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SIMPLE RANDOM WALK ON LONG-RANGE PERCOLATION
CLUSTERS II: SCALING LIMITS

BY NICHOLAS CRAWFORD1 AND ALLAN SLY2

Technion and University of California, Berkeley

We study limit laws for simple random walks on supercritical long-range
percolation clusters on Z

d , d ≥ 1. For the long range percolation model, the
probability that two vertices x, y are connected behaves asymptotically as
‖x − y‖−s

2 . When s ∈ (d, d + 1), we prove that the scaling limit of simple
random walk on the infinite component converges to an α-stable Lévy pro-
cess with α = s − d establishing a conjecture of Berger and Biskup [Probab.
Theory Related Fields 137 (2007) 83–120]. The convergence holds in both
the quenched and annealed senses. In the case where d = 1 and s > 2 we
show that the simple random walk converges to a Brownian motion. The
proof combines heat kernel bounds from our companion paper [Crawford
and Sly Probab. Theory Related Fields 154 (2012) 753–786], ergodic theory
estimates and an involved coupling constructed through the exploration of a
large number of walks on the cluster.

1. Introduction. The study of stochastic processes in random media has been
a focal point of mathematical physics and probability for the past thirty years. One
such research problem regards the study of random walk in random environment
(RWRE) in its many forms. This subject includes tagged particles in interacting
particle systems [17], the study of ∇φ-fields through the Helffer–Sjöstrand repre-
sentation [16, 27] and random conductance models.

In this paper we continue the study of simple random walks (SRW) on perco-
lation clusters on the ambient space Z

d . By now, many properties of the nearest
neighbor percolation model are understood in the supercritical case. We mention in
this context the important work of Kipnis and Varadhan [18], who introduced “the
environment viewed from the particle” point of view to derive annealed functional
central limit theorems. This work was strengthened in De Masi et al. [12] where it
was applied to SRW on nearest neighbor percolation clusters under the annealed
law for the walk. Sidoravicious–Sznitman [26] proved an invariance principle for
SRW on supercritical percolation clusters for Z

d, d ≥ 4. Mathieu and Rémy [21]
and Barlow [3] proved quenched heat kernel bounds on supercritical percolation

Received January 2010; revised April 2012.
1Supported in part at the Technion by a Landau fellowship.
2Supported in part by an Alfred Sloan Fellowship in Mathematics.
MSC2010 subject classifications. Primary 60G50; secondary 60G52, 82B41.
Key words and phrases. Random walk in random environment, long rang percolation, stable pro-

cess.

445

http://www.imstat.org/aop/
http://dx.doi.org/10.1214/12-AOP774
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


446 N. CRAWFORD AND A. SLY

clusters. Early estimates in this direction were obtained by Heicklen and Hoff-
man [15]. Finally Mathieu and Pianitskii [20] and Berger and Biskup [7] extended
[26] to all d ≥ 2.

We consider a variant of these latter results—scaling limits for SRW on super-
critical long-range percolation clusters on Z

d (LRP). LRP was first considered by
Schulman in [25] and Zhang et al. [29]. It is a random graph process on Z

d where,
independently for each pair of vertices x, y ∈ Z

d , we attach an edge 〈x, y〉 with
probability px,y . We shall assume an isotropic translation invariant model for the
connection probabilities setting px,y = P(‖x − y‖2) where

P(r) ∼ Cr−s(1)

for some C ∈ R
+ and large r where xn ∼ yn denotes lim xn

yn
→ 1.

Early work on LRP concentrated on characterizing when the process, whose
probability space we denote by (�, B,μ), admits an infinite connected cluster in
dimension d = 1. There are a number of transitions for the behavior of this event as
a function of s (and in the critical case s = 2, the prefactor β , denoted by C here).
The first results were obtained by Schulman [25]: for s > 2 there is no infinite
component unless P(r) = 1 for some r ∈ N. Later Newman and Schulman [23]
proved that if s < 2, then if one begins with a percolation measure μ which does
not admit an infinite component a.s., one can adjust (nontrivially) P(1) to produce
an infinite component. They also demonstrated that this same result holds in the
case s = 2 and C sufficiently large. Finally, in a striking paper [2], Aizenman and
Newman address the case s = 2, showing that the behavior (in the above sense)
depends on the precise value of the constant C in (1) (C = 1 is critical).

More recently, the long-range model gained interest in the context of “small
world phenomena;” see works such as [22, 28] and [8] for discussions. Ben-
jamini and Berger [4] initiated a quantitative study of these models, focusing on
the asymptotics of the diameter on the discrete cycle Z/NZ. Their motivation re-
garded connections to modeling the topology of the internet; see also [19] for a
different perspective. Further analysis was done in [10].

The study of random walks on LRP clusters was begun in [6], which addresses
recurrence and transience properties of SRW on the infinite component of super-
critical LRP in the general setting where nearest neighbor connections do not exist
with probability 1. In principle, this paper makes use of the transience results estab-
lished therein. Note, however, that our heat kernel bound Theorem 9.1 (Theorem 1
of [11]) may be used alternately to establish this fact. Benjamini, Berger and Yadin
[5] study the spectral gap τ of SRW on Z/NZ, providing bounds of the form

cNs−1 ≤ τ ≤ CNs−1 logδ N;
in that case that nearest neighbor connections exist with probability 1.

As was just alluded to, in a companion paper to the present paper [11], we derive
quenched upper bounds for the heat kernel of continuous time SRW on the infinite
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component of supercritical LRP clusters on Z
d when s ∈ (d, (d + 2) ∧ 2d). These

estimates are crucial in establishing the quenched limit law of SRW, the main result
of this paper. The companion paper also yields a number of results on the geometry
of LRP in finite boxes which we make use of here; see Section 9 for details.

The scaling exponent of the connection probabilities determines the limiting
behavior of the walk. Smaller values of s produce more long edges, and these
edges determine the macroscopic behavior of the walk suggesting a non-Gaussian
stable law as the limiting process. To this end, we let �α(t) denote d-dimensional
isotropic α-stable Lévy motion (formally defined in Section 2). We will assume
that the percolation process admits an infinite component μ-a.s. and let �0 denote
the set of environments where the origin is in the infinite component with μ0 the
conditional measure on �0. We now state our main result, a quenched limit law for
simple random walk on long-range percolation clusters which affirms a conjecture
of Berger and Biskup [7] in the case s ∈ (d, d + 1).

THEOREM 1.1. Let d ≥ 1 and s ∈ (d, d + 1). Let Xn be the simple random
walk on ω ∈ �0, and let

Xn(t) = n−1/(s−d)X�nt.

Then for μ0-a.s. every environment ω and 1 ≤ q < ∞ the law of (Xn(t),0 ≤ t ≤ 1)

on Lq([0,1]) converges weakly to the law of an isotropic α-stable Lévy motion
with α = s − d .

Some remarks are in order. First, when α ∈ (1,2) and d ≥ 2, much of the ma-
chinery we develop applies. However, in that case one has to rely on cancellations
between small jumps of the walk to arrive at the limiting stable law. In this pa-
per we do not prove that the latter cancellations occur. With an eye toward future
work, we formulate a precise condition (3) regarding these cancellations and in
Proposition 3.1 prove the analog of Theorem 1.1 on the basis of (3).

Second, while the natural topology of convergence to a non-Gaussian stable
law is the Skorohod topology, we note that convergence in that sense does not
hold. There exist times at which the walk crosses a particular long edge of the
graph an even number of times on a small time scale. These events do not appear
in the limit law, but do preclude convergence in the Skorohod sense. We thus adopt
the Lq topology as it does not see these spurious discontinuities; see Section 3 for
more details.

Our proof proceeds by revealing the randomness of the environment as the walk
explores the cluster of the origin, occasionally encountering macroscopic edges
which constitute the main contribution in the limit. To make this approach rigor-
ous we require the precise heat kernel upper bounds and structural picture estab-
lished in our companion paper [11] together with ergodic theory estimates which
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guarantee that new vertices are encountered at a constant rate over time. By com-
bining these estimates with a highly involved coupling, and performing this con-
struction simultaneously for a large number of independent walks, we establish the
quenched convergence.

In the case d = 1 we establish a sharp transition in the scaling limit at s = 2. In
the case s > 2 there is no infinite component unless P(r) = 1 for some r ∈ N [25];
hence we make the assumption that nearest neighbor edges are included with prob-
ability 1. We prove the quenched law converges weakly to the law of Brownian
motion in the space C([0,1]) under the uniform norm.

THEOREM 1.2. Let d = 1 and s > 2 be fixed. Assume that (1) and P(1) = 1
hold, and let ω ∈ �. Let Xn be the simple random walk on ω ∈ �0, and let

Xn(t) = 1√
n

(
X�nt + (tn − �tn)(X�nt+1 − X�nt)

)
.

Then for μ-a.s. environments ω the law of (Xn(t),0 ≤ t ≤ 1) in C([0,1]) con-
verges weakly to (KB(t),0 ≤ t ≤ 1) where B(t) is standard Brownian motion,
and K is a constant depending on the connection probabilities.

The rest of the paper is divided as follows. In Section 2 we introduce the basic
notation used for the remainder of the paper and describe the “environment explo-
ration” process which is at the core of the proof. The result relies on a technical
coupling construction defined in Section 5. This is the heart of our proof and is
described in the proof overview in Section 3. Section 4 lists certain a priori bounds
needed to show the coupling works with high probability. Sections 6 and 7 detail
how the coupling can be used to derive Theorem 1.1. Sections 8 and 9 are devoted
to justifying various technical lemmas of Sections 4, 5, 6 and 7. In particular, to
guarantee that our coupling works with high probability, we need to rule out var-
ious rare events and establish ergodic theorems for the walks. Finally we prove
Theorem 1.2 in Section 10.

2. Notations, basic objects. In this section, we describe the notation used in
our proofs. We denote by � = {0,1}E the sample space of environments for LRP
on Z

d where E is the edge set of unordered pairs in Z
d . Let μ denote the product

measure on � determined by connection probabilities pxy satisfying equation (1).
We assume the pxy are percolating, that is, μ admits an infinite component. It was
proved in [1] that in this case the infinite component is unique, and we denote this
component by C∞(ω). We let �0 denote the subset of environments where the
origin is in the infinite component and let μ0 be the induced measure of �0,

μ0(·) = μ
(·|0 ∈ C∞(ω)

)
.

Throughout we assume that s ∈ (d,∞) with d ≥ 1 which ensures finite degrees
almost surely: letting dω(x) denote the degree of x in ω, when s ∈ (d,∞),
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Eμ[dω(0)] < ∞, and it follows that μ-a.s., for all x ∈ Z
d , dω(x) < ∞. Let us use

the notation BL(v) = {x ∈ Z
d :‖x − v‖∞ ≤ L} and henceforth α = s − d . Here,

we are using the standard notation ‖ · ‖p for the 
p norm on R
d .

The simple random walk on ω is the walk which moves to the uniformly
chosen neighbor of the current location at each step [have transition kernel
P ω(x, y) = δ(1−ω〈x,y〉)

dω(x)
]. We let (Xi)i∈N denote the random walk trajectory gen-

erated by P ω(x, y) with X0 = 0. For 
 ∈ N, we let (X

i )i,
∈N denote independent

copies of the walk on the same environment ω. Studying the joint annealed law
over many 
 plays a crucial role in our proof of the quenched law.

It will at times be convenient to work under the “degree-biased” measure ν on
environments �, given by

ν(A) = Eμ

[
1{A}dω(0)

]
/Eμ

[
dω(0)

]
and ν0, given by

ν0(A) = ν
(
A|0 ∈ C∞(ω)

)
.

These measures are important since the process on environments described below
is stationary relative to them. Generically we use the notation P to denote the un-
derlying probability distribution, and E, the corresponding expectation. The actual
meaning of this notation should be clear from context. There is one exception to
this rule: the joint law of (ω, (X
)
) depends on the distribution on environments,
of which we have the four choices μ,μ0, ν, ν0. To emphasize which choice is em-
ployed, we use subscripts. Thus we have Pμ0 , Eν , etc. By definition, omission of
the subscript indicates that we are using the measure μ. In Lemma 9.4 we establish
bounds relating these measures.

Let us now describe the limiting processes. For α ∈ (0,2) we recall that an
isotropic α-stable Lévy motion �(t) : t ∈ R

+ is (up to a single parameter) the
unique cádlág stochastic process with state space R

d having stationary indepen-

dent increments and the self-similarity property �at
d= a1/α�t .

These are non-Gaussian processes whose marginal distributions have power law
tails with index α. If Y is a Z

d valued random vector such that P(Y = y) ∼ ‖y‖−s
2

for s = α + d , then Y is in the domain of attraction of an isotropic α-stable law.
For convenience we will normalize �α(t) so that it is the limit law of associated
with random vectors Y with P(Y = y) ∼ P(‖y‖2). We refer the reader to [24] for
more information.

2.1. Environment exploration process. In Section 5, for each k ∈ N we pro-
vide a coupling construction between (ω, (X


i )
∈k3,i∈[2k]) and an i.i.d. family of
variables which represent increments of a family of discrete processes converging
to i.i.d. copies α-stable Lévy motions. For this purpose it is important to have an
alternate description of the law of (ω, (X


i )
∈k3,i∈[2k]) under Pμ.
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The description we use is a version of an environment exploration process in
which the family of walks reveals the edges of the long-range percolation cluster
as it encounters new vertices. We emphasize that the reader should be aware that
the standard definition of the environment exploration process is not the one we
use and rather we reveal extra local edges of the process for the purpose of our
coupling.

For each k, we let

ρ = ρk =
{

k−200/(1−α)2k/α, α ∈ (0,1),
λ2k/α, α ∈ [1,2),

with λ a small constant to be taken to 0. The quantity ρ represents the minimum
for the macroscopic length scale. When α ∈ (0,1), the contribution to the total
variation of Xi from jumps of size less than ρ is negligible under the rescaling by
2k/α as k → ∞; see Lemma 9.11. When α ∈ [1,2) this is no longer true and as a
consequence, we do not give a full proof of the analog to Theorem 1.1. However,
we prepare the ground for future work by giving a proof of result under the as-
sumption that the small edges contribution is negligible; see Proposition 3.1. Fix
δ ∈ (0,1) (further restrictions will be placed on δ below). For a vertex x ∈ Z

d let
Vx denote the set {y ∈ Z

d :‖x − y‖∞ ≤ 2δk}. For 0 ≤ i ≤ 2k and 1 ≤ 
 ≤ k3 define
the σ -algebras Fi,
 inductively as follows:

• Let F0,1 be the σ -algebra generated by {ω0,x :x ∈ Z} and {ωx,y :x, y ∈ V0}.
• For 1 ≤ i ≤ 2k ,

Fi,
 = Fi−1,
 ∨ σ
{{

Xt
i

}∪ {ωX

i ,y

:y ∈ Z
d}∪ {ωx,y :x, y ∈ VX


i
}

∪ {ωx,y : z ∈ Z
d, x, y ∈ Vz,ωX


i ,z
= 1,

∥∥X

i − z

∥∥∞ > ρ
}

∪ {ωy,z :y, z ∈ Z
d,ωX


i ,z
= 1,

∥∥X

i − z

∥∥∞ > ρ
}}

.

• F0,
 = F2k,
−1 for 
 ≥ 2.

This σ -algebra encodes the edges revealed by the process by the first 
 − 1 walks
and after the 
th walk reaches the ith step. It includes short edges in the surround-
ing neighborhood of the walk which are used by the process to determine the
coupling. Denote

F −
i,
 = Fi−1,
 ∨ σ

{{
ωX


i ,y
: |y| ≤ ρ

}∪ {ωX

i ,y

:y ∈ Z
d}∪ {ωx,y :x, y ∈ VX


i
}},

that is, ignoring new edges of length greater than ρ. Let Wi,
 denote the set of
vertices visited by the first 
 − 1 walks up to time 2k plus the vertices visited by
walk 
 up to time i. Let

W +
i,
 = Wi,
 ∪ {x ∈ Z

d :y ∈ Wi,
,ωx,y = 1,‖x − y‖∞ > ρ
}
.
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3. Outline of the proof. Before giving technical details we would like to dis-
cuss the important ideas and difficulties of our approach. The main theorem can
be separated into two issues: identification of the limit law for Xi under Pμ0 and
proof that this limit law coincides with the limit law for Xi under the quenched
measure P ω for almost every ω ∈ �0.

We use a coupling constructed under the measure Pμ so that edges in ω are
independent. As a consequence we need to relate results in Pμ to those Pμ0 . Note
that this particular difficulty disappears if we make the a priori assumption that
P(1) = 1. This simplifying assumption will be used in this discussion, although
the general case is given in the actual proof.

The power law scaling of the connections probabilities gives the probability of
a long edge according to

Pμ

(∃y ∈ Z
d :‖y‖∞ > R,ω〈0,y〉=1

)∼ R−α.

