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THE BURGERS EQUATION WITH POISSON RANDOM FORCING

BY YURI BAKHTIN1

Georgia Institute of Technology

We consider the Burgers equation on the real line with forcing given by
Poissonian noise with no periodicity assumption. Under a weak concentration
condition on the driving random force, we prove existence and uniqueness of
a global solution in a certain class. We describe its basin of attraction that can
also be viewed as the main ergodic component for the model. We establish
existence and uniqueness of global minimizers associated to the variational
principle underlying the dynamics. We also prove the diffusive behavior of
the global minimizers on the universal cover in the periodic forcing case.

1. Introduction. The Burgers equation is one of the basic nonlinear evolution
equations.

∂tu(t, x) + u(t, x) · ∂xu(t, x) = f (t, x).(1)

Here t ∈ R is the time variable, and x ∈ R is the space variable. The equation
describes the evolution of velocity vector field u(·, ·) of sticky dust particles in the
presence of external potential forcing f (t, x) = −∂xF (t, x).

Burgers introduced this equation as a turbulence model. Although it was soon
discovered that the dynamics governed by (1) does not describe turbulence ade-
quately, the equation has naturally appeared in various other contexts, from cos-
mology to traffic modeling. An informative recent survey on Burgers turbulence
is [3].

One of the remarkable properties of the Burgers equation is that even if the ini-
tial data at time t0 and the forcing are smooth, the solution of the Cauchy problem
typically develops discontinuities or shocks, and if one wants to extend the solution
beyond the formation of shock waves, one has to work with generalized solutions.
Under mild assumptions on the initial data and forcing, only one of the general-
ized solutions is physical. This solution is called the entropy or viscosity solution,
and it can be found using a characterization that is often called the Lax–Oleinik
variational principle (see, e.g., [3] and references therein). Namely, the solution
potential [a function U such that ∂xU(t, x) = u(t, x) for a.e. x ∈ R] satisfies

U(t, x) = inf
γ :γ (t)=x

{
U

(
t0, γ (t0)

) +
∫ t

t0

L
(
s, γ (s), γ̇ (s)

)
ds

}
.(2)
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The expression in the curly brackets is called action, and the the infimum of ac-
tion is taken over all absolutely continuous trajectories γ defined on [t0, t] and
terminating at x at time t . The Lagrangian L is defined by

L(t, x,p) = p2

2
− F(t, x).

Following the hydrodynamic interpretation of the Burgers equation, one can
identify the action minimizers in (2) as the particle trajectories. This kind of rep-
resentation holds true for a more general equation of Hamilton–Jacobi type. The
specifics of the Burgers equation is that if γ ∗ is a unique minimizer in (2), then
u(t, x) = γ̇ ∗(t).

When the forcing is a random field, one has to work with optimization problems
for paths accumulating action from a random Lagrangian landscape, so questions
about Burgers equations with randomness become random media questions.

The ergodic theory of the Burgers equation with random forcing begins with [4].
The forcing in [4] is assumed to be white noise type in time and smooth and pe-
riodic in space. Due to the periodicity assumption, the evolution effectively takes
place on a circle. The compactness of the circle allows for efficient control of the
long time behavior of action minimizers, which leads to constructing attracting
global solutions and thus to a complete description of the ergodic components for
the dynamics, each one consisting of all velocity profiles with given mean velocity.

This work was extended and streamlined in [7] and [5], where the multidimen-
sional version of the Burgers equation with positive or zero viscosity on a torus
was considered. In [2] the ergodic theory for the Burgers equation on a segment
with random boundary conditions was developed.

In all of these papers the compactness of the domain played an important role.
In fact, in the case of unbounded domain with no periodicity assumption, currently
there is no complete understanding of the ergodic properties of the Burgers equa-
tion. Let us summarize what is known.

In [6], the Burgers equation in Rd with aperiodic white-noise forcing with cer-
tain localization properties was considered. A global solution constructed in the
paper was shown to have a basin of attraction containing the zero velocity pro-
file, but no interesting properties of the global solution were established, and the
description of the domain of attraction of the global solution was incomplete.

In [10], it was noted that in the absence of periodicity assumptions, the long
time behavior of solutions can depend on the behavior of the initial condition at
infinity in an essential way. In particular, it was shown that outside the main er-
godic component (containing the zero velocity profile), there are solutions with
significantly different behavior.

In this paper we introduce a new kind of random forcing for the Burgers equa-
tion on the real line with no periodicity assumption. The forcing potential we sug-
gest is given by a Poisson point field. In this model, paths accumulate their action
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traveling through a cloud of random Poissonian points. Although this model pre-
serves many features of the white noise model, it is easier to analyze and visual-
ize. It also has much in common with the well-known Hammersley process (see,
e.g., [1]) which has been explicitly used for the analysis of hydrodynamic limit
resulting in the Burgers equation in [9].

For the new model, we are able to construct a global solution via a limiting pro-
cedure seeded at zero initial condition, prove a so called one force—one solution
principle (1F1S), and describe the main ergodic component of the system, that is,
the basin of attraction of the global solution.

1F1S for the Burgers equation on the circle is tightly connected to the hyperbol-
icity of the global action minimizer. In particular, for any two Burgers particles,
the distance between their backward trajectories (given by the corresponding one-
sided action minimizers) converges to zero. A stronger phenomenon occurs in the
case of Poissonian forcing: for any two particles, their backward trajectories will
meet at one of the Poissonian points in finite time and coincide from that point on
in the reverse time. This stronger form of hyperbolicity may naturally be called
hyperhyperbolicity.

The rest of the paper is organized as follows: In Section 2 we introduce the
new forcing model based on Poissonian points. In Section 3 we discuss the ge-
ometry of foliation of the space–time into particle trajectories under point forcing.
In Section 4 we formulate our main results. In Section 5 we construct the global
solution. In Section 6 we describe its behavior at infinity. In Section 7, we show
that this solution is an attractor and describe its basin of attraction. In Section 8 we
study global minimizers. An important part of that section is a Central limit theo-
rem discribing the diffusive behavior of global minimizers for periodic Poissonian
forcing.

2. Poissonian point forcing. The goal of this section is to describe the model
rigorously, so let us now be more precise. The model is based on a Poisson point
field, and we refer to [8] for an introduction to point processes as random integer-
valued measures.

We are working on a complete probability space (�, F ,P). It is convenient to
identify � with the space of locally finite point configurations ω = {(si, xi), i ∈ N}
in space–time R × R. The sigma-algebra F is generated by maps N(B) assigning
to each ω the number of points of ω in a bounded Borel set B ⊂ R × R. The
measure P is the distribution of a Poisson point field with intensity measure μ(dt ×
dx).

Since we want the forcing to be stationary in time, we shall always assume that
the intensity is a product measure

μ(dt × dx) = dt × m(dx).

Then for disjoint sets B1, . . . ,Bn, the random variables N(B1), . . . ,N(Bn) are
independent and Poissonian with parameters μ(B1), . . . ,μ(Bn).
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We will denote the integral term in (2) as

At0,t (γ ) =
∫ t

t0

L
(
s, γ (s), γ̇ (s)

)
ds = 1

2

∫ t

t0

γ̇ 2(s) ds −
∫ t

t0

F
(
s, γ (s)

)
ds,

and redefine the contribution from the potential by
∫ t

t0

F
(
s, γ (s)

)
ds = Nt0,t (γ ),(3)

where for a path γ and times t0 and t satisfying t0 < t , Nt0,t (γ ) = N
t0,t
ω (γ ) is

the number of Poissonian points that γ passes through between t0 and t . In other
words, each Poissonian point visited by the path contributes −1 to the action. An
immediate generalization of our model is a compound Poisson point field where
each point comes with a random weight which results in random contributions to
the action. In fact, all our results can be extended to that case under reasonable
assumptions on the random weights. However, for simplicity we concentrate here
on the simple Poisson process.

