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COVARIANCE ESTIMATION FOR DISTRIBUTIONS WITH
2 + ε MOMENTS

BY NIKHIL SRIVASTAVA1 AND ROMAN VERSHYNIN2

Institute for Advanced Study and University of Michigan

We study the minimal sample size N = N(n) that suffices to estimate the
covariance matrix of an n-dimensional distribution by the sample covariance
matrix in the operator norm, with an arbitrary fixed accuracy. We establish
the optimal bound N = O(n) for every distribution whose k-dimensional
marginals have uniformly bounded 2 + ε moments outside the sphere of
radius O(

√
k). In the specific case of log-concave distributions, this result

provides an alternative approach to the Kannan–Lovasz–Simonovits prob-
lem, which was recently solved by Adamczak et al. [J. Amer. Math. Soc.
23 (2010) 535–561]. Moreover, a lower estimate on the covariance matrix
holds under a weaker assumption—uniformly bounded 2 + ε moments of
one-dimensional marginals. Our argument consists of randomizing the spec-
tral sparsifier, a deterministic tool developed recently by Batson, Spielman
and Srivastava [SIAM J. Comput. 41 (2012) 1704–1721]. The new random-
ized method allows one to control the spectral edges of the sample covariance
matrix via the Stieltjes transform evaluated at carefully chosen random points.

1. Introduction.

1.1. Covariance estimation problem. Estimating covariance matrices of high-
dimensional distributions is a basic problem in statistics and its numerous applica-
tions. Consider a random vector X valued in R

n, and let us assume for simplicity
that X is centered, that is, EX = 0; this restriction will not be needed later. The
covariance matrix of X is the n × n positive semidefinite matrix

� = EXXT .

Our goal is to estimate � from a sample X1, . . . ,XN taken from the same distri-
bution as X. A classical unbiased estimator for � is the sample covariance matrix

�N = 1

N

N∑
i=1

XiX
T
i .
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A basic question is to determine the minimal sample size N which guarantees that
� is accurately estimated by �N . More precisely, for a given accuracy ε > 0, we
are interested in the minimal N = N(n, ε) so that

E‖�N − �‖ ≤ ε‖�‖,
where ‖ · ‖ denotes the spectral (operator) norm. Replacing X by �−1/2X and Xi

by �−1/2Xi , we reduce the problem to the distributions for which � = I , that is,
to isotropic distributions.

1.2. Sampling from isotropic distributions. We consider independent isotropic
random vectors Xi valued in R

n, that is, such that EXiX
T
i = I . Our goal is to

determine the minimal sample size N = N(n, ε) such that

E‖�N − �‖ ≤ ε.

For obvious-dimensional reasons, one must have N ≥ n. Rudelson’s remarkably
general result ([13], see [17], Section 4.3) yields that if ‖X‖2 = O(

√
n) almost

surely, then

N = O(n logn),(1.1)

where the O(·) notation hides the dependence on ε here and thereafter. It is well
known that the logarithmic oversampling factor cannot be removed from (1.1) in
general, for example, if the distribution is supported on O(n) points; see Sec-
tion 1.8.

Nevertheless, it is also known that for sufficiently regular distributions the log-
arithmic oversampling factor is not needed in (1.1). This is a property of the stan-
dard normal distribution in R

n and, more generally, of the distributions with sub-
Gaussian one-dimensional marginals. Namely,

N = O(n)

holds for every distribution that satisfies

sup
‖x‖2≤1

(
E

∣∣〈X,x〉∣∣p)1/p = O
(√

p
)

for p ≥ 1.(1.2)

This result can be obtained by a standard covering argument; see [17], Section 4.3.
It is an open problem to describe the distributions for which the logarithmic

oversampling is not needed, that is, for which N = O(n). The gap between sub-
Gaussian distributions where this bound holds and discrete distributions on O(n)

points where it fails is quite large.
It is already a difficult problem to relax the sub-Gaussian moment assumption

(1.2) to anything weaker while keeping N = O(n). A major step was made by
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Adamczak et al. [1], who showed that N = O(n) still holds (in fact, with high
probability) under the sub-exponential moment assumptions

‖X‖2 = O
(√

n
)

a.s.,
(1.3)

sup
‖x‖2≤1

(
E

∣∣〈X,x〉∣∣p)1/p = O(p) for p ≥ 1.

As an application, it was shown in [1] that N = O(n) holds for log-concave distri-
butions, and in particular for the uniform distributions on isotropic convex bodies
in R

n. This answered a question posed by Kannan, Lovasz and Simonovits in [9].
The second author of the present paper speculated in [16] that N = O(n) should

hold for a much wider class of distributions than sub-exponential, perhaps for all
distributions with 2+ε moments. (The second moment—the variance—is assumed
to be finite by the nature of the problem, as otherwise the covariance matrix is not
defined.) The goal of the the current paper is to provide a result of this type.

THEOREM 1.1. Consider independent isotropic random vectors Xi valued
in R

n. Assume that Xi satisfy the strong regularity assumption: for some C,η > 0,
one has

P
{‖PXi‖2

2 > t
} ≤ Ct−1−η for t > C rank(P )(SR)

for every orthogonal projection P in R
n. Then, for ε ∈ (0,1) and for

N ≥ Cmainε
−2−2/η · n,

one has

E

∥∥∥∥∥ 1

N

N∑
i=1

XiX
T
i − I

∥∥∥∥∥ ≤ ε.(1.4)

Here Cmain = 512(48C)2+2/η(6 + 6/η)1+4/η, and as before ‖ · ‖ denotes the spec-
tral (operator) matrix norm, and ‖ · ‖2 denotes the Euclidean norm in R

n.

REMARK. Since the distribution of PXi is isotropic in the range of P , we
have E‖PXi‖2

2 = rank(P ). This explains why (SR) concerns only the tail values
of t which are above rank(P ).

1.3. Covariance estimation. Returning to the covariance estimation problem,
we deduce the following.

COROLLARY 1.2 (Covariance estimation). Consider a random vector X val-
ued in R

n with covariance matrix �. Assume that for some C,η > 0, the isotropic
random vector Z = �−1/2X satisfies

P
{‖PZ‖2

2 > t
} ≤ Ct−1−η for t > C rank(P )(SR)
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for every orthogonal projection P in R
n. Then, for every ε ∈ (0,1) and

N ≥ Cmainε
−2−2/η · n,

the sample covariance matrix �N obtained from N independent copies of X sat-
isfies

E‖�N − �‖ ≤ ε‖�‖.

This result follows by applying Theorem 1.1 for the independent copies of
the random vectors Zi = �−1/2Xi instead of Xi , and by multiplying the matrix
1
N

∑N
i=1 XiX

T
i − I in (1.4) by �1/2 on the left and on the right. Thus, for distribu-

tions satisfying (SR) we conclude that the minimal sample size for the covariance
estimation is N = O(n).

Let us illustrate these results with two important examples.

1.4. Sampling from log-concave distributions and convex sets. A notable class
of examples where Corollary 1.2 applies is formed by the log-concave distribu-
tions, which includes the uniform distributions on convex bodies. Consider a ran-
dom vector X with a log-concave distribution in R

n, that is, whose density has
the form e−V (x) where logV (x) is a convex function on R

n. Paouris’s concentra-
tion inequality [11] implies that regularity assumption (SR) holds for X. Indeed,
consider an orthogonal projection P in R

n, and let k = rank(P ). The distribution
of the isotropic random vector Z = �−1/2X is log-concave in R

n, and so is the
distribution of PZ in the k-dimensional space range(P ). Paouris’s theorem then
states that

P
{‖PZ‖2

2 > t
} ≤ exp(−ct) for t > Ck,

where C,c > 0 are absolute constants. This is obviously stronger than assump-
tion (SR), so Corollary 1.2 applies.

We conclude that the minimal sample size for estimating the covariance matrix
of a log-concave distribution is N = O(n). This matches the bound obtained by
Adamczak et al. [1], though it should be noted that the guarantee of [1] holds
with probability that converges to 1 exponentially fast as n → ∞, whereas ours
holds only in expectation. We have not tried to obtain probability bounds of this
type; note, however, that under our general assumption (SR), the probability cannot
converge to 1 faster than at a polynomial rate in n.

