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PATH-VALUED BRANCHING PROCESSES AND NONLOCAL
BRANCHING SUPERPROCESSES1

BY ZENGHU LI

Beijing Normal University

A family of continuous-state branching processes with immigration are
constructed as the solution flow of a stochastic equation system driven by
time–space noises. The family can be regarded as an inhomogeneous increas-
ing path-valued branching process with immigration. Two nonlocal branching
immigration superprocesses can be defined from the flow. We identify ex-
plicitly the branching and immigration mechanisms of those processes. The
results provide new perspectives into the tree-valued Markov processes of Al-
dous and Pitman [Ann. Inst. Henri Poincaré Probab. Stat. 34 (1998) 637–686]
and Abraham and Delmas [Ann. Probab. 40 (2012) 1167–1211].

1. Introduction. Continuous-state branching processes (CB-processes) are
positive Markov processes introduced by Jiřina (1958) to model the evolution of
large populations of small particles. Continuous-state branching processes with
immigration (CBI-processes) are generalizations of them describing the situation
where immigrants may come from other sources of particles; see, for example,
Kawazu and Watanabe (1971). The law of a CB-process is determined by its
branching mechanism φ, which is a function with the representation

φ(λ) = bλ + 1

2
σ 2λ2 +

∫ ∞
0

(
e−zλ − 1 + zλ

)
m(dz),(1.1)

where σ ≥ 0 and b are constants, and (z ∧ z2)m(dz) is a finite measure on (0,∞).
In most cases, we only define the function φ on [0,∞), but it can usually be
extended to an analytic function on an interval strictly larger than [0,∞). The
branching mechanism is said to be critical, subcritical or supercritical according
as b = 0, b > 0 or b < 0.

A CB-process can be obtained as the small particle limit of a sequence of
discrete Galton–Watson branching processes; see, for example, Lamperti (1967).
A genealogical tree is naturally associated with a Galton–Watson process. The ge-
nealogical structures of CB-processes were investigated by introducing continuum
random trees in the pioneer work of Aldous (1991, 1993), where the quadratic
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branching mechanism φ(λ) = λ2 was considered. Continuum random trees cor-
responding to general branching mechanisms were constructed in Le Gall and
Le Jan (1998a, 1998b) and were studied further in Duquesne and Le Gall (2002).
By pruning a Galton–Watson tree, Aldous and Pitman (1998) constructed a de-
creasing tree-valued process. Then they used time-reversal to obtain an increasing
tree-valued process starting with the trivial tree. They gave some characterizations
of the increasing process up to the ascension time, the first time when the increas-
ing tree becomes infinite.

Tree-valued processes associated with general CB-processes were studied in
Abraham and Delmas (2012). By shifting a critical branching mechanism, they
defined a family of branching mechanisms {ψθ : θ ∈ �}, where � = [θ∞,∞) or
(θ∞,∞) for some θ∞ ∈ [−∞,0]. Abraham and Delmas (2012) constructed a de-
creasing tree-valued Markov process {Tθ : θ ∈ �} by pruning a continuum tree,
where the tree Tθ has branching mechanism ψθ . The explosion time A was de-
fined as the smallest negative time when the tree (or the total mass of the corre-
sponding CB-process) is finite. Abraham and Delmas (2012) gave some charac-
terizations of the evolution of the tree after this time under an excursion law. For
the quadratic branching mechanism, they obtained explicit expressions for some
interesting distributions. Those extend the results of Aldous and Pitman (1998) on
Galton–Watson trees in the time-reversed form. The main tool of Abraham and
Delmas (2012) was the exploration process of Le Gall and Le Jan (1998a, 1998b)
and Duquesne and Le Gall (2002). Some general ways of pruning random trees
in discrete and continuous settings were introduced in Abraham, Delmas and He
(2012), Abraham, Delmas and Voisin (2010).

In this paper, we study a class of increasing path-valued Markov processes using
the techniques of stochastic equations and measure-valued processes developed
in recent years. Those path-valued processes are counterparts of the tree-valued
processes of Abraham and Delmas (2012). A special case of the model is described
as follows. Let T = [0,∞) or [0, a] or [0, a) for some a > 0. Let (θ, λ) �→ ζθ (λ)

be a continuous function on T × [0,∞) with the representation

ζθ (λ) = βθλ +
∫ ∞

0

(
1 − e−zλ)

nθ(dz), θ ∈ T ,λ ≥ 0,

where βθ ≥ 0 and znθ (dz) is a finite kernel from T to (0,∞). Let φ be a branching
mechanism given by (1.1). Under an integrability condition, the function

φq(λ) := φ(λ) −
∫ q

0
ζθ (λ) dθ, λ ≥ 0,(1.2)

also has the representation (1.1) with the parameters (b,m) = (bq,mq) depending
on q ∈ T . Let m(dy, dz) be the measure on T × (0,∞) defined by

m
([0, q] × [c, d]) = mq[c, d], q ∈ T ,d > c > 0.

Let W(ds, du) be a white noise on (0,∞)2 based on the Lebesgue measure, and
let Ñ0(ds, dy, dz, du) be a compensated Poisson random measure on (0,∞) ×
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T × (0,∞)2 with intensity dsm(dy, dz) du. Let μ ≥ 0 be a constant. For q ∈ T ,
we consider the stochastic equation

Xt(q) = μ − bq

∫ t

0
Xs−(q) ds + σ

∫ t

0

∫ Xs−(q)

0
W(ds, du)

(1.3)

+
∫ t

0

∫
[0,q]

∫ ∞
0

∫ Xs−(q)

0
zÑ0(ds, dy, dz, du).

We shall see that there is a pathwise unique positive càdlàg solution {Xt(q) : t ≥ 0}
to (1.3). Then we can talk about the solution flow {Xt(q) : t ≥ 0, q ∈ T } of the
equation system. We prove that each {Xt(q) : t ≥ 0} is a CB-process with branch-
ing mechanism φq , and {(Xt(q))t≥0 :q ∈ T } is an inhomogeneous path-valued in-
creasing Markov process with state space D+[0,∞), the space of positive càdlàg
paths on [0,∞) endowed with the Skorokhod topology.

The formulation of path-valued processes provides new perspectives into the
evolution of the random trees of Aldous and Pitman (1998) and Abraham and
Delmas (2012). From this formulation we can derive some structural properties
of the model that have not been discovered before. For q ∈ T let us define the
random measure Zq(dt) = Xt(q) dt on [0,∞). We shall see that {Zq :q ∈ T } is an
inhomogeneous increasing superprocess involving a nonlocal branching structure,
and the total mass process

σ(q) :=
∫ ∞

0
Xs(q) ds, q ∈ T ,

is an inhomogeneous CB-process. Then one can think of {X(q) :q ∈ T } as a
path-valued branching process. On the other hand, for each t ≥ 0 the random in-
creasing function q �→ Xt(q) induces a random measure Yt (dq) on T such that
Xt(q) = Yt [0, q] for q ∈ T . We prove that {Yt : t ≥ 0} is a homogeneous super-
process with both local and nonlocal branching structures. We also establish some
properties of an excursion law N0 for the superprocess {Yt : t ≥ 0}. Given a branch-
ing mechanism φ of the form (1.1), for a suitable interval T we can define a family
of branching mechanisms {φq :q ∈ T } by

φq(λ) = φ(λ − q) − φ(−q), λ ≥ 0,

where the two terms on the right-hand side are defined using (1.1). The family
can be represented by (1.2) with ζθ (λ) = −(∂/∂λ)φθ (λ). In this case, the path-
valued process q �→ (Xt(q))t≥0 under the excursion law N0 corresponds to the
time-reversal of the tree-valued process θ �→ Tθ of Abraham and Delmas (2012).
In general, we may associate {X(q) :q ∈ T } with a “forest-valued branching pro-
cess.”

To make the exploration self-contained, we shall consider a slightly generalized
form of the equation system (1.3) involving some additional immigration struc-
tures. In Section 2, we present some preliminary results on inhomogeneous immi-
gration superprocesses and CBI-processes. In Section 3 a class of CBI-processes
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with predictable immigration rates are constructed as pathwise unique solutions
of stochastic integral equations driven by time–space noises. In Section 4 we in-
troduce the path-valued increasing Markov processes and identify them as path-
valued branching processes with immigration. A construction of those processes
is given in Section 5 using a system of stochastic equations generalizing (1.3). In
Section 6 we derive a homogeneous nonlocal branching immigration superprocess
from the flow. The properties of the process under an excursion law are studied in
Section 7.

We sometimes write R+ for [0,∞). Let F(T ) denote the set of positive right
continuous increasing functions on an interval T ⊂ R. For a measure μ and a
function f on a measurable space we write 〈μ,f 〉 = ∫

f dμ if the integral exists.
Throughout this paper, we make the conventions∫ b

a
=

∫
(a,b]

and
∫ ∞
a

=
∫
(a,∞)

for any b ≥ a ∈ R. Other notations are explained as they first appear.

2. Inhomogeneous immigration superprocesses. In this section, we present
some preliminary results on inhomogeneous immigration superprocesses and CBI-
processes. Suppose that T ⊂ R is an interval, and E is a Lusin topological space.
Let Ẽ = T × E. A function (s, x) �→ f (s, x) on Ẽ is said to be locally bounded
if for each compact interval S ⊂ T the restriction of (s, x) �→ f (s, x) to S × E is
bounded. Let M(E) be the space of finite Borel measures on E endowed with the
topology of weak convergence. Let B+(E) be the set of bounded positive Borel
functions on E. Let I (E) denote the set of all functionals I on B+(E) with the
representation

I (f ) = 〈λ,f 〉 +
∫
M(E)◦

(
1 − e−〈ν,f 〉)L(dν), f ∈ B+(E),(2.1)

where λ ∈ M(E) and (1 ∧ 〈ν,1〉)L(dν) is a finite measure on M(E)◦ := M(E) \
{0}. Let J (E) denote the set of all functionals on B+(E) of the form f �→
J (f ) := a + I (f ) with a ≥ 0 and I ∈ I (E). By Theorems 1.35 and 1.37 in Li
(2011) one can prove the following:

THEOREM 2.1. There is a one-to-one correspondence between functionals
V ∈ J (E) and infinitely divisible sub-probability measures Q on M(E), which
is determined by∫

M(E)
e−〈ν,f 〉Q(dν) = exp

{−V (f )
}
, f ∈ B+(E).(2.2)

THEOREM 2.2. If U ∈ J (E) and if V :f �→ v(·, f ) is an operator on B+(E)

such that v(x, ·) ∈ J (E) for all x ∈ E, then U ◦ V ∈ J (E).
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Suppose that (Pr,t : t ≥ r ∈ T ) is an inhomogeneous Borel right transition semi-
group on E. Let ξ = (
,F ,Fr,t , ξt ,Pr,x) be a right continuous inhomogeneous
Markov process realizing (Pr,t : t ≥ r ∈ T ). Let (s, x) �→ bs(x) be a Borel function
on Ẽ, and let (s, x) �→ cs(x) be a positive Borel function on Ẽ. Let ηs(x, dy) be a
kernel from Ẽ to E, and let Hs(x, dν) be a kernel from Ẽ to M(E)◦. Suppose that
the function∣∣bs(x)

∣∣ + cs(x) + ηs(x,E) +
∫
M(E)◦

(〈ν,1〉 ∧ 〈ν,1〉2 + 〈νx,1〉)Hs(x, dν)

on S × E is locally bounded, where νx(dy) denotes the restriction of ν(dy) to
E \ {x}. For (s, x) ∈ Ẽ and f ∈ B+(E) define

φs(x, f ) = bs(x)f (x) + cs(x)f (x)2 −
∫
E

f (y)ηs(x, dy)

(2.3)
+

∫
M(E)◦

[
e−〈ν,f 〉 − 1 + ν

({x})f (x)
]
Hs(x, dν).