Definition (3) results in the following expression for action accumulated by a
path γ between times t0 and t > t0:

At0,t1(γ ) = At0,t
ω (γ ) = 1

2

∫ t

t0

γ̇ 2(s) ds − Nt0,t
ω (γ ).

It is well known (or can be easily derived from the Euler–Lagrange equations)
that in the zero forcing field, the minimizers (or particle trajectories) are straight
lines. We conclude that between visits to Poissonian points, action-minimizing
paths are straight lines.

Let us introduce more notation. For two times t0 and t1, and two sets A0,A1 ⊂
R, we denote by �

t1,A1
t0,A0

the set of all piecewise linear paths defined between t0

and t1 such that switchings from one linear regime to another happen only at
Poissonian points. We also denote the set of action minimizers over �

t1,A1
t0,A0

by

M
t1,A1
t0,A0

= M
t1,A1
t0,A0

(ω). If A0 or A1 consists of one point x, we will often use in-
dex x instead of {x} in these notation.

To define the main random dynamical system, we must start with the phase
space. First we recall that the natural space of solutions for the Burgers equation
consists of piecewise continuous functions u defined on R, with right and left lim-
its at every point, with at most countably many discontinuities, each discontinuity
being a downward jump or shock u(x−) > u(x+). (The shock absorbs incoming
particles on both sides.) We shall impose an additional restriction on these func-
tions to be bounded and will not distinguish between two functions that coincide
at all their continuity points. We will denote the resulting factor space by U, and
often we will abuse the notation writing u ∈ U when u is a representative of an
element of U.
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We will need a measure of proximity in U. We denote the set of continuity
points of a function h ∈ U by Ch, and for any h1, h2 ∈ U, write

d(h1, h2) = exp
[− sup

{
r > 0 :h1(x) = h2(x), x ∈ Ch1 ∩ Ch2 ∩ Br

}]
,

where Br = [−r, r]. If there is no neighborhood of the origin where h1 and h2
coincide, we set d(h1, h2) = 1. If h1 ≡ h2, we set d(h1, h2) = 0. Thus defined d is
a metric in U taking values in [0,1].

Given v ∈ U, we can define a potential V so that V ′(x) = v(x) for all x. For any
times t0, t1 with t0 < t1, we set

�t0,t1
ω v(x) = γ̇ ∗(t1),(4)

where γ ∗ is the solution of

A
t0,t1
V (γ ) = V

(
γ (t0)

) + At0,t1
ω (γ ) → min, γ ∈ �

t1,x
t0,R

.(5)

Let us assume that

m(R) < ∞,(6)

and briefly summarize (without proof) several facts about the Burgers equation
solution map � that apply to the current setting.

LEMMA 2.1. If h ∈ U, then with probability 1 the following hold:

(1) For any time interval [t0, t1], in definition (4)–(5), the minimizer γ ∗ [and,
consequently, its slope γ̇ ∗(t1) at the terminal time t1] is defined uniquely for all
x ∈ R except at most countably many points. Every point x where �

t0,t1
ω v(x) is

uniquely defined is a continuity point of �
t0,t1
ω v. At any point where the minimizer

is not unique, �
t0,t1
ω v makes a downward jump.

(2) The function �
t0,t1
ω v is bounded (in particular, combining this with the first

part of this lemma, we obtain that �
t0,t1
ω is a map from U to itself).

(3) Moreover, for all ω, if t0 ≤ t1 ≤ t2,

�t1,t2
ω �t0,t1

ω v = �t0,t2
ω v.(7)

REMARK 2.1. Introducing �t
ω = �0,t

ω for t ≥ 0, we can rewrite the cocycle
property (7) as

�t1+t2
ω v = �

t2
θ t1ω

�t1
ωv, t1, t2 ≥ 0,

where θ t denotes the time shift of the Poissonian point field (si, xi) �→ (si − t, xi).

Let us denote by FA the sigma-algebra generated by the restriction of the Pois-
sonian point field to A × R for any set A of times. Clearly, the random operator
�

t0,t1
ω depends only on the realization of the Poisson process between times t0

and t1; that is, it is measurable w.r.t. F[t0,t1].



2966 Y. BAKHTIN

3. Geometry of solutions under Poissonian forcing. Throughout this paper,
we consider the external forcing that is concentrated on a discrete set of Poissonian
points (we will often call them forcing points). This is different from traditionally
considered smooth forcing fields, so let us understand the effect of this kind of
forcing on the solution.

Let us consider a model situation where a smooth beam of Burgers particles
encounters a forcing point at the origin at time 0. Let us assume that at time 0, the
velocity vector field near 0 is u0(y) = a + by, where b > 0.

It is clear that for every (t, x) with t > 0 and x close to the origin, there are two
minimizer candidates. The minimizer either passes through the origin, or it does
not. If it does, then (assuming there are no other point sources of forcing) it has
to be a straight line connecting the origin to (t, x), and the accumulated action is
A1(t, x) = x2/(2t) − 1, where −1 is the contribution of the forcing point at the
origin, and x2/(2t) is the action accumulated while moving with constant velocity
x/t between 0 and t . If the minimizer does not pass through the origin, then it is a
straight line connecting some point (0, x0) to (t, x). On the one hand, the velocity
of the particle associated with the minimizer is (x−x0)/t . On the other hand, it has
to coincide with u0(x0) = a + bx0. Therefore, we can find x0 = (x − at)/(1 + bt).
Taking into account that U0(x0) = ax0 + bx2

0/2, we can compute that the total
action of that path is A2(t, x) = (bx2 + 2ax − a2t)/(2(1 + bt)).

To see which of the two cases is realized for (t, x) we must compare A1(t, x)

and A2(t, x). If A1(t, x) < A2(t, x), then the particle arriving to x at time t is at
the origin at time 0. If A1(t, x) > A2(t, x), then the particle arriving to x at time t

is one of the particles that moved with constant velocity and was a part of the
incoming beam. If A1(t, x) = A2(t, x), then both of these paths are minimizers,
and at time t there is a shock at point x. The relation A1(t, x) = A2(t, x) can be
rewritten as

(x − at)2 = 2t (1 + bt).

For small values of t , the set of points satisfying this relation looks like a parabola
(x − at)2 = 2t ; see Figure 1 where an example with a = 1 and b = 1/2 is shown.

We see that when a Poissonian point appears, it emits a continuum of particles,
each moving with constant velocity, creating two shock fronts moving (at least for
a short time) to the left and right.

It is important to notice that in our model case with a forcing point at the origin,
u(t, x) = x/t for all points connected to the origin by a minimizing segment. It
means that for each time t , the velocity is linear in the domain of influence of the
forcing point, and the velocity gradient decays with time as 1/t .

In general, the behavior of this kind occurs near each forcing point, and in the
long run more and more points of the space–time plane get assigned to forcing
points. Grouping together points assigned to the same forcing point, we obtain a
tesselation of space–time into domains of influence of forcing points. Inside each
domain or cell, the velocity field is linear in x if the time t is fixed.
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FIG. 1. Minimizers around a forcing point.

It is well known that in the Burgers equation the energy is dissipated at the
shocks; see, e.g., [3]. By seeding new particles at each Poissonian point, the forcing
pumps energy into the system, and, therefore, we can hope that there is a dynamical
or statistical energy balance in the system. We will actually see that this dissipation
results in asymptotic alignment of the velocities of particles that keep moving away
from the origin without being absorbed into shocks.

Another point of view at the stationarity and ergodicity issues for this system
is related to the stabilization of the tesselation of space–time into cells described
above.