1.5. Sampling from product distributions. A distribution does not have to be
log-concave in order to satisfy the regularity assumptions in Theorem 1.1 and
Corollary 1.2. For example, all product distributions with finite 4 + ε moments
have the required regularity property. We can deduce this from the following thin
shell estimate:
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PROPOSITION 1.3 (Thin shell probability for product distributions). Let
p ≥ 2, and consider a random vector X = (ξ1, . . . , ξn), where ξi are independent
random variables with zero means, unit variances and with uniformly bounded
(2p)th moments. Then for every 1 ≤ k ≤ n and for every orthogonal projection P

in R
n with rankP = k, one has

E
∣∣‖PX‖2

2 − k
∣∣p � kp/2.(1.5)

The factor implicit in (1.5) depends only on p and on the bound on the (2p)th
moments.

The proof of Proposition 1.3 is given in the Appendix.
Applying Chebyshev’s inequality together with (1.5), we obtain for t ≥ k that

P
{‖PX‖2

2 > k + t
} ≤ t−p · E

∣∣‖PX‖2
2 − k

∣∣p � t−pkp/2 ≤ t−p/2.

Thus for p > 2 we get a sub-linear tail, as required in the regularity assumption
(SR).

This shows that Theorem 1.1 applies for product distributions in R
n with uni-

formly bounded 4 + ε moments, and it gives N = O(n) for their covariance esti-
mation. Note that this moment assumption is almost tight—according to [3], if the
components ξi are i.i.d. and have infinite fourth moment, then lim sup‖�N‖ → ∞
as n → ∞ and n/N → y > 0. (This is because in this situation at least one of the
Nn i.i.d. coordinates of X1, . . . ,XN will likely to be large.)

1.6. Extreme eigenvalues. Theorem 1.1 states that, for sufficiently large N ,
all eigenvalues of the sample covariance matrix �N = 1

N

∑N
i=1 XiX

T
i are concen-

trated near 1. It is easy to extend this to a result that holds for all N , as follows.

COROLLARY 1.4. Let n,N be arbitrary positive integers, suppose Xi are in-
dependent isotropic random vectors in R

n satisfying (SR), and let y = n/N . Then
the sample covariance matrix �N = 1

N

∑N
i=1 XiX

T
i satisfies

1 − C1y
c ≤ Eλmin(�N) ≤ Eλmax(�N) ≤ 1 + C1

(
y + yc).(1.6)

Here c = η
2η+2 , C1 = 512(16C)1+2/η(6 + 6/η)1+4/η and λmin(�N), λmax(�N)

denote the smallest and the largest eigenvalues of �N , respectively.

We deduce this result in Section 3. One can view (1.6) as a nonasymptotic form
of the Bai–Yin law for the extreme eigenvalues of sample covariance matrices [4].
This law, associated with the works of Geman, Bai, Yin, Krishnaiah and Silverstein
applies for product distributions, specifically for random vectors X = (ξ1, . . . , ξn)

with i.i.d. components ξi with zero mean, unit variance and finite fourth moment.
For such distributions one has asymptotically almost surely that(

1 − √
y
)2 − o(1) ≤ λmin(�N) ≤ λmax(�N) ≤ (

1 + √
y
)2 + o(1)(1.7)
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as n → ∞ and n/N → y ∈ [0,1); see the rigorous statement in [4]. This limit
law is sharp. On the other hand, inequalities (1.6) hold in any fixed dimensions
N,n and for general distributions (as in Theorem 1.1), without any independence
requirements for the coordinates.

REMARK. Comparing (1.6) with (1.7) one can ask about the optimal value of
the exponent c, in particular whether c = 1/2. In a recent paper [2], Adamczak et
al. obtained the optimal exponent c = 1/2 for log-concave distributions, and more
generally for sub-exponential distributions in the sense of (1.3). As (1.3) implies
(SR) with η = (p − 1)/2 and C ≤ (O(p))p , Theorem 1.1 recovers a bound of
c = 1/2 − 1/(p + 1) = 1/2 − o(1) as p → ∞.

REMARK (Random matrices with independent rows). Corollary 1.4 can be in-
terpreted as a result about the spectrum of random matrices with independent rows.
Indeed, if A is the matrix with rows Xi , then �N = 1

N

∑N
i=1 XiX

T
i = 1

N
AT A. So

the singular values of the matrix 1√
N

A are the same as the eigenvalues of the
matrix �N , and they are controlled as in (1.6). In particular, under the regularity
assumption (SR) on Xi we obtain that(

E‖A‖2)1/2 ≤ C2
(√

N + √
n
)
,

where C2 = √
2C1, and C1 is as in Corollary 1.4.

Notice that while the rows of matrix A are independent, the columns of A may
be dependent. The simpler case where all entries of A are independent is well
understood by now. In the latter case, if the entries have zero mean and uniformly
bounded fourth moments, the bound E‖A‖ �

√
N + √

n follows, for example,
from Latala’s general inequality [10].

1.7. Smallest eigenvalue. Our proof of Theorem 1.1 consists of two separate
arguments for upper and lower bounds for the spectrum of the sample covariance
matrix. It turns out that the full power of the strong regularity assumption (SR)
is not needed for the lower bound. It suffices to assume 2 + η moments for one-
dimensional marginals rather than for marginals in all dimensions. This is only
slightly stronger than the isotropy assumption, which fixes the second moments of
one-dimensional marginals, and it broadens the class of distributions for which the
result applies. We state this as a separate theorem.

THEOREM 1.5 (Smallest eigenvalue). Consider independent isotropic ran-
dom vectors Xi valued in R

n. Assume that Xi satisfy the following weak regularity
assumption: for some C,η > 0,

sup
‖x‖2≤1

E
∣∣〈Xi, x〉∣∣2+η ≤ C.(WR)
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Then, for ε > 0 and for

N ≥ Clowerε
−2−2/η · n,(1.8)

the minimum eigenvalue of the sample covariance matrix �N = 1
N

∑N
i=1 XiX

T
i

satisfies

Eλmin(�N) ≥ 1 − ε.

Here Clower = 40(10C)2/η.

REMARK (Moments vs. tails). We have chosen to write (WR) in terms of mo-
ments rather than in terms of tail bounds as in (SR). By integration of the tails
one can check that, for any given η > 0, (SR) with parameter C implies (WR) with
parameter C′ = C(2 + 2/η).

In the remainder of the paper we will use (WR) for theorems regarding only the
smallest eigenvalue and (SR) for theorems which involve the largest one.

REMARK (Product distributions with 2 + η moments). Many distributions of
interest satisfy (WR). For example, let X = (ξ1, . . . , ξn) have i.i.d. components ξi

with zero mean, unit variance and finite (2 + η) moment. Then a standard appli-
cation of symmetrization and Khintchine’s inequality (or a direct application of
Rosenthal’s inequality [12], see [8]) shows that one-dimensional marginals of X

also have bounded (2 + η) moments; that is, (WR) holds.
In the context of the Bai–Yin law discussed in Section 1.6, this indicates that

the smallest eigenvalue of a random matrix can be approximately controlled [as in
(1.6)] even if the fourth moment is infinite. However, as we already recalled, four
moments are necessary to control the largest eigenvalue in the classical Bai–Yin
law [3].

REMARK (Covariance estimation). Theorem 1.5 can be used to obtain a lower
estimate for the covariance matrix under the weak regularity assumption (WR).

1.8. Optimality of the regularity assumptions. Let us briefly mention two sim-
ple and known examples that illustrate the role of regularity assumptions (SR) and
(WR) in the control of the largest and smallest eigenvalues, respectively.