Let Tt = T ∩ (−∞, t] for t ∈ T . By Theorem 6.10 in Li (2011) one can show
there is an inhomogeneous Borel right transition semigroup (Qr,t : t ≥ r ∈ T ) on
the state space M(E) defined by∫

M(E)
e−〈ν,f 〉Qr,t (μ, dν) = exp

{−〈μ,Vr,tf 〉}, f ∈ B+(E),(2.4)

where (r, x) �→ vr,t (x) := Vr,tf (x) is the unique locally bounded positive solution
to the integral equation

vr,t (x) = Pr,x

[
f (ξt )

] −
∫ t

r
Pr,x

[
φs(ξs, vs,t )

]
ds, r ∈ Tt , x ∈ E.(2.5)

Let us consider a right continuous realization X = (W,G ,Gr,t ,Xt ,Qr,μ) of the
transition semigroup (Qr,t : t ≥ r ∈ T ) defined by (2.4). Suppose that (s, x) �→
gs(x) is a locally bounded positive Borel function on Ẽ. Let ψs(x, f ) = −gs(x)+
φs(x, f ) for f ∈ B+(E). Following the proofs of Theorems 5.15 and 5.16 in Li
(2011), one can see

Qr,μ exp
{
−〈Xt,f 〉 −

∫ t

r
〈Xs,gs〉ds

}
= exp

{−〈μ,Ur,tf 〉},(2.6)

where (r, x) �→ ur,t (x) := Ur,tf (x) is the unique locally bounded positive solution
to

ur,t (x) = Pr,x

[
f (ξt )

] −
∫ t

r
Pr,x

[
ψs(ξs, us,t )

]
ds, r ∈ Tt , x ∈ E.(2.7)

Then there is an inhomogeneous Borel right sub-Markov transition semigroup
(Q

g
r,t : t ≥ r ∈ T ) on M(E) given by∫

M(E)
e−〈ν,f 〉Qg

r,t (μ, dν) = exp
{−〈μ,Ur,tf 〉}.(2.8)
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A Markov process with transition semigroup given by (2.8) is called an inhomoge-
neous superprocess with branching mechanisms {ψs : s ∈ T }. The family of oper-
ators (Ur,t : t ≥ r ∈ T ) is called the cumulant semigroup of the superprocess. From
(2.8) one can derive the following branching property:

Q
g
r,t (μ1 + μ2, ·) = Q

g
r,t (μ1, ·) ∗ Q

g
r,t (μ2, ·)(2.9)

for t ≥ r ∈ T and μ1,μ2 ∈ M(E), where “∗” denotes the convolution opera-
tion. Some special branching mechanisms are given in Dawson, Gorostiza and
Li (2002), Dynkin (1993) and Li (1992, 2011). Clearly, the semigroup (Qr,t : t ≥
r ∈ T ) given by (2.4) corresponds to a conservative inhomogeneous superprocess.
In general, the inhomogeneous superprocess is not necessarily conservative.

We can append an additional immigration structure to the inhomogeneous su-
perprocess. Suppose that ρ(ds) is a Radon measure on T and {Js : s ∈ T } ⊂ J (E)

is a family of functionals such that s �→ Js(f ) is a locally bounded Borel function
on T for each f ∈ B+(E).

THEOREM 2.3. There is an inhomogeneous transition semigroup (Q
ρ,J
r,t : t ≥

r ∈ T ) on M(E) given by∫
M(E)

e−〈ν,f 〉Qρ,J
r,t (μ, dν) = exp

{
−〈μ,Ur,tf 〉 −

∫ t

r
Js(Us,tf )ρ(ds)

}
,(2.10)

where (r, x) �→ ur,t (x) := Ur,tf (x) is the unique locally bounded positive solution
to (2.7).

PROOF. By Theorems 2.1 and 2.2, for any t ≥ r ∈ T we can define an in-
finitely divisible sub-probability measure Nr,t on M(E) by∫

M(E)
e−〈ν,f 〉Nr,t (dν) = exp

{
−

∫ t

r
Js(Us,tf )ρ(ds)

}
.

It is easy to check that

Nr,t = (
Nr,sQ

g
s,t

) ∗ Ns,t , t ≥ s ≥ r ∈ T ,

where

Nr,sQ
g
s,t =

∫
M(E)

Nr,s(dμ)Q
g
s,t (μ, ·).

Following the arguments in Li (2002, 2011) one can show

Q
ρ,J
r,t (μ, ·) = Q

g
r,t (μ, ·) ∗ Nr,t , t ≥ r ∈ T ,(2.11)

defines an inhomogeneous sub-Markov transition semigroup on M(E). Clearly,
the Laplace functional of this transition semigroup is given by (2.10). �

If a Markov process with state space M(E) has transition semigroup (Q
ρ,J
r,t : t ≥

r ∈ T ) given by (2.10), we call it an inhomogeneous immigration superprocess
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with immigration mechanisms {Js : s ∈ T } and immigration measure ρ. The intu-
itive meaning of the model is clear in view of (2.11). That is, the population at
any time t ≥ 0 is made up of two parts, the native part generated by the mass
μ ∈ M(E) at time r ≥ 0 has distribution Q

g
r,t (μ, ·) and the immigration in the

time interval (r, t] gives the distribution Nr,t . When E shrinks to a singleton, we
can identify M(E) with the positive half line R+ = [0,∞). In this case, the tran-
sition semigroups given by (2.8) and (2.10) determine one-dimensional CB- and
CBI-processes, respectively.

Now let us consider a branching mechanism φ of the form (1.1). We can define
the transition semigroup (Pt )t≥0 of a homogeneous CB-process by∫

R+
e−λyPt (x, dy) = e−xvt (λ), t, λ ≥ 0,(2.12)

where t �→ vt (λ) is the unique locally bounded positive solution of

vt (λ) = λ −
∫ t

0
φ

(
vs(λ)

)
ds,

which is essentially a special form of (2.5). We can write the above integral equa-
tion into its differential form

d

dt
vt (λ) = −φ

(
vt (λ)

)
, v0(λ) = λ.(2.13)

The Chapman–Kolmogorov equation of (Pt )t≥0 implies vr(vt (λ)) = vr+t (λ) for
all r, t, λ ≥ 0. The set of functions (vt )t≥0 is the cumulant semigroup. Observe that
λ �→ φ(λ) is continuously differentiable with

φ′(λ) = b + σ 2λ +
∫ ∞

0
z
(
1 − e−zλ)

m(dz), λ ≥ 0.

By differentiating (2.12) and (2.13) in λ ≥ 0 one can show∫
R+

yPt(x, dy) = x
d

dλ
vt (λ)

∣∣∣∣
λ=0+

= xe−bt .(2.14)

It is easy to see that (Pt )t≥0 is a Feller semigroup. Let us consider a càdlàg
realization X = (
,F ,Fr,t ,Xt ,Pr,x) of the corresponding CB-process with an
arbitrary initial time r ≥ 0. Let η(ds) be a Radon measure on [0,∞). By Theo-
rem 5.15 in Li (2011), for t ≥ r ≥ 0 and f ∈ B+[0, t], we have

Pr,x

[
exp

{
−

∫
[r,t]

f (s)Xsη(ds)

}]
= exp

{−xut (r, f )
}
,(2.15)

where r �→ ut (r, f ) is the unique bounded positive solution to

ut(r, f ) +
∫ t

r
φ

(
ut (s, f )

)
ds =

∫
[r,t]

f (s)η(ds), 0 ≤ r ≤ t.(2.16)
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In particular, for r ≥ 0 and f ∈ B+[0,∞) with compact support, we have

Pr,x

[
exp

{
−

∫ ∞
r

f (s)Xs ds

}]
= exp

{−xu(r, f )
}
,(2.17)

where r �→ u(r, f ) is the unique compactly supported bounded positive function
on [0,∞) solving

u(r, f ) +
∫ ∞
r

φ
(
u(s, f )

)
ds =

∫ ∞
r

f (s) ds, r ≥ 0.(2.18)

It is not hard to see that u(r, f ) = 0 for r > lf := sup{t ≥ 0 :f (t) > 0}. For any
r ≥ 0 let

σr(X) =
∫ ∞
r

Xs ds.

THEOREM 2.4. Suppose that φ(λ) → ∞ as λ → ∞. Then for any λ ≥ 0 we
have

Pr,x

[
e−λσr (X)1{σr (X)<∞}

] = exp
{−xφ−1(λ)

}
,(2.19)

where φ−1 is the right inverse of φ defined by

φ−1(λ) = inf
{
z ≥ 0 :φ(z) > λ

}
.(2.20)

PROOF. A proof of (2.19) was already given in Abraham and Delmas (2012).
We here give a simple derivation of the result since the argument is also useful to
prove the next theorem. By (2.15) and (2.16), for any t ≥ r and z, θ ≥ 0 we have

Pr,x

[
exp

{
−zXt − θ

∫ t

r
Xs ds

}]
= exp

{−xut (r, z, θ)
}
,

where r �→ ut (r, z, θ) is the unique bounded positive solution to

ut(r, z, θ) +
∫ t

r
φ

(
ut (s, z, θ)

)
ds = z + θ(t − r), 0 ≤ r ≤ t.

Then one can see ut(r, z,φ(z)) = z. It follows that

Pr,x

[
exp

{
−zXt − φ(z)

∫ t

r
Xs ds

}]
= e−zx.

Since σr(X) < ∞ implies limt→∞ Xt = 0, if φ(z) > 0, we get

Pr,x

[
e−φ(z)σr (X)1{σr (X)<∞}

] = e−zx.

That gives (2.19) first for λ = φ(z) > 0 and then for all λ ≥ 0. �

Let t �→ ρ(t) be a locally bounded positive Borel function on [0,∞). Suppose
that h ≥ 0 is a constant and zn(dz) is a finite measure on (0,∞). Let ψ be an
immigration mechanism given by

ψ(λ) = hλ +
∫ ∞

0

(
1 − e−zλ)

n(dz), λ ≥ 0.(2.21)
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By Theorem 2.3 we can define an inhomogeneous transition semigroup {P ρ
r,t : t ≥

r ≥ 0} on R+ by∫
R+

e−λyP
ρ
r,t (x, dy) = exp

{
−xvt−r (λ) −

∫ t

r
ψ

(
vt−s(λ)

)
ρ(s) ds

}
.(2.22)

A positive Markov process with transition semigroup (P
ρ
r,t )t≥r≥0 is called an in-

homogeneous CBI-process with immigration rate ρ = {ρ(t) : t ≥ 0}. It is easy
to see that the homogeneous time–space semigroup associated with (P

ρ
r,t )t≥r≥0

is a Feller transition semigroup. Then (P
ρ
r,t )t≥r≥0 has a càdlàg realization Y =

(
,F ,Fr,t , Yt ,Pρ
r,x). A modification of the proof of Theorem 5.15 in Li (2011)

shows that, for t ≥ r ≥ 0 and f ∈ B+[0, t],

Pρ
r,x

[
exp

{
−

∫
[r,t]

f (s)Ysη(ds)

}]
(2.23)

= exp
{
−xut (r, f ) −

∫ t

r
ψ

(
ut(s, f )

)
ρ(s) ds

}
,

where r �→ ut (r, f ) is the unique bounded positive solution to (2.16). In particular,
for r ≥ 0 and f ∈ B+[0,∞) with compact support, we have

Pρ
r,x

[
exp

{
−

∫ ∞
r

f (s)Ys ds

}]
(2.24)

= exp
{
−xu(r, f ) −

∫ ∞
r

ψ
(
u(s, f )

)
ρ(s) ds

}
,

where r �→ u(r, f ) is the unique compactly supported bounded positive solution
to (2.18). For any r ≥ 0 let

σr(Y ) =
∫ ∞
r

Ys ds.

By a modification of the proof of Theorem 2.4, we get the following:

THEOREM 2.5. Suppose that φ(λ) → ∞ as λ → ∞. Then for any r, λ ≥ 0 we
have

Pρ
r,x

[
e−λσr (Y )1{σr (Y )<∞}

] = exp
{
−xφ−1(λ) − ψ

(
φ−1(λ)

) ∫ ∞
r

ρ(s) ds

}
,

where φ−1(λ) is defined by (2.20).

3. The predictable immigration rate. The main purpose of this section is
to give a construction of the CBI-process with transition semigroup (P

ρ
r,t )t≥r≥0

defined by (2.22) as the pathwise unique solution of a stochastic integral equa-
tion driven by time–space noises. For the convenience of applications, we shall
generalize the model slightly by considering a random immigration rate. This is
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essential for our study of the path-valued Markov processes. The reader is referred
to Bertoin and Le Gall (2006), Dawson and Li (2006, 2012), Fu and Li (2010) and
Li and Mytnik (2011) for some related results.

Suppose that (
,F ,Ft ,P) is a filtered probability space satisfying the usual
hypotheses. Let {W(t, ·) : t ≥ 0} be an (Ft )-white noise on (0,∞) based on the
Lebesgue measure and let {p0(t) : t ≥ 0} and {p1(t) : t ≥ 0} be (Ft )-Poisson point
processes on (0,∞)2 with characteristic measures m(dz)du and n(dz) du, respec-
tively. We assume that the white noise and the Poisson processes are independent
of each other. Let W(ds, du) denote the stochastic integral on (0,∞)2 with respect
to the white noise. Let N0(ds, dz, du) and N1(ds, dz, du) denote the Poisson ran-
dom measures on (0,∞)3 associated with {p0(t)} and {p1(t)}, respectively. Let
Ñ0(ds, dz, du) denote the compensated random measure associated with {p0(t)}.
Suppose that ρ = {ρ(t) : t ≥ 0} is a positive (Ft )-predictable process such that
t �→ P[ρ(t)] is locally bounded. We are interested in positive càdlàg solutions of
the stochastic equation

Yt = Y0 + σ

∫ t

0

∫ Ys−

0
W(ds, du) +

∫ t

0

∫ ∞
0

∫ Ys−

0
zÑ0(ds, dz, du)

(3.1)

+
∫ t

0

(
hρ(s) − bYs−

)
ds +

∫ t

0

∫ ∞
0

∫ ρ(s)

0
zN1(ds, dz, du).

