⎩

Nx

(
1 − exp−(〈XI ,φI 〉 + λ1〈XDk

,f1〉 + · · · + λn〈XDk
,fn〉)),

x ∈ DI ,

uλ
Ij

(x) + φj (x), x /∈ Dj, j ∈ I, j �= k.

We note that uλ
I satisfies for x ∈ DI ,

uλ
I + GlI

DI

(
2
(
uλ

I

)2)= KlI

DI

(
uλ

I

)
,

following formula 2.11 of Dynkin (2002), Chapter 3, which in turn yields the for-
mulas for nI

C by differentiating uλ
I with respect to λ.
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2.4. Absolute continuity. The moment formulas together with the Markov
property and Poisson representation yield an important theorem taken in this
form from Theorem 5.3.2 of Dynkin (2004). See also Proposition 2.18 of Mselati
(2004). Let Mc

D be the space of finite measures compactly supported in D.

THEOREM 1. Suppose A ∈ F⊃D . Then either Pμ(A) = 0 for all μ ∈ Mc
D or

Pμ(A) > 0 for all μ ∈ Mc
D .

3. Extended X-harmonic functions and conditioning. In the rest of the pa-
per we fix D � E. Following Dynkin (2006b), a nonnegative function H : Mc

D →
[0,∞) is called X-harmonic in D, if for any D′ � D and any finite measure
μ ∈ Mc

D′ ,

Pμ

(
H(XD′)

)= H(μ).(14)

We will call a nonnegative H extended X-harmonic if it satisfies (14) but is not
necessarily everywhere finite.

We are going to touch upon three different kinds of extended X-harmonic func-
tions, which are derived from conditioning SBM on its various boundary statistics.
These boundary statistics are:

(a) a Poisson random measure with characteristic measure βXD ;
(b) a random variable Z drawn from the probability distribution XD〈XD,1〉 if

XD �= 0, and set equal to some given � /∈ ∂D if XD = 0;
(c) L(XD), where L is a linear map from M∂D to a vector space V [e.g.,

L(μ) = μ or L(μ) = 〈μ,1〉 means we condition on XD or on its total mass].

Let S be any one of the above statistics. Let � be the state space of S. We will as-
sume that � is endowed with a countably generated σ -algebra S such that (�, S)

is a measurable Luzin space; see Dynkin (2006b) for a definition. For example,
when S = XD , � is M∂D , the space of finite measures on ∂D and S is the σ -
algebra in M∂D generated by the functions f (ν) = ν(B), where B is a Borel
subset of ∂D. Given XD = ν, we let P ν

S denote the conditional distribution of S.
For example, P ν

S (f ) equals 〈ν,f 〉/〈ν,1〉 in the second case (provided ν �= 0), and
f (L(ν)) in the third.

Pμ denotes a probability measure in which X is an SBM started from μ ∈ Mc
D ,

and in which S is then drawn (if necessary) by further sampling. In other words,
Pμ is a probability defined on the σ -field G = F⊂D ∨ σ {S}. When μ = δx we set
Pμ = Px . By construction, Pμ(f (S) | F⊂D) = P

XD

S (f ). In other words, for any
F⊂D-measurable Y we have that

Pμ

(
f (S)Y

)= Pμ

(
P

XD

S (f )Y
)
.

Likewise, we let Pμ,S and Px,S denote the marginal distribution of S under Pμ and
Px , so Pμ,S(f ) = Pμ(f (S)).
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Let F⊂D− = σ {XD′,D′ � D}. What we want is the conditional law of
{XD′,D′ � D} given S = s, which should therefore be a transition kernel P s

μ

from �, the state space of S, to the F⊂D− measurable functions. More precisely,
we will have P S

μ(Y ) = Pμ(Y |S), Pμ a.s. for all F⊂D− measurable Y . The follow-
ing theorem tells us how we can construct this transition kernel [part (d)]. The first
three statements [(a), (b) and (c)] of this theorem are equivalent to Theorem 1.1 of
Dynkin (2006b) in the case S = XD . For a general S, we follow Dynkin’s proof,
with some modifications.

Let us fix a point x ∈ D.

THEOREM 2. There exists a family of nonnegative functions {Hs
x : Mc

D �→
R+, s ∈ �} with the following properties:

(a) H
(·)
x (·) : (s,μ) �→ Hs

x (μ) is measurable and strictly positive;

(b) For all μ, H
(·)
x (μ) : s �→ Hs

x (μ) is a version of dPμ,S

dPx,S
;

(c) For all s, Hs
x (·) is extended X-harmonic in D;

(d) Define a probability P s
μ on F⊂D− by setting

P s
μ(Y ) = 1

Hs
x (μ)

Pμ

(
YHs

x (XD′)
)

(15)

for all D′ � D containing the support of μ, and F⊂D′-measurable Y [whenever
Hs

x (μ) < ∞, and otherwise setting P s
μ to an arbitrary probability measure]. Then

P S
μ is a version of the conditional law of X given S with respect to Pμ for all μ.

Any two families satisfying the above properties will coincide for Px,S -a.e. s ∈ �.

PROOF. Existence of a family {H̄ s
x , s ∈ �} with the first two properties fol-

lows from Theorem A.1 of Dynkin (2006b) and the absolute continuity of the
family {Pμ,S,μ ∈ Mc

D} with respect to Px,S . Let O be a subdomain compactly
contained in D. Then

PμH̄ s
x (XO) = H̄ s

x (μ)(16)

for Px,S -a.e. s, ∀μ ∈ Mc
O . Dynkin (2006b) proves this when S = XD , and the

proofs for the other cases are almost identical to his. Next, we want to construct an
extended X-harmonic function Hs for all s ∈ �. To do this, we choose a countable
base On (w.l.o.g. closed under finite unions), and probability measures μn ∈ Mc

On
,

and we let

R(dη) =∑2−nPμn(XOn ∈ dη).

Note that (16) implies

PμH̄ s
x (XOn) = H̄ s

x (μ)
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for R × Px,S -a.e. (μ, s). By Fubini’s theorem we deduce that there exists a Px,S -
null set N s.t.

PμH̄ s
x (XOn) = H̄ s

x (μ) ∀n, for R-a.e. μ ∈ Mc
D , ∀s ∈ N c.(17)

For s ∈ N c and μ ∈ Mc
D , we choose On containing the support of μ and define

Hs
x (μ) = PμH̄ s

x (XOn).

H s
x (μ) > 0 since this is true of H̄ s

x , but we cannot rule out Hs
x (μ) = ∞. We set

Hs
x (μ) to some arbitrary positive constant for s ∈ N . The definition of Hs

x (μ) is
independent of the choice of On since, if Ok ⊃ On, then

PμH̄ s
x (XOk

) = PμPXOn
H̄ s

x (XOk
)

= PμH̄ s
x (XOn).

The first equality is due to the Markov property. The second equality is due to
(17) and the fact that Pμ(XOn ∈ (·)) is absolutely continuous with respect to R, by
Theorem 1.

Clearly, Hs
x (μ) is measurable and by (16), is a version of dPμ,S

dPx,S
(s) for each

μ ∈ Mc
D . To show that Hs

x (μ) satisfies property (c), we need to show that Hs
x (μ)

is extended X-harmonic for each s ∈ N c. Let μ and O be s.t. μ ∈ Mc
O and pick

On s.t. O is compactly contained in On. Then, by definition,

Hs
x (μ) = Pμ

(
H̄ s

x (XOn)
)

and

PμHs
x (XO) = PμPXO

(
H̄ s

x (XOn)
)
.

By the Markov property these two are equal. Now the family {Hs
x , s ∈ S} satisfies

properties (a), (b) and (c).
Let us define P s

μ as in (15). It remains to prove that P s
μ is the desired transition

kernel. Let D′ � D and Y ∈ F⊂D′ . Then

Pμ

(
f (S)P S

μ(Y )
)= ∫ f (s)P s

μ(Y )Pμ,S(ds)

=
∫

f (s)
1

Hs
x (μ)

∫
Y(ω)Hs

x

(
XD′(ω)

)
Pμ(dω)Pμ,S(ds)

=
∫

Y(ω)

∫ 1

Hs
x (μ)

f (s)Hs
x

(
XD′(ω)

)
Pμ,S(ds)Pμ(dω)

=
∫

Y(ω)

∫
f (s)Hs

x

(
XD′(ω)

)
Px,S(ds)Pμ(dω)

=
∫

Y(ω)

∫
f (s)PXD′ (ω),S(ds)Pμ(dω)

= Pμ

(
YPXD′

(
f (S)

))
= Pμ

(
f (S)Y

)
.
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Here we are using the definition of Pμ,S , the definition of P s
μ, Fubini’s theorem,

the definition of Hs
x , the definition of Pν,S , and the Markov property of X.

Uniqueness follows by a similar argument. Suppose {Hs
x }s∈� and {H̃ s

x }s∈� be
any two families with the properties (a), (b), (c) and (d). Then

Hs
x (μ) = H̃ s

x (μ) for Px,S -a.e. s, ∀μ

because of property (b). With R(dμ) as before, there is therefore a Px,S -null set
N such that

Hs
x (μ) = H̃ s

x (μ) for R-a.e. μ and for s /∈ N .

Let μ ∈ Mc
D and s /∈ N . Choose On such that μ ∈ Mc

On
. Then by absolute conti-

nuity and the property (c),

Hs
x (μ) = PμHs

x (XOn) = PμH̃ s
x (XOn) = H̃ s

x (μ). �

In the remainder of Section 3, we consider the three special cases described
above. Our goal is to obtain relatively explicit formulas for Hs

x in each case.

3.1. Conditioning on a Poisson random measure with characteristic mea-
sure βXD . Let N be a Poisson random variable with mean 〈XD,β〉. Let Z =
{Z1,Z2, . . .} be an i.i.d. sequence of random variables from XD/〈XD,1〉. Let

Yβ =
N∑

i=1

δZi
.

Note that conditioned on XD , Yβ is a Poisson random measure with characteristic
measure βXD , and that the construction makes sense even if XD = 0, because then
both N and Y equal 0.

Taking S = Yβ , Theorem 2 gives an extended X-harmonic function (which we

denote H
β,ν
x to make explicit the dependence on β) for conditioning on Yβ = ν.

Here ν is an atomic measure. We let P
β,ν
μ denote the law of the corresponding

conditioned process. In principle this is only uniquely defined for a.e. ν, but we
will find an explicit form that is valid more generally.