For the largest eigenvalue as in Theorem 1.1, it is not sufficient to put a reg-
ularity assumption of the type (SR) only on one-dimensional marginals, as it is
done in Theorem 1.5 for the smallest eigenvalue. Even the following very strong
(exponential) moment assumption is insufficient:

sup
‖x‖2≤1

P
{∣∣〈X,x〉∣∣ > t

} ≤ C exp(−ct) for t > 0.(1.9)

Indeed, consider a random vector X = ξZ where Z is a random vector uniformly
distributed in the Euclidean sphere in R

n centered at the origin and with radius
√

n,
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and where ξ is a standard normal random variable. Then X is isotropic, and
all one-dimensional marginals of X have exponential tail decay (1.9). However,
the multiplier ξ produces a dimension-free tail decay of the norm of Z, namely
P{‖X‖2 > t

√
n} = P{ξ > t} � exp(−C′t2) for t > 0. It follows that a sample of N

independent copies X1, . . . ,XN of X safisfies E maxi≤N ‖Xi‖2
2 � N logN , so the

matrix �N = 1
N

∑N
i=1 XiX

T
i satisfies

E‖�N − I‖ ≥ N−1
E max

i≤N
‖Xi‖2

2 − 1 � logN,

which contradicts the conclusion of Theorem 1.1. This example is essentially due
to Aubrun; see [1], Remark 4.9.

REMARK. It is not clear whether Theorem 1.1 would hold if, in addition to
(2 + η) moments on one-dimensional marginals, one puts a total boundedness
assumption

‖X‖ = O
(√

n
)

almost surely.

A conjecture of this type is discussed in [16] where a version of the theorem is
proved under this assumption, with η = 2 but with an additional (log logn)O(1)

oversampling factor.

Furthermore, we note that for the smallest eigenvalue as in Theorem 1.5, one
cannot drop the regularity assumption (WR); that is, the assumption with η = 0
is not sufficient. This is seen for Xi uniformly distributed in the set of 2n points
(±ek) where (ek)

n
k=1 is an orthonormal basis in R

n. Indeed, in order that the small-
est eigenvalue of the matrix �N = 1

N

∑N
i=1 XiX

T
i be different from zero, one needs

�N to have full rank, for which all n basis vectors ek need be present in the sample
X1, . . . ,XN . By the coupon collector’s problem, for this to happen with constant
probability one needs a sample of size N � n logn. For N = o(n logn), the small-
est eigenvalue is zero with high probability, so the conclusion of Theorem 1.5 fails.

1.9. The argument: Randomizing the spectral sparsifier. Our proof of Theo-
rem 1.1 consists of randomizing the spectral sparsifier invented by Batson, Spiel-
man and Srivastava [5]; see [14]. The randomization makes the spectral sparsifier
appear naturally in the context of random matrix theory. The method is based on
evaluating the Stieltjes transform of �N while making rank one updates. How-
ever, in contrast to typical methods of random matrix theory (and to the spectral
sparsifier itself), we shall evaluate the Stieltjes transform at random real points.

Let us illustrate the method by working out a crude upper bound O(1) for the
largest eigenvalue of �N . Equivalently, we want to show that a general Wishart
matrix AN := N�N = ∑N

i=1 XiX
T
i has all eigenvalues bounded by O(N). We

evaluate the Stieltjes transform

mAN
(u) = tr(uI − AN)−1 =

n∑
i=1

(
u − λi(AN)

)−1
, u ∈ R,(1.10)
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where λi(AN) denote the eigenvalues of AN . This function has singularities at
the points λi(AN), and it vanishes at infinity. So the largest eigenvalue of AN is
the largest u where mAN

(u) = ∞. However, such u is difficult to compute. So we
soften this quantity by considering the largest number uN that satisfies

mAN
(uN) = φ,(1.11)

where φ is a fixed sensitivity parameter, for example, φ = 1.
The soft spectral edge uN provides an upper bound for the actual spectral edge,

λmax(AN) < uN . So our goal is to show that

EuN = O(N).

This is the same problem as in [5], except the eigenvalues and hence the soft spec-
tral edge uN are now random points. The randomized problem is more difficult as
we note below.

As opposed to the largest eigenvalue of A, the soft spectral edge uN can be
computed inductively using rank-one updates to the matrix; uN will move to the
right by a random amount at each step as we replace Ak−1 by Ak = Ak−1 +XkX

T
k .

Initially, A0 = 0 so u0 = n. It suffices to prove that the uk moves by O(1) on
average at each step:

E(uk − uk−1) = O(1).(1.12)

Indeed, by summing up we would obtain the desired estimate EuN = n +
O(1)N = O(N).

The soft edge uk can be recomputed at each step because it is determined by
the Stieltjes transform mAk

(u), which in turn can be recomputed using Sherman–
Morrison formula, as is done in [5], which gives for every u ∈ R that

mAk
(u) = mAk−1(u) + XT

k (uI − A)−2Xk

1 − XT
k (uI − A)−1Xk

.(1.13)

This reduces proving (1.12) to a probabilistic problem, which is essentially gov-
erned by the distribution of the random vector Xk .

The difficulty is that we are facing a nonlinear inverse problem. Indeed, for
a fixed u it is not difficult to compute the expectation of mAk

(u) from (1.13),
and in particular to bound the expectation by φ; this is done in [5]. However, we
require the identity mAk

(u) = φ to hold deterministically, because the largest u that
satisfies it defines the soft spectral edge of Ak as in (1.11). The task of computing
the expectation of a random number u for which mAk

(u) = φ is a highly nonlinear
inverse problem [6], Section 4.1. This is where some regularity of Xk with respect
to the eigenstructure of Ak−1 becomes essential. A technical part of our argument
developed in most of the remaining sections is to realize and prove that a small
amount or regularity encoded by (SR) or (WR) is already sufficient to control the
solution to the inverse problem, and ultimately to control the spectral edges of A.
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1.10. Organization of the paper. The rest of the paper is organized as fol-
lows. We start with the somewhat simpler Theorem 1.5 for the smallest eigenvalue
in Section 2. A corresponding result for the largest eigenvalue, Theorem 3.1, is
proved in Section 3. Corollary 1.4 is also deduced in Section 3. Combining The-
orems 1.5 and 3.1 in Section 4, we obtain the main Theorem 1.1 on the spectral
norm. In the Appendix, we prove Proposition 1.3 on the regularity of product dis-
tributions.

2. The lower edge. We begin by proving Theorem 1.5 about the the lower
edge of the spectrum, which is slightly simpler and requires fewer assumptions
than the upper edge. As in [5], the tool that we use to do this is the lower Stieltjes
transform

mA(�) = tr(A − �I)−1 =
n∑

i=1

(
λi(A) − �

)−1
, � ∈ R.

Note that mA(�) = −m−A(−�) where mA is the usual Stieltjes transform in (1.10).
For a sensitivity value φ > 0, we define the lower soft spectral edge �φ(A) to

be the smallest � for which

mA(�) = φ.

Since mA(�) increases from 0 to ∞ as � increases from −∞ to the lower spectral
edge λmin(A), the value �φ(A) is defined uniquely, and we always have the bound

�φ(A) < λmin(A).

For φ → ∞ we have �φ(A) → λmin(A). However, we will work with small sensi-
tivity φ ∈ (0,1), which will make the soft spectral edge �φ(A) softer and easier to
control.

The crucial property of �φ(A) is that it grows steadily under rank-one updates.
Consider what happens when we add a random rank-one matrix XXT to A � �I ,
where X is chosen from an isotropic distribution on R

n. As E tr(A + XXT ) =
tr(A) + tr EXXT = tr(A) + n, we expect the eigenvalues of A + XXT to have
increased by 1 on average. It turns out that �φ(A) behaves almost as nicely as this
if the distribution of X is sufficiently regular and the sensitivity φ is sufficiently
small. This is established in the following theorem.

THEOREM 2.1 (Random lower shift). Suppose X is an isotropic random vec-
tor in R

n satisfying the weak regularity assumption: for some C,η > 0,

sup
‖x‖≤1

E
∣∣〈X,x〉∣∣2+η ≤ C.(WR)

Let ε > 0 and

φ ≤ c2.1ε
1+2/η,
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where c−1
2.1 = 10(5C)2/η. Then for every symmetric n × n matrix A, one has

E�φ

(
A + XXT ) ≥ �φ(A) + 1 − ε.

Iterating Theorem 2.1 easily yields a proof of Theorem 1.5 as follows.

PROOF OF THEOREM 1.5. Let A0 = 0 and Ak = Ak−1 + XkX
T
k for k ≤ N .

Setting φ = c2.1ε
1+2/η, we find that

�φ(A0) = −n

φ
.