For any positive càdlàg solution {Yt : t ≥ 0} of (3.1) satisfying P[Y0] < ∞,
one can use a standard stopping time argument to show that t �→ P[Yt ] is locally
bounded and

P[Yt ] = P[Y0] + ψ ′(0)

∫ t

0
P

[
ρ(s)

]
ds − b

∫ t

0
P[Ys]ds,(3.2)

where

ψ ′(0) = h +
∫ ∞

0
zn(dz).

By Itô’s formula, it is easy to see that {Yt : t ≥ 0} solves the following martingale
problem: for every f ∈ C2(R+),

f (Yt ) = f (Y0) + local mart. − b

∫ t

0
Ysf

′(Ys) ds + 1

2
σ 2

∫ t

0
Ysf

′′(Ys) ds

+
∫ t

0
Ys ds

∫ ∞
0

[
f (Ys + z) − f (Ys) − zf ′(Ys)

]
m(dz)(3.3)

+
∫ t

0
ρ(s)

{
hf ′(Ys) +

∫ ∞
0

[
f (Ys + z) − f (Ys)

]
n(dz)

}
ds.

PROPOSITION 3.1. Suppose that {Yt : t ≥ 0} is a positive càdlàg solution of
(3.1) and {Zt : t ≥ 0} is a positive càdlàg solution of the equation with (b, ρ) re-
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placed by (c, η). Then we have

P
[|Zt − Yt |] ≤ P

[|Z0 − Y0|] + ψ ′(0)

∫ t

0
P

[∣∣η(s) − ρ(s)
∣∣]ds

+ |c|
∫ t

0
P

[|Zs − Ys |]ds + |b − c|
∫ t

0
P[Ys]ds.

PROOF. For each integer n ≥ 0 define an = exp{−n(n + 1)/2}. Then an → 0
decreasingly as n → ∞ and∫ an−1

an

z−1 dz = n, n ≥ 1.

Let x �→ gn(x) be a positive continuous function supported by (an, an−1), so that∫ an−1

an

gn(x) dx = 1

and gn(x) ≤ 2(nx)−1 for every x > 0. Let

fn(z) =
∫ |z|

0
dy

∫ y

0
gn(x) dx, z ∈ R.

It is easy to see that |f ′
n(z)| ≤ 1 and

0 ≤ |z|f ′′
n (z) = |z|gn

(|z|) ≤ 2n−1, z ∈ R.

Moreover, we have fn(z) → |z| increasingly as n → ∞. Let αt = Zt −Yt for t ≥ 0.
From (3.1) we have

αt = α0 + h

∫ t

0

[
η(s) − ρ(s)

]
ds − c

∫ t

0
αs− ds + (b − c)

∫ t

0
Ys− ds

+ σ

∫ t

0

∫ Zs−

Ys−
W(ds, du) +

∫ t

0

∫ ∞
0

∫ Zs−

Ys−
zÑ0(ds, dz, du)(3.4)

+
∫ t

0

∫ ∞
0

∫ η(s)

ρ(s)
zN1(ds, dz, du).

By this and Itô’s formula,

fn(αt ) = fn(α0) + h

∫ t

0
f ′

n(αs)
[
η(s) − ρ(s)

]
ds − c

∫ t

0
f ′

n(αs)αs ds

+ (b − c)

∫ t

0
f ′

n(αs)Ys ds + 1

2
σ 2

∫ t

0
f ′′

n (αs)|αs |ds

+
∫ t

0
αs1{αs>0} ds

∫ ∞
0

[
fn(αs + z) − fn(αs) − zf ′

n(αs)
]
m(dz)

−
∫ t

0
αs1{αs<0} ds

∫ ∞
0

[
fn(αs − z) − fn(αs) + zf ′

n(αs)
]
m(dz)(3.5)
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+
∫ t

0

[
η(s) − ρ(s)

]
1{η(s)>ρ(s)} ds

∫ ∞
0

[
fn(αs + z) − fn(αs)

]
n(dz)

−
∫ t

0

[
ρ(s) − η(s)

]
1{ρ(s)>η(s)} ds

∫ ∞
0

[
fn(αs − z) − fn(αs)

]
n(dz)

+ mart.

It is easy to see that |fn(a + x)−fn(a)| ≤ |x| for any a, x ∈ R. If ax ≥ 0, we have

|a|∣∣fn(a + x) − fn(a) − xf ′
n(a)

∣∣ ≤ (
2|ax|) ∧ (

n−1|x|2)
.

Taking the expectation in both sides of (3.5) gives

P
[
fn(αt )

] ≤ P
[
fn(α0)

] + h

∫ t

0
P

[∣∣η(s) − ρ(s)
∣∣]ds + |c|

∫ t

0
P

[|αs |]ds

+ |b − c|
∫ t

0
P[Ys]ds +

∫ t

0
P

[∣∣η(s) − ρ(s)
∣∣]ds

∫ ∞
0

zn(dz)

+ n−1σ 2t +
∫ t

0
ds

∫ ∞
0

{(
2zP

[|αs |]) ∧ (
n−1z2)}

m(dz).

Then we get the desired estimate by letting n → ∞. �

PROPOSITION 3.2. Suppose that {Yt : t ≥ 0} is a positive càdlàg solution of
(3.1), and {Zt : t ≥ 0} is a positive càdlàg solution of the equation with (b, ρ)

replaced by (c, η). Then we have

P
[

sup
0≤s≤t

|Zs − Ys |
]
≤ P

[|Z0 − Y0|] + ψ ′(0)

∫ t

0
P

[∣∣η(s) − ρ(s)
∣∣]ds

+
(
|c| + 2

∫ ∞
1

zm(dz)

)∫ t

0
P

[|Zs − Ys |]ds

+ |b − c|
∫ t

0
P[Ys]ds + 2σ

(∫ t

0
P

[|Zs − Ys |]ds

)1/2

+ 2
(∫ t

0
P

[|Zs − Ys |]ds

∫ 1

0
z2m(dz)

)1/2

.

PROOF. This follows by applying Doob’s martingale inequality to (3.4). �

THEOREM 3.3. For any Y0 ≥ 0 there is a pathwise unique positive càdlàg
solution {Yt : t ≥ 0} of (3.1).

PROOF. The pathwise uniqueness of the solution follows by Proposition 3.1
and Gronwall’s inequality. Without loss of generality, we may assume Y0 ≥ 0 is
deterministic in proving the existence of the solution. We give the proof in three
steps.
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Step 1. Let B(t) = W((0, t]× (0,1]). Then {B(t) : t ≥ 0} is a standard Brownian
motion. By Theorems 5.1 and 5.2 in Dawson and Li (2006), for any constant ρ ≥ 0
there is a pathwise unique positive solution to

Yt = Y0 + σ

∫ t

0

√
Ys− dB(s) +

∫ t

0

∫ ∞
0

∫ Ys−

0
zÑ0(ds, dz, du)

+
∫ t

0
(hρ − bYs−) ds +

∫ t

0

∫ ∞
0

∫ ρ

0
zN1(ds, dz, du).

It is simple to see that {Yt : t ≥ 0} is a weak solution to

Yt = Y0 + σ

∫ t

0

∫ Ys−

0
W(ds, du) +

∫ t

0

∫ ∞
0

∫ Ys−

0
zÑ0(ds, dz, du)

(3.6)

+
∫ t

0
(hρ − bYs−) ds +

∫ t

0

∫ ∞
0

∫ ρ

0
zN1(ds, dz, du).

As pointed out at the beginning of this proof, the pathwise uniqueness holds
for (3.6).

Step 2. Let 0 = r0 < r1 < r2 < · · · be an increasing sequence. For each i ≥ 1 let
ηi be a positive integrable random variable measurable with respect to Fri−1 . Let
ρ = {ρ(t) : t ≥ 0} be the positive (Ft )-predictable step process given by

ρ(t) =
∞∑
i=1

ηi1(ri−1,ri ](t), t ≥ 0.

By the result in the first step, on each interval (ri−1, ri] there is a pathwise unique
solution {Yt : ri−1 < t ≤ ri} to

Yt = Yri−1 + σ

∫ t

ri−1

∫ Ys−

0
W(ds, du) +

∫ t

ri−1

∫ ∞
0

∫ Ys−

0
zÑ0(ds, dz, du)

+
∫ t

ri−1

(hηi − bYs−) ds +
∫ t

ri−1

∫ ∞
0

∫ ηi

0
zN1(ds, dz, du).

Then {Yt : t ≥ 0} is a solution to (3.1).
Step 3. Suppose that ρ = {ρ(t) : t ≥ 0} is general positive (Ft )-predictable pro-

cess such that t �→ P[ρ(t)] is locally bounded. Take a sequence of positive pre-
dictable step processes ρk = {ρk(t) : t ≥ 0} so that

P
[∫ t

0

∣∣ρk(s) − ρ(s)
∣∣ds

]
→ 0(3.7)

for every t ≥ 0 as k → ∞. Let {Yk(t) : t ≥ 0} be the solution to (3.1) with ρ = ρk .
By Proposition 3.1, Gronwall’s inequality and (3.7), one sees

sup
0≤s≤t

P
[∣∣Yk(s) − Yi(s)

∣∣] → 0
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for every t ≥ 0 as i, k → ∞. Then Proposition 3.2 implies

P
[

sup
0≤s≤t

∣∣Yk(s) − Yi(s)
∣∣] → 0

for every t ≥ 0 as i, k → ∞. Thus there is a subsequence {ki} ⊂ {k} and a càdlàg
process {Yt : t ≥ 0} so that

sup
0≤s≤t

∣∣Yki
(s) − Ys

∣∣ → 0

almost surely for every t ≥ 0 as i → ∞. It is routine to show that {Yt : t ≥ 0} is a
solution to (3.1). �

THEOREM 3.4. If ρ = {ρ(t) : t ≥ 0} is a deterministic locally bounded pos-
itive Borel function, the solution {Yt : t ≥ 0} of (3.1) is an inhomogeneous CBI-
process with transition semigroup {P ρ

r,t : t ≥ r ≥ 0} defined by (2.22).

PROOF. By the martingale problem (3.3), when ρ(t) = ρ is a determinis-
tic constant function, the process {Yt : t ≥ 0} is a Markov process with transi-
tion semigroup {P ρ

r,t : t ≥ r ≥ 0}; see, for example, Theorem 9.30 in Li (2011).
If ρ = {ρ(t) : t ≥ 0} is a general deterministic locally bounded positive Borel func-
tion, we can take each step function ρk = {ρk(t) : t ≥ 0} in the last proof to be
deterministic. Then the solution {Yk(t) : t ≥ 0} of (3.1) with ρ = ρk is an inhomo-
geneous CBI-process with transition semigroup {P ρk

r,t : t ≥ r ≥ 0}. In other words,
for any λ ≥ 0, t ≥ r ≥ 0 and G ∈ Fr we have

P
[
1Ge−λYk(t)

] = P
[
1G exp

{
−Yk(r)vt−r (λ) −

∫ t

r
ρk(s)ψ

(
vt−s(λ)

)
ds

}]
.

Letting k → ∞ along the sequence {ki} mentioned in the last proof gives

P
[
1Ge−λYt

] = P
[
1G exp

{
−Yrvt−r (λ) −

∫ t

r
ρ(s)ψ

(
vt−s(λ)

)
ds

}]
.

Then {Yt : t ≥ 0} is a CBI-process with immigration rate ρ = {ρ(t) : t ≥ 0}. �

In view of the result of Theorem 3.4, the solution {Yt : t ≥ 0} to (3.1) can be
called an inhomogeneous CBI-process with branching mechanism φ, immigration
mechanism ψ and predictable immigration rate ρ = {ρ(t) : t ≥ 0}.

4. Path-valued branching processes. In this section, we introduce some
path-valued Markov processes, which are essentially special forms of the immigra-
tion superprocesses defined by (2.7) and (2.10). Suppose that T ⊂ R is an interval,
and {φq :q ∈ T } is a family of branching mechanisms, where φq is given by (1.1)
with the parameters (b,m) = (bq,mq) depending on q ∈ T . We call {φq :q ∈ T }
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an admissible family if for each λ ≥ 0, the function q �→ φq(λ) is decreasing and
continuously differentiable with the derivative ζq(λ) := −(∂/∂q)φq(λ) of the form

ζq(λ) = βqλ +
∫ ∞

0

(
1 − e−zλ)

nq(dz), q ∈ T ,λ ≥ 0,(4.1)

where βq ≥ 0 and nq(dz) is a σ -finite kernel from T to (0,∞) satisfying

sup
p≤θ≤q

[
βθ +

∫ ∞
0

znθ (dz)

]
< ∞, q ≥ p ∈ T .