It will be convenient to also define variants of these objects. For any positive
integer k, take Sk = (Z1, . . . ,Zk) if N = k, and Sk = � /∈ ∂D otherwise. Set
Xk

D(dz1, . . . , dzk) to be the product measure XD(dz1) × · · · × XD(dzk), and let

P
β
μ,Sk

be the distribution of Sk with respect to Pμ. In other words, for k ≥ 1 and

f : (∂D)k ∪ {�} → R such that f (�) = 0, we have

P
β
μ,Sk

(f ) = Pμ

(
f (Sk)

)
= 1

k!Pμ

((∫
(∂D)k

f

〈XD,1〉k dXk
D

)
〈XD,β〉ke−〈XD,β〉1{XD �=0}

)

= βk

k! Pμ

((∫
(∂D)k

f dXk
D

)
e−〈XD,β〉

)
.
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So for any β > 0, positive integer k, and any k-tuple z = {zi} of elements of ∂D,
Theorem 2 gives us a family of extended X-harmonic functions {Hβ,k,z : z =
(z1, . . . , zk) ∈ (∂D)k} such that

Hβ,k,z
x (μ) = dP

β
μ,Sk

dP
β
x,Sk

(z1, z2, . . . , zk).(18)

Let lβ
.= 4VD(β). We have Pμ,Yβ {0} = Pμ(e−〈XD,β〉) = e−〈μ,lβ 〉 and Px,Yβ {0} =

e−lβ (x), and therefore we find Hβ,ν for ν = 0 simply by the ratio

Hβ,0
x (μ) = e−〈μ,lβ 〉

e−lβ (x)
(19)

by Theorem 2.
Let l ≥ 0 be a bounded Borel function on D. For x ∈ D, we let ml

x(dz) =
�l

x(ξτD
∈ dz) denote harmonic measure on ∂D for the operator Ll . Then ml

x and
ml

y are mutually absolutely continuous, for x, y ∈ D. [This is a well-known fact;
however, for the curious reader, here is a quick argument for why it is true. Let D′
be a smooth domain, compactly contained in D, and x, y ∈ D′. Let ml

x,D′ be the

harmonic measure on ∂D′. If A is a Borel subset of ∂D and ml
x(A) = 0, because

of the strong Markov property and the fact that ml
x,D′ is equivalent to the surface

measure γD′ on ∂D′, we have that ml
z(A) = 0 for γD′ almost all z. This implies

ml
y(A) = 0, again due to the strong Markov property and the fact that ml

y,D′ ∼
γD′ .]

Let

kl
x(y, z) = dml

y

dml
x

(z)

denote the density. If D were sufficiently regular, this would be a version of the
Martin kernel for the operator Ll , but we make no such regularity assumptions
at this point. We take kl to be a jointly measurable version of this density that is
harmonic in y, for each z ∈ ∂D. One can construct kl in a similar way as in Theo-
rem 2. That is, we start with a family {k̃((·), z), z ∈ ∂D} such that k̃ is measurable

as a function of (y, z), and for fixed y, k̃(y, (·)) is a version of
dml

y

dml
x
(z). The ex-

istence of such a family follows from Theorem A.1 of Dynkin (2006b) and the
absolute continuity of the family {ml

y, y ∈ D} with respect to ml
x . Then we take

a sequence Dn � D exhausting D, and let kl(y, z) = �l
y(k̃(ξτDn

, z)) for y ∈ Dn.
Then we prove that kl((·), z) is well defined, and harmonic for all z except on an
ml

x -null set N , on which we set kl to be an arbitrary constant. We omit the details
as the arguments are very similar to those in the proof of Theorem 2.

In the case l = 0 we write mx(dz) = m0
x(dz) and kx(y, z) = k0

x(y, z).
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The particular case of interest is l = lβ = 4VD(β). Suppose that k ≥ 1 and that
z1, . . . , zk ∈ ∂D. For C ⊂ K = {1, . . . , k}, recursively define

ρ
β
C =

⎧⎪⎪⎨
⎪⎪⎩

k
lβ
x (·, zi), for C = {i},

1

2

∑
A⊂C,∅ �=A �=C

G
lβ
D

(
4ρ

β
Aρ

β
C\A
)
, for |C| > 1.

Finally, set

ρβ,k
μ (z1, . . . , zk) = e−〈μ,lβ 〉∑〈

μ,ρ
β
C1

〉 · · · 〈μ,ρ
β
Cr

〉
,

where the sum ranges over all partitions {C1, . . . ,Cr} of K .
In the following theorem, we use the convention that Hβ,0,z = Hβ,0.

THEOREM 3. Let D � E, and β ≥ 0 and x ∈ D. Then:

(a) H
β,ν
x = H

β,k,z
x for Px,Yβ -almost all finite atomic measures ν, where k and

z are such that

ν(dx) =
k∑
1

δzi
(dx).(20)

(b) For (m
lβ
x )k-a.e. (z1, . . . , zk), for all μ ∈ Mc

D ,

Hβ,k,z
x (μ) = ρ

β,k
μ (z1, . . . , zk)

ρ
β,k
x (z1, . . . , zk)

.(21)

(c) If D is smooth, then in fact ρ
β,k
μ (z1, . . . , zk) < ∞ for all μ ∈ Mc

D whenever
z1, . . . , zk are distinct.

PROOF. (a) P
β
μ,Sk

(f ) remains unchanged if we permute the arguments of f .

Thus we can choose the densities H
β,k,z
x (μ) to be both X-harmonic and invari-

ant under permutations of the zi . A simple way to confirm this is to replace
an X-harmonic choice of H

β,k,z
x (μ) by 1

k!
∑

σ H
β,k,σ (z)
x (μ), where the sum is

over permutations σ . The latter is still X-harmonic, and a version of the density
dP

β
μ,Sk

/dP
β
x,Sk

, but is also clearly invariant under permutations.
For a finite atomic measure ν, all of whose atoms have mass 1, find k and

z1, . . . , zk such that (20) holds. Then define

H̃ β,ν
x (μ) := Hβ,k,z

x (μ).

Note that H̃
β,ν
x (μ) is well defined, since H

β,k,z
x depends only on zk := (z1, . . . , zk)

and is invariant under permuting zk . [Note, if two sequences z and z̃ satisfy (20),
then zk and z̃k must be permutations of each other.]
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Let f be a function defined on the space of finite atomic measures. If ν =∑k
i=1 δzi

, write fk(z) for f (ν). To finish the proof it is enough to observe

Px,Yβ

(
H̃ β,(·)

x (μ)f (·))
= Px

(
H̃

β,Yβ
x (μ)f (Yβ)

)
= Px,Yβ {0}H̃ β,0(μ)f (0)

+
∞∑

k=1

Px

(
e−〈XD,β〉 〈XD,β〉k

k! 1{XD �=0}
∫

Hβ,k,z
x (μ)fk(z)

Xk
D(dz)

〈XD,1〉k
)

= Pμ,Yβ {0}f (0) +
∞∑

k=1

βk

k! Px

(
e−〈XD,β〉

∫
Hβ,k,z

x (μ)fk(z)X
k
D(dz)

)

= Pμ,Yβ {0}f (0) +
∞∑

k=1

P
β
x,Sk

(
Hβ,k,(·)

x (μ)fk(·))

= Pμ,Yβ {0}f (0) +
∞∑

k=1

P
β
μ,Sk

(fk)

= Pμ,Yβ {0}f (0) +
∞∑

k=1

Pμ

(
e−〈XD,β〉 〈XD,β〉k

k! 1{XD �=0}
∫

fk(z)
Xk

D(dz)

〈XD,1〉k
)

= Pμ

(
f (Yβ)

)
= Pμ,Yβ (f ).

(b) Define H̃
β,k,z
x (μ) to be the right-hand side of (21). Following an argument

of Dynkin (2004), Chapter 5, one can show that ρ
β,k
μ is the density of P

β
μ,Sk

with

respect to (m
lβ
x )k . The argument uses the moment formulas (5), (6), (7) and then

pulls k factors of harmonic measure out of the resulting expressions, leaving the

densities k
lβ
x behind. It follows that H̃

β,k,z
x (μ) is a version of the Radon–Nikodym

derivative in (18). The finiteness condition for ρ
β,k
μ follows immediately.

Furthermore, by Theorem 3.1 of Salisbury and Verzani (1999), H̃
β,k,z
x is X-

harmonic; see remark (iv) below. Thus H̃
β,k,z
x = H

β,k,z
x for (m

lβ
x )k-a.e. z, which is

the sense up to which H
β,k,z
x is well defined.

(c) The argument for (c) is a straightforward modification of the estimates used
in Theorem 5.3 of Salisbury and Verzani (1999). �

REMARKS. (i) The conclusion is that we have obtained an explicit formula for
H

β,ν
x (μ). The abstract definition of this X-harmonic function was valid only up to

an unspecified null set of ν’s, whereas the canonical expression we have obtained
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is well defined as long as ν is a finite atomic measure, all of whose atoms have
mass 1 (assuming that D is smooth).

(ii) The arguments of this section would work equally well for conditioning on
the value of a Poisson random measure with characteristic measure β(x)XD(dx),
where β(x) is now a bounded measurable function on ∂D.

(iii) If D is smooth, then instead of taking kl
x(y, z) to be the density of ml

y with
respect to ml

x , we could use the Poisson kernel in its place, and get a similar result.
In other words, we could take the density of ml

y with respect to the surface measure
γ on ∂D, rather than the density with respect to ml

x .
(iv) H̃ β,k,z falls in the family of X-harmonic functions considered in Salisbury

and Verzani (1999). This family of X-harmonic functions are characterized by
a function g, and L4g-harmonic functions v1, . . . , vk . In our example the func-

tion g is uβ = VDβ , and the harmonic functions vi are the functions k
lβ
x (·, zi). In

Salisbury and Verzani (1999) it is shown that for D Lipschitz of dimension d ≥ 4,
g = 0 and vi = kx(·, zi) where z1, . . . , zk are distinct points chosen on the bound-
ary, the resulting X-harmonic function corresponds to conditioning SBM to hit the
points zi . The same argument would work in dimension d = 3, at least when D is
smooth.

3.2. Conditioning on a r.v. Z sampled from measure XD〈XD,1〉 . Recall that the

random variable Z is drawn from the probability distribution XD〈XD,1〉 if XD �= 0,
and set equal to some given � /∈ ∂D if XD = 0. Applying Theorem 2 gives us a
family of extended X-harmonic functions

Hz
x = dPμ,Z

dPx,Z

(z)

indexed by points z of {�} ∪ ∂D. We denote the law of the corresponding condi-
tional process by P z

μ.
Recall that ξt is a Brownian motion under �y . For z ∈ ∂D, we let �z

y be a
probability under which ξt is a kx(·, z)-transform of Brownian motion. [Recall
kx((·), z) .= k0

x((·), z).] In other words,

�z
y

(
f (ξt ), t < τD

)= 1

kx(y, z)
�y

(
f (ξt )kx(ξt , z), t < τD

)
for every bounded measurable f .