Applying Theorem 2.1 inductively to A0,A1, . . . ,AN , we find that

E
[
�φ(Ak) − �φ(Ak−1)|Ak−1

] ≥ 1 − ε for all k ≤ N,

where we take the conditional expectation with respect to the random vector Xk ,
given the random vectors X1, . . . ,Xk−1, that is, given Ak−1. Summing up these
bounds yields

E�φ(AN) ≥ �φ(A0) + N(1 − ε).(2.1)

Recalling that λmin(AN) > �φ(AN) and dividing both sides of (2.1) by N , we
conclude that

Eλmin

(
1

N

N∑
i=1

XiX
T
i

)
>

�φ(A0)

N
+ 1 − ε = 1 − ε − n

φN
.

For N ≥ n/εφ, the bound becomes 1 − 2ε. Substituting the value of φ and replac-
ing ε by ε/2 gives the promised result. �

The rest of this section is devoted to proving Theorem 2.1. Given a matrix A,
a real number � < λmin(A) and a vector x ∈ R

n, we say that δ ≥ 0 is a feasible
lower shift if

A � (� + δ)I and mA+xxT (� + δ) ≤ mA(�).

The definition of the soft spectral edge � = �φ(A) along with monotonicity of the
Stieltjes transform implies that

�φ

(
A + xxT ) ≥ �φ(A) + δ

for every feasible lower shift δ. So we will be done if we can produce a feasible
shift δ such that Eδ ≥ 1 − ε where the expectation is over random X.

We begin by reducing the feasibility for a shift δ to an inequality involving two
quadratic forms. The following lemma appeared in [5], and we include it with a
proof for completeness.
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LEMMA 2.2 (Feasible lower shift). Consider the numbers � ∈ R, δ > 0, a ma-
trix A � (� + δ)I and a vector x. Then a sufficient condition for

mA+xxT (� + δ) ≤ mA(�)(2.2)

is3

1

δ

xT (A − � − δ)−2x

tr(A − � − δ)−2 − xT (A − � − δ)−1x =: 1

δ
q2(δ, x) − q1(δ, x) ≥ 1.(2.3)

PROOF. We begin by expanding mA+xxT (�+ δ) using the Sherman–Morisson
formula,

mA+xxT (� + δ) = tr
(
A + xxT − � − δ

)−1

= tr(A − � − δ)−1 − xT (A − � − δ)−2x

1 + xT (A − � − δ)−1x
.

Furthermore,

tr(A − � − δ)−1 = mA(�) + tr
[
(A − � − δ)−1 − (A − �)−1]

.

The assumption A � (� + δ)I implies that

(A − � − δ)−1 − (A − �)−1 
 δ(A − � − δ)−2.

Combining these estimates, we see that (2.2) holds as long as

δ · tr(A − � − δ)−2 − xT (A − � − δ)−2x

1 + xT (A − � − δ)−1x
≤ 0,

which we can rearrange into (2.3) observing that all quadratic forms involved are
positive. �

Inequality (2.3) is quite nontrivial in the sense that δ appears in many places,
and it is not immediately clear from looking at it what the largest feasible δ is given
A,x and �. In the following lemma, we present a tractable and explicit quantity
defined solely in terms of q1(0, x) and q2(0, x) which always satisfies (2.3) and
thus provides a lower bound on the best possible δ.

LEMMA 2.3 (Explicit feasible shift). Consider numbers � ∈ R, φ > 0, a ma-
trix A � �I satisfying mA(�) ≤ φ, and a vector x. Then for every t ∈ (0,1), the
shift

δ := (1 − t)3q2(0, x)1{q1(0,x)≤t}1{q2(0,x)≤t/φ}
satisfies A � (� + δ)I and condition (2.3). Therefore δ is a feasible lower shift,
that is, mA+xxT (� + δ) ≤ mA(�).

3To ease the notation, we sometimes write A − u instead of A − uI .
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The proof is based on regularity properties of the quadratic forms q1 and q2,
which we state in the following two lemmas.

LEMMA 2.4 (Regularity of quadratic forms). Consider the numbers � ∈ R,
φ > 0, a matrix A � �I satisfying mA(�) ≤ φ, and a vector x. Then for every
positive number δ < 1/φ, one has A � (� + δ)I , and moreover:

(i) q1(0, x) ≤ q1(δ, x) ≤ (1 − δφ)−1q1(0, x);
(ii) (1 − δφ)2q2(0, x) ≤ q2(δ, x) ≤ (1 − δφ)−2q(0, x).

PROOF. The assumption A � �I states that all eigenvalues λi of A satisfy
λi > �. Together with the assumption mA(�) = ∑

i (λi − �)−1 ≤ φ this implies that
(λi − �)−1 ≤ φ for all i, and hence λi − � ≥ 1/φ > δ and A � (�+ δ)I as claimed.

(i) Let (ψi)i≤n denote the eigenvectors of A; then

q1(δ, x) =
n∑

i=1

〈x,ψi〉2

λi − � − δ
.(2.4)

Recalling that λi − � ≥ 1/φ, we have the comparison inequalities

(1 − δφ)(λi − �) = λi − � − φδ(λi − �) ≤ λi − � − δ ≤ λi − �.

Using these for every term in (2.4), we complete the proof of (i).
(ii) Similar to (i), noting that the numerator and denominator of q2 are increasing

in δ. �

LEMMA 2.5 (Moments of quadratic forms). Consider numbers � ∈ R, φ > 0
and a matrix A � �I satisfying mA(�) ≤ φ. If X is an isotropic random vector
satisfying (WR), then for p = 1 + η/2 the following moment bounds hold:

(i) Eq1(0,X) = mA(�) ≤ φ and Eq1(0,X)p ≤ Cφp;
(ii) Eq2(0,X) = 1 and Eq2(0,X)p ≤ C.

PROOF. (i) As in the proof of the previous lemma, let (ψi)i≤n denote the
eigenvectors of A. By isotropy we have

Eq1(0,X) =
n∑

i=1

E〈X,ψi〉2

λi − �
= mA(�) ≤ φ.

For the moment bound we use Minkowski’s inequality to obtain

(
Eq1(0,X)p

)1/p ≤
n∑

i=1

(E〈X,ψi〉2p)1/p

λi − �
≤

n∑
i=1

C1/p

λi − �
= C1/pmA(�) ≤ C1/pφ.

(ii) Analogous to (i). �

We can now finish the proof of Lemma 2.3.
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PROOF OF LEMMA 2.3. First observe that by construction,

δ ≤ q2(0, x)1{q2(0,x)≤t/φ} ≤ t/φ < 1/φ,(2.5)

so that we always have A � (� + δ)I by Lemma 2.4.
If either of the indicators in the definition of the shift δ is zero, then δ = 0, which

is trivially feasible, and we are done. So assume both indicators are nonzero, that
is, q1(0, x) ≤ t and q2(0, x) ≤ t/φ. By Lemma 2.2, it suffices to prove inequal-
ity (2.3), which is equivalent to

q2(δ, x)

1 + q1(δ, x)
≥ δ.

We can show this by replacing δ with zero using Lemma 2.4:

q2(δ, x)

1 + q1(δ, x)
≥ q2(0, x)(1 − δφ)2

1 + q1(0, x)(1 − δφ)−1

≥ q2(0, x)(1 − t)2

1 + t (1 − t)−1 [as δφ ≤ t by (2.5) and q1(0, x) ≤ t]

= q2(0, x)(1 − t)3 = δ.

The proof is complete. �

We now complete the proof of Theorem 2.1 by using the regularity properties
of X to show that the expectation of δ, as defined in Lemma 2.3, is large. Roughly
speaking, this happens because (1) δ is defined to be slightly less than q2(0,X)

whenever both q1(0,X) and q2(0,X) are not too large; (2) that event occurs with
very high probability when φ is sufficiently small; (3) the expectation of q2(0,X)

equals 1.

PROOF OF THEOREM 2.1. Let � = �φ(A); then mA(�) = φ ≤ c2.1ε
1+2/η by

assumption. Define a feasible shift δ as in Lemma 2.3 for t = ε/5. Recall that it
suffices to prove that Eδ ≥ 1 − ε.

