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LARGE DEVIATION RATE FUNCTIONS FOR THE PARTITION
FUNCTION IN A LOG-GAMMA DISTRIBUTED

RANDOM POTENTIAL

BY NICOS GEORGIOU AND TIMO SEPPÄLÄINEN1

University of Utah and University of Wisconsin–Madison

We study right tail large deviations of the logarithm of the partition func-
tion for directed lattice paths in i.i.d. random potentials. The main purpose is
the derivation of explicit formulas for the 1 + 1-dimensional exactly solvable
case with log-gamma distributed random weights. Along the way we estab-
lish some regularity results for this rate function for general distributions in
arbitrary dimensions.

1. Introduction. We study a version of the model called directed polymer in
a random environment where a fluctuating path is coupled with a random envi-
ronment. This model was introduced in the statistical physics literature in [16]
and early mathematically rigorous work followed in [3, 17]. We consider directed
paths in the nonnegative orthant Z

d+ of the d-dimensional integer lattice. The paths
are allowed nearest-neighbor steps oriented along the coordinate axes. A random
weight ω(u) is attached to each lattice point u ∈ Z

d+. Together the weights form
the environment ω = {ω(u) : u ∈ Z

d+}. The space of environments is denoted by �.
P is a probability measure on � under which the weights {ω(u)} are i.i.d. random
variables.

For v,u ∈ Z
d+ such that v ≤ u (coordinatewise ordering), the set of admissible

paths from v to u with |u − v|1 = m is

�v,u = {
x� = {v = x0, x1, . . . , xm = u} :∀k, xk ∈ Z

d+ and
(1.1)

xk+1 − xk ∈ {ei : 1 ≤ i ≤ d}},
where ei is the ith standard basis vector of R

d . The point-to-point partition func-
tion is

Zv,u = ∑
x�∈�v,u

e
∑m

j=1 ω(xj )
.(1.2)
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This is the normalization factor in the quenched polymer distribution

Qv,u(x�) = Z−1
v,u

m∏
j=1

eω(xj ),(1.3)

which is a probability distribution on the paths in the set �v,u. When paths start at
the origin (v = 0), we drop v from the notation; Zu = Z0,u and �u = �0,u. Note
that the weight at the starting point x0 was not included in the sum in the exponent
in (1.2). This makes no difference for the results. Sometimes it is convenient to
include this weight, and then we write Z�

v,u = eω(v)Zv,u where the superscript �
reminds us that all weights in the rectangle are included.

In the polymer model one typically studies fluctuations of the path and fluctua-
tions of logZu. This paper considers only logZu. Specifically our main object of
interest is the right tail large deviation rate function

Ju(r) = − lim
n→∞n−1 log P{logZ�nu� ≥ nr}(1.4)

for u ∈ R
d+, r ∈ R. Throughout we denote the floor of a vector as �ny� =

(�ny1�, �ny2�, . . . , �nyd�). This function J exists very generally for superadditiv-
ity reasons, and in Section 3 we establish some of its regularity properties.

The focus of the paper is an exactly solvable case where d = 2 and −ω(u)

is log-gamma distributed. By “exactly solvable” we mean that special properties
of the log-gamma case permit explicit computations, such as a formula for the
limiting point-to-point free energy

p(y) = lim
n→∞n−1 logZ�ny�, P-a.s.(1.5)

and fluctuation exponents [31]. In the same spirit, in this paper we compute explicit
formulas for the rate function J and other related quantities in the context of the
1 + 1-dimensional log-gamma polymer.

One can also consider point-to-line partition functions over all directed paths of
a fixed length. For m ∈ N the partition function is defined by

Zline
m = ∑

u∈Z
d+ : |u|1=m

Zu.(1.6)

Due to the n−1 log in front, in the results we look at Zline
m behaves like the maximal

Zu over |u|1 = m.
Some comments are in order.
There are currently three known exactly solvable directed polymer models, all

in 1 + 1 dimensions: the two with a discrete aspect are (i) the log-gamma model
introduced in [31], and (ii) a model introduced in [27] where the random envi-
ronment is a collection of Brownian motions. Some fluctuation exponents were
derived for the second model in [32], and it has been further studied in [26] via a
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connection with the quantum Toda lattice. This Brownian model possesses struc-
tures similar to those in the log-gamma model, so we expect that the results of the
present paper could be reproduced for the Brownian model.

The third exactly solvable model is the continuum directed random polymer [1]
that is expected to be a universal scaling limit for a large class of polymer models;
see [10] for a recent review.

Usually the directed lattice polymer model is placed in a space–time picture
where the paths are oriented in the time direction. (See articles and lectures
[5, 6, 8, 13] for recent results and reviews of the general case.) In two dimensions
(1 time + 1 space dimension), the space–time picture is the same as our purely
spatial picture, up to a 45◦ rotation of the lattice and a change of lattice indices.
The temporal aspect is not really present in our work. So we have not separated a
time dimension, but simply regard the paths as directed lattice paths.

Another standard feature of directed polymers that we have omitted is the in-
verse temperature parameter β ∈ (0,∞) that appears as a multiplicative constant
in front of the weights: Z

β
v,u = ∑

x�∈�v,u
exp{β ∑m

j=1 ω(xj )}. For a fixed weight
distribution, β modulates the strength of the coupling between the walk and the
environment. It is known that in dimension 1 + 3 and higher, there can be a phase
transition. By contrast, in low dimensions (1 + 1 and 1 + 2), the model is in the
so-called strong coupling regime for all 0 < β < ∞ [7, 21]. The β parameter plays
no role in the present work and has a fixed value β = 1. This is the unique β value
that turns the log-gamma model into an exactly solvable model.

The techniques of the current paper are entirely probabilistic and rely on the
stationary version of the log-gamma model. It can be expected that as a combi-
natorial approach to this model, fully developed [11], more complete results and
alternative proofs for the present results can be found.

Earlier literature. Precise large deviation rate functions for logZ in the case of
directed polymers have not been derived in the past. The strongest concentration
inequalities can be found in recent references [9, 22, 33]. The normalization of the
left tail varies with the distribution of the weights as demonstrated by [2], but the
right tails have the same normalization n. Carmona and Hu [4] have some bounds
on the left tail of logZ in Gaussian environments in dimensions 1 + 3 and higher
and for small enough β . Similar bounds were proved later in [24] for bounded
environments using concentration inequalities for product measures.

For the exactly solvable zero-temperature models (i.e., last passage percolation
models), large deviation principles have been proved. For the longest increasing
path among planar Poisson points, an LDP for the length resulted from a combi-
nation of articles [14, 20, 23, 30]. These results came before the advent of deter-
minantal techniques. For the corner growth model with geometric and exponential
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weights [18] derived an LDP in addition to the Tracy–Widom limit. An earlier
right tail LDP appeared in [29].

Notation. We collect some notation and conventions here for easy reference.
N is for positive integers, Z+ for nonnegative integer, R+ for nonnegative real
numbers and R

d+ is the set of all vectors with nonnegative real coordinates. Vector
notation: elements of R

d and Z
d are v = (v1, v2, . . . , vd). Coordinatewise ordering

v ≤ u means v1 ≤ u1, v2 ≤ u2, . . . , vd ≤ ud . Particular vectors are 1 = (1,1, . . . ,1)

and 0 = (0,0, . . . ,0). �y� = (�y1�, �y2�, . . . , �yd�) where �y� = max{n ∈ Z :n ≤
y} is the integer part of y ∈ R. The �1 norm on R

d is |v|1 = |v1| + · · · + |vd |.
The convex dual of a function f : R → (−∞,∞] is f ∗(y) = supx∈R{xy −

f (x)}, and f = f ∗∗ if and only if f is convex and lower semicontinuous. We
refer to [28] for basic convex analysis.

The partition function Z does not include the weight of the initial point of the
paths, while Z� does. In two dimensions we write Zm,n = Z(m,n).

The usual gamma function is �(μ) = ∫ ∞
0 xμ−1e−x dx for μ > 0. The digamma

and trigamma functions are �0 = �′/� and �1 = � ′
0. On (0,∞) �0 is increasing

and concave and �1 decreasing, positive and convex, with −�0(0+) = �1(0+) =
∞.

2. Large deviations for the log-gamma model.

2.1. The log-gamma model with i.i.d. weights. In this section we specialize
to d = 2 dimensions and the log-gamma distributed weights. Fix a positive real
parameter μ. This parameter remains fixed through this entire section, and hence
is omitted from most notation. In the log-gamma case we prefer to switch to mul-
tiplicative variables. So the weight at point (i, j) ∈ Z

2+ is Yi,j = eω(i,j) where the
reciprocal Y−1 has Gamma(μ) distribution. Explicitly,

P
{
Y−1 ≥ s

} = �(μ)−1
∫ ∞
s

xμ−1e−x dx for s ∈ R+.(2.1)

As above, we write Y for a generic random variable distributed as Yi,j . The
digamma and trigamma functions give the mean and variance, E(logY) = −�0(μ)

and Var(logY) = �1(μ).
The logarithmic moment generating function (l.m.g.f.) of ω = logY is

Mμ(ξ) = log E
(
eξ logY ) =

{
log�(μ − ξ) − log�(μ), ξ ∈ (−∞,μ),
∞, ξ ∈ [μ,∞).

(2.2)

The point-to-point partition function for directed paths from (0,0) to (m,n) is

Zm,n = ∑
x·∈�(m,n)

m+n∏
j=1

Yxj
.(2.3)
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Note that we simplified notation by dropping the parentheses: Zm,n = Z(m,n). For
(s, t) ∈ R

2+ the limiting free energy density exists by superadditivity,

p(s, t) = lim
n→∞n−1 logZ�ns�,�nt�, P-a.s.(2.4)

The limit is a finite constant. We begin by giving its exact value.

THEOREM 2.1. For (s, t) ∈ R
2+ and μ ∈ (0,∞), the limiting free energy den-

sity (2.4) is given by

p(s, t) = inf
0<ρ<μ

{−s�0(ρ) − t�0(μ − ρ)
}
.(2.5)

The value p(s, t) was already derived in [31] but the proof was buried among
estimates for fluctuation exponents. In Section 4 we sketch an elementary approach
that utilizes special features of the log-gamma model. For the other explicitly
solvable 1 + 1-dimensional polymer with Brownian environment, Moriarty and
O’Connell [25] computed the limiting free energy with a very different large devi-
ation approach.

The next result is a large deviation principle (LDP) for logZ�ns�,�nt� under nor-
malization n. The rate function is

Is,t (r) =
⎧⎨⎩ sup

ξ∈[0,μ)

{
rξ − inf

θ∈(ξ,μ)

(
tMθ(ξ) − sMμ−θ (−ξ)

)}
, r ≥ p(s, t),

∞, r < p(s, t).
(2.6)

On the boundary (s = 0 or t = 0), the result reduces to i.i.d. large deviations, so
we only consider (s, t) in the interior of the quadrant.