By passing to the degree-biased measure Pν , it follows that

Eν

[
T∑

i=1

1
{∃y ∈ Z

d :‖y‖∞ > R,ω〈Xi,y〉=1
}]

� T R−α,

and the asymptotic holds for Pμ as well. Further, the a priori knowledge that the
process is transient, ergodic theory and reversibility imply that this gives the cor-
rect order of magnitude. In other words, the largest edges encountered by Xi in
time T are O(T 1/α). This calculation allows us to determine the right length
scales: we expect to see a nontrivial limiting process under the scaling

Xn(t) = n−1/αX�nt.

Our proof will examine time scales of length n = 2k for k ∈ Z
d which is sufficient

due to the self-similarity of the limit law.
We make a key use of the assumption that s ∈ (d, d + 1) as follows. For any n,

let ρ = ρ(n) = n(1−ε)/α . We separate the increments of the walk, (Xi − Xi−1)i≤n,
according to ρ. In Lemma 9.11, we show that

n−1/α
n∑

i=1

‖Xi − Xi−1‖∞1
{‖Xi − Xi−1‖∞ ≤ ρ

}→ 0(2)

in probability under Pμ (giving rates of convergence in the proof). Thus, if we
characterize the behavior of Xi as it encounters edges greater than ρ, then the
annealed limit law will follow.

When α ≥ 1 equation (2) does not hold. In effect, we ask too much by taking
the absolute values of the increments as there is much cancelation between the
small edges. The issue is an exact analog to those which arise in the construction
of α-stable Lévy motions. We present the argument in such a way that the only
ingredient missing for a full proof when α ∈ [1,2), d ≥ 2 will be a replacement
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of (2). Our small jump assumption says that for any κ > 0 there exists λ∗(κ) such
that if 0 < λ ≤ λ∗(κ) and ρk = λ2k/α , then

P

[{
P

[
max

1≤n≤2k

1

2k/α

n∑
i=1

(Xi − Xi−1)1
{‖Xi − Xi−1‖∞ ≤ ρk

}∣∣∣ω
]

> κ

}]

(3)

≤ 1

k3 ,

when k > k′(κ, λ). Assuming this we have the following analog to Theorem 1.1.

PROPOSITION 3.1. Let d ≥ 2 and s ∈ [d + 1, d + 2). Let Xn be the simple
random walk on ω ∈ �0, and let

Xn(t) = n−1/(s−d)X�nt.

Then for μ0-a.s. every environment ω and 1 ≤ q < ∞, if equation (3) holds, then
the law of (Xn(t),0 ≤ t ≤ 1) on Lq([0,1]) converges weakly to the law of an
isotropic α-stable Lévy motion with α = s − d .

Establishing (3) will be the subject of future work.
Now let us consider the path of a typical walk. Suppose that at step 0 ≤ i < n the

walk reaches a vertex v not previously encountered. One of the key observations
of this paper is that almost all vertices of distance ρ or greater have not previously
been visited by the path, so we can effectively treat the long edges coming out of v

as being chosen according to the connection probabilities pv,y independent of the
past. We may even treat the local neighborhood of radius nδ of a distant endpoint
y as being independent of the past as well, provided δ > 0 is sufficiently small.

This indicates that we may treat the behavior of excursions of Xi near edges of
length at least ρ as being asymptotically independent. Estimates which quantify
this claim are stated in Section 5 and are proved in Section 9. Moreover, because
of transience, on the macroscopic scale the only excursions which play a role in
the limit come from long edges that are crossed in odd number of times.

The observations of the previous paragraph motivate the following analysis of
the walk in the local neighborhood of a long edge. Let v = Xi and y denote the
other endpoint of the long edge connected to v (there is only one long edge with
high probability). Consider the restrictions Cv, Cy of the percolation cluster to the
balls Bnδ (v),Bnδ (y), respectively. Using the heat kernel estimates from [11], the
number of times the walk crosses the edge (v, y) is approximately (as n → ∞)
the same as the number of times it crosses the edge before leaving Cv ∪ Cy . This
latter quantity can be determined by the degrees of v and y and certain local return
times which measure the chance the walk inside Cv (resp., Cy ) returns to v (resp., y)
before time nγ for a suitably chosen γ > 0. In order to make use of this information
our proof analyses the number of times the walks encounter a new vertex of given
degree and local return probability.
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In Section 5 these considerations lead us to construct a coupling between Xi

and a second process X̂i having only jumps of length at least ρ which tracks the
displacement of the excursions of Xi which cross long edges an odd number of
times. This construction is at the heart of the proof and is explained in detail in
that section (in fact, the coupling occurs for k3 i.i.d. copies of Xi ). The important
point in the coupling is that the increments of X̂i are close to discrete versions
of an i.i.d. family of α stable Lévy motions. However, the number of increments
which contribute to the position X̂j at time j depend on the underlying walk Xi in
a highly nontrivial way: through the number of new vertices the walks encounters
of a given degree and local return probability.

To take care of this time dependence, we introduce a third process Xi . The
process Xi uses the same increments as X̂i but is time deterministic. We show
that Xi and X̂i are close by showing an ergodic theorem for the number of new
vertices of each degree and return probability type. Finally, the increments of Xi

are independent and in the domain of attraction of (a multiple of) the stable variable
�α(1), and so this third process converges weakly to �α .

To pass from an annealed limit law to a quenched limit law we will use the law
of large numbers. The idea is to first extend the indicated coupling to k3 walks
(X


i )i∈[2k],
∈[k3] and apply the Chernoff bound to the quenched law of X̃k(t) =
2−k/(s−d)X�2kt. We will not enter into further details here, except to emphasize
that this approach works precisely because the k3 walks intersect relatively few
times if s ∈ (d, d + 1). If s ∈ [d + 1, d + 2), this needs to be qualified by saying
that intersections are unlikely near encounters with long edges. In particular the
observation that the distribution of long edges from a new vertex is essentially
independent of the past still applies to the exploration process for k3 walks. Large
deviations estimates now imply that the law of the walk given ω converges to the
α-stable law.

Finally, let us comment on the topology in which the limit law holds. As was
previously mentioned, there will be long edges which the walk Xi crosses in even
number of times in on a short O(1) time scale. As a result convergence in the
Skorohod topology does not hold. Instead we prove convergence in the topology
of Lq([0,1]) in which these spikes do not affect the limit law. An alternative way
of dealing with this issue would be to define the limit as

X∗(t) = n−1/αXm(n)�nt/m(n)

for some sequence of integers m(n) → ∞ as n → ∞. This has the effect of only
sampling the process every m steps, and since m grows with n the spikes will
mostly be between step mi and step m(i + 1) for some i. It is not difficult to
modify our proof to show that X∗(t) converges in the Skorohod topology, but we
omit this for space considerations.
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4. A priori estimates. In order to establish our main coupling we need to
bound the probability of several types of unlikely events and also to prove certain
ergodic theorems for the number of new vertices encountered by the random walks.
The proofs are postponed to Section 9.

We define F ∗(ρ, k) to be the probability that the first two walks both encounter
the same long edge,

F ∗(ρ, k) = {∃x, v ∈ Z
d, i, j ∈ [2k],ωx,v = 1,‖v‖∞ ≥ ρ,X1

i and X2
j ∈ {x, v}}.

The following lemma establishes that this is unlikely which allows us to treat new
long edges as essentially being independent.

PROPOSITION 4.1 (Pairs of walks rarely intersect at long edges). There exists
ε > 0 (independent of ρ) and a constant c = c(ε) such that

Pμ

(
F ∗(ρ, k)

)
< c

[
ρ−ε + 2(1−ε)kρ1−o(1)].

For a proof of this fact, see Section 9.
We now define a number of events involving a single path that we wish to ex-

clude. For γ, δ > 0, let

A(ρ) = {∃v ∈ Z
d,ω0,v = 1,‖v‖∞ > ρ

}
be the event there is a long edge at the origin, let

B(ρ, γ, k) = {∀v ∈ Z
d :ω0,v = 1,‖v‖∞ > ρ,v /∈ {X1, . . . ,X2γ k+1}}

be the event that there is a long edge at the origin and the walk does not visit the
other end until time 2γ k+1. We let C denote the event that the walk leaves the ball
of radius 2δk before time 2γ k

C(δ, γ, k) =
{

max
0≤t≤2γ k

‖Xt‖∞ > 2δk
}
.

We define

D(ρ, k) = {∃v ∈ Z
d,ω0,v = 1, |v| > ρ,

∃J ∈ [2k] s.t. XJ = v, (0, v) /∈ {(Xi,Xi+1)
}
i≤J

}
to be the event that there is a long edge at the origin, and the walk reaches the other
end of the edge without traversing it. Next define

E(ρ, δ, k) = {∃v, x :‖v‖∞ ≥ ρ,min
(‖x − v‖∞,‖x‖∞

)≥ 2δk,

ω0,v = 1 and either ωx,v = 1 or ω0,x = 1
}

to be the event that there is a long edge at the origin and one of the endpoints is
connected to another edge of length at least 2δk . Let

F(ρ, γ, k) = {∃i,2γ k+1 ≤ i ≤ 2k,

∃v ∈ Z
d s.t. ω0,v = 1 and ‖v‖∞ ≥ ρ,Xi ∈ {0, v}}
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denote the event that there is a long edge at the origin and the walk returns to either
end of the edge at any time after 2γ k+1 steps. Finally let

G(ρ,γ, δ, k) = A(ρ) ∩ B(ρ, γ, k) ∩ C(δ, γ, k)

denote the event that there is a long edge at the original and the walk leave the
leaves a ball of radius 2δk in time 2γ k+1 without taking the long edge.

We want to show that these events do not occur at any time up to time 2k . For any
event E ⊂ �Z, let T−i ·E = {ω :T i ·ω ∈ E}. For any of the events O ∈ {A, . . . ,G}
defined above, let Oi := T−iO and let

G (ρ, γ, δ, k) =
2k⋃

i=0

Gi(ρ, γ, δ, k),

D(ρ, k) =
2k⋃

i=0

Di(ρ, k),

E (ρ, δ, k) =
2k⋃

i=0

Ei(ρ, δ, k),

F (ρ, γ, k) =
2k⋃

i=0

Fi(ρ, γ, k).

Note that all these events are increasing in γ . The following proposition shows we
can exclude these events with high probability.

PROPOSITION 4.2. Let d ≥ 1 and s ∈ (d, (d + 2) ∧ 2d) be fixed, and let ρ >

2k/(2(s−d)). For any δ ∈ (0,1), there exists γ, ε > 0 such that

Pμ

(
G (ρ, γ, δ, k) ∪ D(ρ, k) ∪ E (ρ, δ, k) ∪ F (ρ, γ, k)

)
< C

[
ρ−ε + 2k(1−ε)ρ−α(1−η)],

where η ∈ (0,1) is arbitrary, and C > 0 depends on δ, η, d, s.

We note that this estimate is of most interest when ω ∈ �0, but holds under the
measure μ as well; whenever the origin is in a finite component it will be a small
component with high probability by Theorem 2 of [11].

4.1. Ergodic estimates. In this subsection we state the ergodic estimates for
the number of new vertices encountered by the paths. The proofs are given in
Section 8. Let Ni be the indicator of the event that Xi is the first visit to that
vertex, that is,

Ni = 1
{
Xi /∈ {X0, . . . ,Xi−1}}= 1

{
ωi /∈ {ω0, . . . ,ωi−1}}.
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For a vertex v we let pv = pv(ω) denote the quenched probability that a random
walk started from v will ever return there, that is,

P ω
v (Xt = v for some t ∈ N).

When v = 0, we will sometimes use the shorthand p(ω) = p0(ω). The notion of
the “type” of a vertex and the frequency with which new vertices of each type are
encountered plays a crucial role in our proof. The type is determined by its degree
and local return probability. For 0 = q0 < q1 < · · · < qJ < 1 a finite increasing
sequence in [0,1] and m ∈ N let us denote by Cqj−1,qj ,m the quantity

Cqj−1,qj ,m = Pν0

(
Xi �= 0 for i > 0,p0(ω) ∈ (qj−1, qj ),dω(0) = m

)
(4)

and let

C� = Pν0(Xi �= 0 for i > 0)(5)

denote the annealed escape probability. By reversibility, this is also the rate at
which a walk sees new vertices when started in the infinite component. Our main
ergodic estimate shows that they indeed give the long-run frequency of new ver-
tices of a particular type. For any subinterval [a, b] = A ⊆ [0,1], M ⊆ N, denote
the number of vertices of a given type by

N
A,M
t :=

t∑
i=1

Ni1
{
pXi

∈ A,dω(Xi) ∈ M
}
.

For the 
th walk of the ensemble (X

i )i∈[2k],
∈[k3], we denote these by N


t and

N

,A,M
t . Let L(A, M) ∈ �Z denote the event

L(A, M) := {
ω :ω0 /∈ {ωi : i ≤ −1},p(ω0) ∈ A,d(ω0) ∈ M

}
.

The following events require that the number of new vertices up to time t for all
1 ≤ t ≤ 2k is close to what we expect. Let H


k,χ denote the event that

sup
A,M

max
1≤t≤2k

∣∣N
,A,M
t − tPν0

(
L(A, M)

)∣∣≤ χ2k

and let Hk,χ denote the event

{
1

k3

k3∑

=1

1
{

H

k,χ

}
> 1 − χ

}
.

Roughly this event says that the ergodic theorem bound holds by time 2k for most
of the independent copies of the random walk. The following lemma shows that
Hk,χ holds for all but finitely many values of k almost surely, and indeed this is
even the case for a suitable χk converging to 0.
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LEMMA 4.3. For any χ > 0,

lim
k′→∞ Pμ0

(⋂
k≥k′

Hk,χ

)
= 1(6)

and hence there exists χk > 0 with χk ↓ 0 such that

lim
k′→∞Pμ0

(⋂
k≥k′

Hk,χk

)
= 1.(7)

5. Main coupling. Recall (X

i )
,i∈N denote independent copies of the random

walk started from the origin with respect to the same environment ω. In this section
we define and analyze the main tool of our proof, a coupling of (X


i )
k3


=1 to a new

sequence of walks (X̂

i )

k3


=1 on Z
d which will be simpler to handle. The coupling

involves revealing the environment as the walks progress, as well as a complicated
bookkeeping of the long edges each of the walks in the process encounters and the
number of times these edges are traversed. In particular, when the process arrives
at a vertex which has an edge of length greater than ρ, we keep track of the edge’s
size as well as the degree and local escape probabilities of each end of the edge.

Recall that pv = pv(ω) denotes the return probability the vertex v in the
environment ω, and let (P, D) denote the distribution of the random vector
(p0(ω),dω(0)) under Pμ.

For the remainder of our proof, it is important that 1 + δd < d/(s − d), so that
each walk history, thickened by a neighborhood of radius 2δk , takes up volume at
most 2(1+δd)k . Because of the power law tail distribution, endpoints of new long
edges can occur essentially anywhere in a region of volume 2kd/α � 2(1+δd)k and
are very unlikely to be close to the history of the walk. For definiteness, let us fix,
for the remainder of our proof,

δ = 1/2
(

1

α
− 1

d

)
∧ 1/2.(8)

Note that for s ∈ (d, (d +2)∧2d), δ > 0. We may then choose γ sufficiently small
so that the results of Section 4 hold for the pair (δ, γ ) and any choice of edge size
cutoff ρ.

For a vertex v and each k ∈ N denote p̃v = p̃v(k) the probability that a walk
started from v and conditioned to stay in the set {u :‖v − u‖∞ < 2kδ} returns to v

before time 2kγ and set to 1 if v has no neighbors within distance 2kδ which we
call the local return probability.

As mentioned in Section 3, when α ∈ (0,1) we set ρ = ρk = 2k/α/k200/(1−α).
When α ∈ [1,2) and d ≥ 2, we set ρk = λ2k/α where λ is a small positive constant
which we will eventually send to 0. We let d̃ω(v) := #{u :‖v −u‖∞ ≤ 2δk}, and let
(P(k), D(k)) denote the joint distribution of (p̃v, d̃ω(v)) of the origin under Pμ.
We observe that (P(k), D(k)) converges in distribution to (P, D) as k tends to ∞.
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We will prove a more quantitative statement in Lemma 9.12. The purpose of lo-
calizing the degrees and escape probabilities is that when a walk arrives a new
vertex v we can first reveal these local quantities before revealing if v has any long
connections.

For technical reasons, we discretize the the joint distribution (P, D) as follows.
Recall the definitions of C� and Cqj−1,qj ,j from equations (5) and (4). For each
positive integer J , we choose a sequence 0 = q0 < q1 < · · · < qJ < 1 so that the
distribution P does not have any atoms on the qi and so that for some sequence
ψJ converging to 0 we have that 1

1−qi
− 1

1−qi+1
< ψJ and

C̄ = C� −
J∑

j=1

J∑
m=1

Cqj−1,qj ,j(9)

for all J .

5.1. Coupling variables. In our construction of the coupling of the walks, the
random variables we use will depend on the local neighborhood the walk is in.
To define the coupling, we introduce several sequences of random variables. For
each i ≥ 1, (j,m) ∈ [J ]2 ∪ {(0,0)}, 
 ∈ [k3] and x ∈ Z

d define w

,j,m
i (x) to be

independent Bernoulli random variables with probability

P
(
w


,j,m
i (x) = 1

)= P
(‖x‖2

)
.