According to Lemma 2.3,

Eδ = (1 − t)3[
Eq2(0,X) − Eq2(0,X)1{q1(0,X)>t∨q2(0,X)>t/φ}

]
≥ (1 − t)3[

1 − (
Eq2(0,X)p

)1/p · (
P

{
q1(0,X) > t ∨ q2(0,X) > t/φ

})1/q]
,

where we used Hölder’s inequality with exponents p = 1 + η/2 and q = p
p−1 =

2/η + 1. By Lemma 2.5, we have Eq2(0,X)p ≤ C. Next, the probability can
be estimated by a union bound, Markov’s inequality and the moment bounds of
Lemma 2.5, which gives

P
{
q1(0,X) > t ∨ q2(0,X) > t/φ

}
≤ P

{
q1(0,X)p > tp

} + P
{
q2(0,X)p > (t/φ)p

}
≤ Cφp

tp
+ C

(t/φ)p
= 2C(φ/t)p.
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We conclude that

Eδ ≥ (1 − t)3[
1 − C1/p · (

2C(φ/t)p
)1/q]

≥ (1 − t)3[
1 − 2C(φ/t)η/2]

(as 1/p + 1/q = 1 and p/q = η/2)

= (1 − ε/5)3(1 − ε/5) (substituting t and the bound for φ)

≥ 1 − ε

as promised. �

3. The upper edge. In this section we establish the following estimate for the
expected largest eigenvalue, analogous to Theorem 1.5 for the smallest one.

THEOREM 3.1 (Largest eigenvalue). Consider independent isotropic random
vectors Xi valued in R

n. Assume that Xi satisfy (SR) for some C,η > 0. Then, for
ε ∈ (0,1) and for

N ≥ Cupperε
−2−2/η · n,

the maximum eigenvalue of the sample covariance matrix �N = 1
N

∑N
i=1 XiX

T
i

satisfies

Eλmax(�N) ≤ 1 + ε.(3.1)

Here Cupper := 512(16C)1+2/η(6 + 6/η)1+4/η.

We shall control the largest eigenvalue of a symmetric matrix A using the (up-
per) Stieltjes transform

mA(u) = tr(uI − A)−1 =
n∑

i=1

(
u − λi(A)

)−1
, u ∈ R.

Similarly to our argument for the lower edge, for a sensitivity value φ > 0, we
define the upper soft spectral edge uφ(A) to be the largest u for which

mA(u) = φ.

Since mA(u) decreases from ∞ to 0 as u increases from the upper spectral edge
λmax(A) to ∞, the value uφ(A) is defined uniquely, and

uφ(A) > λmax(A).

For φ → ∞ we have uφ(A) → λmax(A), but as before, we shall work with small
sensitivity values φ ∈ (0,1). Our goal is to show that uφ(A) increases by about 1,
on average, with every rank-one update.
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THEOREM 3.2 (Random upper shift). Suppose X is an isotropic random vec-
tor satisfying the strong regularity assumption (SR) for some C,η > 0. Assume
ε ∈ (0,1) and

φ ≤ c3.2ε
1+2/η,(3.2)

where c−1
3.2 = 256(8C)1+2/η(6 + 6/η)1+4/η. Then for every symmetric matrix A,

one has

Euφ

(
A + XXT ) ≤ uφ(A) + 1 + ε.(3.3)

Iterating Theorem 3.2 yields a proof of Theorem 3.1.

PROOF OF THEOREM 3.1. The argument is similar to the proof of Theo-
rem 1.5 given in Section 2. We set φ = φ(ε) = c3.2ε

1+2/η. Then we start with
A0 = 0 where uφ(A0) = n/φ, and we inductively apply Theorem 3.2 for Ak =
Ak−1 + XkX

T
k to obtain

Eλmax

(
1

N

N∑
i=1

XiX
T
i

)
<

uφ(A0)

N
+ 1 + ε = 1 + ε + n

φN
.

For N ≥ n/εφ, the bound becomes 1 + 2ε. Substituting the value of φ and replac-
ing ε by ε/2 gives the promised result. �

The above proof works for ε,φ(ε) < 1 and thus for N = �(n), but it may be
extended to smaller N as follows.

PROOF OF COROLLARY 1.4. In the proof of Theorem 3.1, we have shown
that for every ε ∈ (0,1) and every positive integer N , we have

E := Eλmax(�N) < 1 + ε + n

φ(ε)N
,

where φ(ε) = c3.2ε
1+2/η. Optimizing in ε, we apply this estimate with ε =

(n/N)1/(2+2/η) when n < N and with ε = 1/2 when n ≥ N to obtain

E < 1 + (
1 + c−1

3.2

)( n

N

)1/(2+2/η)

if n < N,

E <
3

2
+ n

φ(1/2)N
≤ 1 + 22+2/ηc−1

3.2

(
n

N

)
if n ≥ N.

Combining these, for every n and N we conclude that

E < 1 + (
1 + c−1

3.2

)( n

N

)1/(2+2/η)

+ 22+2/ηc−1
3.2

(
n

N

)

as required.
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A similar bound for Eλmin(�N) is immediate from Theorem 1.5; see the remark
after its proof. �

The rest of this section is devoted to proving Theorem 3.2. Given a matrix A,
a real number u > λmax(A) and a vector x ∈ R

n, we say that � ≥ 0 is a feasible
upper shift if

A + xxT ≺ (u + �)I and mA+xxT (u + �) ≤ mA(u).(3.4)

The definition of the soft spectral edge u = uφ(A) along with monotonicity of the
Stieltjes transform implies that

uφ

(
A + xxT ) ≤ uφ(A) + �(3.5)

for every feasible upper shift �. So will be done if we can produce a feasible shift
� such that E� ≤ 1 + ε where the expectation is over random X.

As in our argument for the lower edge, we begin by reducing the feasibility for
a shift δ to an inequality involving two quadratic forms.

LEMMA 3.3 (Feasible upper shift). Consider the numbers u ∈ R, � > 0,
a matrix A ≺ uI and a vector x. Then a sufficient condition for � ≥ 0 to be a
feasible upper shift is

xT (u + � − A)−2x

mA(u) − mA(u + �)
+ xT (u + � − A)−1x

(3.6)
=: Q2(�,x) + Q1(�,x) ≤ 1.

PROOF. Note that A ≺ uI ≺ (u+�)I so that all quadratic forms are positive,
and assume x �= 0 since otherwise the claim is trivial. As in the proof of Lem-
ma 2.2, we use the Sherman–Morisson formula to write

mA+xxT (u + �) = tr
(
u + � − A − xxT )−1

= mA(u + �) + xT (u + � − A)−2x

1 − xT (u + � − A)−1x

= mA(u) − (
mA(u) − mA(u + �)

)
+ xT (u + � − A)−2x

1 − xT (u + � − A)−1x
.

Rearranging reveals that mA+xxT (u + �) ≤ mA(u) exactly when (3.6) holds.
To establish the second condition

xxT ≺ u + � − A,(3.7)

we recall that

R ≺ S ⇐⇒ S−1/2RS−1/2 ≺ I
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for all positive matrices R,S (this can be seen, e.g., using the Courant–Fischer
theorem). Applying this fact to (3.7), we see that it suffices to have

(u + � − A)−1/2xxT (u + � − A)−1/2 ≺ I

or equivalently

xT (u + � − A)−1x < 1,

which follows from (3.6) and Q2(�,x) > 0. �

We will reason about the two quantities Q1 and Q2 separately, producing two
separate shifts �1 and �2 for them and eventually combining these into a single
� := �1 ∨ �2, as required by Lemma 3.3.

For some fixed parameter τ ∈ (0,1), let us define �1 = �1(A,x,u) and �2 =
�2(A,x,u) to be the smallest nonnegative numbers such which satisfy

Q1(�1, x) ≤ τ, Q2(�2, x) ≤ 1 − τ.(3.8)

For u = uφ(A) and for a random vector x = X, Lemmas 3.4 and 3.6 will allow us
to control the expected value of each of these shifts, so

E�1 ≤ ε/2, E�2 ≤ 1 + ε/2,(3.9)

whenever the sensitivity parameter φ = φ(τ, ε) is sufficiently small. From this we
will obtain Theorem 3.2 quickly as follows.