The following result establishes a concrete formula for Hz
x that is defined for

mx -a.e. z ∈ ∂D when D is a general domain. When D is smooth, the same argu-
ment as in the previous section gives a canonical version, defined for all z ∈ ∂D.

THEOREM 4. Let D � E and x ∈ D. Then for mx(dz)-almost all z ∈ ∂D,
Hz

x (μ) < ∞, and

Hz
x (μ) =

∫∞
0 〈μ,kx(·, z)�z

(·)(e−φ(uβ))〉e−〈μ,uβ 〉 dβ∫∞
0 �z

x(e
−φ(uβ))e−uβ(x) dβ

(22)
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for every μ, where uβ = VDβ and the random variable φ(uβ) is defined as

φ(uβ) = 4
∫ τD

0
uβ(ξt ) dt.(23)

PROOF. We first find the Radon–Nikodym derivative of Pμ,Z w.r.t. the har-
monic measure mx(dz) on the boundary of D. We observe that

Pμ,Z(f ) = Pμ

( 〈XD,f 〉
〈XD,1〉 1{XD �=0}

)
(24)

= −
∫ ∞

0

d

dλ
Pμ

(
e−λ〈XD,f 〉−β〈XD,1〉)∣∣∣∣

λ=0
dβ.

Note that the above derivative equals 0 when XD = 0. By the branching property,

Pμ

(
e−λ〈XD,f 〉−β〈XD,1〉)= e−〈μ,uλf +β 〉,(25)

where

uλf +β = VD(λf + β) = N(·)
(
1 − e−〈XD,λf +β〉).

Taking the derivative of the right-hand side of (25), and evaluating at λ = 0 we get

Pμ

(〈XD,f 〉
〈XD,1〉 1{XD �=0}

)
=
∫ ∞

0

〈
μ,N(·)

(〈XD,f 〉e−β〈XD,1〉)〉e−〈μ,uβ 〉 dβ.(26)

Differentiation under the integral sign is easily justified. By the Palm formula,

Ny

(〈XD,f 〉e−β〈XD,1〉)= �y

(
f (ξτD

)e−φ(uβ))
=
∫
∂D

�z
y

(
e−φ(uβ))f (z)my(dz)

=
∫
∂D

�z
y

(
e−φ(uβ))kx(y, z)f (z)mx(dz).

So,

〈
μ,N(·)

(〈XD,f 〉e−β〈XD,1〉)〉= ∫
∂D

〈
μ,kx(·, z)�z

(·)
(
e−φ(uβ))〉f (z)mx(dz).

Hence ∫ ∞
0

〈
μ,N(·)

(〈XD,f 〉e−β〈XD,1〉)〉e−〈μ,uβ 〉 dβ

=
∫
∂D

f (z)

(∫ ∞
0

〈
μ,kx(·, z)�z

(·)
(
e−φ(uβ))〉e−〈μ,uβ 〉 dβ

)
mx(dz).

Therefore, both Pμ,Z and Px,Z have densities with respect to mx(dz), given by∫ ∞
0

〈
μ,kx(·, z)�z

(·)
(
e−φ(uβ))〉e−〈μ,uβ 〉 dβ
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and ∫ ∞
0

�z
x

(
e−φ(uβ))e−uβ(x) dβ,

respectively. The ratio of these two is a version of the desired Radon–Nikodym
derivative. To show that it equals Hz

x for almost all z, it simply remains to show
that it is extended X-harmonic.

The denominator is simply a normalizing factor, so consider the numerator. For
lβ = 4uβ , it is known [see Theorem 1.1 of Salisbury and Verzani (1999)] that
μ �→ 〈μ,v〉e−〈μ,uβ 〉 is X-harmonic whenever v is Llβ -harmonic. And in our case,
〈μ,kx(·, z)�z

(·)(e−φ(uβ))〉e−〈μ,uβ 〉 = 〈μ,k
lβ
x (·, z)〉e−〈μ,uβ 〉, as required.

Now we show that Hz
x (μ) < ∞ for all μ, for mx -almost all z. Let μ0 ∈ M be

fixed. Since Hz
x (μ0) is a density, there exist a mx null set B ⊂ ∂D s.t. for z ∈ B ,

Hz
x (μ0) is finite all z ∈ Bc. Let μ ∈ Mc

D and choose D′ � D such that both μ and
μ0 are compactly supported in D′, and assume that D′ is smooth. Let pμ be the
measure defined on ∂D′ by pμ(f ) = Pμ(e−〈XD′ ,uβ 〉〈XD′, f 〉). Then our analysis
in Section 3.1 gives us that pμ and pμ0 are equivalent, and the Radon–Nikodym
density is

dpμ

dpμ0

(y) = 〈μ, k̃lβ ((·), y)〉
〈μ0, k̃

lβ ((·), y)〉 ,

where k̃lβ (u, y) is the Poisson kernel of D′ for the operator Llβ . Note that this
density is bounded by a constant C(μ,μ0) since k̃lβ (u, y) is harmonic in u on the
support of μ and μ0. Hence〈

μ,k
lβ
x (·, z)〉e−〈μ,uβ 〉 = Pμ

〈
XD′, k

lβ
x (·, z)〉e−〈XD′ ,uβ 〉

≤ C(μ,μ0)Pμ0

〈
XD′, k

lβ
x (·, z)〉e−〈XD′ ,uβ 〉

= C(μ,μ0)
〈
μ0, k

lβ
x (·, z)〉e−〈μ,uβ 〉.

It follows that Hz
x (μ) ≤ C(μ,μ0)H

z
x (μ0) < ∞ for all z ∈ B , and hence the proof

is complete. �

3.3. Conditioning on a linear function of XD . Let L be a linear and measur-
able map from the linear cone of positive finite measures M∂D on ∂D to a Luzin
measurable space (V , V) where V is a vector space, and V is countably generated.
Let V+ be the image of M∂D , and write V ∗ = V+ \ {0}. Assume that Lμ = 0
implies μ = 0.

Let Tn be the map V n+ → V n+ defined by

Tn(v1, . . . , vn) �→ (v1 + v2 + · · · + vn, v1, . . . , vn−1),

and for A ∈ V and A ⊂ V ∗, let

Nx,L(XD)(A) = Nx

(
L(XD) ∈ A,XD �= 0

)
.
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We fix x ∈ D as before and define a reference measure Rx on V ∗ by

Rx(A) = Px,L(XD)(A,XD �= 0).

Its total mass is rx,0 = Px,L(XD)(V
∗) = 1 − e−u(x), where u(x) = − logPx(XD =

0). Note that u = limβ→∞ VD(β). Throughout this section we will assume that

D is a bounded domain, all of whose boundary points are regular.(27)

This holds, for example, if the boundary of D is smooth. Under assumption (27),
VD(β) is the unique solution of

1
2�u = 2u2

on D with u = β on ∂D [Proposition 8.2.1.B of Dynkin (2002)]. Because of this
and the comparison principle [Proposition 8.2.1.H of Dynkin (2002)], VD(β) is
also the maximal solution of 1

2�u = 2u2 on D bounded by β . We will need this in
the proof of Lemma 5.

By Theorem 2 we know the existence of a family of extended X-harmonic func-
tions {Hv

x , v ∈ V } such that Hv
x (μ) = dPμ,L(XD)/dPx,L(XD)(v). In this section we

are going to find a more explicit formula for this family.

LEMMA 5. Assume (27). There exists a family of functions {γx,v :D �→
(0,∞), v ∈ V ∗} such that the mapping (v, y) �→ γx,v(y) is measurable and for
all y ∈ D

Ny,L(XD)(dv) = γx,v(y)Rx(dv).(28)

In addition, there exists a measurable kernel Kx,n(v;dv1, dv2, . . . , dvn−1) from
V ∗ to (V ∗)n−1, such that

Rn
x ◦ T −1

n (dv, dv1, dv2, . . . , dvn−1)
(29)

= Kx,n(v;dv1, dv2, . . . , dvn−1)R(dv).

Moreover Kx,n(v, ·) is a strictly positive measure, for R-a.e. v.

PROOF. Recall that

Pμ,L(XD)(A) = Pμ

(
L(XD) ∈ A

)
.

Because all Pμ(XD ∈ ·) are equivalent, so are the Pμ,L(XD), as are their restriction
to V ∗. Thus all Pμ,L(XD) (when restricted to V ∗) are equivalent to Rx . Moreover,
since

Ny,L(XD)(A) = Ny

(
L(XD) ∈ A,XD �= 0

)= Ny

(
PXD′

(
L(XD) ∈ A,XD �= 0

))
for all y ∈ D and D′ � D such that y ∈ D′, Ny,L(XD) is also equivalent to Rx

for all y ∈ D. By Theorem A.1 of Dynkin (2006b) we get a family of functions
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{γx,v :D �→ [0,∞), v ∈ V ∗} such that the mapping (v, y) �→ γx,v(y) is measur-
able, and (28) holds. Clearly such a γx,v(y) can be chosen strictly positive since
Ny,L(XD) and Rx are equivalent.

It will be convenient for the proof to write Rx(dv) = rx,0R̃x(dv), where R̃x

is a probability measure. In other words, R̃x(dv) = Px(L(XD) ∈ dv | XD �= 0).
Note that with this choice of R̃x , R̃n

x ◦ T −1
n (dv, dv1, dv2, . . . , dvn−1) is the joint

distribution of (V1 + · · · + Vn,V1, . . . , Vn−1) where Vi are independent random
variables with distribution R̃x . Let Rx,n be the marginal distribution of V1 + · · · +
Vn, where the Vi are as above. The following decomposition is then immediate:

R̃n
x ◦ T −1

n (dv, dv1, dv2, . . . , dvn−1) = K̃x,n(v;dv1, dv2, . . . , dvn−1)Rx,n(dv),

where K̃x,n(v;dv1, dv2, . . . , dvn−1) is the conditional probability kernel for
(V1, . . . , Vn−1) given V1 + · · · + Vn.

We now show that Rx,n is absolutely continuous with respect to Rx . Let
X1

D, . . . ,Xn
D be n independent realizations of the exit measure under the law Px .