Also let wi(x) (with no superscripts) be independent Bernoulli random variables
with the same probabilities. These random variables will be coupled with the newly
revealed edges found by the exploration process.

We will denote the geometric distribution by P(Geom(p) = r) = (1 − p)rp for
r ≥ 0. Let U0,U1, . . . be an i.i.d. sequence of uniform [0,1] random variables, and
define a geometric process as

R(t) = min{i ≥ 0 :Ui < t}.(10)

Then R(t) is a decreasing integer valued stochastic process on [0,1) with
marginals given by Geom(t). For each i, 
 ≥ 0 and (j,m) ∈ [J ]2 ∪ {(0,0)}, let
R


,j,m
i (t) and R̃


,j,m
i (t) be independent copies of R(t). These processes will be

used to decide how many times the walk crosses a long edge before escaping and
never returning to the neighborhood.

Finally for each i ≥ 0, (j,m) ∈ [J ]2 ∪ {(0,0)} and 
 ∈ [k3], let (r

,j,m
i ,d


,j,m
i )

be independent variables, distributed as (P(k), D(k)). When a new long edge is
encountered by a walk of the process, the local neighborhood of the other side of
the long edge will generally be unrevealed and so independent of the walk so far
and will be coupled with the (r


,j,m
i ,d


,j,m
i ).
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5.2. Coupling construction. Using the random variables defined above, we
now show how we couple the environment ω and the sequence of k3 walks with
the variables defined in the previous subsection. In the following section we will
then use these to couple the walks to a family of processes (X̂


i ). We will reveal
the edges of the graph either as the sequence of walks encounters them, or if they
are in some local neighborhood of the vertices the walks do encounter.

The key point we analyze is the behavior of each walk after it encounters a new
long edge of size greater than ρk . Thus we define the coupling construction by two
sets of rules: one which will be used for most of the walk and a second special
phase which begins when a new long edge is encountered and which then runs for
2kγ+1 steps.

As part of our coupling process we will define several auxiliary indicator or
“flag” variables to track certain events through the coupling. Roughly, they are
described as follows:

• New long jump: Ai,
 represents that in step i of walk 
 a new long edge has
been encountered.

• Phase of the coupling: A∗
i,
 will indicate the phase that the walk is in, with a

value 1 indicating that we are in the special phase and have recently encountered
a long edge.

• Error variables: Bi,
 represents that one of several types of rare events occurred
which we loosely describe as an “error.” We restrict our attention to paths con-
structed when no errors occur.

• New vertex variables: N 
,j,m
i for (j,m) ∈ [J ]2 ∪ {(0,0)} will denote whether

a new vertex has been found and what its local return probability p̃v and local
degree d̃ω(v) are.

More precisely, we set A∗
i−1,
 to be the indicator of the event that for some i −

2γ k+1 − 1 ≤ i ′ < i − 1 that Ai′,
 = 1 indicating a recent long jump. This will
indicate which phase we are to use. Let v denote X


i−1.
Main phase: In this case A∗

i−1,
 = 0. We now describe how a new step from

v = X

i−1 to X


i is chosen.
Case 1 (already visited vertices): Suppose that v ∈ W +

i−2,
.
By definition, in this case one of the first 
 walks has already visited v or has vis-

ited a neighbor of v at distance more than ρ. Either way, the entire local neighbor-
hood of v has already been revealed and the walk chooses X


i uniformly amongst
the neighbors of v.

• Set Ai−1,
 = 0.
• Set Bi−1,
 = 1 if there exists y ∈ Z

d with ωv,y = 1 and |v −y| > ρ. We will call
this a type one error. Otherwise set Bi−1,
 = 0.

• Set N 
,j,m
i−1 = 0 for all (j,m) ∈ [J ]2 ∪ {(0,0)}.
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CLAIM 5.1. There exists ε > 0 such for each 
 we have that P(∃0 ≤ i ≤ 2k −
1 : Bi−1,
 = 1) = o(2−kε).

PROOF. This event occurs if at some time i ∈ [2k − 1], a long edge e of length
greater than ρ is encountered in the main phase which has already been encoun-
tered by walk 
 or one of the previous walks. If it were previously encountered by
this walk (and not by a previous one), then it must have started a special phase (see
below), and so must have been encountered some time before time i − 2γ k . The
probability of this event is bounded by Proposition 4.2. The bound is completed
using Proposition 4.1 and a union bound to account for possible intersections of
different walks at long edges. �

Case 2 (new vertices): Suppose next that v /∈ W +
i−2,
, and so we are at a new

vertex. First reveal all edges not already revealed in the local neighborhood of v of
radius δ and all edges connected to v of length at most ρ. That is, we reveal{

ωv,y :‖y‖∞ ≤ ρ
}

and
{
ωx,y :x, y ∈ Z

d,‖x − v‖∞ ≤ 2δk,‖y − v‖∞ ≤ 2δk}
so that we have revealed the σ -algebra F −

i−1,
. Both the local escape probability

p̃v and local degree d̃ω(v) are F −
i−1,
 measurable.

We now classify the neighborhood according it its local escape probability and
degree. If p̃v ≤ qJ and d̃ω(v) ≤ J , then set j = min{j ′ :qj ′ > pv} and m = d̃ω(v);

otherwise set j = 0,m = 0. Set N 
,j,m
i−1 = 1 and the other N 
.·,·

i−1 to 0. Let

ι = φ

,j,m
i =

i−1∑
i′=0

N 
,j,m

i′

count the number of distinct new vertices of type (j,m) which have been encoun-
tered so far by the 
th walk. We note the use of two notations ι, φ


,j,m
i ; our use of

ι implicitly depends on the fixed triple (
, j,m).
Using this local classification we now reveal the possible long edges from v by

coupling them to the w random variables. For each x /∈ W +
i−2,
 with ‖x −v‖∞ > ρ

we have that ωv,x is so far unrevealed. We couple the environment and the random
variables w


,j,m
ι so that for each such x, ωv,x = w


,j,m
ι (x −v). Our procedure now

depends on whether or not any of the w

,j,m
ι (x − v) are nonzero:

(1) No long edges.
∑

x:‖x−v‖∞>ρ w

,j,m
ι (x − v) = 0; then we do not encounter

a new long edge. Set Ai−1,
 = 0, and Bi−1,
 = 0 and choose the next step of the
walk X


i uniformly from the neighbors of v.
(2) Multiple long edges or long edges returning to previous neighborhood.∑
x:‖x−v‖∞>ρ w


,j,m
ι (x−v) ≥ 2 or

∑
x:‖x−v‖∞>ρ w


,j,m
ι (x−v) = 1 and there exist

x, y such that ‖x −y‖∞ ≤ 2δk+1, w
,j,m
ι (x −v) = 1 and y ∈ W +

i−2,
. Both of these
are unlikely and we will call them type two errors. Set Ai−1,
 = 0 and Bi−1,
 = 2
and choose X


i uniformly from the neighbors of v.
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(3) Single good long edge. In the remaining case we have some x with
‖x − v‖∞ > ρ and ωv,x = 1. Moreover, the set of edge indicator variables
{ωy,z :y, z ∈ Vx} are so far unrevealed and are therefore independent of the con-
struction up to this point. The choice of edges here determines the local degree and
escape probabilities (p̃x, d̃ω(x)) which are distributed according to (P(k), D(k)).
We reveal the edges

{ωy,z :y, z ∈ Vx}
and couple them so that (p̃x, d̃ω(x)) = (r


,j,m
ι ,d


,j,m
ι ). We also reveal the remain-

ing edges in {ωx,y :y ∈ Z
d}. If dω(v) �= d̃ω(v) + 1 or dω(x) �= d̃ω(x) + 1 set

Bi−1,
 = 3, otherwise set Ai−1,
 = 1 and Bi−1,
 = 0.

CLAIM 5.2. With δ as in (8) there exists ε > 0 such that

P
(∃0 ≤ i ≤ 2k − 1,∃
 ∈ [k3] : Bi−1,
 = 2

)= o
(
2−kε).

PROOF. A type 2 error means that either the walk encounters a new vertex
with two long edges or that nearby there is a long edge connecting to somewhere
already encountered by this or one of the previous walks. First note that the decay
of the probabilities of the wi(z) gives that P(

∑
z:‖z‖∞>ρ wi(z) ≥ 2) ≤ 2−2k(1−ε).

By a union bound, this implies that we never have
∑

x:‖x−v‖∞>ρ w

,j,m
ι (x −v) ≥ 2

except with probability o(2−kε). A similar analysis shows that none of the k3 walks
ever encounters a vertex with two long edges except with probability o(2−kε).

By definition, for any i, 
 we have a bound on the total number of edges visited
as |Wi,
| ≤ k32k . Now if none of the walks ever reaches a vertex with two long
edges, then for any i and 
 we have that |W +

i,
| ≤ 2k32k .

P

( ∑
x:‖x−v‖∞>ρ

min
y∈W +

i,

‖x−y‖∞≤2kδ+1

w

,j,m
i (x − v) ≥ 1

)
≤ P(ρ)21+d(kδ+2)k32k

= o
(
2−k(1+ε))

for some fixed ε > 0. By our choice of δ, this holds because the walks only explore
a vanishing proportion of the local area on the length scale ρ. A union bound
completes the proof. �

CLAIM 5.3. With

δ = 1/2
(

1

s − d
− 1

d

)
∧ 1/2,

there exists ε > 0 such that

P
(∃0 ≤ i ≤ 2k − 1,∃
 ∈ [k3] : Bi−1,
 = 3

)= o
(
2−kε).

In fact, we may take ε = δ(s − d) − o(1).
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PROOF. For the event {Bi−1,
 = 3} to take place, the walk must encounter a
vertex v at time i with an edge (v, u) of length at least ρ such that either v or
u is attached to another edge of length at least 2δk which implies that the event
E (ρ, δ, k) takes place, and hence the bound follows by Proposition 4.2. �

Special phase: Coupling procedure after encountering a new long edge. We now
describe the more complicated coupling after a long edge is encountered (when
Ai−1,
 = 1). At such an event, the walk is at the vertex v = X


i−1, which is con-
nected to a vertex x such that ‖v − x‖∞ > ρ. Our coupling ensures that(

p̃x, d̃ω(x)
)= (

r
,j,mι ,d
,j,m
ι

)
,

where ι =∑i−1
i′=1 N 
,j,m

i′ . For the rest of this subsection, if p̃v ≤ qJ and d̃ω(v) ≤ J ,
then we denote j = min{j :qj > pv} and m = d̃ω(v) and otherwise j = 0,m = 0.

If the walk is in the infinite component, transience implies it will cross the edge
(v, x) a finite number times, but then escape and never return to the local neighbor-
hood. In the scaling limit the crucial information will be the parity of the number
of times the walk crosses the edge. In our coupling this will be determined by the
geometric processes R


,j,m
ι (t) and R̃


,j,m
ι (t) [where ι represents the number of

vertices of type (j,m) the 
th walk has encountered by time i − 1].
Let V ∗ denote the graph with vertices Vv ∪ Vx and edges{

(v, x)
}∪ {(y, z) :y, z ∈ Vv,ωy,z = 1

}∪ {(y, z) :y, z ∈ Vx,ωy,z = 1
}

and let Yt denote a random walk on V ∗ started at v. Recall our choice δ =
1/2( 1

s−d
− 1

d
) ∧ 1/2. For γ depending on δ as in Section 4, let

τ ∗ = inf
{
t > 2γ k :∀t − 2γ k ≤ t ′ ≤ t, Yt /∈ {v, x}};

that is, τ ∗ is the first time that the walk Yt has not been at either v or x in the last
2γ k steps. What we want to know is, at time τ ∗, which side of V ∗ will Yt be on
(i.e., is Yτ∗ in Vv or Vx)?

Since (v, x) is the only edge between Vv and Vx a walk starting from v can do
one of three types of excursions:

(1) Move to x with probability 1
1+d̃ω(v)

.

(2) Move to another vertex in Vv ; then perform a walk in Vv and return to v in

with in the next 2γ k step with probability p̃v d̃ω(v)

1+d̃ω(.v)
.

(3) Move to another vertex in Vv ; then perform a walk in Vv and not return to

v in the next 2γ k steps with probability (1−p̃v)d̃ω(v)

1+d̃ω(v)
.

Let Rv be the number of excursions of type (1) made by the walk from v before it
makes an excursion of type (3) from v.

Analogous statements hold for walks started from x. Let Rx be the number of
excursions of type (1) from x made by the walk from the first time it visits x before



SIMPLE RANDOM WALK ON LONG-RANGE PERCOLATION CLUSTERS 463

it makes an excursion of type (3) from x. The following claim is immediate from
the definitions.

LEMMA 5.4. The random variables Rv and Rx are independent and dis-
tributed, respectively, as

Geom
(

(1 − p̃v)d̃ω(v)

1 + (1 − p̃v)d̃ω(v)

)
and Geom

(
(1 − p̃x)d̃ω(x)

1 + (1 − p̃x)d̃ω(x)

)
.

Moreover, if Rv > Rx , then Yτ∗ ∈ Vx while if Rv ≤ Rx then Yτ∗ ∈ Vv .

PROOF. The type of excursion depends only on steps from Vv and Vx , respec-
tively, and thus Rv and Rx are independent. By definition the time τ ∗ occurs in the
first type 3 excursion, and hence Rv and Rx determines which side the walk is on
at time τ ∗. Note that the asymmetry between Rv > Rx and Rv ≤ Rx comes from
the fact that the walk starts at v. �

So we may couple the random walk Yt to the process (and in particular X
) so
that

Rv = R
,j,m
ι

(
(1 − p̃v)d̃ω(v)

1 + (1 − p̃v)d̃ω(v)

)
, Rx = R̃
,j,m

ι

(
(1 − p̃x)d̃ω(x)

1 + (1 − p̃x)d̃ω(x)

)
.

Now construct the random walk step by step from X

i−1+t to X


i+t for 0 ≤ t ≤
2γ k+1 − 1 as follows:

(1) If Xi−1+t is a vertex not already visited, then reveal any unrevealed edges
in the set {

ωX

i ,y

:y ∈ Z
d}∪ {ωx,y :x, y ∈ VX


i
}.

(2) If there exists y ∈ Z
d with ωX


i−1+t ,y
= 1 and ‖X


i−1+t − y‖∞ > ρ and

{X

i−1+t , y} �= {v, x}, then set Bi−1+t,
 = 4.
(3) Choose X


i+t uniformly amongst the neighbors of X

i−1+t . If X


i−1+t = Yt

and the edge (X

i−1+t ,X



i+t ) is in the graph V ∗, then couple so that X


i+t = Yt+1.

Let

τ =
{

2γ k+1, ∀1 ≤ t ≤ 2γ k+1 − 1,X

i+t = Yt ,

min
{
1 ≤ t < 2γ k+1 :X


i+t �= Yt

}
, otherwise,

and set Bi−1+τ,
 = 5 if τ �= 2γ k+1. Note that conditional on X

i−1+t staying within

V ∗ up to time i + 2γ k+1 and it making no steps between Vv and Vx except along
the edge (v, x), then τ = 2γ k+1.

Let K denote the event that τ = 2γ k+1, that τ ∗ < 2γ k+1 and that Yt /∈ {v, x}
for all τ ∗ ≤ t ≤ 2γ k+1. If K does not hold, set B


i−1+2γ k+1 = 6. Finally, inside the
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special phase we set all N 
,j,m
i−1+t = 0, Ai−1+t,
 = 0 and set Bi−1+t,
 = 0 unless

otherwise stated. By definition A∗
i−1+t,
 = 1 inside the special phase.

The following lemma is immediate from the construction.

LEMMA 5.5. On the event K we have that X

i−1+2γ k+1 ∈ Vx if Rv > Rx and

X

i−1+2γ k+1 ∈ Vv if Rv ≤ Rx .

We now bound the probability of errors of type 4, 5 or 6 (i.e., B

i ∈ {4,5,6}).

CLAIM 5.6. With

δ = 1/2
(

1

s − d
− 1

d

)
∧ 1/2,

there exists γ, ε > 0 so that we have

P
(∃0 ≤ i ≤ 2k − 1,∃
 ∈ [k3] : Bi−1,
 = {4,5,6})= o

(
2−kε).

PROOF. For an error of type 4 to occur the walk must encounter 2 long jumps
of length at least ρ within 2γ k+1 steps. For an error of type 5 to occur it must
encounter a long edge and then leave the 2δk neighborhood of that edge in time
less than 2γ k+1. Finally an error of type 6 to occur implies that the walk returns
to a long edge after an excursion of at least 2γ k . The probability of each of these
events is bounded by Proposition 4.2 establishing the claim. �

This completes the coupling. We denote by G the event that no errors occurred

in the coupling (i.e.,
∑k3


=1
∑2k

i=0 B

i = 0). Combining Claims 5.1, 5.2, 5.3 and 5.6

we have the following result.