4. Main result. Although it would be interesting to consider the situation
where the spatial intensity measure m(dx) satisfies m(R) = ∞ (e.g., the Lebesgue
measure on R), throughout this paper we will adopt either assumption (6) or an
even stronger finite first moment assumption∫

R

(
1 + |x|)m(dx) < ∞.(8)

THEOREM 4.1. Suppose (8) holds. Then there is a set �′ with P(�′) = 1 and
a function u : R × �′ → U such that on �′ the following hold:

(1) u is measurable w.r.t. F(−∞,0]. In other words, it depends only on ω|(−∞,0].
(2) u defines a global solution [in other words, it is skew-invariant under

(�, θ)]

�t
ωuω = uθtω, t ≥ 0.

(3) The solution uω is piecewise linear.
(4) There is a nonrandom constant q > 0 such that

lim
x→±∞uω(x) = ±q.
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(5) This solution u plays the role of a one-point attractor. Namely, if V ′ = v ∈
U and

lim inf
x→∞

V (x)

x
> −q,(9)

we have forward attraction,

d
(
�t

ωv,uθtω

) → 0, t → ∞,(10)

and pullback attraction,

d
(
�t

θ−tωv, uω

) → 0, t → ∞.(11)

The function u is a unique (up to zero measure modifications) global solution sat-
isfying

lim inf
x→∞

Uω(x)

x
> −q,(12)

with positive probability (here Uω is the potential of uω, i.e., U ′
ω ≡ uω).

REMARK 4.1. One can reformulate the theorem in terms of a global solution
defined as a function of three variables, uω(t, x) = uθtω(x).

REMARK 4.2. If one accepts a weaker condition (6), then all conclusions of
Theorem 4.1 except conclusion (4) still hold, and their proofs do not change. Con-
clusion (4) has to be replaced with a weaker one,

lim
x→∞

Uω(x)

x
= q.

REMARK 4.3. Conclusion (4) means that in the stationary regime, at infinity
one observes particles moving away from the origin with velocity q .

REMARK 4.4. Conclusion (5) means that if one starts with an initial condition
that sends particles from infinity toward zero with speed that is less than q [see
condition (9)], then this inbound flow is not strong enough to compete with the
outbound flow of particles developed due to the noise, and in the long run it is
dominated by the latter. If condition (9) is violated, then the long term properties
of solutions are sensitive to the details of the behavior of the initial condition at
infinity because the inbound flow of particles may be stronger than the outbound
one, and one will observe effects similar to those discussed in [10].

REMARK 4.5. The uniqueness conclusion (5) and measurability property
[conclusion (1)] can be combined into 1F1S principle—at time 0 there is a unique
velocity profile compatible with the history of the forcing.
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5. Constructing a global solution. In this section we construct a global solu-
tion u. To do this, we start with the zero initial condition at time −T and take T to
infinity. Our goal is to show that �−T ,0

ω 0 converges in (U, d) to a limiting function
and that this limit defines a global solution.

It will be convenient to assume that 0 belongs to the support of measure m, i.e.,
for any δ > 0, m(Bδ) > 0. We adopt this nonresrictive assumption without loss of
generality since one can always introduce a shift coordinate change to make it hold
true.

Since all admissible paths are composed of straight line segments, we will often
use the following elementary result on action accumulated along one segment:

LEMMA 5.1. A path corresponding to a particle moving with constant veloc-
ity v for time t and visiting no Poissonian points, accumulates action equal to

v2t

2
= vx

2
= x2

2t
,

where x = vt is the traveled distance.

LEMMA 5.2. There are numbers a, b > 0 and an a.s.-finite random variable
β > 0 such that if t > 0, x ∈ R, and ω ∈ � sastisfy t − |x| − 2b ≥ β(ω), then there
is a path γ̄ with γ̄ (−t) = x and

A−t,0
ω (γ̄ ) < −(

t − |x|)a + |x| + b.

PROOF. Let us consider sets Ak = [−2k,−2k + 1] × B1/2. For any k ∈ N, we
have

P
{
N(Ak) = 0

} = 1 − e−M,

where N(Ak) denotes the number of Poisson points in Ak and M = m(B1/2). For
any s > 0 we denote by X(s) the random number of indices k ∈ N satisfying
k < s/2 and N(Ak) = 0. The sequence 1{N(Ak) =0} is i.i.d. with mean 1− e−M , and
the strong law of large numbers implies that there is a random time β such that if
s > β , then

X(s) > s
(
1 − e−M)

/3.(13)

Consider a path γ̄ that starts at (−t, x) and visits exactly one point in set Ak if k

satisfies N(Ak) = 0 and 2k < t − |x| − 1, and no other points. Each Poissonian
point in the path contributes −1 to the action, and we can use Lemma 5.1 to see
that each segment connecting these points contributes at most (2 · 1/2)2/2 = 1/2.
The slope of the segment with endpoint (−t, x) does not exceed 1, and contributes
at most (|x| + 1)/2 to the action.
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If t −|x|− 1 > β , then we can combine this with (13) applied to t −|x|− 1 and
obtain

A−t,0
ω (γ̄ ) < −(

t − |x| − 1
)1 − e−M

3

1

2
+ (|x| + 1

)
/2

< −(
t − |x|)(1 − e−M)

/6 + |x| + (
1 − e−M)

/6 + 1/2,

and the lemma follows with a = (1 − e−M)/6 and b = (1 − e−M)/6 + 1/2 > 1/2
since t − |x| − 2b > β implies t − |x| − 1 > β . �

Let us recall that Br = [−r, r] for any r > 0. The following is the main local-
ization lemma.

LEMMA 5.3. There are random variables r−, r+, r±, (τ−
R )R>0, (τ+

R )R>0,
(τ±

R )R>0, such that for any R > 0:

P
{
there are t > τ−

R , x ∈ BR and γ ∈ M
0,R
−t,x s.t.

∣∣γ (0)
∣∣ > r−} = 0;(14)

P
{
there are t > τ+

R , x ∈ BR and γ ∈ M
t,x
0,R s.t.

∣∣γ (0)
∣∣ > r+} = 0;(15)

P
{
there are t−, t+ > τ±

R , x−, x+ ∈ BR and γ ∈ M
t+,x+−t−,x− s.t.

∣∣γ (0)
∣∣ > r±}

(16)
= 0.

Additionally, there are random variables (τ̄R)R>0 and a number R′ > 0 such
that for any R > R′,

P
{
there are t− > τ̄R, t+ > τ±

R , x+ ∈ BR and γ ∈ M
t+,x+
−t−,R s.t.

∣∣γ (0)
∣∣ > r±}

(17)
= 0.

REMARK 5.1. The idea of this lemma is that minimizers over long time inter-
vals are localized within a random neighborhood of the origin. Each of the random
variables r−, r+ and r± can be called localization radius.

PROOF. Let us prove (14) first. We are going to construct random variables K

and h so that for any R > 0 and for sufficiently large t , no path γ with |γ (0)| > Kh

can belong to M
0,R
−t,x with x ∈ BR . The reason why we need two random variables

is that we will use h as an intermediate threshold.
Let x ∈ BR . Consider a path γ defined on [−t,0] such that |γ (0)| > Kh and

γ (−t) = x. Suppose that |γ (−s)| ≤ h for some s ∈ [0, t] and define σ = sup{s ≤
t : |γ (−s)| ≥ h}. Then

A−σ,0
ω (γ ) ≥ (K − 1)2h2

2σ
− N

([−σ,0] × Bc
h

)
.

To treat the second term on the right-hand side, we need the following result:
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LEMMA 5.4. For any ε > 0, there is a positive random variable R0 such that
with probability 1, for every t > 0,

N
([−t,0] × Bc

R0

)
< εt.