Then the distribution of X1
D + · · · + Xn

D is given by the Pnδx distribution of XD .
Let F be s.t. Rx(F ) = 0, that is,

Px

(
F
(
L(XD)

)
1{XD �=0}

)= 0.(30)

Because Px and Pnδx are absolutely continuous, (30) implies

Pnδx

(
F
(
L(XD)

)
1{XD �=0}

)= 0.(31)

Since

Pnδx

(
F
(
L(XD)

)
1{XD �=0}

)
= (Px)

n(F (L(X1
D + · · · + Xn

D

))
1{X1

D+···+Xn
D �=0}

)
≥ (Px)

n(F (L(X1
D

)+ · · · + L
(
Xn

D

))
1{X1

D �=0} · · ·1{Xn
D �=0}

)
= rn

x,0Rx,n(F ),

this implies that Rx,n(F ) = 0, so indeed, Rx,n is absolutely continuous with re-
spect to R.

If hn
x(v) is the Radon–Nikodym derivative of Rx,n with respect to Rx , we get

(29) with

Kx,n(v;dv1, dv2, . . . , dvn−1) = K̃x,n(v;dv1, dv2, . . . , dvn−1)h
n
x(v).

It remains only to show that Kx,n(v, ·) is strictly positive. Because K̃x,n(v, ·)
is, this amounts to showing the converse to the absolute continuity result above,
namely that Rx is absolutely continuous with respect to Rx,n.
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Our approach is to use the Poisson representation, as in the absolute continuity
argument in Dynkin (2004). Suppose Rx,n(F ) = 0 and 0 ≤ F ≤ 1. The Poisson
representation gives that

Pμ

(
F
(
L(XD)

)
,XD �= 0

)
=

∞∑
k=1

e−〈μ,u〉

k!
∫ ∫

F
(
L(ν1) + · · · + L(νk)

)
Nx1(XD ∈ dν1,XD �= 0) · · ·

× Nxn(XD ∈ dνk,XD �= 0)μ(dx1) · · ·μ(dxk)

=
∞∑

k=1

e−〈μ,u〉

k!
∫

fk(x1, . . . , xk)μ(dx1) · · ·μ(dxk),

where

fk(x1, . . . , xk) =
∫

F
(
L(ν1) + · · · + L(νk)

)
Nx1(XD ∈ dν1,XD �= 0) · · ·

× Nxk
(XD ∈ dνk,XD �= 0).

Let Dm � D such that x ∈ Dm and Dm ↑ D. Then

Px

(
F
(
L(XD)

)
,XD �= 0

)
= Px

(
PXDm

(
F
(
L(XD)

)
,XD �= 0

))

= Px

( ∞∑
k=1

e−〈XDm,u〉

k!
∫

fk(x1, . . . , xk)XDm(dx1) · · ·XDm(dxk)

)
.

There is a similar Poisson representation for Rx,n(F ), involving a sum of integrals
of the fk for k ≥ n. Since Rx,n(F ) = 0, we conclude that for each k ≥ n there are
x1, . . . , xk ∈ D such that fk(x1, . . . , xk) = 0. By absolute continuity, we conclude
that fk(x1, . . . , xk) = 0 for every x1, . . . , xk .

Since F ≤ 1 we obtain the bound

f (x1, . . . , xk) ≤
k∏

j=1

Nxj
(XD �= 0) = u(x1) · · ·u(xk).

Therefore

Px

(
F
(
L(XD)

)
,XD �= 0

)≤ n−1∑
k=1

Px

(
e−〈XDm,u〉

k! 〈XDm,u〉k
)
.

The result will follow once we argue that all terms e−〈XDm,u〉〈XDm,u〉k converge
to 0 Px-a.s. as we let m → ∞, by the dominated convergence theorem since these
terms are bounded. To show that e−〈XDm,u〉〈XDm,u〉k → 0, it is enough to show
that the stochastic boundary value of u (i.e., limm→∞〈XDm,u〉) is 0 or ∞, Px -
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a.s. Let Zβ be the stochastic boundary value of the constant function β . The se-
quence 〈XDm,β〉 is a uniformly integrable martingale with respect to Py for all
y ∈ D. That it is a martingale follows because the constant function β is har-
monic. The uniform integrability follows because this martingale is square inte-
grable. Indeed, by the moment formula (7), Py(〈XDm,β〉)2 = GDm(4β2)(y)+β ≤
GD(4β2)(y) + β < ∞, since D is bounded. It follows that the log-potential of Z

is the maximal solution of 1
2�u = 2u2 on D bounded by β , which is VDβ , as we

argued at the beginning of this section; see Sections 9.2.1 and 9.2.2 of Dynkin
(2002). So VDβ(x) = − logPxe

−Zβ . Also note that Zβ = βZ1, and Zβ ↑ Z where

Z =
{

0, if Z1 = 0,
∞, if Z1 > 0.

(32)

By the dominated convergence theorem

Pxe
−Z = lim

β→∞Pxe
−Zβ = lim

β→∞ e−VDβ(x) = e−u(x),

so u is the log potential of Z, and therefore Z is the stochastic boundary value
of u. Since Z is 0 or ∞ Px -a.s., the proof is complete. �

LEMMA 6. Assume (27). Let (Kx,n)n≥2 be a sequence of transition kernels
satisfying (29) for n ≥ 2. Define

K̄x,n(v;dv1, . . . , dvn) := Kn(v;dv1, . . . , dvn−1) × δv−(v1+···+vn−1)(dvn).(33)

Then for Rx-almost all v ∈ V ∗, the following holds for all n ≥ 2, 1 ≤ r ≤ n, and
any partition C1, . . . ,Cr of {1, . . . , n}, where ni = |Ci |:

K̄x,n(v;dv1, . . . , dvn) =
∫

K̄x,r (v;dv1, . . . , dvr)

r∏
i=1

K̄x,ni
(ṽi;dvCi

).

PROOF. Since V is countably generated, so is V n (the product σ -field), and
therefore for each n ≥ 1, there exists a sequence of nonnegative Borel measurable
functions {f n

i }∞i=1 generating V n.
It will suffice to show for any k, j ≥ 1, n ≥ 2, 1 ≤ r ≤ n, and any given partition

C1, . . . ,Cr of {1, . . . , n} that∫
f 1

j (v)

[∫
f n

k (v1, . . . , vn)K̄x,n(v, dv1, . . . , dvn)

]
Rx(dv)

=
∫

f 1
j (v)

[∫
K̄x,r (v, dṽ1, . . . , dṽr )

×
∫ r∏

i=1

K̄x,ni
(ṽi , dvCi

)f n
k (v1, . . . , vn)

]
Rx(dv).
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Let

f̃ n
k (ṽ1, . . . , ṽr ) =

∫ r∏
i=1

K̄x,ni
(ṽi , dvCi

)f n
k (v1, . . . , vn).

Then∫
f 1

j (v)

∫
K̄x,r (v, dṽ1, . . . , dṽr )

∫ r∏
i=1

K̄x,ni
(ṽi , dvCi

)f n
k (v1, . . . , vn)Rx(dv)

=
∫

f 1
j (ṽ1 + · · · + ṽr )f̃

n
k (ṽ1, . . . , ṽr )R

r
x(dṽ1, . . . , dṽr )

=
∫

f 1
j (ṽ1 + · · · + ṽr )f

n
k (v1, . . . , vn)

[
r∏

i=1

K̄x,ni
(ṽi , dvCi

)Rx(dṽi)

]

=
∫

f 1
j (�C1vm + · · · + �Cr vm)f n

k (v1, . . . , vn)

r∏
i=1

∏
Ci

Rx(dvm)

=
∫

f 1
j (v1 + · · · + vn)f

n
k (v1, . . . , vn)R

n
x(dv1, . . . , dvn)

=
∫

f 1
j (v)

[∫
f n

k (v1, . . . , vn)K̄x,n(v, dv1, . . . , dvn)

]
Rx(dv). �

LEMMA 7. Assume (27). For any B0 ⊂ V ∗ with Rx(B
c
0) = 0, there exists B ⊂

V ∗ with Rx(B
c) = 0, such that B ⊂ B0 and for all n ≥ 2 and v ∈ B , we will have

(v1, . . . , vn) ∈ Bn, K̄x,n(v, dv1, . . . , dvn) a.s.

PROOF. Define recursively Bm,m ≥ 1 as

Bm =
{
v ∈ Bm−1 :

∞∑
n=2

∫ n∑
i=1

1Bc
m−1

(vi)K̄x,n(v, dv1, . . . , dvn) = 0

}
.

Then Rx(B
c
m) = 0. Because Rx(B

c
0) = 0, and assuming Rx(B

c
m−1) = 0, we have

that ∫ ∞∑
n=2

∫ n∑
i=1

1Bc
m−1

(vi)K̄x,n(v, dv1, . . . , dvn)Rx(dv)

=
∞∑

n=2

∫ n∑
i=1

1Bc
m−1

(vi)R
n
x(dv1, . . . , dvn)

=
∞∑

n=2

nRx

(
Bc

m−1
)
rn−1
x,0 = 0,



3640 T. S. SALISBURY AND A. D. SEZER

which implies Rx{v :
∑∞

n=2
∫ ∑n

i=1 1Bc
m−1

(vi)K̄x,n(v, dv1, . . . , dvn) �= 0} = 0.
This implies that Rx(B

c
m) = 0 since

Bc
m ⊂

{
v :
∫ n∑

i=1

1Bc
m−1

(vi)K̄x,n(v, dv1, . . . , dvn) �= 0

}
.

Let B =⋂∞
m=0 Bm. Clearly Rx(B

c) = 0 and B ⊂ B0.
Now, if v ∈ B , then for any m,

∑∞
n=2
∫ ∑n

i=1 1Bc
m
(vi)K̄x,n(v, dv1, . . . , dvn) = 0.

By the monotone convergence theorem, this implies that

∞∑
n=2

∫ n∑
i=1

1Bc(vi)K̄x,n(v, dv1, . . . , dvn) = 0.

Hence for all n, K̄x,n(v, dv1, . . . , dvn) almost all (v1, . . . , vn) is in B . �

So far γx,v(y) is any jointly measurable version of the Radon–Nikodym deriva-
tive of Ny,XD

with respect to Rx . In the following theorem, we refine this choice
and find a formula for the family of extended X harmonic functions {Hv

x , v ∈ V ∗}
corresponding to dPμ,L(XD)/dPx,L(XD)(v).

THEOREM 8. Assume (27). There exists a version of {γx,v, v ∈ V ∗} of
Lemma 5 such that for Rx almost every v ∈ V ∗

γx,v(y) = Ny

(
Hv

x (XD′)
)

(34)

for every y, and D′ � D such that y ∈ D′, where

Hv
x (μ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e−〈μ,u〉+u(x), if v = 0,

e−〈μ,u〉〈μ,γx,v〉
+

∞∑
n=2

∫ 1

n!e
−〈μ,u〉Kx,n(v;dv1, . . . , dvn−1)

× 〈μ,γv1〉 · · · 〈μ,γx,vn−1〉
× 〈μ,γx,v−(v1+···+vn−1)〉, if v �= 0.