THEOREM 2.2. Let Y−1 ∼ Gamma(μ) as in (2.1) and (s, t) ∈ (0,∞)2. Then
the distributions of n−1 logZ�ns�,�nt� satisfy a LDP with normalization n and rate
function Is,t . Explicitly, these bounds hold for any open set G and any closed set
F in R:

lim
n→∞n−1 log P

{
n−1 logZ�ns�,�nt� ∈ F

} ≤ − inf
r∈F

Is,t (r)(2.7)

and

lim
n→∞

n−1 log P
{
n−1 logZ�ns�,�nt� ∈ G

} ≥ − inf
r∈G

Is,t (r).(2.8)

On [p(s, t),∞) the rate function Is,t is finite, strictly increasing, continuous and
convex. In particular, the unique zero of Is,t (r) is at r = p(s, t). The right tail rate
defined in (1.4) is given by

Js,t (r) =
{

0, r ∈ (−∞,p(s, t)
]
,

Is,t (r), r ∈ [
p(s, t),∞)

.
(2.9)
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FIG. 1. Graphical representation of the solution to the variational problem (2.6) that gives the
rate function Js,t (r) = fr (θ2) − fr (θ1). The curve fr (θ) has the same general shape as long as
r > p(s, t).

REMARK 2.3. From a computational point of view, the solution to the varia-
tional problem in (2.6) can be computed by

Is,t (r) = sup
0<θ<μ

{
fr(θ) − inf

0<z≤θ
fr(z)

}
= fr(θ2) − fr(θ1),

where

fr(θ) = rθ + t log�(θ) − s log�(μ − θ),

and for any r > p(s, t), 0 < θ1 < θ2 < μ are the solutions to the equation
d
dθ

fr(θ) = 0. (See Figure 1.) This again implies that the rate function is strictly
positive as long as r > p(s, t).

REMARK 2.4. We do not address the precise large deviations in the left tail,
that is, in the range r < p(s, t). We expect the correct normalization to be n2.
(Personal communication from I. Ben-Ari.) Presently we do not have a technique
for computing the rate function in that regime. We include the trivial part Is,t (r) =
∞ for r < p(s, t) in the theorem so that we can compute the limiting l.m.g.f. by a
straightforward application of Varadhan’s theorem.

Define for ξ ∈ R,

�s,t (ξ) = lim
n→∞n−1 log Eeξ logZ�ns�,�nt� .(2.10)
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COROLLARY 2.5. Let ξ ∈ R. Then the limit in (2.10) exists and is given by

�s,t (ξ) = I ∗
s,t (ξ) =

⎧⎪⎨⎪⎩
p(s, t)ξ, ξ < 0,

inf
θ∈(ξ,μ)

{
tMθ(ξ) − sMμ−θ (−ξ)

}
, 0 ≤ ξ < μ,

∞, ξ ≥ μ.

(2.11)

REMARK 2.6. Symmetry of �s,t in (s, t) is clear from (2.10) but not immedi-
ately obvious in the 0 ≤ ξ < μ case of (2.11). It turns out that if s ≤ t the infimum
is achieved at a unique θ0 ∈ [(μ + ξ)/2,μ), and then for �t,s(ξ), the same infi-
mum is uniquely achieved at θ1 = μ + ξ − θ0 ∈ (ξ, (μ + ξ)/2]. In the case s = t a
simple formula arises: �t,t (ξ) = 2t (log�(

μ−ξ
2 ) − log�(

μ+ξ
2 )).

REMARK 2.7. The first case of (2.6) gives Is,t as the dual �∗
s,t , and the reader

may wonder whether this is the logic of the proof of the LDP. It is not, for we have
no direct way to compute �s,t . Instead, Theorem 2.2 is first proved in an indirect
manner via the stationary model described in the next subsection, and then �s,t is
derived by Varadhan’s theorem.

Let us also record the result for the point-to-line case. It behaves like the point-
to-point case along the diagonal.

COROLLARY 2.8. Let Y−1 ∼ Gamma(μ) as in (2.1) and s > 0. Then the
distributions of logZline�ns� satisfy an LDP with normalization n and rate function
Is/2,s/2.

REMARK 2.9. For ε > 0 and r = p(s, t)+ε, one can show after some calculus
that there exists a nonzero constant C = Cs,t (μ) so that

Is,t (r) = Cε3/2 + o
(
ε3/2)

.

This suggests that Var(logZ�ns�,�nt�) is of order n2/3. Rigorous upper bounds on
the moments E|logZ�ns�,�nt� − np(s, t)|p for 1 ≤ p < 3/2 can be found in [31],
Theorem 2.4.

We computed the precise value of the constant C for the point-to-line rate func-
tion,

I1,1(r) = 4

3

1√|�2(μ/2)|ε
3/2 + o

(
ε3/2)

,(2.12)

where �2 = � ′′
0 .
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2.2. The stationary log-gamma model. Next we consider the log-gamma
model in a stationary situation that is special to this choice of distribution. Work-
ing with the stationary case is the key to explicit computations, including all the
previous results, and provides some explanation for the formulas that arose for Is,t

and �s,t in (2.6) and (2.11).
The stationary model is created by appropriately altering the distributions of the

weights on the boundaries of the quadrant Z
2+. We continue to use the parameter

μ ∈ (0,∞) fixed at the beginning of this section, and we introduce a second param-
eter θ ∈ (0,μ). Let the collection of independent weights {Ui,0,V0,j , Yi,j : i, j ∈
N} have the following marginal distributions:

U−1
i,0 ∼ Gamma(θ), V −1

0,j ∼ Gamma(μ − θ) and
(2.13)

Y−1
i,j ∼ Gamma(μ).

Define the partition function Z
(θ)
m,n by (2.3) with the following weights: at the origin

Y0,0 = 1, on the x-axis Yi,0 = Ui,0, on the y-axis Y0,j = V0,j , and in the bulk the
weights {Yi,j : i, j ∈ N} are i.i.d. Gamma(μ)−1 as before. Equivalently, we can

decompose the stationary partition function Z
(θ)
m,n according to the exit point of the

path from the boundary

Z(θ)
m,n =

m∑
k=1

(
k∏

i=1

Ui,0

)
Z�

(k,1),(m,n) +
n∑

�=1

(
�∏

j=1

V0,j

)
Z�

(1,�),(m,n).(2.14)

The symbols Ui,0 and V0,j were at first introduced for the boundary weights to
highlight the change of distribution. Next let us define for all (i, j) ∈ Z

2+ \ {(0,0)},

Ui,j = Z
(θ)
i,j

Z
(θ)
i−1,j

and Vi,j = Z
(θ)
i,j

Z
(θ)
i,j−1

.(2.15)

Note that this property was already built into the boundaries because, for example,
Z

(θ)
i,0 = U1,0 · · ·Ui,0. The key result that allows explicit calculations for this model

is the following.

PROPOSITION 2.10. For each (i, j) ∈ Z
2+ \ {(0,0)}, we have the following

marginal distributions: U−1
i,j ∼ Gamma(θ) and V −1

i,j ∼ Gamma(μ − θ). For any
fixed n ∈ Z+, the variables {Ui,n : i ∈ N} are i.i.d., and for any fixed m ∈ Z+, the
variables {Vm,j : j ∈ N} are i.i.d.

This is a special case of Theorem 3.3 in [31], where the independence of
these weights along more general down-right lattice paths is established. Propo-
sition 2.10 is the only result from [31] that we use. It follows in an elementary
fashion from the properties of the gamma distribution.
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As an immediate application we can write

n−1 logZ
(θ)
�ns�,�nt� = n−1

�nt�∑
j=1

logV0,j + n−1
�ns�∑
i=1

logUi,�nt�(2.16)

as a sum of two sums of i.i.d. variables, and from this compute

E
(
logZ(θ)

m,n

) = mE(logU) + nE(logV ) = −m�0(θ) − n�0(μ − θ)(2.17)

and obtain the law of large numbers,

n−1 logZ
(θ)
�ns�,�nt� → p(θ)(s, t) = −s�0(θ) − t�0(μ − θ), P-a.s.(2.18)

Note that the two sums on the right-hand side of (2.16) are not independent of
each other. In fact, they are so strongly negatively correlated that the variance of
their sum is of order n2/3 [31]. Comparison of (2.5) and (2.18) reveals a variational
principle at work: p(s, t) is the minimal free energy of a stationary system with
bulk parameter μ.

Instead of the right tail large deviation rate function, we give the asymptotic
l.m.g.f. in the next result. Define

�θ,(s,t)(ξ) = lim
n→∞n−1 log Ee

ξ logZ
(θ)
�ns�,�nt� .(2.19)

THEOREM 2.11. Let s, t ≥ 0 and 0 < θ < μ. Then the limit in (2.19) exists
for ξ ≥ 0 and is given by

�θ,(s,t)(ξ) =
⎧⎪⎨⎪⎩

max
{
sMθ(ξ) − tMμ−θ (−ξ), tMμ−θ (ξ) − sMθ(−ξ)

}
,

0 ≤ ξ < θ ∧ (μ − θ)

∞, ξ ≥ θ ∧ (μ − θ).

(2.20)

REMARK 2.12. Let the parameters 0 < θ < μ be given. The characteristic
direction is the choice

(s, t) = c
(
�1(μ − θ),�1(θ)

)
for a constant c > 0.(2.21)

With this choice the variance of logZ
(θ)
�ns�,�nt� is of order n2/3, while in other direc-

tions the fluctuations of logZ
(θ)
�ns�,�nt� have order of magnitude n1/2 and they are

asymptotically Gaussian [31]. By this token, we would expect the large deviations
in the characteristic situation to be unusual, while in the off-characteristic direc-
tions we would expect the more typical large deviations of order e−n in both tails.
In Lemma 4.2(b) we give a bound on the left tail that indicates superexponential
decay under (2.21). This also implies that if (2.21) holds, then formula (2.20) can
be complemented with the case �θ,(s,t)(ξ) = p(θ)(s, t)ξ for ξ ≤ 0. Presently we
do not have further information about these large deviations.
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REMARK 2.13. If the two sums in (2.16) were independent we would have
�θ,(s,t)(ξ) = sMθ(ξ) + tMμ−θ (ξ). Obviously (2.20) reflects the strong negative
correlation of these sums, but currently we do not have a good explanation (besides
the proof!) for the formula that arises.