PROOF. Let us choose a number α1 such that m(Bc
α1

) < ε/2. Due to the strong
law of large numbers, there is a random time τ > 0 such that N([−t,0] × Bc

α1
) <

εt for all t > τ . With probability 1, there are finitely many Poissonian points in
[−τ,0] × R. Let α2 be the maximal absolute value of the spatial components of
these points. The conclusion of the lemma holds true with R0 = α1 ∨ α2. �

Coming back to the proof of (14), let us set ε = a/2, where a is defined in
Lemma 5.2. Lemma 5.4 applied to this value of ε ensures the existence of h = h(ω)

such that

A−σ,0
ω (γ ) ≥ (K − 1)2h2

2σ
− εσ.(18)

If σ < (K −1)h/
√

2ε, then A−σ,0
ω (γ ) > 0, and the comparison with a zero velocity

trajectory with zero action proves that γ cannot be a minimizer.
To treat the case where

σ ≥ (K − 1)h/
√

2ε,(19)

we will impose some restrictions on K . First, we require that K(ω) ≥ K1(ω),
where

K1(ω) =
(

β(ω) + 2b

h(ω)
+ 1

)√
2ε + 2,

with β and b constructed in Lemma 5.2.
Then, under assumption (19), σ − h − 2b > β and we can apply Lemma 5.2.

The path γ̄ constructed in that lemma for point (−σ, γ (−σ)) satisfies

A−σ,0
ω (γ̄ ) ≤ −(σ − h)a + h + b.

On the other hand, (18) implies

A−σ,0
ω (γ ) ≥ −εσ ≥ −aσ/2.

The last two inequalities imply

A−σ,0
ω (γ̄ ) − A−σ,0

ω (γ ) ≤ −(σ − h)a + h + b + aσ/2

≤ −aσ/2 + h(a + 1) + b,

and, due to (19), the right-hand side is negative if we assume that K(ω) ≥ K2(ω),
where

K2(ω) = 2
√

2ε(h(ω)(a + 1) + b)

ah(ω)
+ 2.
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Therefore, under this assumption γ cannot be a minimizer. We conclude that
if K > K1 ∨ K2, then γ with |γ (0)| > Kh cannot be a minimizer satisfying
|γ (−s)| ≤ h for some s ∈ [0, t].

Let us now consider a path γ with |γ (−s)| > h for all s ∈ [0, t]. We have then

A−t,0
ω (γ ) ≥ −εt ≥ −at/2.

On the other hand, we can invoke Lemma 5.2 to see that if t − |x| − 2b > β , then
there is a path γ̄ with γ̄ (−t) = x such that

A−t,0
ω (γ̄ ) < −(

t − |x|)a + |x| + b

and

A−t,0
ω (γ̄ ) − A−t,0

ω (γ ) ≤ −(
t − |x|)a + |x| + b + at/2

≤ −at/2 + (a + 1)|x| + b.

Since |x| ≤ R, the right-hand side is negative if we require that

t >
2(R(a + 1) + b)

a
.

Under this additional assumption, γ cannot be a minimizer. We conclude that (14)
holds if one chooses

r−(ω) = (
K1(ω) ∨ K2(ω)

)
h(ω)

and

τ−
R (ω) = 2(R(a + 1) + b)

a
∨ (

β(ω) + R + 2b
)
.

The second part of the lemma, equation (15), is only a time reversed version
of the first one. The proof of (16) is an adaptation of the above argument to the
two-sided situation.

Let us prove (17). First, choose R′ large enough to ensure that due to the law
of large numbers, an optimal path cannot stay infinitely outside BR′ . Therefore,
for sufficiently large t−, minimizers from M

t+,x+
−t−,R visit a point x− ∈ BR′ ⊂ BR

between −t− and −τ±
R . Since x−, x+ ∈ BR and a restriction of a minimizer is a

minimizer itself, we can finish the proof by invoking (16). �

Let us denote

r(ω) = r−(ω) ∨ r+(ω) ∨ r±(ω),

τR(ω) = τ−
R (ω) ∨ τ+

R (ω) ∨ τ±
R (ω), R > 0,

D1(R,T ) = {
r(ω) < R, r

(
θT ω

)
< R,τR(ω) < T, τR

(
θT ω

)
< T

}
, R,T > 0.
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LEMMA 5.5. For any L > 0 there are numbers R > L and T > 0 such that
P(D1(R,T )) > 0.

PROOF. We take R so large that P{r(ω) > R} < 1/4. Then P{r(θ tω) > R} <

1/4 for any t since θ t preserves the measure. Then we take T so large that
P{τR(ω) > T } < 1/4. Then P{τR(θT ω) > T } < 1/4, and the lemma follows. �

Let us fix the values of R and T given by Lemma 5.5 and introduce a new event
D2(R,T ) consisting of all outcomes ω admitting a point (t∗, x∗) = (t∗, x∗)(ω) ∈
[0, T ] × R such that for any x, y ∈ BR , the optimal path connecting (0, x) and
(T , y) passes through (t∗, x∗).

LEMMA 5.6. Let R and T be provided by Lemma 5.5. Then

P
(
D1(R,T ) ∩ D2(R,T )

)
> 0.

PROOF. The proof of this lemma is based on a resampling of the point config-
urations in [0, T ] × R according to a certain kernel. In this proof it is convenient
to represent ω ∈ � as ω = (ωin,ωout) where ωin ∈ �in and ωout ∈ �out are re-
strictions of the point configuration ω to [0, T ] × R and its complement. We also
denote by Pin and Pout the distributions of Poisson point field in [0, T ] × R and its
complement in R × R.

We will take a large number n and consider a family of rectangles Lk, k =
1, . . . , n in [0, T ] × R. We postpone a precise description of these rectangles.

For every ω ∈ D1 = D1(R,T ) we consider a new random configuration ω′. It
coincides with ω outside of [0, T ] × R, and the restriction of ω′ onto [0, T ] ×
R consists of n independent random points such that for each k = 1, . . . , n, the
distribution of kth point is concentrated in Lk , k = 1, . . . , n. Let us denote the
distribution of the configuration of these n points in [0, T ] × R by P′

in. Later,
we shall choose the distributions of individual points appropriately to make P′

in
absolutely continuous w.r.t. Pin.

To define the resampling more formally, for any ω we consider a version of
conditional probability P(·|ωout) defined for a set D by

P(D|ωout) = Pin
{
ω′

in :
(
ω′

in,ωout
) ∈ D

}
,

and define a new measure P′ via

P′(E|ωout) = P(D1|ωout)P
′
in

{
ω′

in :
(
ω′

in,ωout
) ∈ E

}

and

P′(E) =
∫
�out

Pout(dωout)P
′(E|ωout).
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Let us prove that P′ � P. We must show that for any set E with P′(E) > 0, we
have P(E) > 0. Since P′(E) > 0, the definition of P′ yields

Pout
{
ωout : P′(E|ωout) > 0

}
> 0.(20)

Notice that if ωout satisfies P′(E|ωout) > 0, then P(D1|ωout) > 0 and P′
in{ω′

in :
(ω′

in,ωout) ∈ E} > 0. The latter and the absolute continuity of P′
in w.r.t. Pin im-

ply that Pin{ω′
in : (ω′

in,ωout) ∈ E} > 0 for such ωout. Therefore, due to (20),

P(E) = Pout × Pin(E) =
∫
�

Pout(dωout)Pin
{
ω′

in :
(
ω′

in,ωout
) ∈ E

}
> 0,

and the absolute continuity is proven.
Therefore, P(D1(R,T ) ∩ D2(R,T )) > 0 will hold if

P′(D1(R,T ) ∩ D2(R,T )
)
> 0.(21)

So, it remains to finish the construction of the measure P′
in and ensure that (21)

holds along with P′
in � Pin.