LEMMA 5.7. There exists ε > 0 such that P(G) ≥ 1 − O(2−εk).

We now use this coupling as the basis for establishing the scaling limit.

6. Limiting processes. In this section we construct a series of approxima-
tions of X


i culminating in a stable process. The first approximation is a process
X̂


i which contains only the macroscopic vectors which correspond to long edges
crossed an odd number of times. This approximation still has a complex depen-
dence on the environment and previous walks. Thus, the second approximation
step replaces X̂


i with X

i , a process with independent increments in the domain

of attraction of a stable law. Finally we approximate X

i with �


α(t) which are
independent α-stable Lévy motions. Throughout this section we use the notation
|x| = ‖x‖∞ for x ∈ R

d .
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6.1. Approximating (X

i )i,
 by (X̂


i )i,
. For the first approximation step we
construct a process (X̂


i )i,
 and compare this family to the underlying walks di-
rectly. We emphasize that the bounds obtained in this coupling do not require that
0 is in the infinite component. Indeed, when 0 is not in the infinite component then
its component will, with high probability, have diameter less than ρ, and so both
processes (X


i )i,
 and (X̂

i )i,
 will be close to 0 after spatial space by 2−k/(s−d).

For i ∈ [2k], (j,m) ∈ [J ]2 ∪ {(0,0)} and 
 ∈ [k3], define

σ

,j,m
i = 1

{
R


,j,m
i

( (1 − p̃X

i−1

)m

1 + (1 − p̃X

i−1

)m

)
> R̃


,j,m
i

(
(1 − r


,j,m
i )d


,j,m
i

1 + (1 − r

,j,m
i )d


,j,m
i

)}
,

which determines on which side of V ∗ the walk ended, and in particular, whether
it contributes to the scaling limit. We want to sandwich these indicators between
random variables which depend only on j and not p̃Xi−1 . To this end we define

σ
+,
,j,m
i = 1

{
R


,j,m
i

(
(1 − qj )m

1 + (1 − qj )m

)
> R̃


,j,m
i

(
(1 − r


,j,m
i )d


,j,m
i

1 + (1 − r

,j,m
i )d


,j,m
i

)}

and

σ
−,
,j,m
i = 1

{
R


,j,m
i

(
(1 − qj−1)m

1 + (1 − qj−1)m

)
> R̃


,j,m
i

(
(1 − r


,j,m
i )d


,j,m
i

1 + (1 − r

,j,m
i )d


,j,m
i

)}

for i ∈ [2k], (j,m) ∈ [J ]2 and 
 ∈ [k3]. Recall that if p̃v ≤ qJ and d̃ω(v) ≤ J ,
then we denote j = min{j ′ :q ′

j > pv} and m = d̃ω(v) and otherwise j = 0,m = 0.

Then for this choice of (j,m), qj−1 ≤ p̃X

i−1

≤ qj , and it follows that σ
−,
,j,m
i ≤

σ

,j,m
i ≤ σ

+,
,j,m
i as R(t) is decreasing.

LEMMA 6.1. For each (j,m) ∈ [J ]2 the following limit exists:

ςj,m,J := lim
k→∞P

(
R

1,j,m
1

(
(1 − qj )m

1 + (1 − qj )m

)
> R̃

1,j,m
1

(
(1 − r

1,j,m
1 )d

1,j,m
1

1 + (1 − r
1,j,m
1 )d

1,j,m
1

))
.

PROOF. Note that (r
1,j,m
1 ,d

1,j,m
1 ) depends on k. It is taken from the distri-

bution (P(k), D(k)). By Lemma 9.12 it follows that (P(k), D(k)) converges to
(P, D) which completes the result. �

Define

Z
+,
,j,m
i = σ

+,
,j,m
i

∑
|x|>ρ

xw

,j,m
i (x)
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and similarly define Z
−,
,j,m
i and Z


,j,m
i replacing σ

+,
,j,m
i with σ

−,
,j,m
i and

σ

,j,m
i , respectively. Recall that for each i ∈ [2k], (j,m) ∈ [J ]2 ∪ {(0,0)} and


 ∈ [k3], we defined

φ

,j,m
i =

i−1∑
i′=0

N 
,j,m

i′

and now define

X̂

i = ∑

(j,m)∈[J ]2∪{(0,0)}

φ

,j,m
i∑
i′=1

Z

,j,m

i′ .

We will show that under the event G (which was defined at Lemma 5.7) we can
jointly couple the paths X
 and X̂
 with high probability in the Lq norm. The
coupling will be stronger at times in the main phase than in the special phase: in
the latter phase, the paths may differ more as the walk X
 may traverse a long edge
multiple times while in X̂
 the corresponding jump only occurs once. Denote the
set of times in the main phase as I 
 = {1 ≤ i ≤ 2k : A∗

i−1,
 = 0}, and let X 
 = {1 ≤
i ≤ 2k : Ai−1,
 = 1} denote the set of times the coupling enters the special phase.
Finally define

Z

max =

2k∑
i=1

∑
(j,m)∈[J ]2∪{(0,0)}

∑
x∈Zd

|x|≥ρk

|x|w
,j,m
i (x),

which we will use as an overall bound on the total jumps. In the following lemma
we control the coupling in the main and special phases separately. In particu-
lar, it will turn out that the coupling is o(2k/(s−d)) in the main phase, but only
O(2k/(s−d)) in the special phase.

LEMMA 6.2. When α ∈ (0,1) or when α ∈ [1,2) and condition (3) holds,
there exists δ0 > 0 depending on d, s so that for all δ ∈ (0, δ0), there exists γ, ε > 0
and for any κ > 0 [and in the case of α ≥ 1 ∃λ∗(s, d, κ) > 0 such that for all
0 < λ < λ∗] and for large enough k,

P
(∣∣[2k] \ I 


∣∣≥ 22γ k|G
)
< 2−εk(11)

that

P

(
#
{

 ∈ [k3] : max

i∈I

2−k/(s−d)

∣∣X̂

i − X


i

∣∣> κ
}

> κk3∣∣G
)

≤ 2k−3(12)

and

P

(
#
{

 ∈ [k3] : max

i∈[2k]\I

2−k/(s−d)

∣∣X̂

i − X


i

∣∣> κ + Zmax

2−k/(s−d)

}
> κk3

∣∣∣G
)

(13)
≤ 2k−3.
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PROOF. By our construction, on the event G that there are no errors in our
coupling, we have |[2k] \ I 
| ≤ 2γ k+1|X 
|. Now a vertex is in X 
 if and only
if it is a new vertex where the walk encounters a long jump, and hence |X 
| is
stochastically dominated by the binomial random variable B(2k,p) where

p = P

( 2k∑
i=1

∑
(j,m)∈[J ]2∪{(0,0)}

∑
|y|>ρ

w

,j,m
1 (y) = 1

)
≤ ∑

|y|>ρ

P
(|y|)= 2−k(1+o(1))

and so by the Azuma–Hoeffding inequality (with room to spare)

P
(∣∣X 


∣∣≥ 2γ k−1|G
)
< 2−εk;(14)

hence equation (11) holds.
Observe that if X̂


i �= X̂

i−1, then i ∈ X 
. So suppose that i ∈ X 
 and let v

denote X

i−1. On the event G we have that v is connected to a unique vertex

x such that |v − x| > ρ. If p̃v ≤ qJ and d̃ω(v) ≤ J , then, as before, we denote
j = min{j ′ :qj ′ > pv} and m = d̃ω(v) and otherwise j = 0,m = 0. Recall the no-

tation ι =∑i−1
i′=1 N 
,j,m

i′ . Again, under G the walk stays inside V ∗ = Vv ∪ Vx until

at least time i − 1 + 2γ k+1. At time i − 1 + 2γ k+1 it is in Vv if σ

,j,m
ι = 0 and in

Vx if σ

,j,m
ι = 1. Hence on the event G ,∣∣(X


i−1+2γ k+1 − X

i−1
)− (X̂


i−1+2γ k+1 − X̂

i−1
)∣∣

= ∣∣X

i−1+2γ k+1 − X


i−1 − (x − v)σ 
,j,m
ι

∣∣≤ 2δk

and

max
0≤h≤2γ k+1−1

∣∣∣∣∣
h∑

i′=0

(
X


i+i′ − X

i+i′−1

)
1
{∥∥X


i+i′ − X

i+i′−1

∥∥∞ ≤ ρk

}∣∣∣∣∣≤ 2δk

by the definition of Vv and Vx .
Further, on the event G we have that the displacement from X


i−1 to X

i is

smaller than ρ when i ∈ I 
. It follows that

max
i∈I


∣∣X̂

i − X


i

∣∣≤ ∑
i∈X 


∣∣(X

i−1+2γ k+1 − X


i−1
)− (X̂


i−1+2γ k+1 − X̂

i−1
)∣∣

+ max
1≤h≤2k

∣∣∣∣ ∑
1≤i≤h

i∈I


(Xi − Xi−1)

∣∣∣∣(15)

≤ 2|X |2δk + max
1≤h≤2k

∣∣∣∣∣
h∑

i=1

(
X


i − X

i−1
)
1
{|Xi − Xi−1| ≤ ρ

}∣∣∣∣∣.
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By Lemma 9.11 when α ∈ (0,1) and by condition (3) and large deviations bounds
when α ∈ [1,2) we have that for sufficiently large k and sufficiently small λ,

P

(
#

{

 ∈ [k3] : max

1≤h≤2k

1

2k/α

∣∣∣∣∣
h∑

i=1

(
X


i − X

i−1
)
1
{|Xi − Xi−1| ≤ ρ

}∣∣∣∣∣
}

>
κk3

2

)

(16)
≤ 2k−3.

Combining (14), (15) and (16) establishes (12).
Suppose i ′ ∈ [2k] \ I 
 with i < i′ ≤ i + 2γ k+1. Then given G and using the

notation above, we have that

X̂

i′ − X̂


i−1 = (x − v)σ 
,j,m
ι .

Since X

i′ ∈ V ∗,

min
{∣∣X


i′ − X

i−1

∣∣, ∣∣X

i′ − X


i−1 − (x − v)
∣∣}≤ 2δk

and |x − v| ≤ Z

max, so combining this with (12),

P

(
#
{

 ∈ [k3] : max

i∈[2k]\I


1

2k/α

∣∣X̂

i − X


i

∣∣> κ + Zmax

2k/(s−d)

}
> κk3

∣∣∣G
)

≤ 2k−3,

which completes the proof. �

We now rescale the walks to processes in D[0,1]: let us define, for 0 ≤ t ≤ 1,

X
(t) := 2−k/(s−d)X

�t2k, X̂
(t) := 2−k/(s−d)X̂


�t2k.

COROLLARY 6.3. For any 1 ≤ q < ∞ and κ > 0 we have that [and in the
case of α ≥ 1 ∃λ∗(s, d, κ) > 0 such that for all 0 < λ < λ∗]

P
(
#
{

 ∈ [k3] :

∥∥X̂
(t) − X
(t)
∥∥
Lq([0,1]) ≥ κ

}
> κk3)≤ 6k−3.(17)

PROOF. Since∫ 1

0

∣∣X̂
(t) − X
(t)
∣∣q dt ≤ |[2k] \ I 
|

2k
max

i∈[2k]\I


∣∣X̂

i − X


i

∣∣q + max
i∈I


∣∣X̂

i − X


i

∣∣q .

Lemma 6.2 implies that we have

P

(∫ 1

0

∣∣X̂
(t) − X
(t)
∣∣q dt > 2−(1−2γ )k(κ + 2−k/(s−d)Zmax

)q + κ
∣∣∣G
)

≤ 5

k3 .

Now by Lemma 6.4 (to be proved next), we have that

P
(
2−(1−2γ )k(κ + 2−k/(s−d)Zmax

)q
> κ

)= k−6

with much room to spare. Combining the previous two equations with Lemma 5.7,
and taking a union bound over 
 ∈ [k3] establishes equation (17). �

The following lemma provides a bound over the terms of the process wi(x), and
therefore of Zmax, completing the previous corollary.
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LEMMA 6.4. There exists a constant c > 0 such that for large n,

P

(
n−1/α

n∑
i=1

∑
x∈Zd ,

|x|>M

|x|wi(x) > y

)

(18)

≤
⎧⎪⎨
⎪⎩

cy−α, 0 < α < 1,
cy−1 log

(
e ∨ yM−1n1/α

)
, α = 1,

cy−1(1 ∨ Mn−1/α
)1−α

, 1 < α < 2,

and hence the variable Z

max satisfies

P
(
2−k/α

∣∣Z

max
∣∣> y

)≤ { c′y−α, 0 < α < 1,
c′y−1/2λ−1, 1 ≤ α < 2,

where c = c(s, d) and c′ = c′(s, d, J ) do not depend on k, n or y.

PROOF. By the power law decay of P(|x|) we have that for each i,

P

( ∑
|x|>yn1/α

|x|wi(x) �= 0
)

≤ ∑
|x|>yn1/α

P
(|x|)= O

(
y−αn−1)

and hence

P

(
n∑

i=1

∑
|x|>yn1/α

|x|w
,j,m
i (x) �= 0

)
≤ c1y

−α.(19)

Again using the power law decay of P(|x|),

E

(
n−1/α

n∑
i=1

∑
M≤|x|≤yn1/α

|x|wi(x)

)

≤ n1−1/α
∑

M≤|x|≤yn1/α

|x|P(|x|)(20)

≤
⎧⎪⎨
⎪⎩

c2y
1−α, 0 < α < 1,

c2 log
(
e ∨ yn1/αM−1), α = 1,

c2
(
Mn−1/α

)1−α
, 1 < α < 2,

and so by Markov’s inequality,

P

(
n−1/α

n∑
i=1

∑
|x|≤yn1/α

|x|wi(x) ≥ y

)

(21)

≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c2y
−α, 0 < α < 1,

c2y
−1 log

(
e ∨ yn1/α

M

)
, α = 1,

c2y
−1(Mn−1/α

)1−α
, 1 < α < 2.
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Combining equations (19) and (21) establishes equation (18). This establishes the

required bound on Z

max since it is equal in distribution to

∑(J 2+1)2k

i=1
∑

|x|>ρk
|x| ×

wi(x). �

6.2. Approximating (X̂

i )i,
 by (X


i )i,
. Recall the definitions of C�, C̄ and
Cqj−1,qj ,m from Section 5. The next step is to show that the collection (X̂


i )i,


is well approximated by a family (X

i )i,
 which has independent increments. This

involves two steps. First we replace Z

,j,m

i′ with Z
+,
,j,m

i′ , the latter having inde-

pendent increments. The second step is to use ergodic theory to replace φ

,j,m
i by

iCqj−1,qj ,m. Because this second step is a consequence of ergodic considerations,
and hence this particular approximation essentially requires us to assume that 0 is
in the infinite component, or at least a very large one (which is essentially the same
thing).

For any χ ∈ (0,1), the event H

k,χ defined in Section 4 implies that

max
1≤t≤2k

sup
0≤q1<q2≤1,m≥1

∣∣N
,[q1,q2],{m}
t − tCq1,q2,m

∣∣≤ χ2k

and

max
1≤t≤2k

∣∣∣∣N

t − ∑

(j,m)∈[J 2]
N


,[qj−1,qj ],{m}
t − tC̄q1,q2,m

∣∣∣∣≤ χ2k.

Recall the definition of χk → 0 from Lemma 4.3. The next lemma bounds the
difference in our time change.

LEMMA 6.5. For all J there exists εk = εk,J > 0 and k�(J ) such that εk → 0
as k → ∞ and such that for all (j,m) ∈ [J ]2 and for k > k�(J ),

P

(
#
{

 ∈ [k3] : max

1≤i≤2k

∫ 1

0

∣∣1{t ≥ 2−kiCqj−1,qj ,m

}

− 1
{
t ≥ 2−kφ


,j,m
i

}∣∣dt > εk

}
> εkk

3, Hk,χk

)

< k−3

and

P
(
#
{

 ∈ [k3] :

∣∣C̄ − 2−kφ
0,0,


2k

∣∣> εk

}
> εkk

3, Hk,χk

)
< k−3.