The maximum in (2.20) comes from the choice of the first step of the path: either
horizontal or vertical. Corresponding to this choice, define partition functions

Z
(θ),hor
�ns�,�nt� =

�ns�∑
k=1

(
k∏

i=1

Ui,0

)
Z�

(k,1),(�ns�,�nt�)(2.22)

and

Z
(θ),ver
�ns�,�nt� =

�nt�∑
�=1

(
�∏

j=1

V0,j

)
Z�

(1,�),(�ns�,�nt�),(2.23)

together with l.m.g.f.’s

�hor
θ,(s,t)(ξ) = lim

n→∞n−1 log Ee
ξ logZ

(θ),hor
�ns�,�nt�(2.24)

and

�ver
θ,(s,t)(ξ) = lim

n→∞n−1 log Ee
ξ logZ

(θ),ver
�ns�,�nt� .(2.25)

Then Z
(θ)
�ns�,�nt� = Z

(θ),hor
�ns�,�nt� + Z

(θ),ver
�ns�,�nt� leads to

�θ,(s,t)(ξ) = �hor
θ,(s,t)(ξ) ∨ �ver

θ,(s,t)(ξ),(2.26)

which is the starting point for the proof of (2.20).
The horizontal and vertical partition functions are in some sense between the

stationary one and the one from (2.3) with i.i.d. weights. It turns out that these
intermediate partition functions behave either like the stationary one or like the
i.i.d. one, with a sharp transition in between, and this holds both at the level of the
limiting free energy density and the l.m.g.f. Let us focus on the horizontal case,
the vertical case being the same after the swap s ↔ t and θ ↔ μ − θ .

Qualitatively, with t fixed, when s is large Z
(θ),hor
�ns�,�nt� behaves like Z

(θ)
�ns�,�nt�, and

when s is small Z
(θ),hor
�ns�,�nt� behaves like Z�ns�,�nt� from (2.3). The conditions for the

transitions are the following:

s�1(θ) ≥ t�1(μ − θ)(2.27)

and

s
(
�0(θ) − �0(θ − ξ)

) ≥ t
(
�0(μ − θ + ξ) − �0(μ − θ)

)
.(2.28)
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By the concavity of �0 and the fact that �1 = � ′
0, (2.27) implies (2.28) for all

ξ ≥ 0. Assuming the limit exists for the moment, define

p(θ),hor(s, t) = lim
n→∞n−1 logZ

(θ),hor
�ns�,�nt�.(2.29)

In this next theorem the functions p(s, t) and �s,t (ξ) are the ones defined by (2.5)
and (2.11).

THEOREM 2.14. Let s, t ≥ 0, 0 < θ < μ and 0 ≤ ξ < θ .

(a) The limit in (2.29) exists and is given by

p(θ),hor(s, t) =
{

p(θ)(s, t), if (2.27) holds,
p(s, t), if (2.27) fails.

(2.30)

(b) The limit in (2.24) exists and is given by

�hor
θ,(s,t)(ξ) =

{
sMθ(ξ) − tMμ−θ (−ξ), if (2.28) holds,
�s,t (ξ), if (2.28) fails.(2.31)

REMARK 2.15. We saw in (2.5) that the limiting free energy p(s, t) of the
i.i.d. model is the minimal free energy of the stationary models with the same
bulk parameter μ. This link does not extend to the l.m.g.f.’s: for 0 < ξ < μ,
�s,t (ξ) < �θ,(s,t)(ξ) for all θ ∈ (0,μ). We observe this at the end of the proof
of Theorem 2.11 in Section 5.

3. The right tail rate function in the general case. The proofs of the results
for the log-gamma model utilize regularity properties of the rate function J of
(1.4). These properties can be proved in some degree of generality, and we do so
in this section. So now we consider

Zu = ∑
x�∈�u

e
∑|u|1

j=1 ω(xj )(3.1)

as defined in the Introduction, with u ∈ Z
d+, general d ≥ 2, and general i.i.d.

weights {ω(u)}.
We assume

∃ξ > 0 such that E
(
eξ |ω(u)|) < ∞.(3.2)

This guarantees the existence of a Cramér large deviation rate function defined by

I (r) = − lim
ε→0

lim
n→∞n−1 log P

{
n−1

n∑
i=1

ω(ui ) ∈ (r − ε, r + ε)

}
.(3.3)

(Above {uj } are any distinct lattice points.) We state first the existence theorem for
the limiting point-to-point free energy density. We omit the proof because similar
superadditive and approximation arguments appear elsewhere in our paper, and
refer to [15]. Let us also point out that assumption (3.2) is unnecessarily strong for
this existence result, but our objective here is not to optimize on this point.
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THEOREM 3.1. Assume (3.2). There exists an event �0 ⊆ � of full P-
probability on which the convergence

p(y) = lim
n→∞n−1 logZ�ny�(3.4)

happens simultaneously for all y ∈ R
d+. Limit (3.4) holds also in L1(P). As a func-

tion of y, p is concave and continuous on R
d+.

Next the right-tail LDP. To avoid issues of vanishing probabilities and infinite
values of the rate, we make the following further assumption:

∀r < ∞ P
{
ω(0) > r

}
> 0.(3.5)

THEOREM 3.2. Assume (3.2) and (3.5). Then for u ∈ R
d+ \ {0} and r ∈ R, the

following R+-valued limit exists:

Ju(r) = − lim
n→∞n−1 log P{logZ�nu� ≥ nr}.(3.6)

As a function of (u, r), J is convex and continuous on (Rd+ \ {0}) × R. Ju(r) = 0
if and only if r ≤ p(u).

Let us also remark that the weight ω(0) at the origin is immaterial: the limit is
the same for Z�, so for u ∈ R

d+ \ {0} and r ∈ R,

Ju(r) = − lim
n→∞n−1 log P

{
logZ��nu� ≥ nr

}
.(3.7)

We observe this at the end of the proof of Theorem 3.2.
With a further assumption on the Cramér rate function of the weight distribution

defined in (3.3), we can extend the continuity of Ju to u = 0:

α∞ = lim
x↗∞x−1I (x) < ∞.(3.8)

Equation (3.5) is equivalent to requiring that I (x) < ∞ for all large enough x, so
of course (3.8) requires (3.5). The constant α∞ is the limiting slope of I at ∞
which exists by convexity. When assumption (3.8) is in force we define

J0(r) =
{

0, r ≤ 0,
α∞r, r ≥ 0.

(3.9)

THEOREM 3.3. Under assumptions (3.2) and (3.8), and with J0 defined
by (3.9), Ju(r) is finite and continuous on R

d+ × R.

REMARK 3.4. Assumption (3.8) is in particular valid for the log-gamma
model. For Y−1 ∼ Gamma(μ) the Cramér rate function for ω = logY is

Iμ(r) = −r�−1
0 (−r) − log�

(
�−1

0 (−r)
) + μr + log�(μ), r ∈ R.(3.10)
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The limiting slope on the right is α∞ = μ, while the limiting slope on the left
would be limr→−∞ I ′(r) = −∞. In this case J0(r) is also the “rate function” for
the single weight at the origin

J0(r) = − lim
n→∞n−1 log P{logY ≥ nr}.(3.11)

The remainder of this section proves Theorems 3.2 and 3.3, and then we prove
two further lemmas for later use.

PROOF OF THEOREM 3.2. For m,n ∈ R+, let xm,n ∈ {0,1}d so that �(m +
n)u� = �mu� + �nu� + xm,n. By superadditivity, independence and shift invari-
ance,

P
{
logZ�(m+n)u� ≥ (m + n)r

}
(3.12)

≥ P{logZ�mu� ≥ mr}P{logZ�nu� ≥ nr}P{logZxm,n ≥ 0}.
By assumption (3.5) there is a uniform lower bound P{logZxm,n ≥ 0} ≥ ρ > 0.
Thus t (n) = log P{logZ�nu� ≥ nr} is superadditive with a small uniformly
bounded correction. Assumption (3.5) implies that t (n) > −∞ for all n ≥ n0.
Consequently by superadditivity the rate function

Ju(r) = − lim
n→∞n−1 log P{logZ�nu� ≥ nr}(3.13)

exists for u = (u1, . . . , ud) ∈ R
d+ and r ∈ R. The limit in (3.13) holds also as n →

∞ through real values, not just integers.
Similarly we get convexity of J in (u, r). Let λ ∈ (0,1) and assume (u, r) =

λ(u1, r1) + (1 − λ)(u2, r2). Then

n−1 log P{logZ�nu� ≥ nr}
≥ λ(λn)−1 log P{logZ�nλu1� ≥ nλr1}

+ (1 − λ)
(
(1 − λ)n

)−1 log P
{
logZ�n(1−λ)u2� ≥ n(1 − λ)r2

} + o(1)

and letting n → ∞ gives

Ju(r) ≤ λJu1(r1) + (1 − λ)Ju2(r2).(3.14)

Finiteness of J follows from (3.5), so now we know J to be a finite, convex
function on (Rd+ \ {0}) × R. This implies that J is continuous in the interior of
(Rd+ \ {0}) × R and upper semicontinuous on the whole set (Rd+ \ {0}) × R [28],
Theorems 10.1 and 10.2.

The law of large numbers for the free energy implies Ju(r) = 0 for r < p(u) and
then by continuity for r ≤ p(u). With a minor adaptation of [9], Proposition 3.1(b),
we get a concentration inequality: given u, for ε > 0 there exists a constant c > 0
such that

P
{|logZ�nu� − E logZ�nu�| ≥ nε

} ≤ 2 exp
(−cε2n

)
for all n ∈ N.(3.15)
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Since n−1
E logZ�nu� → p(u), this implies that Ju(r) > 0 for r > p(u).

We do a coupling proof for lower semicontinuity. Let (u, r) → (v, s) in (Rd+ \
{0}) × R. If each coordinate vi > 0, then we have continuity Ju(r) → Jv(s) be-
cause convexity already gives continuity in the interior. Thus we may assume that
some coordinates of v are zero. Since coordinates can be permuted without chang-
ing J , let us assume that v = (v1, v2, . . . , vk,0, . . . ,0) for a fixed 1 ≤ k < d where
v1, . . . , vk > 0. If eventually u is also of the form u = (u1, u2, . . . , uk,0, . . . ,0) for
the same k, then we are done by convexity-implied continuity again, this time in
the interior of (Rk+ \ {0}) × R.

The remaining case is the one where u1, . . . , uk > 0 and (uk+1, . . . , ud) → 0.
We develop a family of couplings that eliminates these d − k last coordinates one
by one, starting with ud , and puts us back in the interior case with continuity.
Denote a lower-dimensional projection by u1,k = (u1, u2, . . . , uk).

The set of paths ��nu� is decomposed according to the locations of the �nud�
unit jumps in the ed -direction. The projections of these locations form a vector π

from the set

��nu� = {
π = {

xi}�nud�+1
i=0 ∈ (

Z
d−1+

)�nud�+2 :

0 = x0 ≤ x1 ≤ · · · ≤ x�nud�+1 = �nu1,d−1�}.
The partition function then decomposes according to the following jump locations:

Z�nu� = ∑
π∈��nu�

Z(0,0),(x1,0)

�nud�∏
i=1

Z�
(xi ,i),(xi+1,i)

≡ ∑
π∈��nu�

Zπ,(3.16)

where the last equality defines the d − 1-dimensional partition functions Zπ .
For a fixed π , define a new environment ω̃ indexed by Z

d−1+ with this recipe:

(i) For 0 ≤ i ≤ �nud�: for y ∈ Z
d−1+ such that xi ≤ y ≤ xi+1 but y �= xi , set

ω̃(y) = ω(y, i).
(ii) ω̃(0) = ω(0,0) and for 1 ≤ i ≤ �nud�, ω̃(�nu1,d−1� + ied−1) = ω(xi , i).