We know that P(D1(R,T )) > 0, and therefore there are numbers l ∈ N and
�,M > 0 such that

P
(
D1(R,T , l,M,�)

)
> 0,(22)

where

D1(R,T , l,M,�) = D1(R,T ) ∩ {
N

([0, T ] × R
) = N

([�,T − �] × BM

) = l
}
.

We let n ∈ N be a large number and δ ∈ (0,1/2) a small number to be cho-
sen later and define Lk = Jk × Bδ , k = 1, . . . , n, where Jk = [(2k − 1)T /(2n +
1),2kT /(2n + 1)]. The measure P′

in on configurations in [0, T ] × R is defined
as follows: all configurations consist of exactly n independent points, kth point
distributed independently in Lk according to (2n+1)/(m(Bδ)T )m(dx)dt . Equiv-
alently, we can say that P′

in is the distribution of the original Poissonian point field
conditined on having exactly one point in each Lk . Thus, the absolute continuity
property P′

in � Pin holds and it remains to prove (21). Taking into account (22), it
is sufficient to show that for any ω ∈ D1(R,T , l,M,�),

P′
in

{
ω′

in :
(
ω′

in,ωout
) ∈ D1(R,T ) ∩ D2(R,T )

} = 1.(23)

First, let us prove that resampled point configurations belong to D1(R,T ). Since
resampling happens only inside [0, T ] × R, the time τ−

R (depending only on the
realization in (−∞,0]×R) does not change. Therefore r−(ω′) < R and τ−

R (ω′) <

T , where ω′ = (ω′
in,ωout).

Let us prove that r+(ω′) < R and τ+
R (ω′) < T . We need to show that for any y ∈

BR and any t > T , any γ ′ ∈ M
t,y
0,R(ω′) satisfies γ ′(0) ∈ BR . This is certainly true

if γ ′ passes through a point of ω′
in. So, let us assume that it does not pass through

any points of ω′
in. Therefore, between 0 and T it is a straight line. Consider now a



BURGERS EQUATION WITH POISSON RANDOM FORCING 2975

path γ ∈ M
t,y
0,R(ω). We know that γ (0) ∈ BR . Let t0 = sup{t ∈ [0, T ] :γ (t) ∈ BR}.

Due to the definition of D1(R,T , l,M,�), t0 > �.
Let the path γ̄ visit all available points in ω′

in between 0 and t0/2, then move
straight to (t0, γ

′(t0)) and coincide with γ after t0. We are going to show that
A0,t

ω′ (γ̄ ) < A0,t
ω′ (γ ′) so that γ ′ cannot be a minimizer. Since γ ′ does not pass

through any points of ω′
in,

A0,t
ω′

(
γ ′) ≥ A0,t

ω

(
γ ′) ≥ A0,t

ω (γ ) ≥ A0,t
ω′ (γ̄ ) + (

A0,t
ω (γ ) − A0,t

ω′ (γ̄ )
)
.(24)

Let us estimate the difference in the right-hand side. Switching from γ to γ̄ ,
we lose at most l Poissonian points, but what do we gain? The action of a path
visiting r points from ω′

in in a row does not exceed

A(r) = r
(2δ)2

2T/(2n + 1)
− r,

and, since there are at least nt0/(3T ) points visited by γ̄ in ω′
in between 0 and t0,

A0,t0
ω′ (γ̄ ) <

nt0

3T

(
(2δ)2

2T/(2n + 1)
− 1

)
+ R2

2(t0/2)
.

Therefore,

A0,t
ω (γ ) − A0,t

ω′ (γ̄ ) ≥ −l + nt0

3T

(
1 − (2δ)2

2T/(2n + 1)

)
− R2

2(t0/2)
.

Choosing n to be large and δ small, we see that the right-hand side is positive,
which in conjunction with (24), gives the desired inequality A0,t

ω′ (γ̄ ) < A0,t
ω′ (γ ′).

This finishes the proof of r+(ω′) < R and τ+
R (ω′) < T . It is also easy to adjust

the above argument to show that r(ω′) < R and τR(ω′) < T , and in the same way
one can prove that r(θT ω′) < R and τR(θT ω′) < T . Thus, ω′ ∈ D1(R,T ), and it
remains to prove that ω′ ∈ D2(R,T ) a.s.

Let us prove the following claim: for any points x, y ∈ BR , an optimal path
γ ∈ M

y,T
x,0 (ω′) cannot avoid all points of ω′ between 0 and T/3. In fact, if it does

avoid these points, then

A0,T
ω′ (γ ) ≥ −2

3n − 1.(25)

On the other hand, consider the path γ̄ ∈ �
T,y
0,x that visits all points of ω′ between

T/8 and 7T/8,

A0,T
ω′ (γ̄ ) ≤ 2

(2R)2

2T/8
−

(
n

(
7T

8
− T

8

)
− 2

)(
1 − (2δ)2

2T/(2n + 1)

)
,(26)

and, for sufficiently small δ and large n, A0,T
ω′ (γ̄ ) < A0,T

ω′ (γ ), which contradicts

our assumption γ ∈ M
y,T
x,0 (ω′). Our claim is proven, and in the same way one can
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prove that an optimal path γ ∈ M
y,T
x,0 (ω′) must pass through one of the points of

ω′ between 2T/3 and T . Clearly, for sufficiently small δ > 0 any optimal path
passing through a point in ω′ between 0 and T/3 and a point in ω′ between 2T/3
and T also passes through all points in ω′ in between. Therefore, ω′ ∈ D2(R,T ),
and the proof of Lemma 5.6 is complete. �

We can now construct a global solution. For a set A of paths and a time interval
[s, t], we denote by A|[s,t] the set of restrictions of all trajectories from A to [s, t].

LEMMA 5.7. Let R > 0. There are two random times σ0, σ1 > 0 such that for
all x ∈ BR and any two times t1, t2 > σ1,

M
0,x
−t1,R

(ω)|[−σ0,0] = M
0,x
−t2,R

(ω)|[−σ0,0].

PROOF. The ergodicity of θ1, Lemma 5.6 and Poincaré’s Recurrence theorem
imply that with probability 1, there is an integer time n > T such that θ−nω ∈
D1(R,T ) ∩ D2(R,T ). Without loss of generality we can assume that R > R′,
where R′ is defined in Lemma 5.3. The last part of that lemma implies that if we
define

σ1(ω) = n + τ̄R

(
θ−nω

) + τ̄R

(
θ−n+T ω

)
,(27)

then for any t > σ1 and any x ∈ BR , any path γ ∈ M
0,x
−t,R(ω) satisfies γ (−n) ∈

Br±(θ−nω) ⊂ BR and γ (−n + T ) ∈ Br±(θ−n+T ω) ⊂ BR . Here we used the fact that
θ−nω ∈ D1(R,T ).

Since θ−nω ∈ D2(R,T ), for any t1 and t2 satisfying (27) and any x ∈ BR , any
paths γ1 ∈ M

0,x
−t1,R

(ω) and γ2 ∈ M
0,x
−t2,R

(ω) pass through a common point at some
time σ0 ∈ [−n,−n + T ]. Therefore, the restrictions of the sets of minimizers on
[−σ0,0] coincide, and the proof is complete. �

REMARK 5.2. In fact, there is an infinite, strictly increasing sequence (nk)k∈N

such that θ−nkω ∈ D1(R,T ) ∩ D2(R,T ) for all k. Therefore, the theorem can
be strengthened. Its conclusion holds for any (random or deterministic) σ0 > 0.
In particular, the finite time minimizers stabilize to a limiting infinite one-sided
minimizer.