(35)

Moreover, with such a version of γx,v , {Hv
x , v ∈ V ∗} defined by (35) is ex-

tended X-harmonic for Rx-almost all v. For fixed μ, Hv
x (μ) is a version of

dPμ,L(XD)/dPx,L(XD)(v).

PROOF. Let {γ̄x,v, v ∈ V ∗} be a family of functions satisfying the properties
of Lemma 5. Define H̄ v

x by formula (35) with this γ̄x,v in place of γx,v . Since
γ̄x,v > 0, it follows that H̄ v

x > 0. We will first show that for each μ, H̄ v
x (μ) is a
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version of dPμ,L(XD)/dPx,L(XD)(v). Let F be a nonnegative Borel function on V+.∫
Px,L(XD)(dv)F (v)H̄ v

x (μ)

= Px,L(XD)

({0})F(0)H̄ 0
x (μ) +

∫
F(v)H̄ v

x (μ)Rx(dv)

= e−u(x)F (0)e−〈μ,u〉+u(x) + e−〈μ,u〉
∫

F(v)〈μ, γ̄x,v〉Rx(dv)

+
∞∑

n=2

e−〈μ,u〉

n!
∫ ∫

〈μ, γ̄x,v1〉 · · · 〈μ, γ̄x,vn−1〉〈μ, γ̄x,v−(v1+···+vn−1)〉

× F(v)Kx,n(v;dv1, . . . , dvn−1)Rx(dv)

= e−〈μ,u〉F(0) +
∞∑

n=1

e−〈μ,u〉

n!
∫

F(v1 + · · · + vn)〈μ, γ̄x,v1〉 · · · 〈μ, γ̄x,vn〉

× Rx(dv1) · · ·Rx(dvn)

= e−〈μ,u〉F(0)

+
∞∑

n=1

e−〈μ,u〉

n!
∫

F(v1 + · · · + vn)

× 〈μ,N(·),L(XD)(dv1)
〉 · · · 〈μ,N(·),L(XD)(dvn)

〉
=

∞∑
n=0

e−〈μ,u〉

n!
∫

F
(
L(v1) + · · · + L(νn)

)
Rμ(dν1) · · · Rμ(dνn)

= Pμ

(
F
(
L(XD)

))= Pμ,L(XD)(F ),

where we are using the Poisson representation. We choose countable base On

(w.l.o.g. closed under finite unions) and consider the measure R on Mc
D defined

as in the proof of Theorem 2. The argument in that proof tells us that there exists a
Px,L(XD)-null set N s.t.

PμH̄ v
x (XOn) = H̄ v

x (μ) ∀n, for R-a.e. μ ∈ Mc
D , ∀v ∈ N c.(36)

Without loss of generality we may assume that for v ∈ N c, the statement of
Lemma 6 holds, and moreover by Lemma 7, K̄n(v, dv1, . . . , dvn) almost surely
(v1, . . . , vn) ∈ (N c)n for all n. For v ∈ N c and y ∈ D, we choose On containing
the support of y and define

γx,v(y) = Ny

(
H̄ v

x (XOn)
)
.

Since H̄ v
x > 0 it follows that γx,v(y) ∈ (0,∞] for every y. We set γx,v to some

arbitrary constant > 0 for v ∈ N . The definition of γx,v is independent of the
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choice of On since, if Ok ⊃ On, then

NyH̄
v
x (XOk

) = NyPXOn
H̄ s

x (XOk
)

= NyH̄
s
x (XOn).

The first equality is due to Markov property. The second equality is due to (36) and
the fact that Ny(XOn ∈ (·)) is absolutely continuous with respect to R.

We now show that for fixed y, this gives a version of
dNy,L(XD)

dRx
. If y ∈ On, then∫

{v �=0}
F(v)Ny,L(XD)(dv) = Ny

(
F
(
L(XD)

)
1{XD �=0}

)
= Ny

(
PXOn

(
F
(
L(XD)

)
1{XD �=0}

))
= Ny

(∫
{v �=0}

H̄ v
x (XOn)F (v)Rx(dv)

)

=
∫
{v �=0}

F(v)Rx(dv)Ny

(
Hv

x (XOn)
)

=
∫
{v �=0}

F(v)γx,v(y)Rx(dv).

Let Hv
x be defined by formula (35). Then we know that for fixed μ, Hv

x (μ) is a
version of dPμ,L(XD)/dPx,L(XD)(v). Now we are going to show that for v ∈ N c,
Hv

x (μ) = Pμ(H̄ v
x (XOk

)). To simplify the notation, we drop the basepoint x from
K̄x,n, γ̄x,v and γx,v for the remainder of the proof,

PμH̄ v
x (XOk

)

= Pμ

∞∑
n=1

∫
e−〈XOk

,u〉

n!
n∏

i=1

〈XOk
, γ̄vi

〉K̄n(v;dv1, . . . , dvn)

=
∞∑

n=1

1

n!
∫

Pμ

(
e−〈XOk

,u〉
n∏

i=1

〈XOk
, γ̄vi

〉
)
K̄n(v;dv1, . . . , dvn)

=
∞∑

n=1

1

n!
∫

e−〈μ,VOk
(u)〉
[∑

π(n)

r∏
i=1

〈
μ,N(·)

(
e−〈XOk

,u〉 ∏
j∈Ci

〈XOk
, γ̄vj

〉
)〉]

× K̄n(v;dv1, . . . , dvn)

= e−〈μ,VOk
(u)〉

×
∞∑

n=1

1

n!
∑
π(n)

∫
K̄r(v;dṽ1, . . . , ṽr )

×
r∏

i=1

〈
μ,N(·)

(
e−〈XOn,u〉

[∫ ∏
j∈Ci

〈XOn, γ̄vj
〉K̄ni

(ṽi;dvCi
)

])〉
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= e−〈μ,VOk
(u〉)

∞∑
n=1

1

n!
n∑

r=1

∫
K̄r(v; ṽ1, . . . , ṽr )

∑
n1,...,nr

n!
n1! · · ·nr !r!

×
r∏

i=1

〈
μ,N(·)

(
e−〈XOk

,u〉
[∫ ∏

j∈Ci

〈XOk
, γ̄vj

〉K̄ni
(ṽi;dvCi

)

])〉

= e−〈μ,VOk
(u〉)

∞∑
r=1

∫ 1

r!K̄r(v;dṽ1, . . . , dṽr )

×
r∏

i=1

∞∑
ni=1

1

ni !
〈
μ,N(·)

(
e−〈XOk

,u〉
[∫ ∏

j∈Ci

〈XOk
, γ̄vj

〉K̄ni
(ṽi;dvCi

)

])〉

= e−〈μ,VOk
(u〉)

∞∑
r=1

∫ 1

r!K̄r(v;dṽ1, . . . , dṽr )

×
r∏

i=1

〈
μ,N(·)

( ∞∑
ni=1

1

ni !e
−〈XOk

,u〉
[∫ ∏

j∈Ci

〈XOk
, γ̄vj

〉K̄ni
(ṽi;dvCi

)

])〉

= e−〈μ,u〉
∞∑

r=1

∫ 1

r!K̄r(v;dṽ1, . . . , dṽr )

r∏
i=1

〈μ,γx,ṽi
〉

= Hv
x (μ),

where the last line follows because by our assumption that if v ∈ N c, then
K̄r(v, dṽ1, . . . , dṽr ) almost surely (ṽ1, . . . , ṽr ) ∈ (N c)n and by construction for
each ṽi ,

γṽi
(y) = Ny

∞∑
ni=1

1

ni !e
−〈XOk

,u〉
∫ ∏

j∈Ci

〈XOk
, γ̄vj

〉K̄ni
(ṽi;dvCi

).

Now we show that γx,v satisfies equation (34). Let y ∈ D̃ � D. Then for some n,
D̃ � On. By the definition of γx,v and the Markov property,

Ny

(
Hv

x (X
D̃

)
)= Ny

(
PX

D̃
H̄x,v(XOn)

)
= Ny

(
H̄x,v(XOn)

)= γx,v(y)

as desired.
Replacing Ny with Pμ in the above argument we have that Hv

x is extended X-
harmonic for all v ∈ N c. It is also clear that Hv

x is X-harmonic for v = 0. Hence
the proof is complete. �

REMARKS. (i) Although Theorem 8 gives a workable form for Hv
x (μ), it does

not remove all ambiguity in the choice of Hv
x , since γx,v and Kx(v; ·) are only
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well defined for a.e. v. Ideally we would like to prove continuity properties of
these objects in v as well, that would then specify them uniquely. But we have not
succeeded in doing that. In subsequent sections we will, however, be able to clarify
the structure of these objects, and show how they determine the behavior of the
Hv

x -transformed super-Brownian motion. We do have regularity in y. In particular,
we will soon see that the version of γx,v(y) given by Theorem 8 is already lower
semi continuous in y.

(ii) Note that in Sections 3.1 and 3.2 without much difficulty we were able to
show that the corresponding extended X-harmonic functions are finite, therefore
X-harmonic. Finiteness is harder to prove for the extended X-harmonic functions
of this section because it requires analytical bounds on the Radon–Nikodym den-
sities of n-order moment measures of SBM for all n ≥ 1. We hope to pursue such
bounds in a subsequent paper.

(iii) An important case is when L(XD) = XD . The corresponding extended X-
harmonic function Hν

x can be thought as the analogue of the Martin kernel.
(iv) A more tractable application should be the case L(XD) = 〈XD,1〉, where

we condition on the total mass. In that case, γx,v(y) is a function of only finite-
dimensional variables v ∈ [0,∞) and y ∈ D. We hope to explore this example
further in a subsequent paper.

(v) An interesting direction is to explore the relationship between H
β,ν
x of Sec-

tion 3.1 and Hν
x . In particular, with β = n, what happens to Hn,νn as n → ∞, if

{νn}n≥1 is a sequence of finite atomic measures such that n−1νn converges to a
finite measure ν on the boundary? One can show that

P n,Yn
μ → P XD

μ

weakly almost surely, in a sense, and use this to investigate whether Hν
x is extreme.

We will pursue this direction in a subsequent paper.

4. Fragmentation system description of P ν
μ . The results of this section ap-

ply in general to the conditional law P v
μ given L(XD) = v. For simplicity, however,

we will carry out the computations for the case L(ν) = ν. So in this section V ∗ is
the set of positive finite measures on ∂D.