(iii) Pick all other ω̃(y) independently of everything else.

Now, keeping π fixed, we project the paths down to Z
d−1+ and create a partition

function (marked by a tilde) in the new environment ω̃:

logZπ = logZ(0,0),(x1,0) +
�nud�∑
i=1

logZ�
(xi ,i),(xi+1,i)

=
�nud�∑
i=0

logZ(xi ,i),(xi+1,i) +
�nud�∑
i=1

ω
(
xi , i

)
(3.17)

=
�nud�∑
i=0

log Z̃xi ,xi+1 +
�nud�∑
i=1

ω̃
(�nu1,d−1� + ied−1

)
≤ log Z̃�nu1,d−1�+�nuded−1�.
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Introduce the continuous functions (1 ≤ i < d)

Fi(u) =
i−1∑
j=1

(
(uj + ui) log(uj + ui) − uj loguj − ui logui

)
.(3.18)

Counting the number of ways to decompose the length from 0 to �nui� into
�nud� + 1 segments and Stirling’s formula give

m0 = |��nu�| =
∏

1≤i≤d−1

( �nui� + �nud�
�nud� + 1

)
= exp

{
nFd(u) + o(n)

}
(3.19)

≤ exp
{
nFd(u) + nη

}
,

where the last inequality is valid for large n and we introduced a small η > 0 that
we can send to zero after limits in n have been taken. By a union bound and the
coupling (3.17) separately for each π ∈ ��nu�,

−Ju(r) ≤ lim
n→∞n−1 log

∑
π∈��nu�

P{logZπ ≥ nr − logm0}

≤ lim
n→∞

(
logm0

n

+ n−1 log P
{
log Z̃�nu1,d−1�+�nuded−1� ≥ nr − nFd(u) − nη

})
= Fd(u) − Ju1,d−1+uded−1

(
r − Fd(u) − η

)
.

In the last step above a little correction as in (3.12) replaces �nu1,d−1�+�nuded−1�
with �nu1,d−1 + nuded−1�.

Let ũ1,d = u and for 1 ≤ i < d ,

ũ1,i = u1,i +
d∑

j=i+1

uj ei ∈ Z
i+.

Proceeding inductively, we get the lower bound

Ju(r) ≥ Jũ1,k

(
r − ∑

k+1≤i≤d

(
Fi(u) − η

)) − ∑
k+1≤i≤d

Fi(u).(3.20)

On the right-hand side we have a rate function Jũ1,k
with ũ1,k → v1,k in the interior

of R
k+. Thus we have continuity. We can first let η ↘ 0. Then let (u, r) → (v, s).

Note that ui → 0 implies Fi(u) → 0. Together all this gives the lower semiconti-
nuity

lim
(u,r)→(v,s)

Ju(r) ≥ Jṽ1,k
(s) = Jv(s).

Now we know J is continuous on all of (Rd+ \ {0}) × R.
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Let us observe limit (3.7). From one side we have

P
{
logZ��nu� ≥ nr

} ≥ P{logZ�nu� ≥ nr}P{
ω(0) ≥ 0

}
.

From the other, pick a coordinate ui > 0, and for each n an integer n < mn <

n + o(n) such that 2ei + �nu� ≤ �mnu�. For each n fix a directed path {xn
j } from

2ei + �nu� to �mnu�. Inequality

ω(ei ) + logZ�
2ei ,2ei+�nu� + ∑

j

ω
(
xn
j

) ≤ logZ�mnu�

gives

P
{
logZ��nu� ≥ nr

}
P

{
ω(ei ) + ∑

j

ω
(
xn
j

) ≥ 0
}

≤ P{logZ�mnu� ≥ nr}.

Assumption (3.5) and the continuity of J give the conclusion. �

PROOF OF THEOREM 3.3. It remains to prove continuity at (0, s). Let
(u, r) → (0, s). Define the right-tail Cramér rate function for a > 0, x ∈ R:

κa(x) = − lim
n→∞n−1 log P

{
n−1

�na�∑
i=1

ω(xi) ≥ nx

}

=
{

aI (x/a), x ≥ aE
[
ω(0)

]
,

0, x ≤ aE
[
ω(0)

]
.

Check that as (a, x) → (0, s), κa(x) → J0(s) defined by (3.9).
For upper semicontinuity, bound Z�nu� below by a single path

Ju(r) ≤ − lim
n→∞n−1 log P

{
n−1

|�nu�|1∑
i=1

ω(xi) ≥ nr

}
= κ|u|1(r).

For lower semicontinuity, permute the coordinates so that u1 > 0 as u → 0.
Apply (3.20) after η has been taken to zero:

Ju(r) ≥ Ju1e1

(
r − ∑

2≤i≤d

Fi(u)

)
− ∑

2≤i≤d

Fi(u).

Since Ju1e1 = κu1 we get the lower semicontinuity. �

Finally two lemmas for later use. The next one allows more general lattice se-
quences for the right-tail LDP.

LEMMA 3.5. Let y ∈ (0,∞)d and un ∈ Z
d+ be a sequence such that n−1un →

y. Then for r ∈ R,

lim
n→∞n−1 log P{logZun ≥ nr} = −Jy(r).(3.21)



4264 N. GEORGIOU AND T. SEPPÄLÄINEN

PROOF. Let us use assumption (3.5) again. Since the coordinates of un and
�ny� are increasing to ∞, for each n we can find �n and mn such that ��ny� ≤
un ≤ �mny� and in such a way that n − �n, n − mn are eventually o(n). For each
n fix directed paths {xn,i}0≤i≤Kn from ��ny� to un and {x′

n,j }0≤j≤K ′
n

from un to
�mny�. Then

Z��ny� · Wn ≤ Zun ≤ Z�mny� · (
W ′

n

)−1
,

where

logWn = ∑
1≤i≤Kn

ω(xi) and logW ′
n = ∑

1≤i≤K ′
n

ω
(
x′
i

)
.

Assumption n−1un → y implies that Kn and K ′
n are also o(n).

The estimates we need follow. For example,

P{logZ�mny� ≥ nr} ≥ P
{
logW ′

n ≥ 0
}
P{logZun ≥ nr}

and then by assumption (3.5) and the continuity of the rate function,

lim
n→∞n−1 log P{logZun ≥ nr} ≤ lim

n→∞n−1 log P{logZ�mny� ≥ nr} = −Jy(r).

Similarly for the complementary lower bound on lim. �

LEMMA 3.6. Suppose that for each n, Ln and Zn are independent random
variables. Assume that the limits

λ(s) = − lim
n→∞n−1 log P{Ln ≥ ns},(3.22)

φ(s) = − lim
n→∞n−1 log P{Zn ≥ ns}(3.23)

exist and are finite for all s ∈ R. Assume that λ(aλ) = φ(aφ) = 0 for some aλ,
aφ ∈ R. Assume also that λ is continuous. Then for r ∈ R

lim
n→∞

log P{Ln + Zn ≥ nr}
n

(3.24)

=
{− inf

aλ≤s≤r−aφ

{
φ(r − s) + λ(s)

}
, r > aφ + aλ,

0, r ≤ aφ + aλ.

PROOF. The lower bound ≥ follows from

P{Ln + Zn ≥ nr} ≥ P{Ln ≥ ns}P{
Zn ≥ n(r − s)

}
.

Since an upper bound 0 is obvious, it remains to show the upper bound for the case
r > aφ + aλ. Take a finite partition aλ = q0 < · · · < qm = r − aφ . Then use a union
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bound and independence:

P{Ln + Zn ≥ nr}
≤ P{Ln + Zn ≥ nr,Ln < nq0}

+
m−1∑
i=0

P{Ln + Zn ≥ nr,nqi ≤ Ln ≤ nqi+1} + P{Ln ≥ nqm}

≤ P
{
Zn ≥ n(r − q0)

} +
m−1∑
i=0

P
{
Zn ≥ n(r − qi+1)

}
P{Ln ≥ nqi}

+ P{Ln ≥ nqm}.
From this,

lim
n→∞n−1 log P{Ln + Zn ≥ nr}

≤ −min
{
φ(r − q0), min

0≤i≤m−1

[
φ(r − qi+1) + λ(qi)

]
, λ(qm)

}
.

Note that λ(q0) = φ(r − qm) = 0, refine the partition and use the continuity of λ.
�

4. Proofs for the i.i.d. log-gamma model. In this section we prove the re-
sults of Section 2.1. Throughout this section the dimension d = 2 and the weights
satisfy Y−1

i,j ∼ Gamma(μ) as in (2.1). As before, for (s, t) ∈ R
2+ \ {(0,0)} define

the function Js,t by the limit

Js,t (r) = − lim
n→∞n−1 log P{logZ�ns�,�nt� ≥ nr}, r ∈ R.(4.1)

At the origin set

J0,0(r) =
{

0, r ≤ 0,
μr, r ≥ 0.

(4.2)

Then, as observed in Remark 3.4, the function Js,t (r) is finite and continuous at
all (s, t, r) ∈ R

2+ × R.
We begin with a lemma that proves Theorem 2.1.

LEMMA 4.1. For (s, t) ∈ R
2+ the limiting free energy of (2.5) satisfies

p(s, t) = inf
0<θ<μ

{−s�0(θ) − t�0(μ − θ)
}
.(4.3)

The infimum is achieved at some θ because �0(0+) = −∞.
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FIG. 2. Graphical representation of the decomposition in equation (4.4).

PROOF. The proof anticipates some themes of the later LDP proof, but in a
simpler context. We already recorded the law of large numbers (2.18). The decom-
position (see Figure 2)

Z
(θ)
�ns�,�nt� =

�ns�∑
k=1

(
k∏

i=1

Ui,0

)
Z�

(k,1),(�ns�,�nt�)
(4.4)

+
�nt�∑
�=1

(
�∏

j=1

V0,j

)
Z�

(1,�),(�ns�,�nt�)

from (2.14) gives asymptotically

lim
n→∞n−1 logZ

(θ)
�ns�,�nt�

= lim
n→∞

{
max

1≤k≤�ns�

(
n−1

k∑
i=1

logUi,0 + n−1 logZ�
(k,1),(�ns�,�nt�)

)

∨ max
1≤�≤�nt�

(
n−1

�∑
j=1

logV0,j + n−1 logZ�
(1,�),(�ns�,�nt�)

)}
.

This can be coarse-grained with readily controllable errors of sums of independent
variables. We omit the details since similar arguments appear elsewhere in the
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paper. The conclusion is the alternative formula

lim
n→∞n−1 logZ

(θ)
�ns�,�nt�

= sup
0≤a≤s

{−a�0(θ) + p(s − a, t)
}

(4.5)

∨ sup
0≤b≤t

{−b�0(μ − θ) + p(s, t − b)
}
.