We can now finish our construction of the global solution u. For any r ∈ R and
R > 0, the restriction of �−s,t0 on BR stabilizes for large values of s, and

uω(t) = (U, d) lim
s→∞�−s,t0

is well defined. Clearly, the construction of uω(t) depends only on the restriction
of ω on (−∞, t] × R.
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Since restrictions of minimizers are also minimizers, we can deduce that for
any time interval [t0, t1], uω(t1) is the solution of the Cauchy problem with initial
value uω(t0). Therefore, thus constructed function uω is a global solution of the
Burgers equation corresponding to the realization of the random forcing ω. This
proves parts (1) and (2) of the main theorem.

Let us prove part (3) of the main theorem. For each point x of continuity
of uω, we denote πω(x) the Poissonian point that is visited last by the mini-
mizer γ ∈ M

0,x
−t,R for sufficiently large t . The map πω is piecewise constant. If

πω(x) = (si, xi) for all x in an interval J , then

uω(x) = x − xi

|si | , x ∈ J,

and part (3) follows.

6. The behavior of global solution u(t,x) as x → ∞. In this section we
prove part (4) of the main theorem. We will concentrate on proving the limit be-
havior as x → +∞ since the limit x → −∞ can be studied in exactly the same
way.

The idea is that if we want to consider, say, a path in M
T,x
0,R for large values

of x and T , then the path naturally decomposes into two parts. Most Poissonian
points are scattered over a compact domain, so in a certain time interval [0, t]
the path mostly stays in a compact domain around the origin collecting action at
approximately linear rate S < 0, and then it leaps from the compact domain straight
to x roughly with constant speed between t and T , hardly meeting any Poissonian
points in this regime and collecting approximately x2/(2(T − t)) action. Finding
the minimum of

St + x2

2(T − t)
, t ∈ [0, T ],

we obtain that the optimal t satisfies
x

t
= √−2S.

This nonrigorous argument shows that we can hope that part (4) of the main
theorem holds with q = √−2S.

To make this argument precise, we need to control the deviations of the action
on [0, t] from St and to control the behavior of minimizers very far from the origin
where Poissonian points are sparse.

For any connected set I ⊂ R and any time interval [t0, t1], we can define

S
t0,t1
I = S

t0,t1
I (ω) = inf

{
At0,t1

ω (γ ) :γ (s) ∈ I for all s ∈ [t0, t1]}.
Clearly, this function is superadditive:

S
t0,t2
I ≥ S

t0,t1
I + S

t1,t2
I , t0 ≤ t1 ≤ t2.
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The ergodicity of the flow (θ t )t∈R and Kingman’s subbaditive ergodic theorem
imply that the following random variable is well defined and a.s.-constant:

SI = lim
t1→∞

1

t1 − t0
S

t0,t1
I = lim

t0→−∞
1

t1 − t0
S

t0,t1
I = lim

t0→−∞
t1→∞

1

t1 − t0
S

t0,t1
I .

Clearly, SBR
is a nonincreasing negative function of R > 0, and we define S =

limR→∞ SBR
< 0.

LEMMA 6.1. Thus defined constant S satisfies S = SR.

PROOF. Obviously, SR ≤ SBR
for any R. Therefore, we only have to prove

that SR ≥ S. Let us take any t > 0 and any path γ realizing S
0,t
R

. Taking any R > 0
and decomposing γ into parts that stay inside BR and outside BR , we see that

S
0,t
R

= A0,t
ω (γ ) ≥ S

0,t
BR

− N
([0, t] × Bc

R

)
.

Dividing by t and taking t → ∞, we obtain

SR ≥ SBR
− m

(
Bc

R

)
.

Taking R → ∞ finishes the proof of the lemma. �

LEMMA 6.2.

lim
t→∞

ES
0,t
BR

t
= SBR

.

PROOF. Since

0 ≥ S
0,t
BR

t
≥ −N([0, t] × R)

t
,

the lemma follows by dominated convergence. �

LEMMA 6.3.

(1) Let R ∈ (0,∞]. If S′ < S, then there are constants c = c(S′) > 0 and T0 =
T0(S

′) > 0 such that for T > T0,

P
{

inf
t≥T

S
0,t
BR

t
< S′

}
< e−cT .

(2) If S′ > S, then there is a constant R0 = R0(S
′) with the following property:

for every R ∈ [R0,∞], there are c = c(S′,R) > 0 and T0 = T0(S
′,R) > 0 such

that for T > T0,

P
{

sup
t≥T

S
0,t
BR

t
> S′

}
< e−cT .
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PROOF. Recall that SBR
↓ S < 0. Since S′ < S < SBR

, Lemma 6.2 allows us
to choose s such that

ES
0,s
BR

> s
SBR

+ S′

2
.(28)

Then we notice that

S
0,t
BR

≥ S
0,s
BR

(ω) + S
s,2s
BR

(ω) + · · · + S
[t/s]s,([t/s]+1)s
BR

(ω)

≥ S
0,s
BR

(ω) + S
0,s
BR

(
θsω

) + · · · + S
0,s
BR

(
θ [t/s]sω

)
.

Let us denote the right-hand side by �[t/s]+1. It is the sum of [t/s] + 1 i.i.d. non-
positive random variables with finite exponential moments, and with expectations
estimated by (28).

Since S′t
[t/s]+1 → S′s as t → ∞, and S′ < (SBR

+ S′)/2, the estimate

P
{
S

0,t
BR

< S′t
} ≤ K1e

−c1t

for all S′ < S, some K1 = K1(S
′), c1 = c1(S

′) > 0 and all t > 0, is a consequence
of the classical Cramér large deviation estimate. Since S

0,t
BR

is nonincreasing in t ,
and

inf
s∈[t,t+1]

(
S

0,s
BR

− S
0,t
BR

) ≥ −N
([t, t + 1] × R

)
,

we can use this maximal inequality in a standard way to interpolate between t and
t + 1 and obtain

P
{

inf
s∈[t,t+1]

S
0,s
BR

s
< S′

}
≤ K2e

−c2t

for all S′ < S, some K2 = K2(S
′), c2 = c2(S

′) > 0 and all t > 0. Now the first part
of the lemma follows. The proof of the second part of the lemma is essentially the
same. �

Now we turn to ruling out paths ending at a large x and having slopes deviating
significantly from q . For any x > 0, ε ∈ (0, q), and R ∈ (0, x) let us denote

Q+(x, ε,R) = {
(t, y) :y ∈ (R, x), t < 0, y < x + t (q + ε)

}
,

Q−(x, ε,R) = {
(t, y) :y ∈ (R, x), t < 0, y > x + t (q − ε)

}
.

LEMMA 6.4. For each ε > 0, there is random variable R such that:

(1) For any x > 2R, a path γ inside Q+ connecting a point (t, y) ∈ ∂Q+(x, ε,

R) with y > R to (0, x) and γ̇ (0) > q + 2ε cannot be a minimizer.
(2) For any x > 2R, a path γ inside Q− connecting a point (t, y) ∈ ∂Q−(x, ε,

R) with y > R to (0, x) and γ̇ (0) < q − 2ε cannot be a minimizer.
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PROOF. First, we notice that condition (8) implies that the set {(t, x) :−x <

t < 0} contains finitely many Poissonian points with probability 1. Therefore, we
can define a random variable r0 such that with probability 1, there are no Poisso-
nian points in the set

A = {
(t, x) :x > r0,−x < t < 0

}
.

Let us now define ρ = q/(2 + q) and, for any x,

Ax = [−ρx/q,0] × [x − ρx, x].
It is easy to check that (−ρx/q, x − ρx) ∈ A for sufficiently large values of x.
Therefore, for these values of x, Ax ⊂ A. We conclude that there is a random
number r1 such that for x > r1, there are no Poissonian points in Ax .

Let us now take a path γ satisfying the conditions of part 6.4 of the lemma. We
would like to compare this path to the straight line segment connecting (t, y) and
(0, x).