PROOF OF THEOREM 3.2. Let uφ(A) = u, so the condition A ≺ uI of Lem-
ma 3.3 holds. Consider the shifts �1 = �1(A,X,u) and �2 = �2(A,X,u) de-
fined above. By (3.8), we have

Q1(�1,X) + Q2(�2,X) ≤ 1.

Moreover, a quick inspection of the quadratic forms in Lemma 3.3 shows that
Q1(�,X) and Q2(�,X) are decreasing in �, and hence

Q1(�1 ∨ �2,X) + Q2(�1 ∨ �2,X) ≤ 1.

Then Lemma 3.3 guarantees that �1 ∨ �2 is a feasible upper shift, which implies
by (3.5) that

uφ

(
A + XXT ) ≤ uφ(A) + �1 ∨ �2.

Furthermore, (3.9) yields a bound on the expected shift

E�1 ∨ �2 ≤ E�1 + E�2 ≤ 1 + ε,

which gives conclusion (3.3) of Theorem 3.2.
It remains to note that Lemmas 3.4 and 3.6 only guarantee that the bounds

(3.9) hold when the sensitivity φ is sufficiently small, namely φ ≤ φ1(τ, ε/2) ∧
φ2(τ, ε/2). With τ = ε/16, we can simplify this inequality into the assumption of
Theorem 3.2. �

The rest of this section is devoted to controlling the shifts �1 and �2.
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REMARK. It is easy to check that the proofs of Lemmas 3.4 and 3.6 which
follow, and consequently Theorem 3.2, only require

EXiX
T
i ≺ cI(3.10)

for some constant c = c(ε). Thus if we desire a bound of λmax(
1
N

∑N
i=1 XiX

T
i ) <

1 + ε in Theorem 3.1, then EXiX
T
i = I can be replaced by the weaker condition

(3.10).

3.1. Control of �1.

LEMMA 3.4. Consider numbers u ∈ R, φ > 0 and a matrix A ≺ uI satisfying
mA(u) ≤ φ. Let X be a random vector satisfying (SR) for some C,η > 0, and let
ε, τ ∈ (0,1). If the sensitivity satisfies

φ ≤ φ1(τ, ε) := τ 1+1/ηε1/η

(4C)1+1/η(4 + 4/η)1+3/η
,

then the shift �1 = �1(A,X,u) satisfies

E�1 ≤ ε.

PROOF. Let (ψi)i≤n and (λi)i≤n denote the eigenvectors and eigenvalues
of A, and let ξi = 〈X,ψi〉2. We know that mA(u) = ∑n

i=1(u − λi)
−1 ≤ φ, and

�1 is the smallest nonnegative number satisfying
n∑

i=1

ξi

u − λi + �1
≤ τ.

Rescaling everything by φ and setting μi := φ(u − λi) so that
n∑

i=1

1

μi

=
n∑

i=1

1

φ(u − λi)
≤ 1,

the problem becomes equivalent to bounding the least μ := φ�1 for which
n∑

i=1

1

μi + μ
≤ τ

φ
.

Applying the following, somewhat more general, probabilistic lemma to (ξi)i≤n,
we conclude that

E�1 ≤ 1

φ
Eμ ≤ 1

φ

C(4 + 4/η)3+η(4φ)1+η

τ 1+η
,

whenever

φ ≤ τ

4C
.

Substituting φ = φ1(τ, ε) gives the promised bound. �
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LEMMA 3.5. Suppose {ξi}i≤n are positive random variables with Eξi = 1 and

P

{∑
i∈S

ξi ≥ t

}
≤ C

t1+η
provided t > C|S| = C

∑
i∈S

Eξi(3.11)

for all subsets S ⊂ [n] and some constants C,η > 0. Consider positive numbers
μi such that

n∑
i=1

1

μi

≤ 1.

Let μ be the minimal positive number such that
n∑

i=1

ξi

μi + μ
≤ K

for some K ≥ 4C. Then

Eμ ≤ C(4 + 4/η)3+η

(K/4)1+η
.

PROOF. For simplicity of calculations, assume for the moment that the values
of all μi are dyadic, that is,

μi ∈ {
20,21,22, . . .

}
.

For each dyadic number k, let

Ik := {i :ui = k}, nk := |Ik|.
By assumption, we have

1 ≥
n∑

i=1

1

μi

= ∑
k dyadic

∑
i∈Ik

1

k
= ∑

k dyadic

nk

k
,

and μ is the smallest positive number such that
n∑

i=1

ξi

μi + μ
= ∑

k dyadic

1

k + μ

∑
i∈Ik

ξi ≤ K.(3.12)

We estimate μ by replacing it with a bigger but easier quantity μ′. Define μ′ to
be the smallest positive number such that, for every dyadic k, one has

1

k + μ′
∑
i∈Ik

ξi ≤ εk where εk := K

2

nk

k
∨ K

2σ
k−η/(2+2η),

where

σ := ∑
dyadic k

k−η/(2+2η) ≤ 2 + 2η

η

∑
dyadic k

1

k
≤ 4 + 4/η.(3.13)
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Since∑
k dyadic

1

k + μ′
∑
i∈Ik

ξi ≤ ∑
k dyadic

εk ≤ K

2

∑
k dyadic

nk

k
+ K

2σ

∑
k dyadic

k−η/(2+2η) ≤ K,

the definition of μ given in (3.12) yields

μ ≤ μ′.
It remains to bound Eμ′.

By definition,

μ′ = max
k dyadic

(
1

εk

∑
i∈Ik

ξi − k

)
+
.

Let θk = 1
εk

∑
i∈Ik

ξi − k. For every t ≥ 0, one has

P{θk > t} = P

{∑
i∈Ik

ξi > (k + t)εk

}
.

Since εk ≥ Knk

2k
by definition, we have

(k + t)εk ≥ kεk ≥ Knk

2
= K

2
E

(∑
i∈Ik

ξi

)
≥ CE

(∑
i∈Ik

ξi

)
.

So by regularity assumption (3.11),

P{θk > t} ≤ C

(k + t)1+ηε
1+η
k

.

A union bound then gives

P
{
μ′ > t

} ≤ ∑
k dyadic

C

(k + t)1+ηε
1+η
k

≤ C

(K/2σ)1+η

∑
k dyadic

kη/2

(k + t)1+η
(by definition of εk)

≤ C

(K/2σ)1+η

∑
k dyadic

1

(k + t)1+η/2 .

This implies that

Eμ′ =
∫ ∞

0
P

{
μ′ > t

}
dt ≤ C

(K/2σ)1+η

∑
k dyadic

∫ ∞
0

dt

(k + t)1+η/2

= C

(K/2σ)1+η

∑
k dyadic

k−η/2

η/2
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≤ C

(K/2σ)1+η

2

η
· 4

η
[by a calculation similar to (3.13)]

≤ C

(K/2)1+η
(4 + 4/η)3+η [by (3.13)].

The promised bound for general (nondyadic) μi follows by rounding each μi down
to the nearest power of 2 and replacing K by K/2. �

REMARK [Necessity of the strong regularity assumption (SR)]. The preceding
lemma is the only place in the proof where the full power of (SR) is used. To
see that it is necessary, consider the following situation. Fix any S ⊂ [n], and let
1
μi

= 1{i∈S}|S| so that
∑

i
1
μi

= 1. Then the smallest μ ≥ 0 for which
∑

i
1

μi+μ
≤ K

is just

μ =
(

1

K

∑
i∈S

ξi − |S|
)

+
.

We now lowerbound the tail probability

P{μ ≥ t} = P

{∑
i∈S

ξi ≥ K
(|S| + t

)} ≥ P

{∑
i∈S

ξi ≥ 2Kt

}
for t ≥ |S|.

In order to have Eμ = O(1), this probability must be O(1/t) by Markov’s inequal-
ity, which is essentially assumption (3.11) of the lemma. In the proof of Theorems
1.1 and 3.2, the sums of random variables ξi arise from projections of the random
vector X onto varying eigenspaces of A; the only succinct way to guarantee (3.11)
for all such projections is essentially (SR).

3.2. Control of �2.

LEMMA 3.6. Consider numbers u ∈ R, φ > 0 and a matrix A ≺ uI satisfying
mA(u) ≤ φ. Let X be a random vector satisfying (SR) for some C,η > 0, and let
ε ∈ (0,1), 0 < τ < ε/2 be parameters. If the sensitivity satisfies

φ ≤ φ2(τ, ε) := ε2/η(ε − 4τ)

128 · (2C)2/η(4 + 6/η)4/η
,

then the shift �2 = �2(A,X,u) satisfies

E�2 ≤ 1 + ε.