Take s = t , combine (2.18) and (4.5), and use the symmetry p(s, t) = p(t, s) to
get

−t
(
�0(θ) + �0(μ − θ)

) = sup
0≤a≤t

{−a
(
�0(θ) ∧ �0(μ − θ)

) + p(t − a, t)
}
.

Take θ ∈ (0,μ/2] so that �0(θ) ≤ �0(μ − θ) (�0 is strictly increasing) and set
a = t − s:

−t�0(μ − θ) = sup
0≤s≤t

{
s�0(θ) + p(s, t)

}
.

Turn this into a convex duality through the change of variable v = �0(θ):

−t�0
(
μ − �−1

0 (v)
) = sup

0≤s≤t

{
sv + p(s, t)

}
, v ∈ (−∞,�0(μ/2)

]
.(4.6)

It follows from the limit definition of p(s, t) that it is concave and continuous
in s ∈ [0, t]. Extend f (s) = −p(s, t) to a lower semicontinuous convex function
of s ∈ R by setting f (s) = ∞ for s /∈ [0, t]. Then (4.6) tells us that

f ∗(v) = −t�0
(
μ − �−1

0 (v)
)

for v ∈ (−∞,�0(μ/2)
]
.

We can differentiate to get limv↘−∞(f ∗)′(v) = 0 and (f ∗)′(�0(μ/2)) = t . These
derivative values imply that for s ∈ [0, t], the supremum in the double convex
duality can be restricted as follows:

f (s) = sup
v∈(−∞,�0(μ/2)]

{
vs − f ∗(v)

}
.

Undoing the change of variables turns this equation into (4.3) which is thereby
proved. �

The next lemma gives left tail bounds strong enough to imply Is,t (r) = ∞ for
r < p(s, t), and the same result for the stationary model. The proof is a straight-
forward coarse-graining argument. We do not expect the results to be optimal.

LEMMA 4.2. Fix 0 < a < 1. Then there exist constants 0 < c,C < ∞ that
depend on the parameters given below, so that the following estimates hold:

(a) For (s, t) ∈ (0,∞)2 and r < p(s, t),

P{logZ�ns�,�nt� ≤ nr} ≤ Ce−cn1+a

for all n ≥ 1.(4.7)
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(b) For (s, t) = α(�1(μ − θ),�1(θ)) for some α > 0, parallel to the charac-
teristic direction, and r < p(θ)(s, t),

P
{
logZ

(θ)
�ns�,�nt� ≤ nr

} ≤ Ce−cn1+a

for all n ≥ 1.(4.8)

PROOF. We give a proof of (b) with some details left sketchy. Part (a) has
a similar proof. We bound Z

(θ)
�ns�,�nt� from below by considering a subset of lat-

tice paths, arranged in a collection of i.i.d. partition functions over subsets of the
rectangle.

The choice of (s, t) implies that p(θ)(s, t) = p(s, t). Fix 0 < ε < (p(θ)(s, t) −
r)/4. Fix m ∈ N large enough so that m(s ∧ t) ≥ 1 and

E logZ�ms�,�mt� > m(r + 2ε).(4.9)

Let B
k,�
a,b = {a, . . . , a + k − 1} × {b, . . . , � + b − 1} denote the k × � rectangle

with lower left corner at (a, b). For i, � ≥ 0 define pairwise disjoint �ms� × �mt�
rectangles

Bi
� = B

�ms�,�mt�
(�+i)�ms�−�+1,��mt�+1.

Define a diagonal union of these rectangles by �i = ⋃
�≥0 Bi

�, i ≥ 0; see Figure 3.
Let M = �na��ms�. This is the range of diagonals �i we consider. Then we cut

the diagonals off before they exit the �ns� × �nt� rectangle. Let N = N(n) be the
maximal integer such that BM

N lies in [0, �ns�] × [0, �nt�]. Diagonal �M exits the

FIG. 3. The �ms� × �mt� rectangles and the diagonals �i in the proof of Lemma 4.2. The thickset
line is a lattice path that is counted in Z1.
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�ns� × �nt� rectangle through the east edge, and consequently there exist positive
constants cm, Cm such that

�ns� − cm < N�ms� + �ms�⌊na⌋ ≤ �ns� and
(4.10)

�nt� − Cmna < N�mt� ≤ �nt�.

Having defined the cutoff N , define the remaining diagonals by �n
i =⋃

0≤�≤N Bi
� for 0 ≤ i ≤ M . These diagonals lie in [0, �ns�] × [0, �nt�]. Fix a path

π that proceeds horizontally from point (N�ms�,N�mt� + 1) to (�ns�,N�mt� +
1) and then vertically up to (�ns�, �nt�). The number of lattice points on π is a
constant multiple of na .

For 0 ≤ i ≤ M , let Zi denote the partition function of paths x� of the following
type: x� proceeds along the x-axis from the origin to (i�ms� + 1,0), enters �n

i at
(i�ms� + 1,1), and stays in �n

i until it exits from the upper right corner of Bi
N

with a vertical step that connects it with π . After that x� follows π to (�ns�, �nt�).
The number K of points on x� outside �n

i is independent of i and bounded by a
constant multiple of na . Let

X = min
{
Yx :x ∈ π or x ∈ {

(i,0) : 0 ≤ i ≤ M
}}

be the minimal weight outside �n
i encountered by any path x� of Zi , for any 0 ≤

i ≤ M .
Let Z�

i be the partition function of all lattice paths in �n
i from the lower left

corner of Bi
0 to the upper right corner of Bi

N . Then Zi ≥ XKZ�
i , and consequently

P
{
logZ

(θ)
�ns�,�nt� ≤ nr

} ≤ P

{
log

M∑
i=0

XKZ�
i ≤ nr

}

= P

{
K logX + log

M∑
i=0

Z�
i ≤ nr

}
(4.11)

≤ P{K logX ≤ −nε}

+ P

{
log

M∑
i=0

Z�
i ≤ n(r + ε)

}
.

Explicit computation with the gamma distribution and K ≤ cna give the probabil-
ity P{K logX ≤ −nε} ≤ e−n2

for large n.
The {Z�

i } are i.i.d., and Z�
0 is a product of the i.i.d. partition functions Z0

k of
the individual rectangles B0

k whose mean was controlled by (4.9). A standard large
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deviation estimate for an i.i.d. sum gives

P

{
log

M∑
i=0

Z�
i ≤ n(r + ε)

}
≤ P

{
logZ�

0 ≤ n(r + ε)
}M

= P

{
N∑

k=0

logZ0
k ≤ n(r + ε)

}M

= P

{n/m+o(n)∑
k=0

logZ0
k ≤ n(r + ε)

}M

≤ e−cnM ≤ e−c1n
1+a

.

Putting these bounds back on line (4.11) completes the proof of (4.8). �

The main work resides in proving the following right tail result.

PROPOSITION 4.3. Let (s, t) ∈ R
2. Then for all r ∈ R, Js,t (r) is given by

Js,t (r) = sup
ξ∈[0,μ)

{
rξ − inf

θ∈(ξ,μ)

(
tMθ(ξ) − sMμ−θ (−ξ)

)}
.(4.12)

Before turning to the proof of Proposition 4.3 let us observe how Theorem 2.2
follows.

PROOF OF THEOREM 2.2. Only a few simple observations are required. Start
by defining Is,t as given in (2.6). Then formula (2.9) that connects Is,t and Js,t

is established by (4.12) and by knowing that Js,t (r) = 0 for r ≤ p(s, t) (Theo-
rem 3.2). The regularity properties of Is,t follow from the general properties of J

in Theorems 3.2 and 3.3.
The upper large deviation bound (2.8) is built into (4.7) and (4.1).
For the lower large deviation bound (2.7), we consider three cases:

(i) If p(s, t) ∈ G, then P{n−1 logZ�ns�,�nt� ∈ G} → 1 and (2.7) holds trivially
because its right-hand side is ≤ 0.

(ii) If G ⊆ (−∞,p(s, t)), (2.7) holds trivially because its right-hand side is
−∞.

(iii) The remaining case is the one where G contains an interval (a, b) ⊂
(p(s, t),∞). Since the distribution is continuous including a into G makes no
difference, and so

n−1 log P
{
n−1 logZ�ns�,�nt� ∈ G

}
≥ n−1 log

(
P{logZ�ns�,�nt� ≥ na} − P{logZ�ns�,�nt� ≥ nb})

−→ −Js,t (a),
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where the limit follows from (4.1) and the strict increasingness of Js,t on
[p(s, t),∞) which implies that for large enough n,

P{logZ�ns�,�nt� ≥ nb} ≤ e−nJs,t (a)−nε

for some ε > 0. We can take a = infG ∩ (p(s, t),∞) and then Js,t (a) =
infr∈G∩(p(s,t),∞) Is,t (r) = infr∈G Is,t (r). �

The remainder of the section is devoted to proving Proposition 4.3. Again we
begin with the decomposition (4.4) of the stationary partition function. Inside
the sums on the right-hand side of (4.4) we have partition functions with i.i.d.
Gamma−1(μ)-weights {Yi,j } whose large deviations we wish to extract. But we

do not know the large deviations of logZ
(θ)
�ns�,�nt�, so at first the decomposition

seems unhelpful. To get around the problem, use definition (2.15) to write

logZ
(θ)
�ns�,�nt� − logZ

(θ)
0,�nt� =

�ns�∑
j=1

logUi,�nt�.

By Proposition 2.10 we have a sum of i.i.d.’s on the right, whose large deviations
we can immediately write down by Cramér’s theorem. To take advantage of this,
divide through (4.4) by Z

(θ)
0,�nt� = ∏�nt�

j=1 V0,j to rewrite it as

�ns�∏
i=1

Ui,�nt� =
�nt�∑
�=1

( �nt�∏
j=�+1

V −1
0,j

)
Z�

(1,�),(�ns�,�nt�)
(4.13)

+
�ns�∑
k=1

(�nt�∏
j=1

V −1
0,j

)(
k∏

i=1

Ui,0

)
Z�

(k,1),(�ns�,�nt�).

To compactify notation we use a convention where the y-axis is labeled by negative
indices and introduce these quantities:

for k ∈ Z ηk =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

�nt�∏
j=−k+1

V −1
0,j , k ≤ 0,

(�nt�∏
j=1

V −1
0,j

)
k∏

i=1

Ui,0, k ≥ 1,

(4.14)

where an empty product equals 1 by definition, and

for z ∈ R v(z) =
⎧⎪⎨⎪⎩

(
1, �−z�), z ≤ −1,

(1,1), −1 < z < 1,(�z�,1
)
, z ≥ 1.