LEMMA 6.5. Consider points (t0, x0), (t1, x1), (t2, x2) satisfying t0 < t1 < t2.
The free action (i.e., the action without taking account the contribution from the
Poissonian points) of the path connecting these points is bounded below by

(x2 − x0)
2

2(t2 − t0)
+ 2

t2 − t0
(x1 − x̄)2,

where

x̄ = x2(t1 − t0) + x0(t2 − t1)

t2 − t0
,

so that |x1 − x̄| is the distance from (t1, x1) to the straight line connecting (t0, x0)

and (t2, x2), measured along the x-axis.

PROOF. The free action minimizing path consists of two straight line seg-
ments connecting (t0, x0) to (t1, x1) and (t1, x1) to (t2, x2). The resulting action is
a quadratic polynomial in x1,

f (x1) = (x1 − x0)
2

2(t1 − t0)
+ (x2 − x1)

2

2(t2 − t1)

= t2 − t0

2(t2 − t1)(t1 − t0)
(x1 − x̄)2 + (x2 − x0)

2

2(t2 − t0)
,

and the estimate

t2 − t0

2(t2 − t1)(t1 − t0)
= (t2 − t1) + (t1 − t0)

2(t2 − t1)(t1 − t0)
≥ 2

(t2 − t1) + (t1 − t0)
= 2

t2 − t0

completes the proof. �
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Let us denote by (s, z) the Poissonian point that is connected by the last segment
of path γ to (0, x). To apply Lemma 6.5, we must estimate the distance from
(s, z) to the straignt line connecting (t, y) and (0, x) measured along the x-axis,
that is, x − z + s(q + ε). Since there are no Poissonian points in Ax , we have
(s, z) ∈ Q+ \ Ax and, consequently, z ≤ x − ρx. Since γ̇ (0) > q + 2ε, we have
(x − z)/(−s) > q + 2ε. The minimum of x − z + s(q + ε) under these restrictions
is attained at (−ρx/(q + 2ε), x − ρx) and equals ερx/(q + 2ε). We also have
|t | < (x − R)/(q + ε). Therefore, Lemma 6.5 implies that the action gain of γ

compared to the straight line motion between t , and 0 is at least

2(q + ε)

x − R

ε2ρ2x2

(q + 2ε)2 ≥ K(ε)x, x > (2R) ∨ r1(ω)(29)

for some K(ε).
Now we must estimate the effect of Poissonian points. We use Lemma 5.4 to

find R0 = R0(ω) such that N([−t,0] × Bc
R0

) < tK(ε)q/2 for all t > 0. Since the
time component of any point in Q+ is bounded by x/q in absolute value, we
see that if R > R0, then there are at most (x/q)K(ε)q/2 < K(ε)x/2 Poissonian
points in Q+. Therefore, the reduction of action due to visits to Poissonian points
does not exceed K(ε)x/2, and cannot compensate for the action gain computed
in (29). Therefore, if we choose R > R0 ∨ r1, then for any x > 2R the straight
line segment from (t, y) to (0, x) is more efficient than any path γ satisfying the
imposed requirements, so γ cannot be a minimizer. The proof of the first part of
the lemma is complete. The proof of the second part is similar, and we omit it. �

LEMMA 6.6. For any ε > 0 there are random variables R > 0 and X > 0
such that if x > X and τ > (x − R)/(q − ε), then no path γ ∈ M

0,x
−τ,R can satisfy

γ (s) >
(
x + (q − ε)s

) ∨ R, s ∈ (−τ,0].(30)

PROOF. We begin with taking δ > 0 (to be chosen later) and using Lemma 5.4
to find R0 such that for all τ > (x − R)/(q − ε) and all R > R0, the action of any
path γ satisfying (30), connecting (−τ,R) to (0, x) and staying outside of BR for
all times in (−τ,0], is at least

(x − R)2

2τ
− δτ.

To prove that γ /∈ M
0,x
−τ,R , let us find a better path γ̃ in �

0,x
−τ,R . First, we will

choose γ̃ so that γ̃ |[−τ+1,−[(x−R)/q]−2 ∈ M
−[(x−R)/q]−2,BR

−τ+1,BR
. Then we denote x1 =

γ̃ (−[(x − R)/q] − 2) and x2 = γ̃ (−τ + 1). The remaining parts of γ̃ are straight
line segments connecting (−τ,R) to (−τ + 1, x2), (−[(x − R)/q] − 2, x1) to
(−[(x − R)/q] − 1,R), and (−[(x − R)/q] − 1,R) to (0, x).
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The action of this path is at most

(x − R)2

2([(x − R)/q] + 1)
+ (2R)2

2
+ S

0,τ−1−([(x−R)/q]+2)
BR

(
θ−[(x−R)/q]−2ω

) + (2R)2

2
.

We want to exclude the situation where

A−τ,0(γ̃ ) ≥ A−τ,0(γ ).(31)

Suppose (31) holds. Then

(x − R)2

2([(x − R)/q] + 1)
+ (2R)2 + Sτ ≥ (x − R)2

2τ
− δτ,

where we denoted Sτ = S
0,τ−3−[(x−R)/q]
BR

(θ−[(x−R)/q]−2ω) for brevity. This can be
rewritten as

Sτ

τ − 3 − [(x − R)/q] ≥ U,(32)

where

U = ((x − R)2/2)(1/τ − 1/([(x − R)/q] + 1)) − δτ − (2R)2

τ − 3 − [(x − R)/q] .

To apply large deviation estimates from Lemma 6.3, we need to estimate U and the
length of time interval in the definition of Sτ . Since γ satisfies (30) for s ∈ [−τ,0],
we have τ > (x − R)/(q − ε). For sufficiently small ε,

τ − 3 − [
(x − R)/q

] ≥ x − R

q − ε
− x − R

q
− 4 ≥ (x − R)ε

q(q − ε)
− 4

(33)

≥ (x − R)ε

2q2 .

To estimate U , we first notice that, due to (33), there is a random variable
X1(R, ε, δ) such that x > X1 implies

δτ + (2R)2

τ − 3 − [(x − R)/q] < 2δ.(34)

For the same reason, there is a random variable X2(R, ε, δ) such that x > X2 im-
plies

((x − R)2/2)(1/τ − 1/([(x − R)/q] + 1))

τ − 3 − [(x − R)/q]

= (x − R)2

2τ([(x − R)/q] + 1)
·
(
−τ − 1 − [(x − R)/q]

τ − 3 − [(x − R)/q]
)

(35)

≥ −(x − R)q

2τ
(1 + δ)

≥ −q(q − ε)

2
(1 + δ),
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where the last inequality follows from τ > (x − R)/(q − ε).
Combining (34) and (35) and choosing δ sufficiently small we see that (with the

choices of R and x described above)

U > −q(q − ε/2)

2
.(36)

Notice that if k is sufficiently large, all the above estimates apply uniformly for
all x ∈ [R + kq,R + (k + 1)q] and all τ ≥ (x − R)/(q − ε).

Let us denote by Bk the event that for some x ∈ [R+kq,R+(k+1)q] and some
τ ≥ (x −R)/(q − ε) there is a path γ ∈ M

0,x
−τ,R satisfying (30) for s ∈ [−τ,0]. The

definition of q , inequality (36), and Lemma 6.3 imply that for some c > 0 and all
sufficiently large k,

P(Bk) < e−ck.

Now the Borel–Cantelli lemma implies that with probability, 1 only finitely many
events Bk happen, and the proof is complete. �

LEMMA 6.7. There are positive random variables R,X and (Tx)x>0 such that
if x > X and τ > Tx , then for any y ∈ R, no path γ ∈ M

0,x
−τ,y can satisfy (30).