It will be more convenient to work with the quadratic form

Q′
2(�,x) := xT (u + � − A)−2x

tr(u + � − A)−2 ,
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for which we have

1

�
Q′

2(�,x) ≥ Q2(�,x) for � > 0,(3.14)

since the denominators satisfy

mA(u) − mA(u + �) = tr
[
(uI − A)−1 − (u + � − A)−1] ≥ � tr(u + � − A)−2.

REMARK. The reason for working with Q2 rather than directly with Q′
2 in

Lemma 3.3 is that Q2(�,x) is decreasing in �; this monotonicity is required
when arguing that the maximum of the two shifts � = �1 ∨ �2 is feasible in the
proof of Theorem 3.2.

We begin by recording some regularity properties of Q′
2(�,X).

LEMMA 3.7 [Regularity and moments of of Q′
2(�,X)]. Consider numbers

u ∈ R, φ > 0 and a matrix A ≺ uI satisfying mA(u) ≤ φ. Let X be a random
vector satisfying (SR) for some C,η > 0. Then for every � ≥ 0 one has:

(i) Q′
2(�,X) ≤ (1 + φ�)2Q′

2(0,X);
(ii) EQ′

2(�,X) = 1;
(iii) EQ′

2(�,X)p ≤ C(3 + 3/η) for p = 1 + 2η/3.

PROOF. (i) is analogous to Lemma 2.4. In a similar way, we show that all
eigenvalues λi of A satisfy u−λi ≥ 1/φ, which implies the comparison inequality

u − λi ≤ u + � − λi ≤ (1 + φ�)(u − λi).

Denoting (ψi)i≤n the eigenvectors of A, we express

Q′
2(�,X) =

∑n
i=1(u + � − λi)

−2〈X,ψi〉2∑n
i=1(u + � − λi)−2 .(3.15)

The comparison inequality yields (i).
(ii) We note that (3.15) can be rearranged as a convex combination of 〈X,ψi〉2.

Q′
2(�,X) = ∑

i

αi〈X,ψi〉2 where αi ≥ 0,
∑
i=n

αi = 1.

Then (ii) follows since E〈X,ψi〉2 = 1 by isotropy.
(iii) We apply Minkowski’s inequality to obtain

(
EQ′

2(�,X)p
)1/p ≤

n∑
i=1

αi

(
E〈X,ψi〉2p)1/p

.

Now a simple integration of tails implies that each

E〈X,ψi〉2p = E〈X,ψi〉2+4η/3 ≤ C(3 + 3/η),
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which concludes the proof. �

Next, we see how the regularity properties of Q′
2(�,X) translate into the cor-

responding properties of �2:

LEMMA 3.8 (Regularity of �2). Consider numbers u ∈ R, φ > 0 and a matrix
A ≺ uI satisfying mA(u) ≤ φ. Let X be a random vector satisfying (SR) for some
C,η > 0, and let 0 < τ < 1/2. Then the shift �2 = �2(A,X,u) satisfies:

(i) E�
1+η/2
2 ≤ 21+ηC(4 + 6/η)2;

(ii) E�21{Q′
2(0,X)≤(t−2τ)/8φ} ≤ 1 + t for every t ∈ [0,1].

PROOF. (i) By definition of �2 and using (3.14), we have for all t > 0,

P{�2 > t} ≤ P
{
Q2(t,X) > 1 − τ

} ≤ P
{
Q′

2(t,X) > t(1 − τ)
}
.

This probability can be controlled using Lemma 3.7(iii) and Markov’s inequality,
so we obtain

P{�2 > t} ≤ C(3 + 3/η)

t1+2η/3(1 − τ)1+2η/3 ≤ C(3 + 3/η)

(1/2)1+2η/3t1+2η/3

as τ < 1/2. Integration of tails yields

E�
1+η/2
2 ≤ 21+2η/3 · C(3 + 3/η)(4 + 6/η),

which implies the claim.
(ii) Let s0 denote the smaller solution of the quadratic equation

(1 + sφ)2Q′
2(0,X) = s(1 − τ),

whenever a solution exists. In this case s0 > 0 and Lemma 3.7(i) yields that

Q′
2(s0,X) ≤ s0(1 − τ).

By (3.14), this yields Q2(s0,X) ≤ s0(1 − τ). By definition of �2, this in turn
implies that

�2 ≤ s0.

An elementary calculation shows that if Q′
2(0,X) ≤ (t −2τ)/8φ, then the solution

s0 exists and satisfies

s0 ≤ (1 + t)Q′
2(0,X).

It follows that

Es01{Q′
2(0,X)≤(t−2τ)/8φ} ≤ (1 + t)EQ′

2(0,X) = 1 + t,

where we used Lemma 3.7(i) in the last step. �
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We can now complete the proof of Lemma 3.6.

PROOF OF LEMMA 3.6. We decompose

E�2 = E�21{Q′
2(0,X)≤(t−2τ)/8φ} + E�21{Q′

2(0,X)>(t−2τ)/8φ} =: E1 + E2.

By Lemma 3.8(ii), we have E1 ≤ 1 + t . Next, we estimate E2 using Hölder’s
inequality,

E2 ≤ (
E�

1+η/2
2

)1/(1+η/2)(
P

{
Q′

2(0,X) > (t − 2τ)/8φ
})(η/2)/(1+η/2)

.

The two terms here can be estimated using Lemma 3.8(i) and Lemma 3.7 along
with Markov’s inequality,

E2 ≤ (
21+ηC(4 + 6/η)2)1/(1+η/2)

(
C(3 + 3/η)

((t − 2τ)/8φ)1+η/2

)(η/2)/(1+η/2)

≤ 21+ηC(4 + 6/η)2 ·
(

8φ

t − 2τ

)η/2

.

Finally, we set t = ε/2 and use the assumptions φ ≤ φ2(τ, ε) and τ < ε/2 to con-
clude that E2 ≤ ε/2. Together with E1 ≤ 1 + t = 1 + ε/2 this implies

E�2 ≤ 1 + ε

as claimed. �

REMARK. Although for convenience of application Lemma 3.6 is stated un-
der the strong regularity assumption (SR), the latter is not used in the proof. The
argument above uses only the weak regularity assumption (WR).

4. The spectral norm. In this section we prove Theorem 1.1 by showing that
whenever X1, . . . ,XN are independent and satisfy (SR), the spectral norm estimate

E‖�N − I‖ ≤ ε(4.1)

follows from the spectral edge estimates

Eλmin(�N) ≥ 1 − ε/3; Eλmax(�N) ≤ 1 + ε/3(4.2)

obtained in Theorems 1.5 and 3.1. The basic idea is to show using independence
that

λaverage(�N) = 1

n
tr(�N)

is concentrated near its expectation of 1. Combining this with

E
(
λmax(�N) − λmin(�N)

) ≤ 2ε/3,

which follows immediately from (4.2), yields (4.1).
We rely on the following elementary proposition regarding sums of independent

random variables.
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PROPOSITION 4.1. Let Zi be independent random variables with EZi = 1
and satisfying the following tail bounds for some C,η > 0:

P
{|Zi | > t

} ≤ Ct−1−η, t > 0.

If ε ∈ (0,1) and

N ≥ (2C)2/η(1 + 1/η)2/η

(ε/2)2+2/η
,

then

E

∣∣∣∣∣ 1

N

N∑
i=1

Zi − 1

∣∣∣∣∣ ≤ ε.

Postponing the proof of Proposition 4.1, we use this fact to control

1

n
tr(�N) = 1

n

N∑
i=1

‖Xi‖2
2

N

and prove the main theorem as follows.