For an admissible family {φq :q ∈ T }, we clearly have

φp,q(λ) := φp(λ) − φq(λ) =
∫ q

p
ζθ (λ) dθ.(4.2)

It follows that

bq = bp −
∫ q

p
βθ dθ −

∫ q

p
dθ

∫ ∞
0

znθ (dz)(4.3)

and

mq(dz) = mp(dz) +
∫
{p<θ≤q}

nθ(dz) dθ.(4.4)

We say q0 ∈ T is a critical point of the admissible family {φq :q ∈ T } if bq0 = 0,
which means φq0 is a critical branching mechanism. By (4.3) one can see q �→ bq

is a continuous decreasing function on T , so the set of critical points T0 ⊂ T can
only be an interval.

Let us consider a function μ ∈ F(T ) and an admissible family of branching
mechanisms {φq :q ∈ T }. Write μ(p,q] = μ(q) − μ(p) for q ≥ p ∈ T . Recall
that (2.22) defines the transition semigroup {P ρ

r,t : t ≥ r ≥ 0} of an inhomogeneous
CBI-process {Yt : t ≥ 0}. Let Pρ

x (φ,ψ,dw) denote the law on D+[0,∞) of such
a process with initial value Y0 = x ≥ 0. Given any ρ ∈ D+[0,∞), we define the
probability measure Pp,q(ρ, dw) on D+[0,∞) by

Pp,q(ρ,B) =
∫
D+[0,∞)

1B(ρ + w)Pρ
μ(p,q](φq,φp,q, dw)(4.5)

for Borel sets B ⊂ D+[0,∞). In view of (2.24), for any f ∈ B+[0,∞) with com-
pact support, we have∫

D+[0,∞)
exp

{
−

∫ ∞
0

f (s)w(s) ds

}
Pp,q(ρ, dw)

(4.6)

= exp
{
−μ(p,q]uq(0, f ) −

∫ ∞
0

up,q(s, f )ρ(s) ds

}
,

where s �→ uq(s) := uq(s, f ) is the unique compactly supported bounded positive
solution to

uq(s) +
∫ ∞
s

φq

(
uq(t)

)
dt =

∫ ∞
s

f (t) dt(4.7)
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and

up,q(s, f ) = f (s) + φp,q

(
uq(s, f )

)
, s ≥ 0.(4.8)

We remark that uq(s, f ) = up,q(s, f ) = 0 for s > lf := sup{t ≥ 0 :f (t) > 0}.

PROPOSITION 4.1. For any f ∈ B+[0,∞) with compact support, we have

up

(
s, up,q(·, f )

) = uq(s, f ), s ≥ 0,p ≤ q ∈ T ,(4.9)

and

up,θ

(
s, uθ,q(·, f )

) = up,q(s, f ), s ≥ 0,p ≤ θ ≤ q ∈ T .(4.10)

PROOF. From (4.2) and (4.7) we can see that s �→ v(s) := uq(s, f ) is a solu-
tion of

v(s) =
∫ ∞
s

[
f (t) + φp,q

(
uq(t, f )

)]
dt −

∫ ∞
s

φp

(
v(t)

)
dt.(4.11)

On the other hand, by (4.7) and (4.8) we have

up

(
s, up,q(·, f )

) =
∫ ∞
s

up,q(t, f ) dt −
∫ ∞
s

φp

(
up

(
t, up,q(·, f )

))
dt

=
∫ ∞
s

[
f (t) + φp,q

(
uq(t, f )

)]
dt

−
∫ ∞
s

φp

(
up

(
t, up,q(·, f )

))
dt.

Then s �→ up(s, up,q(·, f )) is also a solution to (4.11). By the uniqueness of the
solution to the equation, we get (4.9). It follows that

up,θ

(
s, uθ,q(·, f )

) = uθ,q(s, f ) + φp,θ

(
uθ

(
s, uθ,q(·, f )

))
= f (s) + φθ,q

(
uq(s, f )

) + φp,θ

(
uq(s, f )

)
= f (s) + φp,q

(
uq(s, f )

)
.

Then we have (4.10). �

PROPOSITION 4.2. For any f ∈ B+[0,∞) with compact support we have

up,q(s, f ) = f (s) +
∫ q

p
ψθ

(
s, uθ,q(·, f )

)
dθ, s ≥ 0, q ≥ p ∈ T ,(4.12)

where ψθ(s, f ) = ζθ (uθ (s, f )).

PROOF. By (4.2) and (4.8) one can see p �→ up,q(s, f ) is a decreasing func-
tion. In view of (4.9) and (4.10), for q > θ > p ∈ T , we get

up,q(s, f ) = up,θ

(
s, uθ,q(·, f )

) = uθ,q(s, f ) + φp,θ

(
uθ

(
s, uθ,q(·, f )

))
.
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Then we differentiate both sides to see
d

dp
up,q(s, f )

∣∣∣∣
p=θ−

= d

dp
φp,θ

(
uθ

(
s, uθ,q(·, f )

))∣∣∣∣
p=θ−

= −ζθ

(
uθ

(
s, uθ,q(·, f )

))
,

which implies (4.12). �

From (4.6) one can see that Pp,q(ρ, dw) is a probability kernel on D+[0,∞).
By (4.9) and (4.10) it is easy to check that the family of kernels {Pp,q :q ≥ p ∈ T }
satisfies the Chapman–Kolmogorov equation. Then {Pp,q :q ≥ p ∈ T } form an
inhomogeneous Markov transition semigroup on D+[0,∞). This semigroup is
closely related to some nonlocal branching superprocesses. For α ≥ 0 let M[0, α]
be the space of finite Borel measures on [0, α] furnished with the topology of weak
convergence.

THEOREM 4.3. There is a Markov transition semigroup {Qα
p,q :q ≥ p ∈ T }

on M[0, α] such that, for f ∈ B+[0, α],∫
M[0,α]

e−〈ν,f 〉Qα
p,q(η, dν) = exp

{−μ(p,q]uα
q (0, f ) − 〈

η,uα
p,q(·, f )

〉}
,(4.13)

where

uα
q (s, f ) = uq(s, f 1[0,α]), uα

p,q(s, f ) = up,q(s, f 1[0,α]).(4.14)

PROOF. We first consider an absolutely continuous measure η ∈ M[0, α] with
a density ρ ∈ D+[0, α]. Suppose that {Xt : t ≥ 0} is a random path with distribution
Pp,q(ρ1[0,α], ·) on D+[0,∞). Let Qα

p,q(η, ·) be the distribution on M[0, α] of the
random measure X such that X(dt) = Xt dt for 0 ≤ t ≤ α. The Laplace function of
Qα

p,q(η, ·) is clearly given by (4.13) and (4.14). In particular, we can use those two
formulas to define a probability measure on M[0, α]. For an arbitrary η ∈ M[0, α],
choose a sequence of absolutely continuous measures {ηn} ⊂ M[0, α] with densi-
ties in D+[0, α] so that ηn → η weakly. Let Qα

p,q(ηn, ·) be the probability measure
on M[0, α] defined by∫

M[0,α]
e−〈ν,f 〉Qα

p,q(ηn, dν) = exp
{−μ(p,q]uα

q (0, f ) − 〈
ηn,u

α
p,q(·, f )

〉}
.

For f ∈ C+[0, α] one can see from (4.7) and (4.8) that uα
p,q(·, f ) ∈ C+[0, α], and

hence

lim
n→∞

∫
M[0,α]

e−〈ν,f 〉Qα
p,q(ηn, dν) = exp

{−μ(p,q]uα
q (0, f ) − 〈

η,uα
p,q(·, f )

〉}
.

Then (4.13) really gives the Laplace functional of a probability measure Qα
p,q(η, ·)

on M[0, α] which is the weak limit of Qα
p,q(ηn, ·) as n → ∞. It is easy to see

that Qα
p,q(η, dν) is a kernel on M[0, α]. The semigroup property of the family

{Qα
p,q :q ≥ p ∈ T } follows from (4.9) and (4.10). �
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THEOREM 4.4. Let q ∈ T and f ∈ B+[0, α]. Then (p, s) �→ uα
p,q(s) :=

uα
p,q(s, f ) is the unique, locally bounded positive solution to

uα
p,q(s) = f (s) +

∫ q

p
ψα

θ

(
s, uα

θ,q

)
dθ, s ∈ [0, α], q ≥ p ∈ T ,(4.15)

where ψα
θ (s, f ) = ζθ (u

α
θ (s, f )). Moreover, the transition semigroup {Qα

p,q :q ≥
p ∈ T } defines an immigration superprocess in M[0, α] with branching mecha-
nisms {−ψα

θ : θ ∈ T }, immigration mechanisms {uα
θ (0, ·) : θ ∈ T } and immigration

measure μ.

PROOF. From (4.12) one can see that uα
p,q(s) = uα

p,q(s, f ) satisfies (4.15). By
letting t = α and η(ds) = ds in (2.15), we infer that the functional f �→ uα

θ (s, f )

on B+[0, α] is the Laplace exponent of an infinitely divisible probability mea-
sure carried by M[s, α]. It is easy to see that ψα

θ (s,0) = 0. By Theorem 2.2 the
composed functional f �→ ψα

θ (s, f ) is also the Laplace exponent of an infinitely
divisible probability measure on M[s, α]. Then it has the representation

ψα
θ (s, f ) = 〈

ηα
θ (s), f

〉 + ∫
M[s,α]◦

(
1 − e−〈ν,f 〉)Hα

θ (s, dν),(4.16)

where ηα
θ (s) ∈ M[s, α] and (1 ∧ 〈ν,1〉)Hα

θ (s, dν) is a finite measure on M[s, α]◦.
By letting f (t) = λ and taking the derivatives in both sides of (4.16), we have

d

dλ
ψα

θ (s, λ)

∣∣∣∣
λ=0+

= 〈
ηα

θ (s),1
〉 + ∫

M[s,α]◦
〈ν,1〉Hα

θ (s, dν).

On the other hand, using (2.14) and (2.15),

d

dλ
uα

θ (s, λ)

∣∣∣∣
λ=0+

=
∫ α

s
e−bθ (t−s) dt.

From (4.1) we have

d

dλ
ζθ (λ)

∣∣∣∣
λ=0+

= βθ +
∫ ∞

0
znθ (dz).

It follows that

d

dλ
ψα

θ (s, λ)

∣∣∣∣
λ=0+

=
[
βθ +

∫ ∞
0

znθ (dz)

]∫ α

s
e−bθ (t−s) dt.

As a function of (θ, s), the above quantity is bounded on S × [0, α] for each
bounded closed interval S ⊂ T . By Example 2.5 of Li (2011) one sees that
f �→ −ψα

θ (·, f ) is a special form of the operator given by (2.3), and so (4.15)
is a special case of (2.7). Thus (p, s) �→ uα

p,q(s, f ) is the unique locally bounded
positive solution to (4.15). By (4.9) we have

μ(p,q]uα
q (0, f ) =

∫ q

p
uα

q (0, f )μ(dθ) =
∫ q

p
uα

θ

(
0, uα

θ,q(·, f )
)
μ(dθ).(4.17)
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Then {Qα
p,q :q ≥ p ∈ T } defines an immigration superprocess in M[0, α] with

branching mechanisms {−ψα
θ : θ ∈ T }, immigration mechanisms {uα

θ (0, ·) : θ ∈ T }
and immigration measure μ. �

Let M [0,∞) denote the space of Radon measures on [0,∞) endowed with the
topology of vague convergence. For any α ≥ 0 we regard M[0, α] as the subset
of M [0,∞) consisting of the measures supported by [0, α]. We can also embed
D+[0,∞) continuously into M [0,∞) by identifying the path w ∈ D+[0,∞) and
the measure ν ∈ M [0,∞) such that ν(ds) = w(s) ds for s ≥ 0.

THEOREM 4.5. There is an extension {Qp,q :q ≥ p ∈ T } of {Pp,q :q ≥ p ∈
T } on M [0,∞), which is given by∫

M [0,∞)
e−〈ν,f 〉Qp,q(η, dν) = exp

{−μ(p,q]uq(0, f ) − 〈
η,up,q(·, f )

〉}
(4.18)

for f ∈ B+[0,∞) with compact support.