(4.15)
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Then (4.13) rewrites as

�ns�∏
i=1

Ui,�nt� =
�ns�∑

k=−�nt�
k �=0

ηkZ
�
v(k),(�ns�,�nt�)(4.16)

from which we extract these inequalities:

logηk + logZ�
v(k),(�ns�,�nt�)

≤
�ns�∑
i=1

logUi,�nt�(4.17)

≤ max−�nt�≤k≤�ns�
k �=0

{
logηk + logZ�

v(k),(�ns�,�nt�)
} + log

(
n(s + t)

)
.

These inequalities will be the basis for proving Proposition 4.3.
We record the right tail rate functions for the random variables in (4.17).
For the i.i.d. weights {Ui,�nt�} we have the right branch of the Cramér rate func-

tion

Rs(r) = − lim
n→∞n−1 log P

{�ns�∑
i=1

logUi,�nt� ≥ nr

}
(4.18)

=
{

sIθ

(
rs−1)

, r ≥ −s�0(θ),
0, r < −s�0(θ).

The rate function Iθ defined by (4.18) is given by

Iθ (r) = −r�−1
0 (−r) − log�

(
�−1

0 (−r)
) + θr + log�(θ), r ∈ R.(4.19)

The convex dual of Rs is given by

R∗
s (ξ) =

{
s log�(θ − ξ) − s log�(θ), 0 ≤ ξ < θ ,
∞, ξ < 0 or ξ ≥ θ ,

(4.20)

and we emphasize that it can be finite only when θ > ξ ≥ 0.
For real a ∈ [−t, s],

κa(r) = − lim
n→∞n−1 log P{logη�na� ≥ nr}(4.21)

exists and is finite, convex and continuous in r . (For a ≤ 0 it is simply a Cramér
rate function for an i.i.d. sum, and for a > 0 we can use Lemma 3.6.) The convex
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dual is

κ∗
a (ξ) = sup

r∈R

{
ξr − κa(r)

}
(4.22)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(t + a)
(
log�(μ − θ + ξ) − log�(μ − θ)

)
,

−t ≤ a ≤ 0, ξ ≥ 0,

t
(
log�(μ − θ + ξ) − log�(μ − θ)

)
+ a

(
log�(θ − ξ) − log�(θ)

)
,

0 < a ≤ s,0 ≤ ξ < θ,

∞, otherwise.

The derivation of (4.22) is similar to that of (4.20) from (4.18). Note that there is a
discontinuity in κa and κ∗

a as a passes through 0. The rightmost zero mκ,a of κa is
the law of large numbers limit,

mκ,a = lim
n→∞

logη�na�
n

=
{

(t + a)�0(μ − θ), −t ≤ a ≤ 0,
t�0(μ − θ) − a�0(θ), 0 < a ≤ s.

(4.23)

In contrast to the functions κa and κ∗
a , mκ,a is continuous at a = 0. Introduce the

“macroscopic” version of (4.15): for real a,

n−1v(na) → v̄(a) =
{

(0,−a), −t ≤ a ≤ 0,
(a,0), 0 ≤ a ≤ s.

(4.24)

With this notation we have, again for real a ∈ [−t, s], for the partition functions
that appear in (4.16), the following large deviations:

J(s,t)−v̄(a)(r) = − lim
n→∞n−1 log P

{
logZ�

v(na),(�ns�,�nt�) ≥ nr
}
.(4.25)

We used Lemma 3.5 to take care of the small discrepancy between (�ns�, �nt�) −
v(na) and �n((s, t) − v̄(a))�, unless a = −t or a = s when this is a case of i.i.d.
large deviations, and therefore simpler.

Let mκ,a and mJ,b be the rightmost zeroes of κa and J(s,t)−v̄(b), respectively.
For (a, b) ∈ [−t, s]2, let

H
a,b
s,t (r) = lim

n→∞n−1 log P
{
logη�na� + logZ�

v(nb),(�ns�,�nt�) ≥ nr
}

(4.26)

=
⎧⎪⎨⎪⎩

0, r < mκ,a + mJ,b,

inf
mκ,a≤x≤r−mJ,b

{
κa(x) + J(s,t)−v̄(b)(r − x)

}
,

r ≥ mκ,a + mJ,b.

The existence of H
a,b
s,t (r) and the second equality follow from Lemma 3.6. We

need some regularity:

LEMMA 4.4. Fix 0 < s, t < ∞ and a compact set K ⊆ R. Then H
a,b
s,t (r)

is uniformly continuous as a function of (b, r) ∈ [−t, s] × K , uniformly in a ∈
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[−t, s]. That is,

lim
δ↘0

sup
a,b,b′∈[−t,s],r,x∈K:
|b−b′|≤δ,|r−x|≤δ

∣∣Ha,b
s,t (r) − H

a,b′
s,t (x)

∣∣ = 0.(4.27)

PROOF. This follows from the explicit formula in (4.26). First, we have the
joint continuity (b, r) �→ J(s,t)−v̄(b)(r) from Theorem 3.3. Second, we argue that
x in the infimum can be restricted to a single compact set simultaneously for
(a, b, r) ∈ [−t, s]2 × K . That mκ,a is bounded is evident from (4.23). To show
that the upper bound r − mJ,b of x is bounded above, we need to show a lower
bound on mJ,b = p((s, t) − v(b)). A lower bound on the free energy is easy: by
discarding all but a single path,

p
(
(s, t) − v(b)

) = lim
n→∞n−1 logZ��n((s,t)−v̄(b))� ≥ −(

s + t − |b|)�0(μ). �

We abbreviate Ha
s,t (r) = H

a,a
s,t (r).

The unknown rate functions Js,t are now inside (4.26), while the other rates Rs

and κa we know explicitly. The next lemma is the counterpart of (4.17) in terms of
rate functions.

LEMMA 4.5. Let s, t > 0 and r ∈ R. Then

Rs(r) = inf−t≤a≤s
Ha

s,t (r).(4.28)

PROOF. For any a ∈ [−t, s], by the first inequality of (4.17),

−Rs(r) = lim
n→∞n−1 log P

{�ns�∑
i=1

logUi,�nt� ≥ nr

}

≥ lim
n→∞n−1 log P

{
logη�na� + logZ�

v(na),(�ns�,�nt�) ≥ nr
}

(4.29)

≥ −Ha
s,t (r).

Supremum over a ∈ [−t, s] on the right gives ≤ in (4.28).
To get ≥ in (4.28) we use the second inequality of (4.17) together with a par-

titioning argument. Let ε > 0. Note this technical point about handling the errors
of the partitioning. With B, δ > 0, Chebyshev’s inequality and the l.m.g.f. of (2.2)
give the bound

P

{�nδ�∑
i=1

logYi,1 ≤ −nε

}
≤ e−nB(ε−B−1δ log(�(μ+B)/�(μ))) ≤ e−Bεn/2,(4.30)

where the second inequality comes from choosing δ = δ(ε,B) small enough. The
right tail for logY does not give such a bound with an arbitrarily large B . Conse-
quently we arrange the errors so that they can be bounded as above.
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Given B > 0, fix a small enough δ > 0 and let −t = a0 < a1 < · · · < aq =
0 < · · · < am = s be a partition of the interval −[t, s] so that |ai+1 − ai | < δ. We
illustrate how a term with index k from the right-hand side of (4.17) is reduced to a
term involving only partition points. Consider the case ai ≥ 0 and let �nai� ≤ k ≤
�nai+1�:

P
{
logηk + logZ�

v(k),(�ns�,�nt�) ≥ nr
}

≤ P

{
logη�nai+1� + logZ�

v(nai),(�ns�,�nt�)

−
�nai+1�∑
j=k+1

logUj,0 −
k−1∑

j=�nai�
logYj,1 ≥ nr

}

≤ P
{
logη�nai+1� + logZ�

v(nai),(�ns�,�nt�) ≥ n(r − ε)
}

(4.31)

+ P

{
−

�nai+1�∑
j=k+1

logUj,0 −
k−1∑

j=�nai�
logYj,1 ≥ nε

}

≤ P
{
logη�nai+1� + logZ�

v(nai),(�ns�,�nt�) ≥ n(r − ε)
}

+ e−Bεn/2.

On the other hand, if ai < 0 and �−nai+1� < −k ≤ �−nai�, then we would
develop as follows:

logηk + logZ�
v(k),(�ns�,�nt�)

≤ logη�nai� −
−�nai�∑

j=−k+1

logV0,j + logZ�
v(nai+1),(�ns�,�nt�)

−
−k−1∑

j=�−nai+1�∨1

logY1,j

and get the same bound as on line (4.31) but with ai and ai+1 switched around.
Now for ≥ in (4.28). Assume n is large enough so that nε > log(ns + nt).

Starting from (4.17),

n−1 log P

{�ns�∑
i=1

logUi,�nt� ≥ nr

}

≤ max−�nt�≤k≤�ns�
k �=0

n−1 log P
{
logηk + logZ�

v(k),(�ns�,�nt�) ≥ n(r − ε)
}

+ n−1 log(ns + nt)
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≤ max
0≤i≤q−1

n−1 log
(
P

{
logη�nai� + logZ�

v(nai+1),(�ns�,�nt�) ≥ n(r − 2ε)
}

+ e−Bεn/2)
∨ max

q≤i≤m−1
n−1 log

(
P

{
logη�nai+1� + logZ�

v(nai),(�ns�,�nt�)

≥ n(r − 2ε)
}

+ e−Bεn/2) + ε.

Take n → ∞ above to obtain

−Rs(r) ≤
{

max
0≤i≤q−1

(−H
ai,ai+1
s,t (r − 2ε)

) ∨ (−Bε/2)
}

∨
{

max
q≤i≤m−1

(−H
ai+1,ai
s,t (r − 2ε)

) ∨ (−Bε/2)
}

+ ε

≤ sup
a,b∈[−t,s] : |a−b|≤δ

(−H
a,b
s,t (r − 2ε)

) ∨ (−Bε/2) + ε.

We first let δ ↘ 0, and by Lemma 4.4 the bound above becomes

−Rs(r) ≤ sup
a∈[−t,s]

(−H
a,a
s,t (r − 2ε)

) ∨ (−Bε/2) + ε.

Next we take B ↗ ∞, and finally ε ↘ 0 with another application of Lemma 4.4.
This establishes ≥ in (4.28). �

A key analytic trick will be to look at the dual J ∗
(t,t)−v̄(a)(ξ) of the right tail rate

as a function of a. This lemma will be helpful.

LEMMA 4.6. For a fixed ξ ∈ [0,μ), the function

Gξ(a) =
{−J ∗

(t,t)−v̄(a)(ξ), a ∈ [0, t],
∞, a < 0 or a > t ,

(4.32)

is continuous on [0, t], and convex and lower semi-continuous on R. In particular,
G∗∗

ξ (a) = Gξ(a) for a ∈ R.