PROOF OF THEOREM 1.1. Assume the random vectors Xi are isotropic and
satisfy (SR) with parameters C,η. This implies that the random variables

Zi = ‖Xi‖2
2

n

satisfy the requirements of Proposition 4.1 with parameters C1+η, η. It follows that

E

∣∣∣∣1

n
tr(�N − I )

∣∣∣∣ = E

∣∣∣∣∣ 1

N

N∑
i=1

Zi − 1

∣∣∣∣∣ ≤ ε,(4.3)

whenever

N ≥ (4C)2+2/η(1 + 1/η)2/η

ε2+2/η
=: Ctrace

ε2+2/η
.(4.4)

Now consider the random variables

L = λmin(�N − I ), U = λmax(�N − I ), M = 1

n
tr(�N − I ).

We have

L ≤ M ≤ U,

and we are interested in

‖�N − I‖ = U ∨ −L ≤ U − L + |M|.(4.5)
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When N ≥ Cuppern/ε2+2/η, Theorem 3.1 gives EU ≤ ε. To show that EL ≥ ε,
we recall that (SR) with parameters C,η implies (WR) with parameters C(2 +
2/η), η and invoke Theorem 1.5, noting that its requirement (1.8) is satisfied as

Cupper = 512(16C)1+2/η(6 + 6/η)1+4/η > 40
(
10C(2 + 2/η)

)2/η = Clower.

Now that we have both bounds EU ≤ ε and EL ≥ ε, we can combine them with
(4.3) and (4.5), which yields

E‖�N − I‖ ≤ 2ε + ε,

whenever

N ≥ Cupper
n

ε2+2/η
∨ Ctrace

1

ε2+2/η
.(4.6)

Replacing ε by ε/3 and taking

N ≥ Cmain
n

ε2+2/η
,

where

Cmain := 512 · 32+2/η · (16C)2+2/η(6 + 6/η)1+4/η

always satisfies (4.6). This completes the proof of the theorem. �

PROOF OF PROPOSITION 4.1. Fix a parameter K > 0, and decompose

Zi = Zi1{|Zi |≤K} + Zi1{|Zi |>K} =: Z′
i + Z′′

i .

Using EZ′
i + EZ′′

i = EZi = 1 and by triangle inequality, we obtain

E

∣∣∣∣∣ 1

N

N∑
i=1

Zi − 1

∣∣∣∣∣ ≤ E

∣∣∣∣∣ 1

N

N∑
i=1

Z′
i − E

1

N

N∑
i=1

Z′
i

∣∣∣∣∣ + E

∣∣∣∣∣ 1

N

N∑
i=1

Z′′
i − E

1

N

N∑
i=1

Z′′
i

∣∣∣∣∣
=: E′ + E′′.

By Jensen’s inequality, independence and the bound on Z′
i , we have

(
E′)2 ≤ Var

(
1

N

N∑
i=1

Z′
i

)
= 1

N2

N∑
i=1

Var
(
Z′

i

) ≤ K2

N
.

Moreover, by triangle and Jensen’s inequalities,

E′′ ≤ 2E

∣∣∣∣∣ 1

N

N∑
i=1

Z′′
i

∣∣∣∣∣ ≤ 2

N

N∑
i=1

E
∣∣Z′′

i

∣∣.
The assumption on the tails of Zi implies that P{|Z′′

i | > t} ≤ C/(t ∨ K)1+η for
t > 0, thus

E
∣∣Z′′

i

∣∣ =
∫ ∞

0
P

{∣∣Z′′
i

∣∣ > t
}
dt ≤ C

Kη
+ C

ηKη
= C

(
1 + 1

η

)
K−η.
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Hence

E′′ ≤ 2C

(
1 + 1

η

)
K−η

and

E′ + E′′ ≤ K√
N

+ 2C

(
1 + 1

η

)
K−η.

Choosing K = (ε/2)
√

N and using the assumption on N , one easily checks that

E′ + E′′ ≤ ε

2
+ ε

2
≤ ε

as desired. �

APPENDIX: PROOF OF PROPOSITION 1.3

In this section we prove Proposition 1.3, which states that product distributions
satisfy the regularity assumption in Theorem 1.1. Note that this result and its proof
are not needed in the proof of Theorem 1.1.

Consider a random vector X and an orthogonal projection P in R
n as in Propo-

sition 1.3. Denoting by (Pij ) the n × n matrix of the operator P , we express

‖PX‖2
2 = 〈X,PX〉 =

n∑
i,j=1

ξiξjPij .

The contribution of the diagonal of P to this sum is

D :=
n∑

i=1

ξ2
i Pii .

Denote by P0 the matrix P with diagonal removed; then

‖PX‖2
2 − D = 〈X,P0X〉.(A.1)

We can estimate 〈X,P0X〉 using a standard decoupling argument. Let X′ denote
an independent copy of X, and let EX , EX′ denote the expectations with respect to
X and X′, respectively. Since the matrix P0 has zero diagonal, we have4

E
∣∣〈X,P0X〉∣∣p � EX′EX

∣∣〈X,P0X
′〉∣∣p.(A.2)

This inequality can be obtained from general decoupling results; see [7], Theo-
rem 3.1.1; a simple and well-known proof of (A.2) is given in [15].

4Throughout this proof, we write a � b if a ≤ Cb for some constant C which is independent of n.
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Next, an application of a standard symmetrization argument and Khintchine
inequality (or a direct application of Rosenthal’s inequality [12], see [8]) yields for
every a ∈ R

n that

E
∣∣〈X,a〉∣∣p = E

∣∣∣∣∣
n∑

i=1

aiξi

∣∣∣∣∣
p

� ‖a‖p
2 .

Therefore, by conditioning on X′ we obtain from (A.2) that

E
∣∣〈X,P0X〉∣∣p � EX′

∥∥P0X
′∥∥p

2 = E‖P0X‖p
2 .(A.3)

Since P0 equals P without the diagonal, the triangle inequality yields

‖P0X‖2 ≤ ‖PX‖2 +
(

n∑
i=1

ξ2
i P 2

ii

)1/2

.

Since 0 < Pii ≤ ‖P‖ ≤ 1, we can replace P 2
ii by Pii , so

‖P0X‖2 ≤ ‖PX‖2 + D1/2 �
(‖PX‖2

2 + D
)1/2

.

Hölder’s inequality then implies that

E‖P0X‖p
2 �

(
E

∣∣‖PX‖2
2 + D

∣∣p)1/2
.(A.4)

Putting (A.1), (A.3) and (A.4) together, we arrive at the inequality

E
∣∣‖PX‖2

2 − D
∣∣p �

(
E

∣∣‖PX‖2
2 + D

∣∣p)1/2
.

Put in different words, the random variable Z := ‖PX‖2
2 −D satisfies the inequal-

ity

‖Z‖2
Lp

� ‖Z + 2D‖Lp ≤ ‖Z‖Lp + 2‖D‖Lp .

Solving this quadratic inequality we obtain that

‖Z‖Lp � 1 + ‖D‖1/2
Lp

.(A.5)

In order to bound ‖D‖Lp we consider

‖D − k‖p
Lp

= E

∣∣∣∣∣
n∑

i=1

ξ2
i Pii − k

∣∣∣∣∣
p

= E

∣∣∣∣∣
n∑

i=1

(
ξ2
i − 1

)
Pii

∣∣∣∣∣
p

,

where we used that
∑n

i=1 Pii = tr(P ) = k. Recall that by the assumptions we have
E(ξ2

i − 1) = 0 and ‖ξ2
i − 1‖Lp ≤ ‖ξ2

i ‖Lp + 1 = ‖ξi‖2
L2p

+ 1 � 1. An application of

Khintchine’s inequality or Rosenthal’s inequality (as before) and the bound P 2
ii ≤

Pii yield that

‖D − k‖p
Lp

�
(

n∑
i=1

P 2
ii

)p/2

≤
(

n∑
i=1

Pii

)p/2

= (
tr(P )

)p/2 = kp/2.(A.6)
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It follows that

‖D‖Lp ≤ ‖D − k‖Lp + k � k1/2 + k � k.

Putting this into (A.5), we see that

‖Z‖Lp � k1/2.(A.7)

Finally, by definition of Z and using the triangle inequality and bounds (A.7),
(A.6), we conclude that∥∥‖PX‖2

2 − k
∥∥
Lp

≤ ‖Z‖Lp + ‖D − k‖Lp � k1/2 + k1/2 � k1/2.

Proposition 1.3 is proved.

Acknowledgments. The authors are grateful to the referees whose comments
improved the presentation of the paper.
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