PROOF. Fix (j,m) ∈ [J ]2, and recall the definitions of N

,[qj−1,qj ],{m}
i and

φ

,j,m
i . The first is the number of new vertices v with escape probability satisfying

qj−1 ≤ pv < qj and degree m encountered by path 
 up to time i. The second
is the number of new vertices v not encountered in a previous path with local
escape probability qj−1 ≤ p̃v < qj and local degree d̃ω(v) = m encountered at
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time t ∈ [0, i] ∩ I 
. Then for large enough k,

P

(
max

1≤i≤2k

∣∣φ
,j,m
i − iCqj−1,qj ,m

∣∣> 1

2
εk + 4χk2k, H


k,χk

)

≤ P

(
max

1≤i≤2k

∣∣N
,[qj−1,qj ],{m}
i − φ


,j,m
i

∣∣> 1

2
εk + 3χk2k, H


k,χk

)
,

which follows from the definition of H

k,χk

. Further, the right-hand side is bounded
by

≤ P
(∣∣[2k] \ I 


∣∣≥ 22γ k, H

k,χk

)
+ P

(
#
{
i ≤ 2k : |pX


i
− p̃X


i
| > 1

k

}

+ #
{
i ≤ 2k : d̃ω(X


i

) �= dω(X

i

)}
>

1

k
2k, H


k,χk

)

+ P

(∣∣∣∣∣{X

i : 1 ≤ i ≤ 2k}∩


−1⋃

′=1

{
X
′

i : 1 ≤ i ≤ 2k}∣∣∣∣∣> 1

k
2k, H


k,χk

)

+ P

(
N


,[qj−1−1/k,qj−1+1/k],{m}
i >

1

4
εk, H


k,χk

)

+ P

(
N


,[qj−1/k,qj+1/k],{m}
i >

1

4
εk, H


k,χk

)

≤ k−5.

The first quantity in the sum is bounded by Lemma 6.2, the second is bounded by
Lemma 9.12 and the third is bounded by Lemma 9.10. The final two terms are 0
as long as εk tends to 0 slowly by the definition of H


k,χk
since P does not have an

atom at qj−1 or qj . Noting that N

i −∑

(j,m)∈[J 2] N

,qj−1,qj ,m

i and φ

,0,0
i make up

the remainder of the new vertices, we similarly have

P

(
max

1≤i≤2k

∣∣φ
,0,0
i − iC̄

∣∣> 8χk2k, H

k,χk

)
≤ k−5.

Taking εk converging to 0 sufficiently slowly and taking a union bound completes
the result by the definition of Hk,χk

. �

We now define a new process

X

i := ∑

(j,m)∈[J ]2

iCqj−1,qj ,m∑
i′=1

Z
+,
,j,m

i′

= ∑
(j,m)∈[J ]2

iCqj−1,qj ,m∑
i′=1

σ
+,
,j,m

i′
∑

|x|>ρ

xw

,j,m

i′ (x)
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and X
(t) := 2−k/(s−d)X

�t2k. Note that the X


i are independent for different 
,
have independent increments depending only on the coupling variables only. We
show that, using the previous lemma, we may couple X̂
 and X
 together in such
a way that they are close in Lq[0,1].

LEMMA 6.6. For each ε > 0 and when α ≥ 1 for each λ > 0, there exists
J ∗(s, d, ε, λ) and k∗(s, d, ε, λ, J ) so that if J > J ∗ and k > k∗, then

P
(
#
{

 ∈ [k3] :

∥∥X̂(t) − X(t)
∥∥
Lq [0,1] > ε

}
> εk3, Hk,χk

)= O
(
k−3).

PROOF. We have that∥∥X̂
(t) − X
(t)
∥∥
Lq [0,1] ≤ U 


1 + U 

2 ,

where

U 

1 := 2−k/(s−d)

∥∥∥∥∥
∑

(j,m)∈[J ]2

φ

,j,m

�t2k∑
i′=1

Z

,j,m

i′ − ∑
(j,m)∈[J ]2

�t2kCqj−1,qj ,m∑
i′=1

Z

,j,m

i′

∥∥∥∥∥
Lq [0,1]

and

U 

2 := 2−k/(s−d)

∥∥∥∥∥
φ

0,0,


�t2k∑
i′=1

Z

,0,0
i′

∥∥∥∥∥
Lq [0,1]

+ 2−k/(s−d)

∥∥∥∥∥
∑

(j,m)∈[J ]2

�t2kCqj−1,qj ,m∑
i′=1

Z

,j,m

i′ − Z
+,
,j,m

i′

∥∥∥∥∥
Lq [0,1]

.

Now U 

1 is bounded above by

1

2k/(s−d)

∑
(j,m)∈[J ]2

2k∑
i=1

[∫ 1

0

∣∣1{t ≥ 2−kiCqj−1,qj ,m

}− 1
{
t ≥ 2−kφ


,j,m
i

}∣∣dt

]1/q

× ∑
|x|≥ρk

|x|1{w
,j,m
i (x)=1}

≤ 2−k/(s−d)

× Z

max max

1≤i≤2k

[∫ 1

0

∣∣1{t ≥ 2−kiCqj−1,qj ,m

}− 1
{
t ≥ 2−kφ


,j,m
i

}∣∣dt

]1/q

and so by Lemmas 6.4 and 6.5 and Chernoff bounds for large k,

P

(
#
{

 ∈ [k3] : U 


1 >
ε

2

}
>

ε

2
k3, Hk,χk

)
< 2k−3.(22)
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Now define

U 

3 := 2−k/(s−d)

2C̄2k∑
i=1

∑
|x|>ρ

|x|w
,0,0
i (x)

+ 2−k/(s−d)
∑

(j,m)∈[J ]2

2kCqj−1,qj ,m∑
i=1

(
σ

+,
,j,m
i − σ

−,
,j,m
i

) ∑
|x|>ρ

|x|w
,j,m
i (x)(23)

d= 2−k/(s−d)

M

k∑

i=1

∑
|x|>ρ

|x|wi(x),

where d= denotes equality in distribution, and we define

M

k = 2ψJ 2k + ∑

(j,m)∈[J ]2

2kCqj−1,qj ,m∑
i=1

(
σ

+,
,j,m
i − σ

−,
,j,m
i

)
,

where we used the fact that the σ
+,
,j,m
i and σ

−,
,j,m
i are independent of the

w

,j,m
i . Provided that we have that φ


,0,0
2k ≤ 2C̄2k ≤ 2ψJ 2k , we have that U 


2 ≤ U 

3 .

Now by the definition of σ
±,
,j,m
i ,

P
(
σ

+,
,j,m
i �= σ

−,
,j,m
i

) ≤ ER

,j,m
i

(
(1 − qj )m

1 + (1 − qj )m

)

− R

,j,m
i

(
(1 − qj−1)m

1 + (1 − qj−1)m

)

= 1

(1 − qj )m
− 1

(1 − qj−1)m
≤ ψJ

since the R

,j,m
i are geometric. Hence by standard Chernoff estimates,

P

( ∑
(j,m)∈[J ]2

2kCqj−1,qj ,m∑
i=1

σ
+,
,j,m
i − σ

−,
,j,m
i ≥ 2ψJ 2k

)
= O

(
k−3)

since
∑

(j,m)∈[J ]2 Cqj−1,qj ,m ≤ C� < 1. By Lemma 6.5 and the previous equation,
we have

P

(
#
{

 ∈ [k3] : M


k > 4ψJ 2k}>
εk3

4
, H


k,χk

)
< O

(
k−3).
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Now by Lemma 6.4, for fixed λ in the case α ≥ 1, we have that if J is sufficiently
large, then ψJ can be made arbitrarily small, and so for large enough k,

P

(
2−k/(s−d)

4ψJ 2k∑
i=1

∑
|x|>ρk

|x|wi(x) >
ε

2

)
< ε/8,

when J ≥ J ∗. Again by large deviations and by equation (23) we have that

P

(
#
{

 ∈ [k3] : U 


2 >
ε

2

}
>

εk3

2
, Hk,χk

)
< O

(
k−3).(24)

Combining equations (22) and (24) completes the result. �

6.3. Approximating (X

i )i,
 by α-stable laws �


α(t). Finally we approximate
X


i by a stable law. So that the distribution of the increments does not depend on k,
we set

X

i = ∑

(j,m)∈[J ]2

iCqj−1,qj ,m∑
i′=1

σ
+,
,j,m

i′
∑

x∈Rd

xw

,j,m

i′ (x)

= X

i + ∑

(j,m)∈[J ]2

iCqj−1,qj ,m∑
i′=1

σ
+,
,j,m

i′
∑

|x|≤ρ

xw

,j,m

i′ (x)

and X
(t) := 2−k/(s−d)X

�t2k.

LEMMA 6.7. The difference of X
(t) and X
(t) satisfies

E
[∥∥X
(t) − X
(t)

∥∥
L∞[0,1]

]≤ {o(1), 0 < α < 1,
cλ1−α/2, 1 ≤ α < 2,

for c = c(s, d) and k large enough.

PROOF. By symmetry X

i − X


i is a martingale, and so by Doobs’s maximal
inequality,

E
[∥∥X
(t) − X
(t)

∥∥
L∞[0,1]

]≤ E
[∥∥X
(t) − X
(t)

∥∥2
L∞[0,1]

]1/2

≤ 2dE
[∣∣X
(1) − X
(1)

∣∣2]1/2

≤
{

o(1), 0 < α < 1,
cλ1−α/2, 1 ≤ α < 2,

as required since
∑

(j,m)∈[J ]2 Cqj−1,qj ,m ≤ 1. �

Since X

i is a process with i.i.d. increments, in this subsection we can determine

the scaling limit of X
(t) under the Lq([0,1]) topology as well as in the Skorohod
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topology in D[0,1]. Note that for this step, we can proceed without reference to
the Long Range Percolation model, and as a consequence, the meaning of P is
completely unambiguous (i.e., independent of the measure on environments). Let

KJ = ∑
(j,m)∈[J ]2

ςj,m,J Cqj−1,qj ,m,

and ς is defined in Lemma 6.1.

LEMMA 6.8. For 1 ≤ q < ∞, the weak limit of X
(t) in the Skorohod or Lq

topology is K
1/α
J �α(t).

PROOF. The random variable
∑

x xw

,j,m
i (x) is in the domain of attraction

of �α(1), and hence we have that σ
+,
,j,m
i

∑
x∈Zd xw


,j,m
i (x) is in the domain of

attraction of (Eσ
+,
,j,m
i )1/α�α(1). As ςj,m,J = limk Eσ

+,
,j,m
i , this implies that

2−k/α

2ktCqj−1,qj ,m∑
i′=1

σ
+,
,j,m

i′
∑
x

xw

,j,m

i′ (x)

converges weakly in both the Skorohod topology on D[0,1] and the Lq([0,1])
topology to (ςj,m,J Cqj−1,qj ,m)1/α�α(t). Since for different (j,m) the sums are
independent, it follows that

2−k/α
∑

(j,m)∈[J ]2

2−ktCqj−1,qj ,m∑
i′=1

σ
+,
,j,m

i′
∑

|x|≤ρ

xw

,j,m

i′ (x)

converges weakly to K
1/α
J �α(t). �

Ultimately for our coupling, we need to take J going to infinity and as such in
the following lemma, we show that KJ converges as J → ∞.

LEMMA 6.9. The following limit exists:

K := lim
J→∞KJ = lim

J→∞
∑

(j,m)∈[J ]2

ςj,m,J Cqj−1,qj ,m(25)

with 0 < K < 1.

PROOF. For m ≥ 1 and q ∈ [0,1], let ηm(q) = C0,q,m and

ξ(q,m) = P

(
R

(
(1 − q)m

1 + (1 − q)m

)
> R̃

(
(1 − r)d

1 + (1 − r)d

))
,
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where R and R̃ are independent Geometric processes defined in equation (10) and
where (r,d) is distributed according to (P, D). Since since R(t) is decreasing in t ,
it follows that ξ is increasing in q . Further define

K =
∞∑

m=1

∫ 1

0
ξ(q,m)dηm(q),

which we interpret as a Riemannn–Stieltjes integral. We remark that regardless of
its size this is well defined since each summand is well defined and positive. Now
if qj−1 ≤ q ≤ qj , then since R(t) is a geometric process,

0 ≤ ςj,m,J − ξ(q,m)

≤ P

(
R

(
(1 − qj )m

1 + (1 − qj )m

)
�= R

(
(1 − q)m

1 + (1 − q)m

))

≤ ER

(
(1 − qj )m

1 + (1 − qj )m

)
− R

(
(1 − q)m

1 + (1 − q)m

)

= 1

(1 − qj )m
− 1

(1 − q)m
≤ ψJ

with ψJ the error tolerance defined in (9). Hence we have that

|KJ − K| ≤
∞∑

m=1

∫ 1

qJ

ξ(q,m)dηm(q) +
∞∑

m=J+1

∫ qJ

0
ξ(q,m)dηm(q)

+
J∑

m=1

J∑
j=1

∫ qj

qj−1

ςj,m,J − ξ(q,m)dηm(q)

≤ 2ψJ ,

since
∑∞

m=1
∫ 1
qJ

1dηm(q) +∑∞
m=J+1

∫ qJ

0 1dηm(q) = C̄ ≤ ψJ . The fact that ψJ

converges to 0 establishes that KJ converges to K . Now since the walk is transient
under Pν0 , all return probabilities are strictly less than 1. Each walk arrives at
new vertices at a constant rate by the ergodic theorems below which establishes
that K > 0. But by definition K ≤ C�, the total rate at which new vertices are
encountered, which is strictly less than 1. �

6.4. The complete coupling along dyadic subsequences. We now combine all
the results of the section to prove the full coupling between the walks X
(t) and
isotropic α-stable Lévy motion �
(t).

THEOREM 6.10. For each ε > 0 and 1 ≤ q < ∞ for k sufficiently large, there

is a coupling of the random walks (X
(t))
[k3]

=1 with independent α-stable Lévy
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motions (�
(t))
[k3]

=1, satisfying

P
(
#
{

 ∈ [k3] :

∥∥X
(t) − K1/(s−d)�
(t)
∥∥
Lq([0,1]) > ε, H


k,χk

}
> εk3)≤ 1

k2 .

PROOF. If we take λ > 0 small enough and take J large enough by Corol-
lary 6.3 and Lemma 6.6, we have that

P

(
#
{

 ∈ [k3] :

∥∥X
(t) − X
(t)
∥∥
Lq [0,1] >

ε

3
, H


k,χk

}
>

εk3

3

)
= O

(
k−3).(26)

By Lemma 6.8 we have that X
(t) converges weakly to K
1/(s−d)
J �
(t) in

Lq[0,1]. Hence by Skorohod’s almost sure representation theorem (see, e.g.,
[9]) we can couple �1 and X1 so that when k is sufficiently large P(‖X1(t) −
K

1/(s−d)
J �1(t)‖Lq [0,1] > ε/4) < ε/5. For small enough λ > 0, by Lemma 6.7 we

can then couple X1(t) and K
1/(s−d)
J �1(t) so that

P
(∥∥X1(t) − K

1/(s−d)
J �1(t)

∥∥
Lq [0,1] > ε/3

)
< ε/4.

As the X
(t) and �
(t) are separately independent and identically distributed, we
can extend this coupling so that by Chernoff bounds,

P

(
#
{

 ∈ [k3] :

∥∥X
(t) − K
1/(s−d)
J �
(t)

∥∥
Lq [0,1] > ε/3

}
>

εk3

3

)
= O

(
k−3).(27)

Finally since KJ converges to K , we have that for large enough J ,

P
(∥∥K1/(s−d)

J �1(t) − K1/(s−d)�1(t)
∥∥
Lq [0,1] > ε/3

)
< ε/4

and hence again using Chernoff bounds,

P

(
#
{

 ∈ [k3] :

∥∥K1/(s−d)
J �
(t) − K1/(s−d)�
(t)

∥∥
Lq [0,1] >

ε

3

}
>

εk3

3

)
(28)

= O

(
1

k3

)
.

Combining equations (26), (27) and (28) completes the proof. �

7. Proof of Theorem 1.1. We begin with a standard topological lemma for
separable Banach spaces whose proof we include for completeness.

LEMMA 7.1. Let M be a complete separable metric space with distance
d(·, ·), and let μ be a Borel probability measure on M measurable with respect
to the σ -algebra generated by the open subsets of M. Then for any ε1 > 0, there
exists an ε2 > 0 and a finite collection of disjoint measurable subsets S1, . . . , SM

such that:
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• the union contains most of the mass of the distribution μ(
⋃M

i=1 Si) > 1 − ε1;
• the Si are not too large, supx,y∈Si

d(x, y) < ε1;
• the Si are well separated, infi �=j,x∈Si,y∈Sj

d(x, y) > ε2.

PROOF. By separability there exists a countable dense subset (xi)i∈N. For any
sequence (ri)i∈N, ri ∈ (ε1/2, ε1), the family of open balls Bri (xi) covers M. Fur-
ther, it is possible to choose these ri so that μ(∂Bri (xi)) = 0 for all i [∂Bri (xi)

denotes the boundary of the ball]. For such a choice, consider the usual dis-
joint decomposition S′

1 = Br1(x1), S′
i = Bri (xi) \ (

⋃i−1
j=1 S′

j ). By construction,
μ(intS′

i ) = μ(S′
i ) (where intA denotes the interior of A), and the sequence (intS′

i )i
gives a disjoint family of open sets whose union has full measure. Thus we may
find M > 0 so that

μ

(⋃
i≤M

intS′
i

)
≥ 1 − ε1/2.

By continuity of μ, there is ε2 > 0 so that if

Si = {
x ∈ intS′

i :d
(
x, ∂S′

i

)≥ ε2
}
,

then

μ

(⋃
i≤M

Si

)
≥ 1 − ε1.