PROOF. To show convexity on [0, t], let λ ∈ (0,1) and a = λa1 + (1 − λ)a2:

−J ∗
(t,t)−v̄(a)(ξ)

= − sup
r∈R

{
ξr − J(t,t)−v̄(a)(r)

}
= inf

r∈R

{
Jt−a,t (r) − ξr

}
≤ inf

r∈R

inf
(r1,r2):

λr1+(1−λ)r2=r

{
λ
(
Jt−a1,t (r1) − ξr1

) + (1 − λ)
(
Jt−a2,t (r2) − ξr2

)}
(4.33)
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= inf
(r1,r2)∈R2

{
λ
(
Jt−a1,t (r1) − ξr1

) + (1 − λ)
(
Jt−a2,t (r2) − ξr2

)}
= λ inf

r1∈R

{
Jt−a1,t (r1) − ξr1

} + (1 − λ) inf
r2∈R

{
Jt−a2,t (r2) − ξr2

}
= −λJ ∗

t−a1,t
(ξ) − (1 − λ)J ∗

t−a2,t
(ξ).

The inequality comes from the convexity of J in the variable (t − a, t, r).
For finiteness on [0, t] it is now enough to show that Gξ(a) is finite at the

endpoints. Continuity then follows in the interior (0, t). First take a = t . Then J ∗
0,t

is the dual of a Cramér rate function, and for ξ ≥ 0

Gξ(t) = −J ∗
0,t (ξ) = −t log Eeξ logY1,0,(4.34)

which is finite for ξ < μ.
Convexity of Js,t (r) and symmetry Js,t (r) = Jt,s(r) imply Jt,t (r) ≤ J0,2t (r).
From this

Gξ(0) = −J ∗
t,t (ξ) = inf

r∈R

{
Jt,t (r) − ξr

}
(4.35)

≤ inf
r∈R

{
J0,2t (r) − ξr

} = −J ∗
0,2t (ξ) < ∞.

Continuity at a = 0. To show that Gξ is also continuous at the endpoints, we
first obtain a lower bound. For any r ∈ R,

J ∗
t−a,t (ξ) ≥ rξ − Jt−a,t (r)

hence, by continuity of Js,t in the (s, t) argument,

lim
a→0

J ∗
t−a,t (ξ) ≥ rξ − Jt,t (r).(4.36)

Supremum over r gives lima→0 J ∗
t−a,t (ξ) ≥ J ∗

t,t (ξ).
For the upper bound, let 0 < a < t . Varadhan’s theorem (Theorem 4.3.1 in [12])

applies in the present setting. This is justified in the proof of Corollary 2.5 below
and another similar justification is given for (5.4) below. Consequently,

J ∗
t,t (ξ) = lim

n→∞n−1 log Eeξ logZ�nt�,�nt�

≥ lim
n→∞n−1 log Eeξ logZ�n(t−a)�,�nt�

(4.37)
+ lim

n→∞n−1 log Ee
ξ

∑�nt�
i=�n(t−a)�+1 logYi,�nt�

= J ∗
t−a,t (ξ) + a log EY ξ .

Taking a ↘ 0 yields continuity at a = 0.

Continuity at a = t . The lower bound follows as in the previous case. For the
upper bound we use a path counting argument. Let enF(s,t) be an upper bound on
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the number of paths in ��ns�,�nt� such that F(0+, t) = 0. Consider first the case
where 0 ≤ ξ < 1. Then

J ∗
t−a,t (ξ) = lim

n→∞n−1 log E

( ∑
x�∈�(�n(t−a)�,�nt�)

�nt�+�n(t−a)�∏
i=1

Yxi

)ξ

≤ lim
n→∞n−1 log

∑
x�∈�(�n(t−a)�,�nt�)

�nt�+�n(t−a)�∏
i=1

E(Y )ξ(4.38)

= F(t − a, t) + (2 − a/t)J ∗
0,t (ξ).

For 1 ≤ ξ < μ, Jensen’s inequality yields

J ∗
t−a,t (ξ) ≤ ξF (t − a, t) + (2 − a/t)J ∗

0,t (ξ).(4.39)

Let a ↗ t to get the continuity.
G∗∗

ξ = Gξ is a consequence of convexity and lower semicontinuity, by [28],
Theorem 12.2. �

PROOF OF PROPOSITION 4.3. The remainder of the proof is convex analysis.
The goal is to derive the following formula for the right tail rate function Js,t :

Js,t (r) = sup
ξ∈[0,μ)

{
rξ − inf

θ∈(ξ,μ)

(
tMθ(ξ) − sMμ−θ (−ξ)

)}
.(4.40)

We begin by expressing the explicitly known dual R∗
s (ξ) from (4.20) in terms of

the unknown function J(s,t)−v̄(a). Equation (4.26) says that Ha
s,t is the infimal con-

volution of κa and J(s,t)−v̄(a), in symbols Ha
s,t = κa�J(s,t)−v̄(a). By Theorem 16.4

in [28] addition is dual to infimal convolution. Starting with (4.28) we have

R∗
s (ξ) = sup

−t≤a≤s
sup
r∈R

{
rξ − (κa�J(s,t)−v̄(a))(r)

}
= sup

−t≤a≤s
(κa�J(s,t)−v̄(a))

∗(ξ)(4.41)

= sup
−t≤a≤s

{
κ∗
a (ξ) + J ∗

(s,t)−v̄(a)(ξ)
}
.

Combining this with (4.20) gives, for 0 ≤ ξ < θ ,

s log�(θ − ξ) − s log�(θ) = sup
−t≤a≤s

{
κ∗
a (ξ) + J ∗

(s,t)−v̄(a)(ξ)
}
.(4.42)

Now regard ξ ∈ [0,μ) fixed, and let θ ∈ (ξ,μ) vary. Introduce temporary defi-
nitions

ua(θ) =
⎧⎪⎨⎪⎩

−hξ (θ) = Mμ−θ (−ξ) = log�(μ − θ + ξ) − log�(μ − θ),

−t ≤ a ≤ 0,

dξ (θ) = Mθ(ξ) = log�(θ − ξ) − log�(θ), 0 < a ≤ s.

(4.43)
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Substitute (4.22) and (4.43) into equation (4.42) to get

s log
�(θ − ξ)

�(θ)
− t log

�(μ − θ + ξ)

�(μ − θ)
= sup

−t≤a≤s

{
aua(θ) + J ∗

(s,t)−v̄(a)(ξ)
}
.(4.44)

The right-hand side begins to resemble a convex dual, and will allow us to solve
for Js,t . We can specialize to the case s = t because (t, t) − v̄(a) gives all the
pairs (s, t) with 0 ≤ s ≤ t . When s = t , the Js,t = Jt,s symmetry allows us to write
(4.44) as

t
(
dξ (θ) + hξ (θ)

) = sup
0≤a≤t

{
a
(
hξ (θ) ∨ dξ (θ)

) + J ∗
t−a,t (ξ)

}
,

and it splits into cases as follows:

t
(
dξ (θ) + hξ (θ)

) =
⎧⎪⎨⎪⎩

sup
0≤a≤t

{
ahξ (θ) + J ∗

t−a,t (ξ)
}
, θ ∈ [

(μ + ξ)/2,μ
)
,

sup
0≤a≤t

{
adξ (θ) + J ∗

t−a,t (ξ)
}
, θ ∈ (

ξ, (μ + ξ)/2
]
.

We can discard one of the branches above. For if θ ′ = μ + ξ − θ , then dξ (θ
′) =

hξ (θ), and we see that the two equations given by the two branches are in fact
equivalent. So we restrict to the case θ ∈ [(μ + ξ)/2,μ) and continue with

t
(
dξ (θ) + hξ (θ)

) = sup
0≤a≤t

{
ahξ (θ) + J ∗

t−a,t (ξ)
}
.(4.45)

The function hξ is strictly increasing, so we can change variables via v = hξ (θ)

between the intervals θ ∈ [(μ + ξ)/2,μ) and v ∈ [hξ ((μ + ξ)/2),∞). Recall also
Gξ(a) = −J ∗

t−a,t (ξ) from Lemma 4.6. This turns (4.45) into

t
((

dξ ◦ h−1
ξ

)
(v) + v

) = sup
0≤a≤t

{
av − Gξ(a)

}
(4.46)

= G∗
ξ (v), hξ

(
μ + ξ

2

)
≤ v < ∞.

Utilizing Gξ = G∗∗
ξ , we get the following expression for the rate function J :

Jt−a,t (r) = sup
ξ∈[0,μ)

{
rξ − J ∗

t−a,t (ξ)
} = sup

ξ∈[0,μ)

{
rξ + Gξ(a)

}
(4.47)

= sup
ξ∈[0,μ)

{
rξ + sup

v∈R

[
av − G∗

ξ (v)
]}

= sup
ξ∈[0,μ)

{
rξ + sup

v∈[hξ ((μ+ξ)/2),∞)

[
av − G∗

ξ (v)
]}

= sup
ξ∈[0,μ)

{
rξ + sup

v∈[hξ ((μ+ξ)/2),∞)

[
(a − t)v − tdξ

(
h−1

ξ (v)
)]}

.(4.48)

In the next to last equality above, we restricted the supremum over v to the interval
v ∈ [hξ ((μ + ξ)/2),∞). This is justified because G∗

ξ is convex, a ≥ 0 and from
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(4.46) we can compute the right derivative (G∗
ξ )

′(hξ (
μ+ξ

2 )+) = 0. The restriction
of the supremum then allows us to replace G∗

ξ (v) with (4.46).
The proof is complete. In the case 0 < s ≤ t , take a = t − s on line (4.47). Line

(4.48) is the desired representation for Js,t . It turns into (4.40) by the v to θ change
of variable. The case s > t follows from the symmetry Js,t (r) = Jt,s(r). �

The next lemma makes explicit the formula(s) for J ∗
s,t that were implicit in the

proof of Proposition 4.3.

LEMMA 4.7. Let s, t ≥ 0 and ξ ∈ [0,μ). Then

J ∗
s,t (ξ) = inf

ρ∈(ξ,μ)

{
tMρ(ξ) − sMμ−ρ(−ξ)

}
(4.49)

= inf
θ∈(ξ,μ)

{
sMθ(ξ) − tMμ−θ (−ξ)

}
.(4.50)

PROOF. (4.50) comes from (4.49) by the change of variable ρ = μ + ξ − θ .
Comparison of the two shows that we can assume s ≤ t . To prove (4.49) for s ≤ t ,
start from Lemma 4.6:

J ∗
s,t (ξ) = −Gξ(t − s) = −G∗∗

ξ (t − s) = − sup
v∈R

{
(t − s)v − G∗

ξ (v)
}
.

Restrict the supremum as in (4.47) and (4.48), substitute in (4.46) and change
variables from v to θ = h−1

ξ (v). �

PROOF OF COROLLARY 2.5. If ξ ≥ μ,

ξ logZ�ns�,�nt� ≥ ∑
j

ξ logYxj

for any particlar path x� ∈ ��ns�,�nt�, and then �s,t (ξ) = ∞ comes from Mμ(ξ) =
∞ from (2.2).