PROOF. Given η ∈ M [0,∞), we define παη ∈ M[0, α] by παη(ds) =
1[0,α]η(ds). It is easy to check that παπβη = παη for β ≥ α ≥ 0. Then the
sequence of probability measures {Qp,q(πkη, ·) :k = 1,2, . . .} induce a con-
sistent family of finite-dimensional distributions on the product space M∞ :=∏∞

k=1 M[0, k]. Let Q be the unique probability measure on M∞ determined by
the family. Then under Q the canonical sequence (X1,X2, . . .) of M∞ converges
almost surely to a random Radon measure X on [0,∞), which has distribution
Qp,q(η, ·) on M [0,∞) given by (4.18). It is easy to show that Qp,q(η, dν) is a
probability kernel on the space M [0,∞). The semigroup property of {Qp,q :q ≥
p ∈ T } follows from (4.9) and (4.10). �

Since the state space M [0,∞) contains infinite measures, the transition semi-
group {Qp,q :q ≥ p ∈ T } defined by (4.18) does not fit exactly into the setup of
the second section. However, if {Zq :q ∈ T } is a Markov process in M [0,∞)

with transition semigroup {Qp,q :q ≥ p ∈ T }, for each α ≥ 0, the restriction of
{Zq :q ∈ T } to [0, α] is an inhomogeneous immigration superprocess with tran-
sition semigroup {Qα

p,q :q ≥ p ∈ T }. Then we can think of the original process
{Zq :q ∈ T } as an inhomogeneous immigration superprocess with the extended
state space M [0,∞). The model can be described intuitively as follows. The off-
spring born by a “particle” at site s ≥ 0 at time θ ∈ T are spread over the interval
[s,∞) according to the law determined by ψθ(s, ·). Thus the superprocess only
involves a nonlocal branching structure. The immigration rate is given by μ(dθ)

and the immigrants coming at time θ ∈ T are distributed in [0,∞) according to
the law given by uθ(0, ·). The spatial motion of the immigration superprocess is
trivial.
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Suppose that {(Xt(q))t≥0 :q ∈ T } is a Markov process with transition semi-
group {Pp,q :q ≥ p ∈ T } defined by (4.6). We can identify the random path
(Xt(q))t≥0 with the absolutely continuous random measure Zq on [0,∞) with
(Xt(q))t≥0 as a density. By Theorem 4.5, the measure-valued process {Zq :q ∈ T }
is an immigration superprocess with transition semigroup {Qp,q :q ≥ p ∈ T } de-
fined by (4.18). Therefore we can naturally call {(Xt(q))t≥0 :q ∈ T } a path-valued
branching process with immigration. By (4.5) we have Xq ≥ Xp almost surely
for q ≥ p ∈ T . If μ(q) = μ independent of q ∈ T , we simply call {Xq :q ≥ 0} a
path-valued branching process.

By (4.8) or (4.12) we have up,q(s, f ) ≥ f (s) for any s ≥ 0 and f ∈ B+[0,∞)

with compact support. Then (4.18) implies that the set of infinite measures on
[0,∞) is absorbing for {Qp,q :q ≥ p ∈ T }. Let {Q∞

p,q :q ≥ p ∈ T } denote the sub-
Markov restriction of {Qp,q :q ≥ p ∈ T } to the space M[0,∞) of finite measures
on [0,∞). If f ∈ B+[0,∞) is bounded away from zero, we define

u∞
q (s, f ) = lim

α→∞uq(s, f 1[0,α]), u∞
p,q(s, f ) = lim

α→∞up,q(s, f 1[0,α]).

For an arbitrary f ∈ B+[0,∞), define

u∞
q (s, f ) = lim

n→∞u∞
q (s, f + 1/n), u∞

p,q(s, f ) = lim
n→∞u∞

p,q(s, f + 1/n).

By (4.15) one can see u∞
p,q(s) := u∞

p,q(s, f ) solves

u∞
p,q(s) = f (s) +

∫ q

p
ψ∞

θ

(
s, u∞

θ,q

)
dθ, s ≥ 0, q ≥ p ∈ T ,(4.19)

where ψ∞
θ (s, f ) = ζθ (u

∞
θ (s, f )). From (4.8) we obtain

u∞
p,q(s, f ) = f (s) + φp,q

(
u∞

q (s, f )
)
, s ≥ 0.(4.20)

It is easy to show that, for f ∈ B+[0,∞),∫
M[0,∞)

e−〈ν,f 〉Q∞
p,q(η, dν) = exp

{−μ(p,q]u∞
q (0, f ) − 〈

η,u∞
p,q(·, f )

〉}
.(4.21)

To avoid the triviality of {Q∞
p,q :q ≥ p ∈ T }, we need to assume φq(λ) → ∞ as

λ → ∞ for every q ∈ T . In this case, we can define the right inverse φ−1
q of φq as

in (2.20). By (2.17), (2.19) and (4.20), we have

u∞
q (s, λ) = φ−1

q (λ), u∞
p,q(s, λ) = φp

(
φ−1

q (λ)
)
, s ≥ 0, λ ≥ 0.(4.22)

THEOREM 4.6. Suppose that φq(λ) → ∞ as λ → ∞ for every q ∈ T . Let
S ⊂ T be an interval not containing critical points of {φq :q ∈ T }. Then for any
q ∈ S and f ∈ B+[0,∞) there is a unique locally bounded positive solution
(p, s) �→ u∞

p,q(s) := u∞
p,q(s, f ) to (4.19) on S ×[0,∞). Moreover, the sub-Markov

transition semigroup {Q∞
p,q :q ≥ p ∈ S} defines an inhomogeneous immigration

superprocess in M[0,∞) with branching mechanisms {−ψ∞
θ : θ ∈ S}, immigra-

tion mechanisms {u∞
θ (0, ·) : θ ∈ S} and immigration measure μ.
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PROOF. For any s ≥ 0 and θ ∈ S, one can see by (2.17) that the func-
tional f �→ u∞

θ (s, f ) on B+[0,∞) is the exponent of an infinitely divisible sub-
probability measure carried by M[s,∞). Then we have the representation

u∞
θ (s, f ) = a∞

θ (s) + 〈
η∞

θ (s), f
〉 + ∫

M[s,∞)◦
(
1 − e−〈ν,f 〉)H∞

θ (s, dν),

where a∞
θ (s) ≥ 0, η∞

θ (s) ∈ M[s,∞) and (1∧〈ν,1〉)H∞
θ (s, dν) is a finite measure

on M[s,∞)◦. By the first equality in (4.22) we get a∞
θ (s) = u∞

θ (s,0) = φ−1
θ (0).

It follows that〈
η∞

θ (s),1
〉 + ∫

M[s,∞)◦
〈ν,1〉H∞

θ (s, dν) = 1/φ′
θ

(
φ−1

θ (0)
)
.

The right-hand side is bounded on each compact subinterval of S. By Theo-
rem 2.2, the composed functional f �→ ψ∞

θ (s, f ) = ζθ (u
∞
θ (s, f )) is the expo-

nent of an infinitely divisible sub-probability measure carried by M[s,∞). Then
f �→ ψ∞

θ (s,0) − ψ∞
θ (s, f ) can be represented by a special form of (2.3). That

shows (4.19) is a special case of (2.7). The desired result now follows in view of
(4.21) and (4.17) with α = ∞. �

If φq(λ) → ∞ as λ → ∞ for every q ∈ T , we can restrict {Pp,q :q ≥ p ∈ T }
to the space D+

in[0,∞) of integrable paths in D+[0,∞) to get a sub-Markov tran-
sition semigroup {P∞

p,q :q ≥ p ∈ T }. This semigroup can also be regarded as a
restriction of {Q∞

p,q :q ≥ p ∈ T }. For f ∈ B+[0,∞), we have∫
D+

in [0,∞)
exp

{
−

∫ ∞
0

f (s)w(s) ds

}
P∞

p,q(η, dw)

(4.23)

= exp
{
−μ(p,q]u∞

q (0, f ) −
∫ ∞

0
u∞

p,q(s, f )η(s) ds

}
.

For an inhomogeneous immigration superprocess {Zq :q ∈ T } with transition
semigroup {Qp,q :q ≥ p ∈ T } or {Q∞

p,q :q ≥ p ∈ T }, we define its total mass pro-
cess {σ(q) :q ∈ T } by σ(q) = Zq[0,∞). For a path-valued branching process with
immigration {(Xt(q))t≥0 :q ∈ T } with transition semigroup {Pp,q :q ≥ p ∈ T } or
{P∞

p,q :q ≥ p ∈ T }, its total mass process is defined as

σ(q) =
∫ ∞

0
Xs(q) ds, q ∈ T .

We here think of {σ(q) :q ∈ T } as a process with state space R+ and cemetery ∞.
In view of (4.21), (4.22) and (4.23), we have

THEOREM 4.7. Suppose that φq(λ) → ∞ as λ → ∞ for every q ∈ T . Then
{σ(q) :q ∈ T } is an inhomogeneous Markov process with transition semigroup
{Rp,q :q ≥ p ∈ T } such that, for λ ≥ 0,∫

R+
e−λyRp,q(x, dy) = exp

{−xφp

(
φ−1

q (λ)
) − μ(p,q]φ−1

q (λ)
}
.(4.24)
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Before concluding this section, let us consider the admissible family of branch-
ing mechanisms {φq :q ∈ R} defined by φq(λ) = λ2 −2qλ for λ ≥ 0. In this special
case, zero is the only critical point of the family {φq :q ∈ R}. Let {(Xt(q))t≥0 :q ∈
R} be a corresponding path-valued branching process. Let {σ(q) :q ∈ R} be the
process of total mass. By Theorem 4.7 one can see that {σ(q) :q ∈ R} is an inho-
mogeneous Markov process with transition semigroup {Rp,q :q ≥ p ∈ R} defined
by ∫

R+
e−λyRp,q(x, dy) = exp

{−xvp,q(λ)
}
, λ ≥ 0,(4.25)

where

vp,q(λ) = λ + 2(q − p)
(√

q2 + λ + q
)
.

This process can be obtained from two homogeneous CB-processes by simple
transformations. For t, λ ≥ 0 let

u−
t (λ) = e−2t λ + 2e−t (1 − e−t )(√1 + λ − 1).

It is easy to check that

u−
t−s(λ) = e2sv−e−s ,−e−t

(
e−2t λ

)
, λ ≥ 0, t ≥ s ∈ R.

From this and (4.25) one can see that {e−2t σ (−e−t ) : t ∈ R} is a homogeneous
Markov process with transition semigroup (R−

t )t≥0 defined by∫
R+

e−λyR−
t (x, dy) = e−xu−

t (λ), λ ≥ 0.

Moreover, we have

d

dt
u−

t (λ) = −φ−
(
u−

t (λ)
)
,

where

φ−(z) = 2z − 2(
√

1 + z − 1).

Then {e−2t σ (−e−t ) : t ∈ R} is actually a conservative homogeneous CB-process
in [0,∞) with branching mechanism φ−. Similarly, one sees {e2t σ (et ) : t ∈ R} is
a homogeneous Markov process with transition semigroup (R+

t )t≥0 defined by∫
R+

e−λyR+
t (x, dy) = e−xu+

t (λ), λ ≥ 0,

where

u+
t (λ) = e2t λ + 2et (et − 1

)
(
√

1 + λ + 1).

One can easily see that

d

dt
u+

t (λ) = −φ+
(
u+

t (λ)
)
,
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where

φ+(z) = −2z − 2(
√

1 + z + 1).

Then {e2t σ (et ) : t ∈ R} is a CB-process with branching mechanism φ+.

5. Construction by stochastic equations. In this section, we give a construc-
tion of the path-valued process {(Xt(q))t≥0 :q ∈ T } with transition semigroup
{Pp,q :q ≥ p ∈ T } defined by (4.6) as the solution flow of a system of stochas-
tic equations driven by time–space noises. We shall assume T = [0,∞) or [0, a]
or [0, a) for some a > 0. This specification of the index set is clearly not es-
sential for the applications. Let μ ∈ F(T ), and let {φq :q ∈ T } be an admissible
family of branching mechanisms, where φq is given by (1.1) with the parameters
(b,m) = (bq,mq) depending on q ∈ T . Let μ(p,q] = μ(q)−μ(p) for q ≥ p ∈ T ,
and let m(dy, dz) be the measure on T × (0,∞) defined by

m
([0, q] × [c, d]) = mq[c, d], q ∈ T ,d > c > 0.(5.1)

Let ρ = ρ(s) be a locally bounded positive Borel function on [0,∞), and let ψ be
an immigration mechanism given by (2.21).

Suppose that (
,F ,Ft ,P) is a filtered probability space satisfying the usual
hypotheses. Let W(ds, du) be an (Ft )-white noise on (0,∞)2 based on the
Lebesgue measure, let Ñ0(ds, dy, dz, du) be a compensated (Ft )-Poisson ran-
dom measure on (0,∞) × T × (0,∞)2 with intensity dsm(dy, dz) du and let
N1(ds, dz, du) be an (Ft )-Poisson random measure on (0,∞)3 with intensity
dsn(dz) du. Suppose that W(ds, du), Ñ0(ds, dy, dz, du) and N1(ds, dz, du) are
independent of each other. For q ∈ T it is easy to see that

Ñ(ds, dz, du) :=
∫
{0≤y≤q}

Ñ0(ds, dy, dz, du)

is a compensated Poisson random measure with intensity dsmq(dz) du. By The-
orem 3.3 for every q ∈ T there is a pathwise unique solution to the stochastic
equation

Xt(q) = μ(q) − bq

∫ t

0
Xs−(q) ds + σ

∫ t

0

∫ Xs−(q)

0
W(ds, du)

+
∫ t

0

∫
[0,q]

∫ ∞
0

∫ Xs−(q)

0
zÑ0(ds, dy, dz, du)(5.2)

+ h

∫ t

0
ρ(s) ds +

∫ t

0

∫ ∞
0

∫ ρ(s)

0
zN1(ds, dz, du).