As in Section 3.3, we assume (27), that is, that D is regular. From Section 3.3,
recall that u(x) = − logPx(XD = 0) = VD(∞), and u is a solution of the boundary
value problem

1
2�u = 2u2

on D and u = ∞ on ∂D. We also have

u(x) = Nx(XD > 0) = lim
β→∞VDβ(x).(37)
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Let γx,ν and Hν
x be as constructed in Section 3.3. Let N ⊂ V ∗ be the Rx-null set

such that for ν ∈ N c, γx,ν and Hν
x satisfy the system of equations in (34) and (35),

Hν
x is extended X-harmonic and the kernels K̄x,n are strictly positive and satisfy

the decomposition property of Lemma 6. By Lemma 7 we may assume that if
ν ∈ N c, then K̄x,n(ν, dν1, . . . , dνn)-almost all (ν1, . . . , νn) are in (N c)n. We fix
ν ∈ N c. Let y be a point in D such that γx,ν(y) < ∞. Recall that γx,ν(y) > 0 by
construction. If y ∈ D′ � D, we may then define a change of measure by

N
ν
y(Z) = 1

γx,ν(y)
Ny

(
ZHν

x (XD′)
)

for positive F y

⊂D′-measurable Z. (F y

⊂D′ is defined as the σ -algebra generated by
{XO,y ∈ O ⊂ D′}.) Since Hν

x is extended X-harmonic, N
ν
y is defined consistently

on F y
⊂D−, and we have that N

ν
y is a probability law because of equation (34).

In the remainder of this section we turn to the problem of giving an explicit
probabilistic construction of N

ν
y in terms of a backbone along which unconditioned

mass is created. We do this in two steps. Let Hν
x,1(μ) = e−〈μ,u〉〈μ,γx,ν〉, and for

n ≥ 2 let

Hν
x,n(μ) =

∫
e−〈μ,u〉

n! K̄x,n(ν;dν1, . . . , dνn)〈μ,γx,ν1〉 · · · 〈μ,γx,νn〉.(38)

Then Hν
x = ∑n≥1 Hν

x,n. We will first use the recursive moment formula to es-
tablish an inductive relationship for Hν

x,n, and then compare this to the inductive
relationship coming from the first branch of the backbone.

We will make use of a stochastic process ξt under various measures �y or �4u
y .

In either case we use the shorthand

N D′
t (φ) = e− ∫ t

0 4Nξs (1−e
−〈X

D′ ,φ〉
) ds,

where D′ � D and let τD′ be the exit time of ξ from D′. We similarly let

N I,DI
t (φI ) = e− ∫ t∧τDI

0 4Nξs (1−e−〈XI ,φI 〉) ds,

where I = {D1, . . . ,Dk} is such that each Dj � D, φI = (φ1, . . . , φk), XI =
(XD1, . . . ,XDk

), so 〈XI ,φI 〉 =∑j 〈XDj
,φj 〉. Also write DI = D1 ∩ · · · ∩ Dk .

In the rest of the paper we will denote Kx,2(ν, dν′) by Kx(ν, dν′). Let I =
{D1, . . . ,Dk} where Di ⊂ Dk = D′ � D. Define a family of operators NI,ν,n

y as
follows:

For card(I ) = 1,

NI,ν,n
y (φ) =

⎧⎨
⎩

Ny

(
e−〈XD′ ,φ〉Hν

x,1(XD′)
)
, y ∈ D′,

γx,ν(y), y /∈ D′, n = 1,
0, y /∈ D′, n > 1.

(39)
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For card(I ) > 1,

NI,ν,n
y (φI ) =

{
Ny

(
e−〈XI ,φI 〉Hν

x,n(XDk
)
)
, y ∈ DI ,

NIj ,ν,n
y , y /∈ Dj, j �= k,

(40)

where Ij = I − {Dj }. Note that we have

NI,ν,n
y (φI )

= 1

n!
∫

nI
Cn

(
φ1, . . . , φk + u,γ ν1, . . . , γ νn

)
(y)

× K̄x,n(ν, dν1, . . . , dνn),

where Cn = {1, . . . , n}, and the nI
C are the operators defined by equations (8)

and (9).

LEMMA 9. Assume (27). Let φu
I = (φ1, . . . , φk−1, φk + u). For n = 1 and

y ∈ DI ,

NI,ν,1
y (φI ) = �y

(
N

I,ν,1
ξτDI

(φI )N I,DI
τDI

(
φu

I

))
.(41)

For n ≥ 2 and y ∈ DI ,

NI,ν,n
y (φI )

=
n−1∑
m=1

∫
�y

(∫ τDI

0
2N

I,ν′,m
ξt

(φI )N
I,ν−ν′,n−m
ξt

(φI )N I,DI
t

(
φu

I

)
dt

)
(42)

× Kx

(
ν, dν′)

+ �yN
I,ν,n
ξτDI

(φI )N I,DI
τDI

(
φu

I

)
.

PROOF. If n = 1, then Hν
x,1(μ) = e−〈μ,u〉〈μ,γx,ν〉 and the result is an immedi-

ate consequence of the basic Palm formula (5) [for card(I ) = 1] and the extended
Palm formula (11) [for card(I ) > 1].

If n ≥ 2, by the recursive moment formulas (6),

Ny

(
e−〈XI ,φI 〉Hν

x,n(XDk
)
)

= 1

n!
∫

Ny

(
e−〈XI ,φI 〉e−〈XDk

,u〉�i〈XDk
, γx,νi

〉)
×K̄x,n(ν;dν1, . . . , dνn−1)

= A + B,
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where

A = 1

2 · n!
∫ ∑

M⊂N
∅,N �=M

�y

(∫ τDI

0
4N I,DI

t

(
φu

I

)

× Nξt

(
e−〈XI ,φ

u
I 〉�i∈M〈XD′, γx,νi

〉)
× Nξt

(
e−〈XI ,φ

u
I 〉�i/∈M〈XD′, γx,νi

〉)dt

)

× K̄x,n(ν;dν1, . . . , dνn).

There are
(n
m

)
possible choices of M in the above expression, with cardinality m.

Therefore, by rearranging the indices, and using Lemma 6 with r = 2, we get

A =
n−1∑
m=1

∫
Kx

(
ν;dν′)

× �y

(∫ τDI

0
2N I,DI

t

(
φu

I

)

×
[

1

m!
∫

Nξt

(
e−〈XI ,φ

u
I 〉

m∏
i=1

〈XDk
, γx,νi

〉
)

× K̄x,m

(
ν′;dν1, . . . , dνm

)]

×
[

1

(n − m)!
∫

Nξt

(
e−〈XI ,φ

u
I 〉

n−m∏
i=1

〈XDk
, γx,νi

〉
)

× K̄x,n−m

(
ν − ν′;dν1, . . . , dνn−m

)]
dt

)
.

The term B is 0 for card(I ) = 1 and for card(I ) > 1 is found using the extended
moment formula (12) as

B = 1

n!
∫

�y

(
nI

Cn
(φ1, . . . , φk + u,γx,ν1, . . . , γx,νn, ξτDI

)N DI
τDI

(
φu

I

))
× K̄x,n(ν;dν1, . . . , dνn)

= �y

(
N

I,ν,n
ξτDI

(φI )N I,DI
τDI

(
φu

I

))
. �

Now set �x,ν = 2
∫

γx,ν′γx,ν−ν′Kx(ν;dν′).

THEOREM 10. Assume (27). The function γx,ν is L4u-superharmonic, and
hence lower-semi-continuous in y. For Rx-almost all ν ∈ N c it is in fact an L4u-
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potential, and satisfies

γx,ν = G4u
D

[
2
∫

γx,νγx,ν−ν′Kx

(
ν;dν′)].(43)

PROOF. Let Dk be a sequence of domains exhausting D. Since VDk
u = u, we

have that N Dk
t (u) = e− ∫ t

0 4u(ξs) ds for t < τDk
. Thus

γx,ν(y) = Ny

(
Hν

x (XDk
)
)= ∞∑

n=1

Ny

(
Hν

x,n(XDk
)
)

= Ny

(
Hν

x,1(XDk
)
)

+
∞∑

n=2

n−1∑
m=1

∫
Kx

(
ν;dν′)

× �y

(∫ τDk

0
2N Dk

t (u)Nξt

(
Hν′

x,m

)
Nξt

(
Hν−ν′

x,n−m

)
dt

)

= Ny

(
Hν

x,1(XDk
)
)+ ∞∑

m=1

∞∑
j=1

∫
Kx

(
ν;dν′)

× �4u
y

(∫ τDk

0
2Nξt

(
Hν′

x,m

)
Nξt

(
Hν−ν′

x,j

)
dt

)

= Ny

(
Hν

x,1(XDk
)
)+ 2

∫
�4u

y

(∫ τDk

0
γx,ν′(ξt )γx,ν−ν′(ξt ) dt

)
Kx

(
ν;dν′)

= Ny

(
Hν

x,1(XDk
)
)+ �4u

y

(∫ τDk

0
�ν(ξt ) dt

)
.

The first term is L4u-harmonic on Dk by Lemma 9, and the second term is an
L4u-potential, so γx,ν is L4u-superharmonic on each Dk . Thus it is so on D as
well.

Moreover,∫
Ny

(
Hν

x,1(XDk
)
)
Rx(dν) = Ny

(
e−〈XDk

,u〉
∫

〈XDk
, γx,ν〉Rx(dν)

)

= Ny

(
e−〈XDk

,u〉
∫ ∫

XDk
(dw)γx,ν(w)Rx(dν)

)

= Ny

(
e−〈XDk

,u〉
∫

XDk
(dw)Nw(XD �= 0)

)

= Ny

(
e−〈XDk

,u〉〈XDk
,u〉)

= eu(y)Py

(
e−〈XDk

,u〉〈XDk
,u〉),
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where the last equality follows from the recursive moment formula (7). As we
argued in the proof of Lemma 5, the stochastic boundary value of u is 0 or ∞ Py -
a.s.; therefore Py(e

−〈XDk
,u〉〈XDk

,u〉) converge to 0 as k → ∞ by the dominated
convergence theorem. Thus∫

Ny

(
Hν

1 (XDk
)
)
Rx(dν) → 0

as k → ∞. By Fatou’s lemma,

lim inf
k→∞ Ny

(
Hν

1 (XDk
)
)= 0(44)

for Rx-a.e. ν. But the second term in our expression for γx,ν(y) is monotone in k,
and therefore limk→∞ Ny(H

ν
1 (XDk

)) must exist and thus equal to 0 for Rx-a.e. ν

by (44). So, we get that γx,ν(y) = �4u
y (
∫ τDk

0 �x,ν(ξt ) dt) for Rx -a.e. ν, for every y.
Choosing a countable dense set y1, y2, . . . , we therefore have a set N0 ⊃ N

such that Rx(N c
0 ) = 0, and the above equality holds for every yi and for every ν ∈

(N0)
c. Since both functions are lower-semi-continuous, and agree on a countable

dense set, it follows that (43) holds for every ν ∈ (N0)
c. �

Suppose now that ν ∈ N c
0 where N0 is the Rx-null set described in Theo-

rem 10. Again we may assume that if ν ∈ N c
0 , then K̄x,n(ν, dν1, . . . , dνn)-almost

all (ν1, . . . , νn) are in (N c)n. Let N̂y be the excursion measure of a super-process
whose spatial motion is killed at rate u. In other words, for any D′ � D, we have

N̂y

(
F(XD′)

)= Ny

(
e−〈XD′ ,u〉F(XD′)

)
.