Let ξ < μ. Pick γ > 1 such that γ ξ < μ. Then the bound

sup
n

n−1 log Eeγ ξ logZ�ns�,�nt� < ∞

follows from path counting, as in (4.38) and (4.39). This bound is sufficient for
Varadhan’s theorem (Theorem 4.3.1 in [12]) which gives

lim
n→∞�s,t (ξ) = n−1 log Eeξ logZ�ns�,�nt� = I ∗

s,t (ξ) = sup
r∈R

{
rξ − Is,t (r)

}
= sup

r≥p(s,t)

{
rξ − Is,t (r)

} = sup
r≥p(s,t)

{
rξ − Js,t (r)

}
.

We discarded {Is,t = ∞} = {r < p(s, t)} from the supremum. Since Is,t increases
for r ≥ p(s, t), the case ξ ≤ 0 of (2.11) follows. For ξ ≥ 0 the values Js,t (r) = 0
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for r < p(s, t) can be put back in because they do not alter the supremum. Con-
sequently �s,t (ξ) = J ∗

s,t (ξ) for ξ ≥ 0. Lemma 4.7 completes the proof of this
corollary. �

There is nothing new in the proof of Corollary 2.8, so we omit it.

5. Proofs for the stationary log-gamma model. In this section we prove the
results of Section 2.2.

PROOF OF THEOREM 2.14. Coarse-graining arguments and simple error
bounds readily give the following limit:

p(θ),hor(s, t) = lim
n→∞n−1 logZ

(θ),hor
�ns�,�nt�

= lim
n→∞ max

1≤k≤�ns�

(
n−1

k∑
i=1

logUi,0 + n−1 logZ�
(k,1),(�ns�,�nt�)

)

= sup
0≤a≤s

{−a�0(θ) + p(s − a, t)
}

= sup
0≤a≤s

inf
0<ρ<μ

{−a�0(θ) + (a − s)�0(ρ) − t�0(μ − ρ)
}
.

In the last step we substituted in (2.5). Formula (2.30) follows from this by some
calculus.

From the definition (2.22) of Z
(θ),hor
�ns�,�nt�, follow inequalities analogous to (4.17),

and then with arguments like those in the proof of Lemma 4.5, we derive a right
tail LDP

lim
n→∞n−1 log P

{
Z

(θ),hor
�ns�,�nt� ≥ nr

}
(5.1)

= −Jθ,hor(r) = − inf
a∈[0,s](Ra�Js−a,t )(r),

where Ra is the rate function from (4.18). For ξ ≥ 0 the l.m.g.f. in (2.24) satisfies
�hor

θ,(s,t)(ξ) = J ∗
θ,hor(ξ). This would be a consequence of Varadhan’s theorem if we

had a full LDP, but now we have to justify this separately, and we do so in Lem-
ma 5.1 below. 1 Proceeding as in (4.41) and using (4.50),

�hor
θ,(s,t)(ξ) = sup

a∈[0,s]
(
R∗

a(ξ) + J ∗
s−a,t (ξ)

)
= sup

a∈[0,s]
inf

ρ∈(ξ,μ)

{
aMθ(ξ) + (s − a)Mρ(ξ) − tMμ−ρ(−ξ)

}
.

Formula (2.31) follows from some calculus. The sup and inf can be interchanged
by a minimax theorem (see, e.g., [19]), and this makes the calculus easier. �
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LEMMA 5.1. Let Z
(θ),hor
�ns�,�nt� the partition function given by (2.22), and let

Jθ,hor(r) as given by (5.1). Then for 0 ≤ ξ < θ ,

lim
n→∞n−1 log Ee

ξ logZ
(θ),hor
�ns�,�nt� = sup

r∈R

{
rξ − Jθ,hor(r)

} = J ∗
θ,hor(ξ).

PROOF. Let 0 < ξ < θ . Set

γ = lim
n→∞

n−1 log Ee
ξ logZ

(θ),hor
�ns�,�nt� and γ = lim

n→∞n−1 log Ee
ξ logZ

(θ),hor
�ns�,�nt� .

First we have an exponential Chebyshev argument for a lower bound:

n−1 log P
{
logZ

(θ),hor
�ns�,�nt� ≥ nr

} ≤ −ξr + n−1 log Ee
ξ logZ

(θ),hor
�ns�,�nt� .

Letting n → ∞ along a suitable subsequence gives γ ≥ ξr−Jθ,hor(r) for all r ∈ R.
Thus γ ≥ J ∗

θ,hor(ξ) holds.
For the upper bound we claim that

lim
r→∞ lim

n→∞n−1 log E
(
e
ξ logZ

(θ),hor
�ns�,�nt�1

{
logZ

(θ),hor
�ns�,�nt� ≥ nr

}) = −∞.(5.2)

Assume for a moment that (5.2) holds. To establish the upper bound let δ > 0
and partition R with ri = iδ, i ∈ Z:

n−1 log E
(
e
ξ logZ

(θ),hor
�ns�,�nt�)

≤ n−1 log

[
m∑

i=−m

enξri+1P
{
logZ

(θ),hor
�ns�,�nt� ≥ nri

}
(5.3)

+ enξr−m + E
(
e
ξ logZ

(θ),hor
�ns�,�nt�1

{
logZ

(θ),hor
�ns�,�nt� ≥ nrm

})]
.

By (5.2), for each M > 0 there exists m = m(M) so that

n−1 log E
(
e
ξ logZ

(θ),hor
�ns�,�nt�1

{
logZ

(θ),hor
�ns�,�nt� ≥ nrm

})
< −M.

A limit along a suitable subsequence in (5.3) yields

γ ≤ max−m≤i≤m

{
ξri+1 − Jθ,hor(ri)

} ∨ ξr−m ∨ (−M)

≤
(
sup
r∈R

{
ξr − Jθ,hor(r)

} + ξδ
)

∨ ξr−m ∨ (−M).

The proof of the lemma follows by letting δ → 0, m → ∞ and M → ∞.
Now to show (5.2). Note that there exists α > 1 such that αξ < θ ,

sup
n

(
Ee

αξ logZ
(θ),hor
�ns�,�nt�)1/n

< ∞.(5.4)
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To see this, distinguish cases where αξ < 1 or otherwise. Let N denote the number
of paths, and recall that N ≤ ecn for some c > 0: For αξ < 1,

(
Ee

αξ logZ
(θ),hor
�ns�,�nt�)1/n =

(
E

[( ∑
x∈�(�ns�,�nt�)

�ns�+�nt�∏
i=1

Yxj

)αξ])1/n

≤
(
N

�nt�+�ns�∏
i=1

EYαξ

)1/n

≤ ecMθ(αξ)t+s .

For αξ ≥ 1, Jensen’s inequality gives

(
Ee

αξ logZ
(θ),hor
�ns�,�nt�)1/n =

(
E

[( ∑
x∈�(�ns�,�nt�)

�ns�+�nt�∏
i=1

Yxj

)αξ])1/n

≤
(
Nαξ

�nt�+�ns�∏
i=1

EYαξ

)1/n

εecαξMθ(αξ)t+s .

To show (5.2), use Hölder’s inequality,

n−1 log E
(
e
ξ logZ

(θ),hor
�ns�,�nt�1

{
logZ

(θ),hor
�ns�,�nt� ≥ nr

})
≤ α−1 log sup

n

(
Ee

αξ logZ
(θ),hor
�ns�,�nt�)1/n

+ (α − 1)α−1n−1 log P
{
logZ

(θ),hor
�ns�,�nt� ≥ nr

}
.

Taking a limit n → ∞, we conclude

lim
n→∞n−1 log E

(
e
ξ logZ

(θ),hor
�ns�,�nt�1

{
logZ

(θ),hor
�ns�,�nt� ≥ nr

}) ≤ C1 − C2Jθ,hor(r)(5.5)

for positive constants C1,C2. Letting r → ∞ finishes the proof because

lim
r→∞Jθ,hor(r) = ∞. �

PROOF OF THEOREM 2.11. We can assume 0 < ξ < θ ∧ (μ − θ) because
otherwise the boundary variables alone force the l.m.g.f. to blow up.

Let us record the counterpart of (2.31) for Z
(θ),hor
�ns�,�nt�. Condition (2.28) becomes

t
(
�0(μ − θ) − �0(μ − θ − ξ)

) ≥ s
(
�0(θ + ξ) − �0(θ)

)
.(5.6)

The conclusion becomes that the limit in (2.25) exists and is given by

�ver
θ,(s,t)(ξ) =

{
tMμ−θ (ξ) − sMθ(−ξ), if (5.6) holds,
�t,s(ξ) = �s,t (ξ), if (5.6) fails.(5.7)

The logarithmic limits lead to the formula

�θ,(s,t)(ξ) = �hor
θ,(s,t)(ξ) ∨ �ver

θ,(s,t)(ξ),(5.8)
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and we need to justify that this is the same as the maximum in (2.20). This comes
from several observations:

(i) �s,t (ξ) = J ∗
s,t (ξ) is always bounded above by the first branches of both (2.31)

and (5.7). This is evident from equations (4.49) and (4.50).
(ii) Conditions (2.28) and (5.6) together define three ranges for (s, t):

(a) (2.28) and (5.6) both hold if and only if α1t ≤ s ≤ α2t ;
(b) (2.28) holds and (5.6) fails if and only if s > α2t ;
(c) (2.28) fails and (5.6) holds if and only if s < α1t .
The constants 0 < α1 < α2 can be read off (2.28) and (5.6), and the strict
inequalities are justified by the strict concavity of �0.

(iii) In the maximum in (2.20), we have

sMθ(ξ) − tMμ−θ (−ξ) ≥ tMμ−θ (ξ) − sMθ(−ξ)(5.9)

if and only if s ≥ α3t for a constant α3 > 0 that can be read off from above.
Strict concavity of �0 implies that 0 < α1 < α3 < α2.

Now we argue that

�θ,(s,t)(ξ) = max
{
sMθ(ξ) − tMμ−θ (−ξ), tMμ−θ (ξ) − sMθ(−ξ)

}
.(5.10)

This is clear in case (a) as this maximum is exactly �hor
θ,(s,t)(ξ) ∨ �ver

θ,(s,t)(ξ).

In case (b), �hor
θ,(s,t)(ξ) equals the left-hand side of (5.9) which dominates both

the right-hand side of (5.9) and �s,t (ξ). Consequently in case (b) also (5.8)
is the same as (5.10). Case (c) is symmetric to (b). This completes the proof
of (5.10).

With one additional observation we can verify Remark 2.15. Namely,
�s,t (ξ) is in fact strictly bounded above by the first branch of either (2.31)
or (5.7). The claim is easily verifiable when either of conditions (b) or (c) are
in effect. To see the strict domination when (a) holds, note that the unique
minimizers in formulas (4.49) and (4.50) are linked by ρ = μ + ξ − θ . But
if these formulas matched both first branches in (2.31) and (5.7), the con-
nection would have to be ρ = μ − θ . This together with (5.10) implies that
�s,t (ξ) < �θ,(s,t)(ξ) for all θ ∈ (0,μ). �
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