By Theorem 3.4 the solution {Xt(q) : t ≥ 0} is a CBI-process with branching mech-
anism φq , immigration mechanism ψ and immigration rate ρ.
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THEOREM 5.1. The process {(Xt(q))t≥0 :q ∈ T } is a path-valued branching
process with immigration in D+[0,∞) having transition semigroup {Pp,q :q ≥
p ∈ T } defined by (4.6).

PROOF. We can rewrite equation (5.2) into

Xt(q) = μ(q) − hq

∫ t

0
Xs−(q) ds + σ

∫ t

0

∫ Xs−(q)

0
W(ds, du)

+ h

∫ t

0
ρ(s) ds +

∫ t

0

∫ q

0

∫ ∞
0

∫ Xs−(q)

0
zN0(ds, dy, dz, du)

(5.3)

+
∫ t

0

∫
{0}

∫ ∞
0

∫ Xs−(q)

0
zÑ0(ds, dy, dz, du)

+
∫ t

0

∫ ∞
0

∫ ρ(s)

0
zN1(ds, dz, du),

where

q �→ hq := bq +
∫ q

0
dθ

∫ ∞
0

znθ (dz) = b0 −
∫ q

0
βθ dθ

is a decreasing function. Then, for q ≥ p ∈ T , one can see by a simple modification
of Theorem 2.2 in Dawson and Li (2012) that Xt(q) ≥ Xt(p) for every t ≥ 0 with
probability one. Let ξt (p, q) = Xt(q) − Xt(p) for t ≥ 0. From (5.3) we have

ξt (p, q) = μ(p,q] − bq

∫ t

0
ξs−(p, q) ds +

∫ q

p
βθ dθ

∫ t

0
Xs−(p)ds

+ σ

∫ t

0

∫ ξs−(p,q)

0
W

(
ds,Xs−(p) + du

)
(5.4)

+
∫ t

0

∫
[0,q]

∫ ∞
0

∫ ξs−(p,q)

0
zÑ0

(
ds, dy, dz,Xs−(p) + du

)

+
∫ t

0

∫ q

p

∫ ∞
0

∫ Xs−(p)

0
zN0(ds, dy, dz, du).

Here W(ds,Xs−(p) + du) is a white noise based on the Lebesgue measure. Note
also that ∫

{0≤y≤q}
N0

(
ds, dy, dz,Xs−(p) + du

)
is a Poisson random measure with intensity dsmq(dz) du, and∫

{p<y≤q}
N0(ds, dy, dz, du)

is a Poisson random measure with intensity∫
{p<θ≤q}

dsnθ (dz) dudθ.



PATH-VALUED PROCESSES AND SUPERPROCESSES 65

Clearly, the white noise and the two random measures are independent. By The-
orem 3.4, conditioned upon {Xt(p) : t ≥ 0} the process {ξt (p, q) : t ≥ 0} is a CBI-
process with branching mechanism φq , immigration mechanism φp,q and im-
migration rate {Xt−(p) : t ≥ 0}. Conditioned upon {Xt(p) : t ≥ 0}, the process
{ξt (p, q) : t ≥ 0} is clearly independent of the σ -algebra generated by {Xt(v) : t ≥
0, v ∈ [0,p]}. Then {(Xt(q))t≥0 :q ∈ T } is a path-valued Markov process with
transition semigroup {Pp,q :q ≥ p ∈ T }. �

THEOREM 5.2. There is a positive function (t, u) �→ C(t, u) on [0,∞) × T

bounded on compact sets so that, for any t ≥ 0 and p ≤ q ≤ u ∈ T ,

P
{

sup
0≤s≤t

[
Xs(q) − Xs(p)

]}
(5.5)

≤ C(t, u)
{
μ(p,q] + bp − bq +

√
μ(p,q] +

√
bp − bq

}
.

PROOF. Since {Xt(p) : t ≥ 0} is a CBI-process, we see from (3.2) that t �→
P[Xt(p)] is locally bounded. Let {ξt (p, q) : t ≥ 0} be defined as in the last proof.
By (5.4) we have

P
[
ξt (p, q)

] = μ(p,q] − bq

∫ t

0
P

[
ξs(p, q)

]
ds + (bp − bq)

∫ t

0
P

[
Xs(p)

]
ds.

By Gronwall’s inequality one can find a positive function (t, u) �→ C0(t, u) on
[0,∞) × T bounded on compact sets so that, for any t ≥ 0 and p ≤ q ≤ u ∈ T ,

P
[
ξt (p, q)

] ≤ C0(t, u)
{
μ(p,q] + bp − bq

}
.(5.6)

Applying Doob’s inequality to the martingales in (5.4), we obtain

P
{

sup
0≤s≤t

ξs(p, q)
}

≤ μ(p,q] + 2σ

(∫ t

0
P

[
ξs(p, q)

]
ds

)1/2

+ |bq |
∫ t

0
P

[
ξs(p, q)

]
ds + (bp − bq)

∫ t

0
P

[
Xs(p)

]
ds

+
∫ ∞

1
zmq(dz)

∫ t

0
P

[
ξs(p, q)

]
ds

+ 2
(∫ t

0
P

[
ξs(p, q)

]
ds

∫ 1

0
z2mq(dz)

)1/2

.

Then the desired estimate follows from (5.6). �

Now let us consider a special admissible family of branching mechanisms. Sup-
pose that φ is a critical or supercritical branching mechanism given by (1.1) with
b ≤ 0. Let T = T (φ) be the set of q ≥ 0 so that∫ ∞

1
zeqzm(dz) < ∞.
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Then T = [0, a] or [0, a), where a = sup(T ). We can define an admissible family
of branching mechanisms {φq :q ∈ T } by

φq(λ) = φ(λ − q) − φ(−q), λ ≥ 0,(5.7)

where the two terms on the right-hand side are defined using formula (1.1). Let
{Xt(q) : t ≥ 0, q ∈ T } be the solution flow of stochastic equation system (1.3). By
Theorem 5.1 we see that {(Xt(q))t≥0 :q ∈ T } is an inhomogeneous path-valued
branching process with transition semigroup {Pp,q :q ≥ p ∈ T } given by∫

D+[0,∞)
e− ∫ ∞

0 f (s)w(s) dsPp,q(η, dw) = exp
{
−

∫ ∞
0

up,q(s, f )η(s) ds

}
,(5.8)

where f ∈ B+[0,∞) has compact support, and up,q(s, f ) is given by (4.8).
If φ(λ) → ∞ as λ → ∞, by Theorem 4.7 the corresponding total mass pro-
cess {σ(q) :q ∈ T } is an inhomogeneous CB-process with transition semigroup
{Rp,q :q ≥ p ∈ T } given by∫

R+
e−λyRp,q(x, dy) = exp

{−xφp

(
φ−1

q (λ)
)}

, λ ≥ 0.(5.9)

By Theorem 2.5 we have

P
[
e−λσ(q)1{σ(q)<∞}

] = e−μφ−1
q (λ), λ ≥ 0, q ∈ T .(5.10)

It is simple to see that

q �→ φ−1
q (0) = q + φ−1(

φ(−q)
)

is continuous on T . Let A = inf{q ∈ T :σ(q) = ∞} be the explosion time of
{σ(q) :q ∈ T }. For any q ∈ T we can let λ = 0 in (5.10) to obtain

P{A > q} = P
{
σ(q) < ∞} = e−μφ−1

q (0).(5.11)

This gives a characterization of the distribution of A.

THEOREM 5.3. Suppose that φ(λ) → ∞ as λ → ∞. Then for any θ ∈ T , we
have

P
[
σ(θ)1{σ(θ)<∞}

] = μe−μ[θ+φ−1(φ(−θ))]

φ′(φ−1(φ(−θ)))
.(5.12)

PROOF. Let λ ≥ 0 and u = φ−1
θ (λ). By (5.10) we have

P
[
σ(θ)e−λσ(θ)1{σ(θ)<∞}

] = − d

dλ
e−μφ−1

θ (λ) = μe−μφ−1
θ (λ) d

dλ
φ−1

θ (λ).
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From the relation φθ(u) = φ(u − θ) − φ(−θ), one can see

φ−1
θ (λ) = θ + φ−1(

λ + φ(−θ)
)
.

It follows that

P
[
σ(θ)e−λσ(θ)1{σ(θ)<∞}

] = μe−μ[θ+φ−1(λ+φ(−θ))]

φ′(φ−1(λ + φ(−θ)))
.

Then we get (5.12) by letting λ = 0. �

THEOREM 5.4. Suppose that φ(λ) → ∞ as λ → ∞. Let θ ∈ [0, a), and let
G(θ) be a positive random variable measurable with respect to the σ -algebra
generated by {Xt(v) : t ≥ 0,0 < v ≤ θ}. Then we have

P
[
G(θ)|A = θ

] = φ′(φ−1(φ(−θ)))

μe−μ[θ+φ−1(φ(−θ))] P
[
G(θ)σ (θ)1{σ(θ)<∞}

]
.(5.13)

PROOF. Since q �→ φ−1
q (0) is continuous on T , for any q ∈ (θ, a) we can see

by (5.9) that

P
[
G(θ)1{A>q}

] = P
[
G(θ)1{σ(q)<∞}

] = P
[
G(θ) exp

{−σ(θ)φθ

(
φ−1

q (0)
)}]

.

It is easy to see that

φθ

(
φ−1

q (0)
) = φθ(q̄ + q) = φ(q̄ + q − θ) − φ(−θ),

where q̄ = φ−1(φ(−q)). By elementary calculations,

d

dq
φθ

(
φ−1

q (0)
) = φ′(q̄ + q − θ)

(
1 − φ′(−q)

φ′(q̄)

)
.

It follows that

− d

dq
P

[
G(θ)1{A>q}

]∣∣∣∣
q=θ+

= [
φ′(θ̄) − φ′(−θ)

]
P

[
G(θ)σ (θ)1{σ(θ)<∞}

]
,

and hence

P
[
G(θ)|A = θ

] = P[G(θ)σ (θ)1{σ(θ)<∞}]
P[σ(θ)1{σ(θ)<∞}] .(5.14)

Then we get (5.13) from (5.12) and (5.14). �

6. A nonlocal branching superprocess. In this section, we consider a non-
local branching superprocess defined from the solution flow of (5.2). We first as-
sume T = [0, a] for some a > 0. Let μ ∈ F(T ), and let {φq :q ∈ T } be an ad-
missible family of branching mechanisms, where φq is given by (1.1) with the
parameters (b,m) = (bq,mq) depending on q ∈ T . Let m(dy, dz) be the measure
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on T ×(0,∞) defined by (5.1). Let ρ = {ρ(t) : t ≥ 0} be a locally bounded positive
Borel function on [0,∞). Let ψ be an immigration mechanism given by (2.21).
Let X(q) = {Xt(q) : t ≥ 0} be the solution of (5.2) for q ∈ T . Then the path-valued
Markov process {X(q) :q ∈ T } has transition semigroup {Pp,q :q ≥ p ∈ T } de-
fined by (4.6). Let QT denote the set of rationals in T . For any t ≥ 0 we define the
random function Yt ∈ F(T ) by Yt (a) = Xt(a) and

Yt (q) = inf
{
Xt(u) :u ∈ QT ∩ (q, a]}, 0 ≤ q < a.(6.1)

Similarly, for any t > 0, define Zt ∈ F(T ) by Zt(a) = Xt−(a) and

Zt(q) = inf
{
Xt−(u) :u ∈ QT ∩ (q, a]}, 0 ≤ q < a.(6.2)

By Theorem 5.2, for each q ∈ T we have

P
{
Yt (q) = Xt(q) and Zt(q) = Xt−(q) for all t ≥ 0

} = 1.(6.3)

Consequently, for every q ∈ T the process {Yt (q) : t ≥ 0} is almost surely càdlàg
and solves (5.2), so it is a CBI-process with branching mechanism φq , immigration
mechanism ψ and immigration rate ρ. In view of (4.3) and (4.4), for every q ∈ T

we almost surely have

Yt (q) = μ(q) + At + σ

∫ t

0

∫ Ys−(q)

0
W(ds, du)

− b0

∫ t

0
Ys−(q) ds +

∫ q

0
βθ dθ

∫ t

0
Ys−(q) ds

(6.4)

+
∫ t

0

∫
{0}

∫ ∞
0

∫ Ys−(q)

0
zÑ0(ds, dy, dz, du)

+
∫ t

0

∫ q

0

∫ ∞
0

∫ Ys−(q)

0
zN0(ds, dy, dz, du),

where

At = h

∫ t

0
ρ(s) ds +

∫ t

0

∫ ∞
0

∫ ρ(s)

0
zN1(ds, dz, du).