�

Applying the previous lemma, for each integer m, choose a finite collection of
disjoint measurable subsets Sm

1 , . . . , Sm
M(m) of Lq([0,1]) such that P(K1/(s−d) ×

�1(t) ∈ ⋃M
i=1 Si) > 1 − 1

m
and supx,y∈Si

‖x − y‖Lq [0,1] < 1
m

. We set v(m) =
infi �=j,x∈Si,y∈Sj

‖x − y‖Lq [0,1] and let Sm+
i denote the enlarged set

Sm+
i :=

{
x ∈ Lq([0,1]) : inf

y∈Sm
i

‖x − y‖Lq [0,1] ≤ min
{

1

m
,

1

3
υ(m)

}}
.

By construction, these enlargements are still disjoint. The following lemma shows
that for Pμ0 -a.e. environment, the random walk distribution places enough weight
on these enlarged sets.

LEMMA 7.2. For each m > 0 and 1 ≤ i ≤ M(m), and for μ0 almost every
environment ω ∈ �0,

lim inf
n

P
(
n−1/αX1�nt ∈ Sm+

i |ω)− P
(
K1/α�1(t) ∈ Sm

i

)≥ 0.

PROOF. First observe that for any r > 0, by the self-similarity property
(K

r
)1/α�
(rt) is equal in distribution to K1/αZ
(t), so

P

((
K

r

)1/α

�
(rt) ∈ Sm
i

)
= P

(
K1/α�1(t) ∈ Sm

i

)
.(29)
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Now fix ε > 0 and k a positive integer and set θ = min{ 1
m

, 1
3υ(m)}. By Theo-

rem 6.10 we may choose there exists a coupling of (X
(t))
[k3]

=1 and (�(t))

[k3]

=1 sat-

isfying

P

(
#
{

 ∈ [k3] :

∥∥X
(t) − K1/α�
(t)
∥∥
Lq([0,1]) > 21/α+1/qθ, H


k,χk

}
>

εk3

4

)
≤ k−2.

Now for 2k−1 < n ≤ 2k , we have that

∫ 1

0

∣∣∣∣X

�nt

n1/α
−
(

K2k

n

)1/α

�


(
nt

2k

)∣∣∣∣
q

dt

=
(

n

2k

)−1 ∫ n/2k

0

∣∣∣∣X


�2kt

n1/α
−
(

K2k

n

)1/α

�
(t)

∣∣∣∣
q

dt

≤
(

n

2k

)−1−q/α ∫ 1

0

∣∣X
(t) − K1/α�
(t)
∣∣q dt.

Hence since n
2k > 1

2 ,∥∥2−k/αX

�2kt − K1/α�
(t)

∥∥
Lq [0,1] < 21/α+1/qθ

implies that ∥∥∥∥n−1/αX
�nt −
(

K2k

n

)1/α

�


(
n

2k
t

)∥∥∥∥
Lq [0,1]

< θ.

Thus

P

(
#
{

 ∈ [k3] : max

1/2<n/2k≤1

∥∥∥∥X

�nt

n1/α
−
(

K2k

n

)1/α

�


(
nt

2k

)∥∥∥∥
q

> θ, H

k,χk

}
>

εk3

4

)

≤ 1

k2

and hence when k is large enough so that χk < ε
12 , then

P

(
#
{

 ∈ [k3] :

max
1/2<n/2k≤1

∥∥∥∥X

�nt

n1/α
−
(

K2k

n

)1/α

�


(
nt

2k

)∥∥∥∥
q

> θ

}
>

εk3

3
, Hk,χk

)
(30)

≤ 1

k2 .

Now if (K2k

n
)1/α�
( n

2k t) ∈ Sm
i and ‖n−1/αX
�nt − (K2k

n
)1/α�
( n

2k t)‖Lq < θ , then

by definition, we have that n−1/αX
�nt ∈ Sm+
i . It follows by the triangle inequality
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that

P

(
min

1/2<n/2k≤1
P
(
n−1/αX1�nt ∈ Sm+

i |ω)− P
(
K1/α�1(t) ∈ Sm

i

)
< −ε, Hk,χk

)

≤ P

(
#
{

 ∈ [k3] :

max
1/2<n/2k≤1

∥∥∥∥X

�nt

n1/α
−
(

K2k

n

)1/α

�


(
nt

2k

)∥∥∥∥
q

> θ, H

k,χk

}
>

εk3

4

)

+
2k∑

n=2k−1+1

P

(∣∣∣∣#
{

 :

X
�nt
n1/α

∈ Sm+
i

}
− k3

P

(X1�nt
n1/α

∈ Sm+
i

∣∣∣ω)∣∣∣∣> εk3

3

)

+
2k∑

n=2k−1+1

P

(∣∣∣∣#
{

 ∈ [k3] :

(
K2k

n

)1/α

�


(
n

2k
t

)
∈ Sm

i

}

− k3
P
(
K1/α�1(t) ∈ Sm

i

)∣∣∣∣> εk3

3

)

≤ O
(
k−2),

where we bound line 2 using equation (30), and where each term in the two sums
is bounded by e−ck3

by Chernoff bounds for some c > 0. Summing over k and
using the fact that P(0 ∈ C∞) > 0, we have that for all large enough k0,

Pμ0

(
inf

n>2k0
P

(X1�nt
n1/α

∈ Sm+
i |ω

)
− P

(
K1/α�1(t) ∈ Sm

i

)
< −ε,

⋂
k>k0

Hk,χk

)

= O
(
k−1

0

)
.

By Lemma 4.3 we have that limk→∞ Pμ0(
⋂

k′>k Hk,χk
) = 1, and so

lim inf
n

P
(
n−1/αX1�nt ∈ Sm+

i |ω)− P
(
K1/α�1(t) ∈ Sm

i

)
> −ε μ0-a.s.,

and the result follows by taking ε to 0. �

Now using the previous lemma, we prove weak convergence of the measure
conditioned on the environment establishing the main theorem.

PROOF OF THEOREM 1.1. Fix ε > 0. We will let Xn = Xn(t) denote
n−1/α∑�nt

i=1 X1
i ∈ Lq([0,1]) and, for notational convenience, let Z denote

K1/α�(t) ∈ Lq([0,1]) where K is defined in (25). To establish Theorem 1.1 we
will show that the law of (Xn,0 ≤ t ≤ 1) converges weakly in Lq([0,1]) to the
law of (Z,0 ≤ t ≤ 1).
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For a bounded continuous functional f on Lq([0,1]) with ‖f ‖∞ ≤ 1, we de-
note

f δ(x) = sup
y∈Lq :‖x−y‖≤δ

f (y).

Since f is continuous f δ → f point-wisely and so by the bounded convergence
theorem, Ef δ(Z) converges to Ef (Z) as δ → 0. Choose δ > 0 to be small enough
so that we have that Ef δ(Z) − Ef (Z) < ε/4, and let m be large enough so that
4
m

< ε and 3
m

< δ. With this it follows that

max
x∈Sm+

i ,z∈Sm
i

‖x − z‖Lq [0,1] ≤ 3

m
< δ

and hence

inf
z∈Sm

i

f δ(z) ≥ sup
x∈Sm+

i

f (x).(31)

Since ‖f ‖∞ ≤ 1, it follows that

Ef
(
Xn|ω)≤ M(m)∑

i=1

E
(
f
(
Xn)1{Xn ∈ Sm+

i

}|ω)+ P

(
Xn /∈

M(m)⋃
i=1

Sm+
i

∣∣∣ω
)
.(32)

Now by Lemma 7.2 we have that for μ0 almost every environment ω ∈ �0,

lim sup
n

P

(
Xn /∈

M(m)⋃
i=1

Sm+
i

∣∣∣ω
)

= lim sup
n

1 −
M(m)∑
i=1

P
(
Xn ∈ Sm+

i |ω)
(33)

≤ 1 −
M(m)∑
i=1

P
(
Z ∈ Sm

i

)≤ 1

m
μ0-a.s.

From equation (31), we have that

E
(
f
(
Xn)1{Xn ∈ Sm+

i

}|ω)≤ M(m)∑
i=1

Ef δ(Z)1
{
Z ∈ Sm

i

}
(34)

+ 2
M(m)∑
i=1

∣∣P(Xn ∈ Sm+
i |ω)− P

(
Z ∈ Sm

i

)∣∣.
We bound the first term on the right-hand side by

M(m)∑
i=1

Ef δ(Z)1
{
Z ∈ Sm

i

}≤ Ef δ(Z) + P

(
Z /∈

M(m)⋃
i=1

Sm
i

∣∣∣ω
)

(35)

≤ Ef (Z) + 1

m
+ ε

4
.
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For the second term by Lemma 7.2, we have that for μ0 almost every ω ∈ �0,

lim sup
n

M(m)∑
i=1

∣∣P(Xn ∈ Sm+
i |ω)− P

(
Z ∈ Sm

i

)∣∣

= lim sup
n

M(m)∑
i=1

P
(
Xn ∈ Sm+

i |ω)− P
(
Z ∈ Sm

i

)
(36)

≤ 1 − P

(
Z ∈

M(m)⋃
i=1

Sm
i

)
≤ 1

m
μ0-a.s.

Combining equations (32), (33), (34), (35) and (36) establishes that for μ0, almost
every ω ∈ �0

lim sup
n

Ef
(
Xn|ω)≤ Ef (Z) + 3

m
+ ε

4
≤ Ef (Z) + ε μ0-a.s.

Since f was arbitrary, the same reasoning applies equally to −f and f . Therefore,
we have

lim inf
n

Ef
(
Xn|ω)≥ Ef (Z) − ε μ0-a.s.

and hence Ef (Xn|ω) converges to Ef (Z) almost surely which establishes the
weak convergence in law. �

8. Ergodic theory. To make sure that the number of new vertices that each
walk X


i visits in the time interval [0,2k] is approximately 2kC, we obtain esti-
mates using ergodic theory. We introduce the chain defined by “the environment
seen from the particle.” This technique only applies to the walks individually. Later
(see Lemma 9.10) we will give a quantitative estimate on the number of vertex in-
tersections between a pair of walks under the distribution Pμ0 (and under Pμ as
well). When combined with the ergodic theory estimates outlined below, we see
that with high probability all the walks (X
)
∈[k3] visit the same positive density
of new vertices in [0,2k].

Let τx :� → � denote the shift operation: for any edge b ∈ Z
d × Z

d we de-
note τx · ω(b) := ω(b + x). By our assumption of translation invariance of the
connection probabilities pi,j , the measure μ is clearly translation invariant for all
the shifts. The Kolmogorov 0–1 law implies that μ is ergodic with respect to the
collection of shifts {τx}x∈Zd ; see below for a similar statement for μ0.

Given an initial environment ω ∈ � and a simple random walk trajectory Xi

(defined relative to ω), τXi
:� → � defines a (stochastic) map. Let ωi := τXi

(ω),
with initial environment ω0 = ω. It is clear that ωi is a Markov process with state
space �, since the underlying random walk is. We let Q(ω,dω′) denote the tran-
sition kernel for ωi going from ω to ω′.
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Given an environment ω, let d(ω) = dω(0) denote the degree of ω at 0. Recall
dν(ω) = d(ω)

Eμ[d(ω)]dμ(ω), and let us introduce the Hilbert space

L2(ν) = {
f :� → R : Eν

(
f 2)< ∞}

with inner product 〈f,g〉 := ∫
dν(ω)f (ω)g(ω). Since Xi is reversible under the

weighting dω(x), it follows that the operator Aif (ω) := f (ωi) is self adjoint
with respect to L2(ν). We are interested in elevating the ergodic properties of
(μ,�, F , (τx)x∈Zd ) to ergodic properties of the chain ωi . We briefly indicate how
this is done.

Let �2n+1 denote the space of (finite) two-sided sequences (ω−n · · ·ω0, . . . ,

ωn),ωj ∈ �. On �2n+1 introduce probability measure induced by ωi . That is, for
a cylinder event A = A−n × · · · × An,

P2n+1(A) :=
∫
A−n

dν(ω−n)

∫
A−n+1

P(ω−n,dω−n+1) · · ·
∫
An

P (ωn−1,dωn).

Because ωi is stationary and reversible under ν, {P2n+1}n∈N naturally identifies
with a consistent family of probability measures on �Z. Equipping �Z with the
Borel σ -field B defined by the product topology (over time and space), we then
have the existence of a probability measure, which by slight abuse of notation, we
denote by Pν , on �Z consistent with the family P2n+1. Moreover, if T denotes
the Bernoulli shift [i.e., (Tω)i = ωi+1 for all ω ∈ �Z], then Pν is stationary with
respect to T, and we can study its ergodic components.

Denoting �0 = {ω : 0 ∈ C∞(ω)}, we let τv act on �0 through the “induced shift”
σv : for ω ∈ �0, define nv(ω) := inf{n : τnvω ∈ �0}. Then σv(ω) := τnv(ω)v(ω).
Analogously with (�0, F0, ν0) denoting the restriction of the probability space
(�, F , ν) to �0, let Pν0 denote the corresponding restriction of Pν on �Z

0 with
σ -algebra B0.

We need the following general result, the proof of which may be found, for ex-
ample, in [7]. Let (X, X , λ, T ) be a probability space with the invertible, measure
preserving, ergodic transformation T . Let A ∈ X be a set of positive measure. For
x ∈ X, let n(x) = inf{k > 0 :T k(x) ∈ A}. Then the Poincaré recurrence theorem
implies μ-a.s. that n(x) < ∞. We define S :X → A by S(x) = T n(x)(x) (which is
well defined up to a set of measure zero).

LEMMA 8.1. As a map from A to A, S is measure preserving, ergodic and
invertible up to a set of λ measure 0.

As a consequence we have (again see [7]):

LEMMA 8.2. Fix b ∈ N. Let B ∈ F0 such that for almost all ω ∈ B ,

P(τXb
· ω ∈ B|ω) = 1.

Then it follows that B is a 0–1 event under ν0.
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Finally by a straightforward adaptation of Proposition 3.5 from [7], we have:

LEMMA 8.3. The measure space (Pν0,�
Z

0 , B0) is ergodic with respect to the
Bernoulli shift Tb for any b ∈ N.

Recall Birkoff’s ergodic theorem:

THEOREM 8.4 (Theorem 6.2.1 from [14]). Let (X, X , λ) be a probability
space with measure preserving transformation T . Let I be the completion of the
σ -field of events invariant under T . Then for any F ∈ L1(X,λ),

1

N

N∑
i=1

F
(
T i(ω)

)→ E[F |I] λ-a.s.

Our main application of Theorem 8.4 is to the number of new vertices of dif-
ferent “types.” Recall that Ni is the indicator of the event that Xi is the first visit
to that vertex, and pv denotes the quenched probability that a random walk started
from v will ever return there. For intervals [a, b] = A ⊂ [0,1] and M ⊂ N, let

N
A,M
t :=

t∑
i=1

Ni1
{
pXi

∈ A,dω(Xi) ∈ M
}
.

Let L(A, M) ∈ �Z denote the event

L(A, M) := {
ω :ω0 /∈ {ωi : i ≤ −1},p(ω0) ∈ A,d(ω0) ∈ M

}
.

LEMMA 8.5. We have that

sup
A,M

∣∣∣∣1t N
A,M
t − Pν0

(
L(A, M)

)∣∣∣∣→ 0 ν0- or μ0-a.s.

as t → ∞ where the supremum is over all closed intervals A ⊂ [0,1] and M ⊂ N

and that

Pν0

(
L
([0,1),N

))
> 0.

PROOF. It is enough to prove the converge of 1
t
N

A,M
t for an arbitrarary choice

of the pair (A, M) with the extension to uniform convergence over all pairs fol-
lowing by discretising the space.

We cannot immediately apply Theorem 8.4 as the Ni are not a stationary se-
quence since whether a vertex is new depends on the previous i steps and of course
i varies. So we compare it to the number of vertices which are new in the doubly
infinite walk (Xi)i∈Z. Defining

f (ω) = 1
{
ω0 /∈ {ωj :−∞ < j < 0}}1{p(ω0) ∈ A, d(ω0) ∈ M

}
,
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we have that

f
(
Tiω

)= 1
{
ωi /∈ {ωj :−∞ < j < i}}1{p(ωi) ∈ A,dω(ωi) ∈ M

}
.

Thus applying Lemma 8.3 and Theorem 8.4 we have that

1

t

∑
0<i≤t

1
{
ωi /∈ {ωj : j < i}}1{p(ωi) ∈ A, d(ωi) ∈ M

}
(37)

→ Pν0

(
L(A, M)

)
a.s.

The quantity

1

t
N

A,M
t − 1

t

∑
0<i≤t

1
{
ωi /∈ {ωj :−∞ < j < i}}1{p(ωi) ∈ A,dω(ωi) ∈ M

}

is positive. By transience and stationarity it converges to 0 in L1(Pν0). (Note that
transience under Pν0 follows immediately from Theorem 9.1. It was originally
proved via electrical network methods in [6].) On the other hand if t = bq + r ,

1

t
N

A,M
t ≤ r/t + q/t

∑
i≤b

1

q
N A,M

q ◦ Tqi .