Let y ∈ D be such that γx,ν(y) < ∞. We define a probability Qν
y on an auxiliary

probability space �̃ where there is a branching diffusion on D, and conditional on
this branching diffusion, a Poisson random measure is generated on the infinite
product space M O D− . We endow M O D− with the σ -algebra F̃⊂D− generated by
the coordinate maps x̃D′ , D′ � D [i.e., x̃D′(ω) = ωD′ for ω ∈ M O D−]. Our goal
is to construct an M O D−-valued process X̃ = (X̃D′)D′�D on �̃ such that the law
of X̃ with respect to Qν

y will be the same as the N
ν
y law of the exit measures

(XD′)D′�D of a SBM. First we describe how the branching diffusion evolves: we
start a γx,ν -transform of a L4u process off at y. Since γx,ν is a potential, this
process dies before reaching ∂D. Say it dies at w. Then almost surely �x,ν(w)

is finite. Because

�
u,γx,ν
y (1�x,ν(ξζ )=∞) = 1

γx,ν(y)

∫ ∞
0

�u
y

(
1�x,ν(ξt )=∞�x,ν(ξt )1ζ>t

)
dt,

which must be equal to 0 since �u
y(1�x,ν(ξt )=∞�x,ν(ξt )1ζ>t ) is 0 or ∞ for any t ,

and the assumption γx,ν(y) = �u
y(�x,ν(ξt )1ζ>t ) < ∞ implies �u

y(1�x,ν(ξt )=∞ ×
�x,ν(ξt )1ζ>t ) = 0 for Lebesgue-almost all t , making the right-hand side of this
equation equal to 0. Note also �x,ν > 0 since ν ∈ N c

0 , and therefore Kx(ν, dν′)
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is a strictly positive measure. Now we can choose ν′ at random with distribution
density

2

�x,ν(w)
γx,ν′(w)γx,ν−ν′(w)Kx

(
ν;dν′).(45)

Almost surely, both ν′ and ν − ν′ are in N c
0 , and γx,ν(w) and γx,ν′(w) are

finite, so we may start two new processes at w, following γx,ν and γx,ν−ν′ trans-
forms of L4u. Note that we may repeat this process infinitely often. This defines
a branching particle system. Let ϒt denote the measure-valued process putting a
unit point mass at the historical paths of each particle alive at time t . (A historical
path of a given particle at time t is the path describing for any s < t the loca-
tion of the particle or whichever ancestor that is alive at time s.) We then create
mass uniformly along this set of particle paths, which then evolves according to
the law N̂(·). Loosely speaking, we want to generate a Poisson random measure
with intensity ∫ ∞

0
4ϒt(dz)N̂zt (X ∈ ·) dt

and add up the resulting measure-valued processes to form X̃. But we must be
careful to represent X̃D′ using only the portions of ϒ corresponding to particles
whose historical paths have never left D′. To formulate this, for each t and histor-
ical path z, we define the following map Xt,z :� �→ M OD−

Xt,z(ω)D′ =
{

XD′(ω), if τD′(z) > t ,
0, otherwise.

Now we generate a Poisson random measure on M OD− with intensity

λ(A) =
∫ ∞

0
4ϒt(dz)N̂zt

((
Xt,z)−1

(A)
)
dt,

which is now well defined for any A ∈ F̃⊂D−, since (Xt,z)−1(A) is F z(t)
⊂D− mea-

surable. (Recall, for any c ∈ E, F c⊂D− is defined as the σ -algebra generated by
{XD′,D′ ∈ O, c ∈ D′}, which is the domain where the measure Nc is defined.)
Adding up the resulting measure-valued processes gives us X̃ = (X̃D′)D′∈OD− .

More precisely, the n-dimensional transition operators for X̃ with respect to Qν
y

is given by the formula

QI,ν
y (φI ) := Qν

y

(
e−〈X̃I ,φI 〉)= Qν

y

(
e− ∫∞

0 4〈ϒt ,N̂·(1−e
−〈Xt,z

I
,φI 〉

)〉dt ),
where I = {D1, . . . ,Dk} ⊂ O, and y ∈ D.

Note that for y /∈ DI , QI,ν
y (φI ) = Q

Ij ,ν
y (φIj

) for some j such that y /∈ Dj (since

all paths in the backbone start from y, Xt,z
Dj

= 0, ϒt almost all z for all t , Qy -almost
surely).
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The main result of this section is:

THEOREM 11. Assume (27), that ν ∈ N c
0 and that γx,ν(y) < ∞. Then N

ν
y-law

of (XD′)y∈D′�D is the same as the Qν
y -law of (X̃D′)y∈D′�D .

PROOF. Let y ∈ U1 � U2 � · · · � Ui · · · s.t. D = ⋃∞
i=1 Ui . It will suffice to

show that QI,ν
y (φI ) = NI,ν

y (φI ) for I = {D1, . . . ,Dk} where Dj ⊂ Dk = Ui for a
fixed i.

Let D′ = Ui . Define ϒD′
(dz̃) as the random measure on D′-valued paths de-

fined by ϒD′
(dz̃) = limt→∞

∫
ϒt(dz)1{zτ

D′ ∈dz̃} where zτD is the path z stopped at

τD′(z). We will write ϒD′ ∼ n if the support of ϒD′
consists of exactly n paths

(i.e., exactly n particles of ϒ exit D′). Let

QI,ν,n
y (φI ) := Qν

y

(
e−〈X̃I ,φI 〉,ϒD′ ∼ n

)
.

We will show by induction on n and card(I ) that

NI,ν,n
y (φI ) = γx,ν(y)QI,ν,n

y (φI )(46)

for all y ∈ DI . The theorem then follows by summing on n.
First observe that, for card(I ) = 1,

γx,ν(y)QI,ν,n
y (φ) =

{
γx,ν(y), y /∈ D′, n = 1,
0, y /∈ D′, n > 1,

(47)

and for card(I ) > 1,

γx,ν(y)QI,ν,n
y (φI ) = γx,ν(y)QIj ,ν,n

y , y /∈ Dj, j �= k.(48)

Comparing these equations to equations (39) and (40), we see that equation (46)
holds on ∂D′.

Let (ξt )t≥0 be an L-diffusion under the law �y . �4u
y and �

4u,γx,ν
y will denote

the laws under which ξ is, respectively, an L4u diffusion, and γx,ν-transform of an
L4u diffusion. In what follows ξ will represent the first particle of the branching
backbone which is by construction following a γx,ν-transform of an L4u-diffusion.
We let ζ be the lifetime of ξ . Note first that

e− ∫ t∧τDI
0 4u(ξs) dse− ∫ t∧τDI

0 4N̂ξs (1−e−〈XI ,φI 〉)

= exp
(
−4
∫ t∧τDI

0

[
u(ξs) + Nξs

(
e−〈XD′ ,u〉 − e−〈XI ,φ

u
I 〉)]ds

)

= exp−4
∫ t∧τDI

0

[
u(ξs) − Nξs

(
1 − e−〈XD′ ,u〉)+ Nξs

(
1 − e−〈XI ,φ

u
I 〉)]ds

= N I,DI
t

(
φu

I

)
.



3652 T. S. SALISBURY AND A. D. SEZER

If n = 1, then

γx,ν(y)QI,ν,n
y (φI )

= γx,ν(y)�
4u,γx,ν
y

(
e− ∫ τDI

0 4N̂ξs (1−e−〈XI ,φI 〉) dsQ
I,ν,1
ξτDI

(φI )1τDI
<ζ

)

= �4u
y

(
γν(ξτDI

)e− ∫ τDI
0 4N̂ξs (1−e−〈XI ,φI 〉) dsQ

I,ν,1
ξτDI

(φI )
)

(49)

= �y

(
γν(ξτDI

)e− ∫ τDI
0 4u(ξs) dse− ∫ τDI

0 4N̂ξs (1−e−〈XI ,φI 〉) dsQ
I,ν,1
ξτDI

(φI )
)

= �y

(
γν(ξτDI

)Q
I,ν,1
ξτDI

(φI )N I,DI
τD′

(
φu

I

))
.

The first equation is true, because of the strong Markov property of ϒt at the first
exit time of DI of its first branch ξ . The second and third equations follow, respec-
tively, from the definition of γx,ν -transform, and L4u diffusion. If card(I ) = 1,
equations (49) and (41) and the fact that NI,ν,1

y (φI ) = γx,ν(y)QI,ν,1
y (φI ) on the

boundary of DI = D′ implies that

NI,ν,1
y (φI ) = γx,ν(y)QI,ν,1

y (φI )

holds for y ∈ D̄I . If we assume NI,ν,1
y (φI ) = γx,ν(y)QI,ν,1

y (φI ) holds for y ∈ D̄I

when card(I ) = k − 1, then equations (48) and (40) and (49) and (41) imply that
NI,ν,1

y (φI ) = γx,ν(y)QI,ν,1
y (φI ) for y ∈ D̄I when card(I ) = k as well.

If n ≥ 2, then

γx,ν(y)Qν
y

(
e−〈XI ,φI 〉,ϒD′ ∼ n

)= A + B,

where

A = γx,ν(y)Qν
y

(
e−〈XI ,φI 〉,ϒD′ ∼ n, the first branch of ϒ dies inside DI

)
,

B = γx,ν(y)Qν
y

(
e−〈XI ,φI 〉,ϒD′ ∼ n, the first branch of ϒ exits DI

)
.