For t ≥ 0 let Yt (dx) and Zt(dx) denote the random measures on T induced by
the random functions Yt and Zt ∈ F(T ), respectively. For any f ∈ C1(T ) one can
use Fubini’s theorem to see

〈Yt , f 〉 = f (a)Yt (a) −
∫ a

0
f ′(q)Yt (q) dq.(6.5)
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Fix an integer n ≥ 1 and let qi = ia/2n for i = 0,1, . . . ,2n. By (6.3) and (6.4) it
holds almost surely that

2n∑
i=1

f ′(qi)Yt (qi)

=
2n∑
i=1

f ′(qi)μ(qi) + σ

2n∑
i=1

f ′(qi)

∫ t

0

∫ Zs(qi)

0
W(ds, du)

+ At

2n∑
i=1

f ′(qi) − b0

2n∑
i=1

f ′(qi)

∫ t

0
Zs(qi) ds

+
2n∑
i=1

f ′(qi)

∫ qi

0
βθ dθ

∫ t

0
ds

∫
[0,qi ]

Zs(dx)

+
2n∑
i=1

f ′(qi)

∫ t

0

∫
{0}

∫ ∞
0

∫ Zs(qi)

0
zÑ0(ds, dy, dz, du)

+
2n∑
i=1

f ′(qi)

∫ t

0

∫ qi

0

∫ ∞
0

∫ Zs(qi)

0
zN0(ds, dy, dz, du)(6.6)

=
2n∑
i=1

f ′(qi)μ(qi) + σ

∫ t

0

∫ Zs(a)

0
Fn(s,0, u)W(ds, du)

+ At

2n∑
i=1

f ′(qi) − b0

∫ t

0

[ 2n∑
i=1

f ′(qi)Zs(qi)

]
ds

+
∫ t

0
ds

∫
T

Zs(dx)

∫ a

0
Fn(s, x ∨ θ,0)βθ dθ

+
∫ t

0

∫
{0}

∫ ∞
0

∫ Zs(a)

0
zFn(s,0, u)Ñ0(ds, dy, dz, du)

+
∫ t

0

∫ a

0

∫ ∞
0

∫ Zs(a)

0
zFn(s, y, u)N0(ds, dy, dz, du),

where

Fn(s, y,u) =
2n∑
i=1

f ′(qi)1{y≤qi}1{u≤Zs(qi)}.

By the right continuity of q �→ Zs(q) it is not hard to see that, as n → ∞,

2−nFn(s, y, u) → F(s, y,u) :=
∫ a

y
1{u≤Zs(q)}f ′(q) dq.(6.7)
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Then we can multiply (6.6) by 2−n and let n → ∞ to see, almost surely,

∫ a

0
f ′(q)Yt (q) dq

=
∫ a

0
f ′(q)μ(q) dq + σ

∫ t

0

∫ Zs(a)

0
F(s,0, u)W(ds, du)

+ At

∫ a

0
f ′(q) dq − b0

∫ t

0
ds

∫ a

0
f ′(q)Zs(q) dq

(6.8)

+
∫ t

0
ds

∫
T

Zs(dx)

∫ a

0
F(s, x ∨ θ,0)βθ dθ

+
∫ t

0

∫
{0}

∫ ∞
0

∫ Zs(a)

0
zF (s,0, u)Ñ0(ds, dy, dz, du)

+
∫ t

0

∫ a

0

∫ ∞
0

∫ Zs(a)

0
zF (s, y,u)N0(ds, dy, dz, du).

From (6.4), (6.5) and (6.8) it follows that, almost surely,

〈Yt , f 〉 = 〈μ,f 〉 + f (0)At + σ

∫ t

0

∫ Zs(a)

0

[
f (a) − F(s,0, u)

]
W(ds, du)

− b0

∫ t

0
〈Zs,f 〉ds +

∫ t

0
ds

∫
T

Zs(dx)

∫ a

0
f (x ∨ θ)βθ dθ

(6.9)

+
∫ t

0

∫
{0}

∫ ∞
0

∫ Zs(a)

0
z
[
f (a) − F(s,0, u)

]
Ñ0(ds, dy, dz, du)

+
∫ t

0

∫ a

0

∫ ∞
0

∫ Zs(a)

0
z
[
f (a) − F(s, y,u)

]
N0(ds, dy, dz, du).

THEOREM 6.1. The measure-valued process {Yt : t ≥ 0} has a càdlàg modifi-
cation.

PROOF. By (6.9) one can see {〈Yt , f 〉 : t ≥ 0} has a càdlàg modification for
every f ∈ C1(T ). Let U be the countable set of polynomials having rational co-
efficients. Then U is uniformly dense in both C1(T ) and C(T ). For f ∈ U , let
{Y ∗

t (f ) : t ≥ 0} be a càdlàg modification of {〈Yt , f 〉 : t ≥ 0}. By removing a null
set from 
 if it is necessary, we obtain a càdlàg process {Y ∗

t : t ≥ 0} of rational
linear functionals on U , which can immediately be extended to a càdlàg process
of real linear functionals on C(T ). By Riesz’s representation, the latter determines
a measure-valued process, which is clearly a càdlàg modification of {Yt : t ≥ 0}.

�
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THEOREM 6.2. The càdlàg modification of {Yt : t ≥ 0} is the unique solution
of the following martingale problem: for every G ∈ C2(R) and f ∈ C(T ),

G
(〈Yt , f 〉) = G

(〈μ,f 〉) +
∫ t

0
G′(〈Ys, f 〉)ds

∫
T

Ys(dx)

∫
T

f (x ∨ θ)βθ dθ

− b0

∫ t

0
G′(〈Ys, f 〉)〈Ys, f 〉ds + 1

2
σ 2

∫ t

0
G′′(〈Ys, f 〉)〈Ys, f

2〉
ds

+
∫ t

0
ds

∫
T

Ys(dx)

∫ ∞
0

[
G

(〈Ys, f 〉 + zf (x)
)

− G
(〈Ys, f 〉) − zf (x)G′(〈Ys, f 〉)]m0(dz)

+
∫ t

0
ds

∫
T

Ys(dx)

∫
T

dθ

∫ ∞
0

[
G

(〈Ys, f 〉 + zf (x ∨ θ)
)

(6.10)

− G
(〈Ys, f 〉)]nθ(dz)

+ hf (0)

∫ t

0
G′(〈Ys, f 〉)ρ(s) ds

+
∫ t

0
ρ(s) ds

∫ ∞
0

[
G

(〈Ys, f 〉 + zf (0)
) − G

(〈Ys, f 〉)]n(dz)

+ local mart.

PROOF. We first assume f ∈ C1(T ). By (6.9) and Itô’s formula, we get

G
(〈Yt , f 〉)

= G
(〈μ,f 〉) − b0

∫ t

0
G′(〈Zs,f 〉)〈Zs,f 〉ds

+ 1

2
σ 2

∫ t

0
ds

∫ Zs(a)

0
G′′(〈Zs,f 〉)[f (a) − F(s,0, u)

]2
du

+
∫ t

0
G′(〈Zs,f 〉)ds

∫
T

Zs(dx)

∫
T

f (x ∨ θ)βθ dθ

+
∫ t

0
ds

∫ Zs(a)

0
du

∫ ∞
0

[
G

(〈Zs,f 〉 + z
[
f (a) − F(s,0, u)

])
− G

(〈Zs,f 〉)
− z

[
f (a) − F(s,0, u)

]
G′(〈Zs,f 〉)]m0(dz)

+
∫ t

0
ds

∫ Zs(a)

0
du

∫
T

dθ

∫ ∞
0

[
G

(〈Zs,f 〉 + z
[
f (a) − F(s, θ, u)

])
− G

(〈Zs,f 〉)]nθ (dz)

+ hf (0)

∫ t

0
G′(〈Zs,f 〉)ρ(s) ds
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+
∫ t

0
ρ(s) ds

∫ ∞
0

[
G

(〈Zs,f 〉 + zf (0)
) − G

(〈Zs,f 〉)]n(dz)

+ local mart.

For s, u > 0 let Z−1
s (u) = inf{q ≥ 0 :Zs(q) > u}. It is easy to see that {q ≥ 0 :u ≤

Zs(q)} = [Z−1
s (u),∞), except for at most countably many u > 0. Then in the

above we can replace f (a) − F(s, θ, u) by

f (a) −
∫ a

θ
1{Z−1

s (u)≤q}f
′(q) dq = f

(
Z−1

s (u) ∨ θ
)
.

It follows that

G
(〈Yt , f 〉)

= G
(〈μ,f 〉) − b0

∫ t

0
G′(〈Zs,f 〉)〈Zs,f 〉ds

+ 1

2
σ 2

∫ t

0
ds

∫ Zs(a)

0
G′′(〈Zs,f 〉)f (

Z−1
s (u)

)2
du

+
∫ t

0
G′(〈Zs,f 〉)ds

∫
T

Zs(dx)

∫
T

f (x ∨ θ)βθ dθ

+
∫ t

0
ds

∫ Zs(a)

0
du

∫ ∞
0

[
G

(〈Zs,f 〉 + zf
(
Z−1

s (u)
))

− G
(〈Zs,f 〉)

− zf
(
Z−1

s (u)
)
G′(〈Zs,f 〉)]m0(dz)

+
∫ t

0
ds

∫ Zs(a)

0
du

∫
T

dθ

∫ ∞
0

[
G

(〈Zs,f 〉 + zf
(
Z−1

s (u) ∨ θ
))

− G
(〈Zs,f 〉)]nθ(dz)

+ hf (0)

∫ t

0
G′(〈Zs,f 〉)ρ(s) ds

+
∫ t

0
ρ(s) ds

∫ ∞
0

[
G

(〈Zs,f 〉 + zf (0)
) − G

(〈Zs,f 〉)]n(dz)

+ local mart.

= G
(〈μ,f 〉) +

∫ t

0
G′(〈Zs,f 〉)ds

∫
T

Zs(dx)

∫
T

f (x ∨ θ)βθ dθ

− b0

∫ t

0
G′(〈Zs,f 〉)〈Zs,f 〉ds + 1

2
σ 2

∫ t

0
G′′(〈Zs,f 〉)〈Zs,f

2〉
ds

+
∫ t

0
ds

∫
T

Zs(dx)

∫ ∞
0

[
G

(〈Zs,f 〉 + zf (x)
)

− G
(〈Zs,f 〉) − zf (x)G′(〈Zs,f 〉)]m0(dz)
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+
∫ t

0
ds

∫
T

Zs(dx)

∫
T

dθ

∫ ∞
0

[
G

(〈Zs,f 〉 + zf (x ∨ θ)
)

− G
(〈Zs,f 〉)]nθ(dz)

+ hf (0)

∫ t

0
G′(〈Zs,f 〉)ρ(s) ds

+
∫ t

0
ρ(s) ds

∫ ∞
0

[
G

(〈Zs,f 〉 + zf (0)
) − G

(〈Zs,f 〉)]n(dz)

+ local mart.

For each q ∈ T the càdlàg process {Xt(q) : t ≥ 0} has at most countably many
discontinuity points Aq := {t > 0 :Yt−(q) �= Yt (q)}. In view of (6.1) and (6.2), we
have Zt(q) = Yt (q) for all q ∈ T and t ∈ B := Ac

a ∩(
⋂

u∈QT
Ac

u). Here B ⊂ [0,∞)

is a set with full Lebesgue measure. Then we have (6.10) for f ∈ C1(T ). For an
arbitrary f ∈ C(T ), we get (6.10) by an approximation argument. The uniqueness
(in distribution) of the solution to the martingale problem follows by a modification
of the proof of Theorem 7.13 in Li (2011). �

The martingale problem (6.10) is essentially a special case of the one given in
Theorem 10.18 of Li (2011); see also Theorem 9.18 of Li (2011). Let f �→ �(·, f )

be the operator on C+(T ) defined by

�(x,f ) =
∫
T

f (x ∨ θ)βθ dθ +
∫
T

dθ

∫ ∞
0

(
1 − e−zf (x∨θ))nθ(dz).(6.11)

By modifying the proof of Theorem 3.4 one can show the following:

THEOREM 6.3. The solution {Yt : t ≥ 0} of the martingale problem (6.10) is
an immigration superprocess with transition semigroup (Qt)t≥0 defined by∫

M(T )
e−〈ν,f 〉Qt(μ,dν) = exp

{
−〈μ,Vtf 〉 −

∫ t

0
ψ

(
Vsf (0)

)
ρ(s) ds

}
,(6.12)

where f ∈ C+(T ), and t �→ Vtf is the unique locally bounded positive solution of

Vtf (x) = f (x) −
∫ t

0

[
φ0

(
Vsf (x)

) − �(x,Vsf )
]
ds, t ≥ 0, x ∈ T .(6.13)

The branching mechanism of the immigration superprocess {Yt : t ≥ 0} has local
part (x, f ) �→ φ0(f (x)) and nonlocal part (x, f ) �→ �(x,f ); see Example 2.5 in
Li (2011). The process has immigration mechanism f �→ ψ(f (0)) and immigra-
tion rate ρ = {ρ(s) : s ≥ 0}. Then the immigrants only come at the origin. The
spatial motion in this model is trivial. Heuristically, when an infinitesimal particle
dies at site x ∈ T , some offspring are born at this site according to the local branch-
ing mechanism and some are born in the interval (x, a] according to the nonlocal
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branching mechanism. Therefore the branching of an infinitesimal particle located
at x ∈ T does not make any influence on the population in the interval [0, x). This
explains the Markov property of the path-valued process {(Yt (q))t≥0 :q ∈ T }.