For any q fixed, we may apply Lemma 8.3 and Theorem 8.4 (with respect to the
transformation Tq ) to conclude

lim sup
t

1

t
N

A,M
t ≤ 1

q
Eν0

[
N A,M

q

]
.

Hence we have

Pν0

(
L(A, M)

)≤ lim inf
t

1

t
N

A,M
t ≤ lim sup

t

1

t
N

A,M
t ≤ 1

q
E0
[
N A,M

q

]
a.s.

The L1(Pν0) convergence implies 1
q
E0[N A,M

q ] → Pν0(L(A, M)) as q → ∞.
Note that reversibility and transience imply

Pν0

(
L
([0,1),Z

))
> 0,

which completes the lemma. �

Now recalling the definition of Hk,χ we prove Lemma 4.3.

PROOF OF LEMMA 4.3. By Lemma 8.5, we have that

lim
t→∞ sup

A,M

∣∣∣∣1t N
A,M
t − Pν0

(
L(A, M)

)∣∣∣∣= 0 μ0-a.s.
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It follows that for μ0-almost all random environments ω ∈ �0, there exists a finite
random variable k∗(ω), measurable with respect to the σ -algebra σ(ω), such that

P0

( ⋂
k≥k∗(ω)

H

k,χ > χ

∣∣∣ω)> 1 − χ/2.

Since the walks X

i are conditionally independent given ω by applying the strong

law of large numbers to the random variables

1
{ ⋂

k≥k∗(ω)

H

k,χ

}
,

we have that for μ0-almost all random environments ω ∈ �0,

lim inf
L

1

L3 #
{

 ∈ [L3] :1

{ ⋂
k≥k∗(ω)

H

k,χ

}
= 1

}
≥ 1 − χ/2 a.s.

Equation (6) follows by the definition of Hk,χ . Taking a sequence χk converging
to 0 sufficiently slowly we also have (7). �

9. Bounds on rare events. Let us recall the main result of [11]. It is proved
there in the continuous time case, but extends without significant change to the
discrete time walk as well (and will be used here in the latter form).

THEOREM 9.1 (Theorem 1 of [11]). Let us consider s ∈ (d, d + 2) for d ≥ 2
and s ∈ (1,2) for d = 1. Assume, for simplicity, that there exists L such that

px,y = 1 − e−β‖x−y‖−s
2 for ‖x − y‖2 ≥ L,

and suppose that the px,y are translation invariant and percolating. Then there
exist universal constants C1, ζ > 0 and a family of random variables (Tx(ω))x∈Zd

with the property that Tx(ω) < ∞ whenever x ∈ C∞(ω), such that the following
holds:

P ω
t (x, y) ≤ C1dω(y)t−d/(s−d) logζ t

for t ≥ Tx(ω)∨Ty(ω). Moreover for x ∈ C∞(ω) for any η > 0, there exists C(η) >

0 so that we have

μ
(
Tx > k|x ∈ C∞(ω)

)≤ C(η)k−η.

Theorem 9.1 will be used to help rule out (in the probabilistic sense) various
unwanted dependencies between the random walk trajectories which cause our
coupling to fail. Theorem 9.1 applies only to estimates on the law of the k3 walks
under Pν0 and Pμ0 . Since the coupling construction relies on Pμ, it is convenient to
extend these estimates to Pμ. For this purpose the following lemma, whose proof
may be found in [11] is useful:
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LEMMA 9.2 (Lemmas 2.9 and 2.10 of [11]). Let N > 0 be fixed, and let n1 >

n2 ≥ · · · ≥ nm enumerate the cluster sizes inside [−N,N]d (having sampled all
internal edges). Then there exist c1, c2, ζ > 0 independent of N , so that

μ
(
n2 > logζ N

)
< c1e

−c2 log2 N.

Also, if M denotes the largest internally connected component in [−N,N]d , there
is ε > 0 so that

Pμ

(
0 ↔ Bc

N(0)|0 /∈ M
)≤ CN−ε.

Let us also recall a (simple) technical lemma from [11] which we will need
below. Let Dt = max0≤u≤t ‖Xu‖2 denote the Euclidean diameter of the walk at
time t .

LEMMA 9.3 (Lemma 4.1 of [11]). Let 1/(s − d) < p. Then for either the
discrete or continuous time process, there exists a constant c > 0 so that for any
x ∈ Z

d ,

P ω
x

(
Dt > ctp+1 infinitely often

)= 0

μ-a.s. Moreover, there exist constants c1, c2, c3 > 0 such that for any T ,λ,p, r > 0
with p as above and r < s − d ,

P
({

P ω
0
(∃t ≤ T :Dt ≥ c1t

p+1)> c2/T λ})≤ c3T
λ+1−pr .

The implicit consequence of the previous two lemmas is the following: if we
observe the process of k3 walks under Pμ up to time 2k and find that more than
kδ1+ε vertices have been uncovered in the exploration process, then with very high
probability, 0 ∈ C∞(ω).

In what follows, we formulate technical lemmas controlling the behavior of the

walks (X

i )


∈[k3]
i∈[2k] . As we have indicated above, it is ultimately important to us that

these estimates hold for the measure Pμ. Most often, after scaling the walk by n−α ,
the nontrivial statements only concern Pμ0 . Further, it is often convenient for us
to use stationarity, only available under Pν,Pν0 . For these reasons, we give the
following lemma which allows us to transfer bounds from one of these measures
to another:

LEMMA 9.4. Let A be an event defined on the sample space � × (Zd)N[k3]
.

Then, there exist constants C1, . . . ,C4 < ∞ so that we have

Pμ0(A) ≤ C1Pμ(A),

Pν0(A) ≤ C2Pν(A),

C−1
3

Pν0(A)

− log Pν0(A)
≤ Pμ0(A) ≤ C3Pν0(A),

C−1
4

Pν(dω(0) ≥ 1,A)

− log Pν(dω(0) ≥ 1,A)
≤ Pμ

(
dω(0) ≥ 1,A

)≤ C4Pν

(
dω(0) ≥ 1,A

)
.
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PROOF. Since s > d , and we have assumed that μ is supercritical, the first two
inequalities, as well as the upper bounds in the third and fourth, are obvious.

On the other hand, an easy calculation gives Pμ(dω(0) > x) ≤ B1 exp(−B2x)

for some B1,B2 > 0. Thus we have

Pμ0(A) ≥ Pμ0

(
ω ∈ A,dω(0) < x

)
≥ x−1C−1

Pν0

(
ω ∈ A,dω(0) < x

)
(38)

≥ x−1C−1[
Pν0(A) − Pν0

(
dω(0) ≥ x

)]
.

Using the tail bound, let us take x = − 2
B2

log Pν0(A). We get that

Pμ0(A) ≥ C′ Pν0(A)

− log Pν0(A)
.

The last bound follows similarly. �

Recall that p(ω) denotes the return probability of the origin in the environ-
ment ω, (P, D) denotes joint distribution of (p(ω),d(ω)) under Pμ.

We now recall the definitions made in Section 4 and prove a series of lemmas
establishing Proposition 4.2 which provides the quantitative estimates needed for
the proof of our main theorem. For γ, δ > 0, let

A(ρ) = {∃v ∈ Z
d,ω0,v = 1, |v| > ρ

}
,

B(ρ, γ, k) = {∀v ∈ Z
d if ω0,v = 1, |v| > ρ, then v /∈ {X1, . . . ,X2γ k+1}},

C(δ, γ, k) =
{

max
0≤t≤2γ k

|Xt | > 2δk
}
.

Denote the event G as

G(ρ, δ, γ, k) = A(ρ) ∩ B(ρ, γ, k) ∩ C(δ, γ, k),

which which we bound in the following lemma.

LEMMA 9.5 (No quick escapes of local neighborhoods without using long
edges). Let ρ > 2k/(2(s−d)). For any δ∈ (0,1) there exists γ, ε > 0 and c de-
pending on γ, ε such that

Pμ

(
G(ρ,γ, δ, k)

)
< c2−εkρ−α(1−o(1)).

PROOF. The lemma will be proved if we can show there exists ε > 0, not
necessarily the same as in the statement of the lemma, so that

Pμ

(
G(k,ρ, γ, δ)|A(ρ)

)
< c2−εk(39)

since it is easy to see that

Pμ

(
A(ρ)

)≤ c1(ε1)ρ
−α(1−ε1)
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for any ε1 > 0.
Let A2(ρ) denote the event that there are two or more edges of lengths at least

ρ connected to 0. We have that

Pμ

(
P ω

0
(
C(δ, γ, k) ∩ B(ρ, γ, k)

)|A(ρ)
)

≤ Pμ

(
C(δ, γ, k)|A(ρ)c

)+ Pμ

(
A2(ρ)|A(ρ)

)
.

Now

Pμ

(
A2(ρ)|A(ρ)

)≤ Cρ−α(1−o(1)).(40)

But for all k sufficiently large,

Pμ

(
C(δ, γ, k)|A(ρ)c

)≤ 2Pμ

(
C(δ, γ, k)

)
.

We apply Lemma 9.3. It suffices to choose the parameters γ,λ,p, r so that ε′ =
1/γ (pr −1−λ) > 0, γ (p+1) < δ. This can be done by first taking pr sufficiently
large depending on λ, and then taking γ sufficiently small depending on δ/(p+1).
Then we have

P
(
C(δ, γ, k)

)≤ c22−γ λk.

Letting ε = min(γ λ, ε′) proves (39). �

For the statement of the next lemma, recall that

D(ρ, k) = {∃v ∈ Z
d,ω0,v = 1, |v| > ρ,

∃J ∈ [2k] s.t. XJ = v, (0, v) /∈ {(Xi,Xi+1)
}
i≤J

}
.

LEMMA 9.6 (Visiting endpoints of long edges without using the edge is un-
likely). Let ρ > 2k/(2(s−d)). There exists c > 0 such that

Pμ

(
D(ρ, k)

)
< c2kρ−s .

PROOF. Consider Pμ(D(ρ, k)) and recall the definition of A2(ρ) from in
Lemma 9.5. Since the event D requires reaching the other end of a long edge
without traversing it first, we have that

Pμ

(
D(ρ, k)

) ≤ Pμ

(
A2(ρ)

)+ 2k∑
t=1

∑
v:|v|≥ρ

Pμ(Xt = v)Pμ(ω0,v = 1)

≤ Cρ−2α(1−o(1)) + 2kP(ρ)

= O
(
2kρ−s). �
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Finally, let us consider the pair of related events

F(ρ, γ, k) = {∃i,2γ k+1 ≤ i ≤ 2k,

∃v ∈ Z
d s.t. ω0,v = 1 and ‖v‖∞ ≥ ρ,Xi ∈ {0, v}}

F ∗(ρ, k) = {∃x, v ∈ Z
d, i, j ∈ [2k],ωx,v = 1,‖v‖∞ ≥ ρ,X1

i and X2
j ∈ {x, v}}.

LEMMA 9.7 (Returning to long edges after a transient time is unlikely). For
any 0 < γ < 1, there exists ε > 0 and a constant c = c(ε) such that

Pμ0

(
F(ρ, γ, k)

)
< c2−εkρ−α(1−o(1)).

PROOF. The lemma follows from a straightforward application of Theo-
rem 9.1 and the fact that Pμ0(A(ρ)) = Cρ−α(1−o(1)). �

COROLLARY 9.8 (Pairs of walks do not intersect at long edges). Let ρ >

2k/(2(s−d)). There exists ε > 0 independent of ρ and a constant c = c(ε) such that

Pμ

(
F ∗(ρ, k)

)
< c

[
ρ−ε + 2−εk2kρ−α(1−o(1))].

PROOF. Let us first reduce the estimate to the event F ∗(ρ, k) ∩ {0 ∈ C∞(ω)}.
By Lemma 9.2,

Pμ

(
F ∗(ρ, k) ∩ {0 ∈ C∞(ω)

})≤ cρ−ε.

Thus we may work under Pμ0 and hence, by Lemma 9.4, under Pν0 . Since the
paths X1,X2 are reversible under Pν , the walk

Yt :=
{

X1
2k−t

, for t ≤ 2k ,

X2
t−2k , for t ≥ 2k ,

is distributed as (again, under Pν) (X1
t )t∈[2k+1]. We now employ Lemma 9.7,

Pν0

(
F ∗(ρ, k)

)≤ c2−εk + Pν0

(∃v ∈ Z
d, t ∈ [2γ k] :

∥∥X1
t − v

∥∥≥ ρ,ωX1
t ,v

= 1
)
,

where we used Lemma 9.4 to translate our bounds between the measures μ0
and ν0.

The proof is finished by noting that

Pν0

(∃v ∈ Z
d, t ∈ [2γ k] :

∥∥X1
t − v

∥∥≥ ρ,ωX1
t ,v

= 1
)≤ c2γ kρ−α(1−o(1))

and applying Lemma 9.4. �

Recalling our definitions from Section 4 for any event E ⊂ �Z, let T−i · E =
{ω :T i · ω ∈ E}. Then we denote

G (ρ, γ, δ, k) =
2k⋃

i=0

T−i · G(ργ, δ, k),
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D(ρ, k) =
2k⋃

i=0

T−iD(ρ, k),

F (ρ, γ, k) =
2k⋃

i=0

T−i · F(ρ, γ, k).

The following corollary is the content of Proposition 4.2.

COROLLARY 9.9. Let δ > 0 be fixed. Then there exist γ1, ε > 0 and c =
c(γ1, ε) such that

Pμ

(
G (ρ, γ, δ, k) ∪ D(ρ, k) ∪ F (ρ, γ, k)

)
< c

[
ρ−ε + 2−εk2kρ−α(1−o(1))]

for all 0 < γ < γ1.

PROOF. Application of Lemma 9.4 allows us to write

Pμ

(
G (ρ, γ, δ, k) ∪ D(ρ, k) ∪ F (ρ, γ, k)

)
≤ C

[
Pν

(
G (ρ, γ, δ, k) ∪ D(ρ, k) ∪ F (ρ, γ, k)

)]
.

For the first term on the right-hand side, we use stationarity under Pν along with
Lemmas 9.5, 9.6 and finally Lemma 9.4 to translate back into Pμ. For the second
term on the right-hand side, we must first separate the event according to whether
{0 ∈ C∞(ω)} occurs, or not. As in Corollary 9.8, Lemmas 9.2 and 9.4 imply

Pν

(
F (ρ, γ, k) ∩ {0 /∈ C∞(ω)

})≤ cρ−ε.

On the other hand, Lemmas 9.4, 9.7 and stationarity imply

Pν0

(
F (ρ, γ, k) ∩ {0 ∈ C∞(ω)

})≤ c2k(1−ε)ρ−α(1−o(1)).

A final application of Lemma 9.4 finishes the proof. �

LEMMA 9.10 (Not too many intersections). Let us suppose that s ∈ (d, d +1).
There exists ε > 0 and a constant c > 0 such that, for σ ∈ {μ0,μ},

Eσ

[∣∣{X1
i : 0 ≤ i ≤ 2k}∩ {X2

i : 0 ≤ i ≤ ∞}∣∣]≤ c2(1−ε)k.

PROOF. For any L > 0, let BL(0) = [−L,L]d ∩ Z
d . We begin by considering

the claim of the lemma under Pμ0 . We denote

F(m,n) = Eμ0

[∣∣{X1
i : 0 ≤ i ≤ n

}∩ {X2
i : 0 ≤ i ≤ m

}∣∣].(41)

Large deviations estimates imply that

μ0

(
max

x∈BL(0)
dω(x) ≥ log2 L

)
≤ Ce− log2 L,
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while Lemma 9.3 implies

Pμ0

({
P ω

0
(∃t ≤ T :Dt ≥ c1t

p+1)> c2/T η})≤ c3T
η+1−pr,

so that for any ε0 > 0, we can find an exponent λ > 0 so that

Eμ0

(
P ω

L

(
0,Bc

Lλ(0)
))

< L−(1+ε0).

Let us apply these estimates to (41). We have

F(m,n) ≤ Eμ0

[ ∑
i≤n,j≤m

∑
y∈Zd

P ω
i (0, y)P ω

j (0, y)

]
.

Reversibility of the quenched walk implies dω(0)P ω
k (0, x) = dω(x)P ω

k (x,0).
Thus, there exist η′,C2 > 0 so that

F(m,n) ≤ C1Eμ0

[ ∑
k≤n,l≤m

logη′
(k) logη′

(l)P ω
k+l(0,0)

]
+ C2.

Next we apply Theorem 9.1: there exists a random variable T (ω) with P(T >

N) ≤ C(η′′′)N−η′′′
for any η′′′ > 0, so that for t ≥ T (ω),

P ω
t (0,0) ≤ t−d/(s−d) logδ(t).