We compute A as follows:

A = γx,ν(y)

× �
4u,γx,ν
y

(
1ζ<τDI

e− ∫ ζ
0 4N̂ξs (1−e−〈XI ,φI 〉) ds

×
n∑

m=1

∫ 2γx,ν′(ξζ )γx,ν−ν′(ξζ )

�x,ν(ξζ )
Qν′

ξζ

(
e−〈X̃I ,φI 〉,ϒD′ ∼ m

)

× Qν−ν′
ξζ

(
e−〈X̃I ,φI 〉,ϒD′ ∼ n − m

)
Kx

(
ν;dν′))(50)
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= �4u
y

(∫ τDI

0
dt �x,ν(ξt )1t<ζ e

− ∫ t
0 4N̂ξs (1−e−〈X̃I ,φI 〉) ds

×
n∑

m=1

∫
Kx

(
ν;dν′)2γx,ν′(ξt )γx,ν−ν′(ξt )

�x,ν(ξt )

× Qν′
ξt

(
e−〈X̃I ,φI 〉,ϒD′ ∼ m

)
Qν−ν′

ξt

(
e−〈X̃I ,φI 〉,ϒD′ ∼ n − m

))

= �y

(∫ τDI

0
dt e− ∫ t

0 4u(ξs) dse− ∫ t
0 4N̂ξs (1−e−〈XI ,φI 〉) ds

×
n∑

m=1

∫
Kx

(
ν;dν′)2γx,ν′(ξt )γx,ν−ν′(ξt )

× Qν′
ξt

(
e−〈X̃I ,φI 〉,ϒD′ ∼ m

)
Qν−ν′

ξt

(
e−〈X̃I ,φI 〉,ϒD′ ∼ n − m

))

=
n∑

m=1

∫
�y

(∫ τD′

0
2N I,DI

t

(
φu

I

) · γx,ν′(ξt )Q
ν′
ξt

(
e−〈X̃I ,φI 〉,ϒD′ ∼ m

)

× γx,ν−ν′(ξt )Q
ν−ν′
ξt

(
e−〈X̃I ,φI 〉,ϒD′ ∼ n − m

)
dt

)

× Kx

(
ν;dν′).

The first equation is true, because at the lifetime ζ of the first particle ϒ

branches into two new branching diffusions with joint conditional law Qν−ν′
ξζ

×
Qν−ν′

ξζ
given (ξζ )t≤ζ , and ν1 whose conditional distribution given (ξζ )t≤ζ has den-

sity equal to (45). The second equation follows from a well-known fact on h-
transforms when h is a potential; see, for example, Salisbury and Verzani (1999),
formula 2.2. The third equation follows from the definition of a killed diffusion.

We compute B as follows:

B = γx,ν(y)�
4u,γx,ν
y

(
1ζ>τDI

e− ∫ τDI
0 4N̂ξs (1−e−〈XI ,φI 〉) dsQ

I,ν,n
ξτDI

(φI )
)

= �4u
y

(
γx,ν(ξτDI

)1ζ>τDI
e− ∫ τDI

0 4N̂ξs (1−e−〈XI ,φI 〉) dsQ
I,ν,n
ξτDI

(φI )
)

(51)

= �y

(
e− ∫ τDI

0 4u(ξs) dsγx,ν(ξτDI
)e− ∫ τDI

0 4N̂ξs (1−e−〈XI ,φI 〉) dsQ
I,ν,n
ξτDI

(φI )
)

= �y

(
γν(ξτDI

)Q
I,ν,1
ξτDI

(φI )N I,DI
τDI

(
φu

I

))
by first applying the strong Markov property of ϒ at the first exit of DI of its first
branch, and then again using the definition of γx,ν transform and killed diffusion.
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We have shown previously that for all I , NI,ν,1
y (φI ) = γx,ν(y)QI,ν,1

y (φI ),
y ∈ D̄I . Let us assume for all I , NI,ν,m

y (φI ) = γx,ν(y)QI,ν,m
y (φI ), y ∈ D̄I , for

all m ≤ n− 1. If card(I ) = 1, comparing equations (50) and (51) with (42) and us-
ing the fact that NI,ν,n

y (φI ) = γx,ν(y)QI,ν,n
y (φI ) on the boundary of DI = D′, we

get that NI,ν,n
y (φI ) = γx,ν(y)QI,ν,n

y (φI ) for all y ∈ D̄I . If now in addition we as-
sume NI,ν,n

y (φI ) = γx,ν(y)QI,ν,n
y (φI ) holds for y ∈ D̄I when card(I ) = k −1, our

induction hypothesis and equations (48), (40) combined with equations (50), (51)
and (42) imply that NI,ν,1

y (φI ) = γx,ν(y)QI,ν,1
y (φI ) for y ∈ D̄I when card(I ) = k

as well. Hence equation (46) holds for all I and y ∈ D̄I , and therefore the proof is
complete. �

Above we described the conditional law N
ν
y . Now we move to an arbitrary ini-

tial measure μ ∈ Mc
D such that Hν

x (μ) < ∞, and so need to handle multiple lines
of descent starting from time 0. In other words, we are going to describe the dis-
tribution of (XD′)μ∈MD′ ,D′�D , P ν

μ . Let P̃ ν
μ be a probability defined on an axillary

probability space �̃ under which a random cluster of points (xi, νi)
n
i=1 in D × V ∗

is generated according to a distribution proportional to

1

n!K̄x,n(ν;dν1, . . . , dνn)γx,ν1(x1) · · ·γx,νn(xn)μ(dx1) · · ·μ(dxn).(52)

Note that this makes sense since
∞∑

n=1

1

n!
∫
x1,...,xn

μ(dx1) · · ·μ(dxn)

×
∫
ν1,...,νn

K̄x,n(ν;dν1, . . . , dνn)γx,ν1(x1) · · ·γx,νn(xn)

= Hν
x (μ) < ∞.

Once the random cluster is generated, corresponding to each point (yi, νi) in the
cluster, a measure valued process Xi begins to evolve following a Q

νi
yi law in-

dependent of everything else. This is consistent with our construction of the law
Q

νi
yi since almost surely, each (yi, νi) will satisfy γx,νi

(yi) < ∞ and νi ∈ N c
0 . In

addition, independent from all this, another measure valued process X̃0 evolves
following SBM law with spatial motion killed at rate u and initial measure μ. Let
X̃ =∑n

i=1 X̃i + X0.

THEOREM 12. Assume (27). Let Hν
x (μ) < ∞. Then P ν

μ-law of

(XD′)μ∈MD′ ,D′�D

is the same as P̃ ν
μ-law of (X̃D′)μ∈MD′ ,D′�D .
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PROOF. Let P I,ν
μ and P̃ I,ν

μ denote the transition operators of X and X̃. That
is,

P I,ν
μ (φI ) = Pμ

(
e−〈XI ,φI 〉),

where I = (D1, . . . ,Dk), XI = (XD1, . . . ,XDk
) and φI = (φ1, . . . , φk). P̃ I,ν

μ (φI )

is defined similarly.
Let μ be compactly supported in U1 � U2 � · · · � Ui · · · s.t. D =⋃∞

i=1 Ui . It
will suffice to show that P I,ν

μ (φI ) = P̃ I,ν
μ (φI ) for I = {D1, . . . ,Dk} where Dj ∈

Dk = Ui for a fixed i.
Recall P I,ν

μ = Hν(μ)−1Pμ(e−〈XI ,φI 〉Hν(XDk
)). Note

Pμ

(
e−〈XI ,φI 〉Hν(XD′)

)
= Pμ

(
e−〈XI ,φI 〉

∞∑
n=1

∫
e−〈XDk

,u〉

n! 〈XDk
, γx,ν1〉 · · · 〈XDk

, γx,νn〉
)

× K̄x,n(ν;dν1, . . . , dνn)

=
∞∑

n=1

1

n!
∫

Pμ

(
e−〈XDk

,φu
I 〉〈XDk

, γx,ν1〉 · · · 〈XDk
, γx,νn〉

)

× K̄x,n(ν;dν1, . . . , dνn).

Using the extended moment formula with

lI,u(x) = 4Nx

(
1 − exp−(〈XD1, φ1〉 + · · · + 〈XDk

,φk + u〉)),
we rewrite the right-hand side as

=
∞∑

n=1

1

n!
∫

e−〈μ,lI,u〉 ∑
π(n)

r∏
i=1

〈
μ,N(·)

(
e−〈XI ,φ

u
I 〉 ∏

j∈Ci

〈XDk
, γx,νj

〉
)〉

×K̄x,n(ν;dν1, . . . , dνn).

By Lemma 6 we expand the above expression as

= e−〈μ,lI,u〉
∞∑

n=1

1

n!
∑
π(n)

∫
K̄x,r (ν;dν1, . . . , dνr)

×
r∏

i=1

〈
μ,N(·)

(
e−〈XI ,φ

u
I 〉
[∫ ∏

j∈Ci

〈XDk
, γx,νCi

〉K̄x,ni
(ν̃i;dνCi

)

])〉

= e−〈μ,lI,u〉
∞∑

n=1

1

n!
n∑

r=1

∫
K̄x,r (ν;dν1, . . . , dνr)

∑
n1,...,nr

n!
n1! · · ·nr !r!

×
r∏

i=1

〈
μ,N(·)

(
e−〈XD′ ,u+φ〉

[∫ ∏
j∈Ci

〈XD′, γx,νj
〉K̄x,ni

(ν̃i;dνCi
)

])〉
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= e−〈μ,lI,u〉
∞∑

r=1

1

r!
∫

K̄x,r (ν;dν1, . . . , dνr)

r∏
i=1

∞∑
ni=1

1

ni !
〈
μ,γx,ν̃i

N
ν̃i

(·)
(
e−〈XI ,φI 〉)〉

= e−〈μ,lI,u〉
∞∑

r=1

1

r!
∫

K̄x,r (ν;dν1, . . . , dνr)

r∏
i=1

〈
μ,γx,ν̃i

Q
ν̃i

(·)
(
e−〈XI ,φI 〉)〉.

Note that e−〈μ,lI,u〉 is the transition operator of a SBM whose spatial motion
killed at rate u, and the rest of the expression is the transition operator of �n

i=1X̃i ,

where each X̃i evolves according to Q
ν̃i
yi , where the random cluster of points

(yi, νi)
n
i=1 is selected according to the density (52). Hence the proof is complete.

�

Note that the extended X-harmonic functions Hν
x were defined by Dynkin in

Dynkin (2006b), and we have followed this approach throughout. The results of
this section should be viewed as an attempt to clarify the structure of these ex-
tended X-harmonic functions, as well as the structure of the conditioned superpro-
cesses that are obtained from them.

Acknowledgments. The authors thank the referees for a very thorough read-
ing, with many helpful comments.
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