The cumulant semigroup (Vt )t≥0 can also be defined by a differential evolution
equation. In fact, by Theorem 7.11 of Li (2011), for any f ∈ C+(T ), the integral
equation (6.13) is equivalent to⎧⎨

⎩
dVtf

dt
(x) = −φ0

(
Vtf (x)

) + �(x,Vtf ), t ≥ 0, x ∈ T ,

V0f (x) = f (x), x ∈ T .
(6.14)

Then the transition semigroup (Qt)t≥0 can also be defined by (6.12) for f ∈
C+(T ) with t �→ Vtf being the unique locally bounded positive solution of (6.14).

THEOREM 6.4. Let Y = (
,G ,Gt , Yt ,Qμ) be any càdlàg immigration su-
perprocess with transition semigroup (Qt)t≥0 defined by (6.12) and (6.13). Then
under Qμ for every q ∈ T the process {Yt [0, q] : t ≥ 0} has a càdlàg version, and
{(Yt [0, q])t≥0 :q ∈ T } is a path-valued branching process with immigration with
transition semigroup {Pp,q :q ≥ p ∈ T } defined by (4.6).

PROOF. By Theorem 6.2, one can see that for each q ∈ T the restriction of
{Yt : t ≥ 0} to [0, q] is also an immigration superprocess with state space M[0, q].
In particular, the process {Yt [0, q] : t ≥ 0} has a càdlàg version. Clearly, the finite-
dimensional distributions of the path-valued process {(Yt [0, q])t≥0 :q ∈ T } are
uniquely determined by the initial state μ ∈ M(T ) and transition semigroup
(Qt)t≥0. Then {(Yt [0, q])t≥0 :q ∈ T } has identical finite-dimensional distributions
with the process {(Yt (q))t≥0 :q ∈ T } defined by (6.4). Since {(Yt (q))t≥0 :q ∈
T } is a Markov process with transition semigroup {Pp,q :q ≥ p ∈ T }, so is
{(Yt [0, q])t≥0 :q ∈ T }. �

If T = [0,∞) or [0, a) for some a > 0, we may apply the above results to the
interval [0, q] ⊂ T for q ∈ T . Then for each q ∈ T , there is a immigration super-
process {Y q

t : t ≥ 0} in M[0, q]. Those processes determine a nonlocal branching
immigration superprocess {Yt : t ≥ 0} in M (T ), the space of Radon measures on
T furnished with the topology of vague convergence. The results established in
this section hold for this process with obvious modifications.

7. The excursion law. In this section we assume T = [0, a] for some a > 0.
However, the results obtained here can be modified to the case T = [0, a) or
[0,∞), obviously. Let {φq :q ∈ T } be an admissible family of branching mech-
anisms, where φq is given by (1.1) with the parameters (b,m) = (bq,mq) depend-
ing on q ∈ T . In addition, we assume φ′

0(λ) → ∞ as λ → ∞. By Theorem 6.3, we



PATH-VALUED PROCESSES AND SUPERPROCESSES 75

can define the transition semigroup (Qt)t≥0 of a nonlocal branching superprocess
by ∫

M(T )
e−〈ν,f 〉Qt(μ,dν) = exp

{−〈μ,Vtf 〉}, f ∈ C+(T ),(7.1)

where t �→ Vtf is the unique locally bounded positive solution of (6.13). Let
(Q◦

t )t≥0 denote the restriction of the semigroup to M(T )◦.

THEOREM 7.1. The cumulant semigroup of (Vt )t≥0 in (7.1) admits the repre-
sentation

Vtf (x) =
∫
M(T )◦

(
1 − e−〈ν,f 〉)Lt(x, dν), t > 0, x ∈ T ,(7.2)

where (Lt (x, ·))t>0 is a σ -finite entrance law for (Q◦
t )t≥0.

PROOF. We need a modification of the characterization (6.14) of the cumulant
semigroup. Let us consider a jump process ξ in T with generator A defined by

Af (x) =
∫ a

0

(
f (q) − f (x)

)
γ (dq), x ∈ T ,f ∈ C(T ),

where

γ (dq) = βq dq +
∫
{0<z<∞}

znq(dz) dq.

Let φ∗(λ) = γ [0, a]λ + φ0(λ), and let f �→ �∗(·, f ) be the operator on C+(T )

defined by

�∗(x, f ) =
∫ a

0

∫ ∞
0

[
e−zf (x∨y) − 1 + zf (x ∨ y)

]
m(dy, dz).

Now the first equation in (6.14) can be rewritten as

dVtf

dt
(x) = AVtf (x) − φ∗

(
Vtf (x)

) − �∗(x,Vtf ).

Then we may think of (Vt )t≥0 as the cumulant semigroup of a superprocess
with underlying spatial motion ξ and branching mechanism (x, f ) �→ φ∗(f (x)) +
�∗(x, f ). Since clearly φ′∗(λ) → ∞ as λ → ∞, the result follows by Theorem 8.6
of Li (2011). �

Let us consider a canonical càdlàg realization Y = (
,G ,Gt , Yt ,Qμ) of the
nonlocal branching superprocess with transition semigroup (Qt)t≥0 defined by
(6.13) and (7.1), where 
 = D([0,∞),M(T )). Let Yt (q) = Yt [0, q] for t ≥ 0 and
q ∈ T . By Theorem 6.4, we have

Qμ exp
{
−

∫ ∞
0

Ys(q)f (s) ds

}
= exp

{−μ[0, q]uq(0, f )
}
,(7.3)
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where s �→ uq(s, f ) is the unique compactly supported bounded positive solution
to (4.7). By Theorems 8.22 and 8.23 of Li (2011), for each x ∈ T there is an
excursion law Nx on D([0,∞),M(T )) of the superprocess such that Nx{Y0 �=
0} = 0 and

Nx

[
1 − e− ∫ ∞

0 〈Ys,fs〉ds] = − log Qδx

[
e− ∫ ∞

0 〈Ys,fs〉ds](7.4)

for any bounded positive Borel function (s, y) �→ fs(y) on [0,∞) × T with com-
pact support. In view of (7.3) and (7.4), for any f ∈ B+[0,∞) with compact sup-
port, we have

N0
[
1 − e− ∫ ∞

0 Ys(q)f (s) ds] = uq(0, f ),(7.5)

where s �→ uq(s, f ) is the unique compactly supported bounded positive solution
to (4.7).

THEOREM 7.2. Under N0 the path-valued process {(Yt (q))t≥0 :q ∈ T } satis-
fies the Markov property with transition semigroup {Pp,q :q ≥ p ∈ T } such that∫

D+[0,∞)
e− ∫ ∞

0 f (s)w(s) dsPp,q(η, dw) = exp
{
−

∫ ∞
0

up,q(s, f )η(s) ds

}
,(7.6)

where f ∈ B+[0,∞) has compact support, and up,q(s, f ) is defined by (4.8).

PROOF. By Theorem 6.4, under Qδ0 the process {(Yt (q))t≥0 :q ∈ T } satis-
fies the Markov property with transition semigroup defined by (7.6). Suppose that
(s, x) �→ fs(x) is a bounded positive Borel function on [0,∞) × T , and s �→ gs

is a bounded positive Borel function on [0,∞), both with compact supports. Then
we have

Qδ0

[
exp

{
−

∫ ∞
0

[〈Ys, fs1[0,p]〉 + Ys(q)gs

]
ds

}]

= Qδ0

[
exp

{
−

∫ ∞
0

[〈Ys, fs1[0,p]〉 + Ys(p)up,q(s, g)
]
ds

}]
.

From this and (7.4) it follows that

N0

[
1 − exp

{
−

∫ ∞
0

[〈Ys, fs1[0,p]〉 + Ys(q)gs

]
ds

}]

= N0

[
1 − exp

{
−

∫ ∞
0

[〈Ys, fs1[0,p]〉 + Ys(p)up,q(s, g)
]
ds

}]
.

Then subtracting the quantity

N0

[
1 − exp

{
−

∫ ∞
0

〈Ys, fs1[0,p]〉ds

}]
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from both sides, we get

N0

[
exp

{
−

∫ ∞
0

〈Ys, fs1[0,p]〉ds

}

×
(

1 − exp
{
−

∫ ∞
0

Ys(q)gs ds

})]

= N0

[
exp

{
−

∫ ∞
0

〈Ys, fs1[0,p]〉ds

}

×
(

1 − exp
{
−

∫ ∞
0

Ys(p)up,q(s, g) ds

})]
.

A monotone class argument shows that

N0

[
F

(
1 − exp

{
−

∫ ∞
0

Ys(q)gs ds

})]

= N0

[
F

(
1 − exp

{
−

∫ ∞
0

Ys(p)up,q(s, g) ds

})]

for any positive Borel function F on D([0,∞),M(T )), measurable with respect
to the σ -algebra generated by {Yt [0, v] : t ≥ 0,0 ≤ v ≤ p}. That implies the desired
Markov property of the process {(Yt (q))t≥0 :q ∈ T }. �

A characterization of the finite-dimensional distributions of the path-valued
process {(Yt (q))t≥0 :q ∈ T } under the excursion law N0 can be given by com-
bining (7.5) and (7.6). Similarly, one can obtain characterizations of the finite-
dimensional distributions of the path-valued process {(Yt (q))0≤t≤α :q ∈ T } for
α > 0 and the total mass process

σ(q) :=
∫ ∞

0
Yt (q) dt, q ∈ T .

The following result should be compared with Theorem 6.7 of Abraham and Del-
mas (2012).

THEOREM 7.3. Suppose that φ is a branching mechanism such that φ(λ) →
∞ as λ → ∞. Let {φq :q ∈ T } be the admissible family defined by (5.7). Let θ ∈
T be a strictly positive constant. Then for any positive random variable G(θ),
measurable with respect to the σ -algebra generated by {Yt (v) : t ≥ 0, v ∈ [0, θ ]},
we have

N0
[
G(θ)|A = θ

] = φ′(φ−1(
φ(−θ)

))
N0

[
G(θ)σ (θ)1{σ(θ)<∞}

]
.

PROOF. Based on Theorem 7.2 and the Markov property of the path-valued
process {(Yt (q))t≥0 :q ∈ T }, this follows as in the proofs of Theorems 5.3 and 5.4.

�



78 Z. LI

Acknowledgments. I would like to acknowledge the Laboratory of Mathe-
matics and Complex Systems (Ministry of Education) for providing me the re-
search facilities. I am grateful to Dr. Leif Döring for helpful comments on the
presentation of the paper.

REFERENCES

ABRAHAM, R., DELMAS, J.-F. and VOISIN, G. (2010). Pruning a Lévy continuum random tree.
Electron. J. Probab. 15 1429–1473. MR2727317

ABRAHAM, R. and DELMAS, J.-F. (2012). A continuum-tree-valued Markov process. Ann. Probab.
40 1167–1211. MR2962090

ABRAHAM, R., DELMAS, J. F. and HE, H. (2012). Pruning Galton–Watson trees and tree-valued
Markov processes. Ann. Inst. Henri Poincaré Probab. Stat. 48 688–705. MR2976559

ALDOUS, D. (1991). The continuum random tree. I. Ann. Probab. 19 1–28. MR1085326
ALDOUS, D. (1993). The continuum random tree. III. Ann. Probab. 21 248–289. MR1207226
ALDOUS, D. and PITMAN, J. (1998). Tree-valued Markov chains derived from Galton–Watson pro-

cesses. Ann. Inst. Henri Poincaré Probab. Stat. 34 637–686. MR1641670
BERTOIN, J. and LE GALL, J.-F. (2006). Stochastic flows associated to coalescent processes. III.

Limit theorems. Illinois J. Math. 50 147–181 (electronic). MR2247827
DAWSON, D. A., GOROSTIZA, L. G. and LI, Z. (2002). Nonlocal branching superprocesses and

some related models. Acta Appl. Math. 74 93–112. MR1936024
DAWSON, D. A. and LI, Z. (2006). Skew convolution semigroups and affine Markov processes.

Ann. Probab. 34 1103–1142. MR2243880
DAWSON, D. A. and LI, Z. (2012). Stochastic equations, flows and measure-valued processes. Ann.

Probab. 40 813–857. MR2952093
DUQUESNE, T. and LE GALL, J.-F. (2002). Random trees, Lévy processes and spatial branching

processes. Astérisque 281 vi+147. MR1954248
DYNKIN, E. B. (1993). Superprocesses and partial differential equations. Ann. Probab. 21 1185–

1262. MR1235414
FU, Z. and LI, Z. (2010). Stochastic equations of non-negative processes with jumps. Stochastic

Process. Appl. 120 306–330. MR2584896
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