We have, for η0 > 0 large enough,

Eμ0

[ ∑
k≤n,l≤m

logη′
(k) logη′

(l)P ω
k+l(0,0)

]

≤ Eμ0

[ ∑
T ≤k≤n,T ≤l≤m

logη0(k + l)

(k + l)d/(s−d)

]
+ Eμ0

[
T

∑
T ≤l≤m

logη0(T + l)

(l)d/(s−d)

]

+ Eμ0

[
T

∑
T ≤k≤n

logη0(T + k)

(k)d/(s−d)

]
+ Eμ0

[
T 2 logη0(T )

]
.

By the tail bound for T , and since d/(s − d) > 1, the latter three terms on the
right-hand side are all uniformly bounded in m,n.

For the first term, we have

Eμ0

[ ∑
T ≤k≤n,T ≤l≤m

logη′
(k + l)

(k + l)d/(s−d)

]
≤ C(ε1)Eμ0

[ ∑
T ≤k≤n

k1−d/(s−d)+ε

]

≤ C(ε)n2−d/(s−d)+ε1

for any ε1 > 0. Let m → ∞. Again, since d/(s − d) > 1, the lemma is immediate.
The statement for

Eμ

[∣∣{X1
i : 0 ≤ i ≤ 2k}∩ {X2

i : 0 ≤ i ≤ ∞}∣∣|0 /∈ C∞(ω)
]

follows immediately from Lemma 9.2. �
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LEMMA 9.11 (Small jumps give small contribution). Let us suppose that s ∈
(d, d + 1). For large k ∈ N,

Pμ

( 2k∑
i=1

|Xi − Xi−1|1{|Xi − Xi−1| ≤ ρ
}
>

1

2k
2k/(s−d)

)
≤ o

(
k−100)

for some constant C > 0.

PROOF. This is an immediate consequence of Lemma 9.4 and stationarity of
the environment process. By stationarity, we have

Eν

[ 2k∑
i=1

|Xi − Xi−1|1{|Xi − Xi−1| ≤ ρ
}]

= 2k
Eν

[|X1 − X0|1{|X1 − X0| ≤ ρ
}]

.

Now

Eν

[|X1 − X0|1{|X1 − X0| ≤ ρ
}]= O

(
ρ1−α)= o

(
k−1012−k2k/(s−d)).

Thus Markov’s inequality implies

Pν

( 2k∑
i=1

|Xi − Xi−1|1{|Xi − Xi−1| ≤ ρ
}
>

1

2k
2k/(s−d)

)
≤ o

(
k−100).

Applying Lemma 9.4 finishes the job. �

Given δ, γ > 0, for a vertex v recall that p̃v = p̃v(k) denotes the probability that
a walk started from v and conditioned to stay in the set {u : |v − u| < 2kδ} returns
to v before time 2kγ and set to 1 if v has no neighbors within distance 2kδ . Recall
that d̃ω(v) := #{u :‖x − u‖2 ≤ ρ}.

LEMMA 9.12. For all δ ∈ (0,1), there exists γ, ε > 0 so that for 1 ≤ i ≤ 2k ,

Pμ

(
|pX


i
− p̃X


i
| > 1

k

)
≤ 2−2kε

and

Pμ

(
d̃ω(X


i

) �= dω(X

i

))≤ 2−2kε

and hence

Pμ

(
#
{
i : |pX


i
− p̃X


i
| > 1

k

}
+ #

{
i : d̃ω(X


i

) �= dω(X

i

)}
>

1

k
2k

)
≤ 2−kε.
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PROOF. By Lemma 9.4 it is enough to prove the results under the measure Pν .
Using the stationarity of Pν , the second bound follows by a union bound over the
connection probabilities.

For the first bound, we prove the result under Pν0 and then for the other mea-
sures. Using stationarity, it is enough to consider i = 0. At a quenched level, given
ω such that 0 ∈ C∞(ω), we may couple the conditioned walk (which gives rise
to p̃0), denoted by Yt , to an unconditioned one, denoted by Zt , until the first time
the unconditioned one leaves B2kδ (0), and hence we have that∣∣p0(ω) − p̃0(ω)

∣∣≤ P ω
0 (E),

where

E = {
Zt exits B2kδ (0) before time 2γ k

}
.

Combining the proofs of Lemmas 9.5, 9.7, Pμ0(E) ≤ o(2−2εk) and hence

Pμ0

(
|pX


i
− p̃X


i
| > 1

k

)
≤ 2−2kε.

It remains to consider the event {0 /∈ C∞(ω)}. Let us denote by C(0) the connected
cluster of the origin. Clearly the bound is trivial if 0 has no nearest neighbors.
Consider

Pν

(
E,dω(0) ≥ 1|0 /∈ C∞(ω)

)
.

To control this quantity, we bound

Pν

(
0 ↔ Bc

2kδ (0)|0 /∈ C∞(ω)
)
.

Recalling Lemma 9.2, if M denotes the largest component of B2kδ (0), then

Pν

(
0 ∈ M|0 /∈ C∞(ω)

)≤ C2−εk

and

Pν

(
0 ↔ Bc

2kδ (0),0 /∈ M|0 /∈ C∞(ω)
)≤ C2−εk

with ε = ε(δ).
We conclude Pν(E|0 /∈ C∞(ω)) ≤ C2−εk . Gathering estimates together and ap-

plying Lemma 9.4 proves the result. �

10. Proof of Theorem 1.2. In this section we show that when d = 1 and s > 2
that the scaling limit of the walk is Brownian motion. Recall the hypotheses of
Theorem 1.2 where we assume that

P(1) = 1, P(r) = 1 − e−βr−s

for r ≥ 2,

since we clearly need there to be an infinite component.
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10.1. Geometry of the random graph and ergodic theory. The notion of a cut-
point of the graph plays a key role in our analysis.

DEFINITION 1. Given an environment ω and x ∈ Z, say that x is a cutpoint
for ω ∈ � if

ωa,b = 0 for all a ≤ x, b ≥ x so that b − a ≥ 2.

Let � denote the set of cupoints.

Note that if the walk passes from the left of the cutpoint to the right, it must
pass through it and that it is only connected to its nearest neighbors. By direct
calculation, for s > 2, d = 1, we have that

μ(0 ∈ �) > 0.

Note that this does not hold when s ≤ 2 which results in different scaling limits.
Given an interval [a, b], let C[a,b] denote the number of cutpoints [a, b]. Then
ergodic considerations imply

LEMMA 10.1. For any a, b ∈ R, a < b,

1

(b − a)N
C[aN,bN] → μ(0 ∈ �) μ-a.s.

as N → ∞.

Herein, it will be convenient to assume that the origin is a cutpoint. Suppose
we show that for μ-almost every environment, conditioned on the origin being a
cutpoint, the scaling limit of the walk started at the origin is Brownian motion.
As the distribution is invariant under shifts, this implies that the walk started at
any cutpoint has scaling limit Brownian motion. Finally, since the walk reaches a
cutpoint in a finite amount of time, this implies a scaling limit of Brownian motion
from any starting point. This justifies conditioning the origin to be a cutpoint. Let
�c denote the environments with 0 ∈ �, and let μc be the induced measure on �c.

Let us define ci, i ∈ Z as the ith cutpoint from 0 with i negative to the left,
i positive to the right and c0 = 0. Note that the gaps between the cutpoints (cj −
cj−1)j∈Z are independent and identically distributed. This can be seen from the
fact that given ci is a cutpoint, there are no edges from the left of ci to the right
and the edge on the left side of ci and on the right are independent. Similarly, the
gap environments ([cj−1, cj ])j∈Z also form an independent identically distributed
sequence.

LEMMA 10.2. The expected gap size is finite,

cj − cj−1 is in L1(μ)
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and its mean is given by

E[cj − cj−1] ≤ 1

μ(0 ∈ �)
.(42)

PROOF. By the strong law of large numbers,

cn

n
= 1

n

[
n∑

i=1

ci − ci−1

]
→ E[ci − ci−1] μ-a.s.

as n → ∞ while by Lemma 10.1, we have that

1

n
C[0,N] → μc(0 ∈ �) μ-a.s.

as n → ∞. Combining these obsevations yields equation (42). �

Given ω ∈ �c, let Xi denote a simple random walk on ω started from y ∈ Z.
The initial state is specified by P ω

y . Let us define

Qω(j, j) = P ω
cj

(
Xi returns to cj before hitting {cj−1, cj+1}),

Qω(j, j + 1) = P ω
cj

(
Xj hits cj+1 before hitting {cj−1, cj }),

Qω(j, j − 1) = P ω
cj

(
Xi hits cj−1 before hitting {cj , cj+1}),

Qω(k, 
) = 0 otherwise.

These give us the transition probabilities of the walk restricted to the times at which
it is at a cutpoint.

PROPOSITION 10.3. We have

Qω(j, j + 1) = Qω(j + 1, j)

and

1

Qω(j, j + 1)
≤ 2(cj+1 − cj ).

Hence 1
Qω(j,j+1)

∈ L1(μ) and Eμc
1

Qω(j,j+1)
≤ 2Eμc [cj+1 − cj ].

PROOF. The first statement holds by construction, while the second is a sim-
ple application of the electrical network interpretation of escape probabilities on
graphs [13]. �
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10.2. Quenched functional central limit theorem for the simple random walk.
The next step is to define a modified walk, which we will denote by Zj , which is
manifestly a square integrable martingale. To do this, we first define a sequence
(pj )j∈Z by

p0 = c0 = 0,

pj − pj−1 = 1

Q(j, j + 1)
otherwise.

Let Zi denote the (quenched) walk on (pj )j∈Z with transition probabilities
(slight abuse of notation here)

Q(pj ,pk) := Q(j, k).

By fiat, the walk Zi always starts from p0 = c0. It is then easy to check that Zi is
a martingale, and the quadratic variation increments

Eω[(Zj − Zj−1)
2|Fj−1

]= 1

Q(Zj−1,Zj−1 + 1)
+ 1

Q(Zj−1,Zj−1 − 1)
.

LEMMA 10.4. For μc-a.e. ω, the law of the process

M
ω,n
t := 1√

n

(
Z�nt + (tn − �tn)(Z�nt+1 − Z�nt)

)

converges weakly in C[0,1] with the uniform norm to the law of
√

KBt where Bt

is a standard one-dimensional Brownian motion. Here, the diffusion constant K is
given by

K = 2Eμc

[
1

Qω(0,1)

]
.

PROOF. The walk is stationary with respect to the uniform distribution (pj ).
Hence by the ergodic theorem and Proposition 10.3,

lim
n→∞

1

n

n∑
j=1

Eμc

[
(Zj − Zj−1)

2|Fj−1
]→ 2Eμc

[
1

Qω(0,1)

]
μc-a.s.,

which shows convergence of the quadratic variation. The result then follows by an
application of martingale central limit theorem; see, for example, [14]. �

Let us define Yi as the walk on (cj )j∈Z with transition probabilities given by
Q(j, k). Observe that we have a natural mapping between Yi and Zi . The following
is a consequence of Proposition 10.3 and the strong law of large numbers.
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LEMMA 10.5. For n �= 0, we have that

|pn| ≤ 2|cn|
and

lim
1

|j |
[

pj

Eμc [p1 − p0] − cj

Eμc [c1 − c0]
]

→ 0 μc-a.s.

as |j | → ∞.

Lemma 10.5 establishes the scaling of the (pj ) compared to the position of the
cutpoints (cj ). The next corollary then follows from Lemmas 10.4 and 10.5.

COROLLARY 10.6. For μc a.e. environment ω, the law of the process

Y
ω,n
t := 1√

n

(
Y�nt + (

tn − �tn)(Y�nt+1 − Y�nt)
)

converges weakly (under Qω) in C[0,1] with the uniform norm to the law of√
K∗Bt where Bt a standard one-dimensional Brownian motion. The constant K∗

is given by

K∗ = 2(Eμc [c1 − c0])2

Eμc [p1 − p0] .

Finally, let us return to the SRW Xi . Note that there is a natural coupling be-
tween Xi and Yi , both the origin, so that for all i,

Yi = Xτi
,(43)

where τi denotes the ith visit to a cutpoint by X. Another application of the ergodic
theorem implies that

lim
n

1

n
τn → μ(0 ∈ �).(44)

PROOF OF THEOREM 1.2. The theorem follows directly from Lemma 10.1,
Corollary 10.6 and equations (43) and (44). �

11. List of symbols. For the convenience of the reader we give a list of the
symbols used in the text.
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General

α s − d (Section 1)
B σ -algebra on � (Section 1)
Br(x),Vx {y :‖y − x‖∞ < r}, respectively, B2δk (x) (Sections 2 and 2.1)
C∞(ω) The infinite component of the graph induced by ω (Section 2)
Cqj−1,qj ,m Arrival rate of new vertices of type (j,m) (Section 4.1)
dω(x), D Degree of x in ω, respectively, marginal under μ (Sections 2 and 5)
d̃ω(x), D(k) Local degree of x, respectively, marginal under μ (Section 5)
Fi,
 Filtration of “environment exploration process” (Section 2.1)
F −

i,
 Reduced filtration of exploration process (Section 2.1)

H

k,χ Rate of new vertices for X
 is χ close to ave. (Section 4.1)

Hk,χ Hk,
 holds on 1 − χ fractions of paths (Section 4.1)
i, t Time; i always discrete time (Section 1)

 Index for copy of i.i.d. family of SRWs (Section 2.1)
μ Probability measure on � (Section 1)
μ0 μ conditioned on {0 ∈ C∞(ω)} (Section 1)
ν μ biased by degree of 0 (Section 2)
ν0 ν conditioned on {0 ∈ C∞(ω)} (Section 2)
�α(t),�(t) Isotropic α-stable Lévy process (Section 1)
ωx,y State of edge indexed by x, y ∈ Z

d (Section 2)
� Sample space for ωx,y’s (Section 1)
�0 {0 ∈ C∞(ω)} ⊂ � (Section 1)
pv(ω), P Escape probability of SRW, respectively, marginal under μ (Sec-

tion 5)
p̃v(ω), P (k) Local “escape” probability, respectively, marginal under μ (Sec-

tion 5)
ψJ Mesh size for (qj )j≤J ; (Section 5)
Pλ Joint law of (ω, (X
)
∈N) with λ ∈ {μ,μ0, ν, ν0} (Section 2)
(qj )j≤J Discretization of law of P away from atoms (Section 5)
ρ,ρk Cutoff for jump size (Section 2.1)
v, x, y Elements of Z

d (Section 1)
Wi,
 Vertices visited by time i of 
th walk and by first 2k steps of previ-

ous walks (Section 2.1)
W +

i,
 Wi,
 ∪ {y :∃x ∈ Wi,
,ωx,y = 1,‖x − y‖∞ ≥ ρ} (Section 2.1)
Xi SRW on graph induced by ω (Section 1)
X


i 
th independent sample of SRW on ω (Section 2)
Xn(t) n1/αX�nt (Section 1)
X̂i, X̂



i First approximation to Xi ; space independent increments (Sec-

tion 6.1)
Xi ,X



i Second approximation to Xi ; increments time independent (Sec-

tion 6.2)
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Coupling construction

Ai,
 Indicator of new long edge at X

i (Section 5.2)

A∗
i,
 Indicator of coupling phase; special phase = 1 (Section 5.2)

Bi,
 {0, . . . ,6}-valued; nonzero value means coupling failed,
value determines manner of failing (Section 5.2)

d

,j,m
i i.i.d. distributed as D(k) (Section 5.1)

ι, φ

,j,m
i

∑i−1
i′=0 N 
,j,m

i′ (Section 5.2)

N 
,j,m
i Indicator “type” (j,m) seen by X
 at i (Section 5.2)

r

,j,m
i i.i.d. distributed as P(k) (Section 5.1)

R(t) Decreasing process, marginals geometric(t) (Section 5.1)

R

,j,m
t , R̃


,j,m
t i.i.d. with distribution R(t) (Section 5.1)

w

,j,m
i (x) i.i.d. distributed as Ber(P (‖x‖2)) (Section 5.1)

Bounds on rare events

A(ρ) {∃v ∈ Z
d,ω0,v = 1, |v| > ρ} (Section 9)

B(ρ, γ, k) Walk does not visit vertices’ edges connected to origin
before time 2γ k+1 (Section 9)

C(δ, γ, k) {max0≤t≤2γ k |Xt | > 2δk} (Section 9)
D(ρ, k) {∃v ∈ Z

d, J ∈ [2k] :ω0,v = 1, |v| > ρ,

Xj = v, (0, v) /∈ {(Xi,Xi+1)}i≤J } (Section 9)
E(ρ, δ, k) Long edge at origin connected to long edge
F(ρ, γ, k) Walk returns to long jumps at origin (Section 9)
G(ρ, δ, γ, k) A(ρ) ∩ B(ρ, γ, k) ∩ C(δ, γ, k) (Section 9)

D(ρ, k)
⋃2k

i=0 T−iD(ρ, k) (Section 9)

E (ρ, k)
⋃2k

i=0 T−iE(ρ, k) (Section 9)

F (ρ, γ, k)
⋃2k

i=0 T−i · F(ρ, γ, k) (Section 9)

G (ρ, γ, δ, k)
⋃2k

i=0 T−i · G(ργ, δ, k) (Section 9)
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