PROOF. If for some y a path γ ∈ �
0,x
−τ,y satisfies (30) and the time τ ′ =

sup{s :γ (s) ≤ R} is well defined, then we can apply Lemma 6.6 with τ replaced
by τ ′ to see that γ cannot be a minimizer for appropriately chosen R and X.

Let us fix δ ∈ (0,−S). Due to Lemma 5.4, we can choose R large enough to
ensure that A−τ,0 > −δτ for any γ satisfying γ (s) > R for all s ∈ [−τ,0]. On the
other hand, the optimal action is asymptotic to Sτ as τ → ∞, so γ cannot be a
minimizer for large values of τ . �

LEMMA 6.8. There are positive random variables R,X and (Tx)x>0 such that
for x > X and T > Tx , and any y ∈ R no γ ∈ M

0,x
−T ,y can satisfy

γ (s) < x + s(q + ε), s ∈ [−(x − R)/(q + ε),0
]
.(37)

PROOF. We need an auxiliary path γ̄ ∈ �
0,x
−(1+ε)[(x−R)/q],−R . This special path

consists of three straight line segments connecting consecutively (−(1 + ε)[(x −
R)/q],−R) to (−[(x − R)/q],−R) to (−[(x − R)/q] + 1,R) to (0, x). �

LEMMA 6.9. There are positive random variables R and X such that for any
x > X, any T > −(1 + ε)[(x − R)/q] and any y ∈ R, any γ ∈ M

0,x
−T ,y satisfy-

ing (37) intersects γ̄ .
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PROOF. Denote by Bk the event that there are y ∈ R and γ ∈ M
−t,−R
−T ,y for

some t < k and T > (1 + ε)k such that γ (s) < −R for all s ∈ [−T ,−t].
Lemmas 5.4 and 6.3 imply that for sufficiently large R, for some constants

c1, c2 > 0 and all k, P(Bk) ≤ c1e
−c2εk . The Borel–Cantelli lemma implies that

with probability 1, only finitely many events Bk happen.
Clearly, if there is a path γ satisfying the conditions of the lemma and not in-

tersecting γ̄ , then Bk holds for k = [(x − R)/q]. Since only finitely many Bk can
hold, a path with these properties is impossible for sufficiently large x. �

LEMMA 6.10. There are random variables R and X such that for x > X and
any path γ satisfying (37) and intersecting γ̄ at some time −τ ,

A−τ,0(γ ) > A−τ,0(γ̄ ).(38)

PROOF. First let us consider the possibility that τ < [(x − R)/q]. We denote
ν = inf{s :γ (−s) = R}. For any δ > 0, there is R such that for x > R,

A−τ,0(γ ) ≥ (x − R)2

2ν
+ S

−[(x−R)/q]+1,−ν
R

− δν.(39)

On the other hand,

A−τ,0(γ̄ ) ≤ (x − R)2

2([(x − R)/q] − 1)
+ (2R)2

2
.

If (38) is violated, the last two inequalities imply

S
−[(x−R)/q]+1,−ν
R

[(x − R)/q] − 1 − ν
< − (x − R)2

2ν([(x − R)/q] − 1)
+ δν

[(x − R)/q] − 1 − ν
(40)

+ 2R2

[(x − R)/q] − 1 − ν
.

From (37) we know that ν < (x − R)/(q + ε). We can use this to derive that
the second term in the right-hand side is bounded by Kδ/ε for a constant K > 0
and the third term converges to 0 as x → ∞. Choosing δ sufficiently small, then
choosing R so that (39) holds, we conclude that for sufficiently large x, the right-
hand side does not exceed −q(q + ε/2)/2. Now the large deviation estimate of
Lemma 6.3 and the Borel–Cantelli lemma imply that (40) can hold true only for a
bounded set of x.

Now we have to exclude the paths γ that cross γ̄ for the first time at −R. By
considering a smaller value of δ in the above reasoning, it is easy to strengthen it
and conclude that that there is � > 0 such that for sufficiently large x, all paths γ

satisfying this restriction satisfy also

A−[(x−R)/q],0(γ ) > A−[(x−R)/q],0(γ̄ ) + �(x − R).(41)
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On the other hand, denoting Iε,R,x = [−(1 + ε)[x−R
q

],−[x−R
q

]],
inf

t∈Iε,R,x

At,[(x−R)/q](γ ) ≥ −N
(
Iε,R,x × (−∞,−R]).

Suppose R is chosen so that EN(Iε,R,x × (−∞,−R]) < �(x − R)/2. Then prob-
ability that for some x ∈ [k, k +1], there is a path γ , with γ (0) = x, satisfying (41)
and violating (38), decays exponentially in k. An application of the Borel–Cantelli
finishes the proof. �

Part (4) of the main theorem follows now from Lemmas 6.4, 6.6, 6.7 and 6.8.

7. The global solution as a one-pont attractor. In this section we prove
part (5) of the main theorem.

Let us denote by M
t1,x
t0,R,V the set of minimizers of (5).

LEMMA 7.1. Suppose V satisfies (9). Then for any L > 0, there is a random
variable R0 > 0 such that for all t > 0 and all x ∈ BL, any γ ∈ M

t,x
0,R,V satisfies

γ (0) ∈ BR0 .

PROOF. Property (9) implies that there is α ∈ (0, q) such that

V (y) > −αy for sufficiently large y > 0.(42)

Let us take a small δ > 0 to be chosen precisely later and use Lemmas 6.1
and 5.4 to find h > L such that SBh

< S + δ and N(Bc
h × [0, s]) < δs for all s > 0.

Let us consider y ∈ [k, k + 1] for large values of k ∈ N and estimate the action of
a path γ ∈ �

t,x
0,y . Since x ∈ BL ⊂ Bh, we can define

τ = inf
{
s :γ (s) ∈ Bh

}
.

The complete action of this path on [0, τ ] satisfies

A0,τ
V (γ ) ≥ −α(k + 1) − δτ + (k − h)2

2τ
.

On the other hand, there is a number C(h) such that the optimal path γh ∈ M
τ,h
0,Bh

satisfies

A0,τ
V (γh) ≤ C(h) + S

0,τ−1
Bh

.

Therefore, if γ is optimal, then

−α(k + 1) − δτ + (k − h)2

2τ
≤ C(h) + S

0,τ−1
Bh

.

According to the definition of SBh
, there is τh,δ such that if τ > τh,δ , then S

0,τ−1
Bh

+
C(h) ≤ (SBh

+ δ)τ ≤ (S + 2δ)τ . Therefore, if for optimal γ , τ > τh,δ , then

(S + 3δ)τ − (k − h)2

2τ
≥ −α(k + 1).(43)
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Elementary calculus shows that the global maximum of the left-hand side in τ

is achieved at τ ∗ = (k −h)/
√

2(−S − 3δ) and equals −(k −h)
√−2S − 6δ. Since

α ∈ (0,
√−2S), inequality (43) will be violated for large values of k if we choose

sufficiently small δ.
We conclude that with this choice of δ and h, for sufficiently large y, no path

γ ∈ M
t,x
0,R,V with γ (0) = y can have τ > τh,δ . On the other hand, if τ ≤ τh,δ , then

A0,τ
V (γ ) ≥ (k − h)2

2τh,δ

− N
([0, τh,δ] × R

)
> V (h)

for sufficiently large k, and such a path cannot be a minimizer since V (h) is the
complete action on [0, τ ] for the trajectory staying at h.

The case of y ∈ [−k − 1,−k] is treated similarly. �

PROOF OF PART (5) OF THEOREM 4.1. Let us take any two initial conditions
v1 = V ′

1, v2 = V ′
2 such that V1 and V2 satisfy (9). Then there is α ∈ (0, q) such

that (42) holds for V = V1 and V = V2.
Let us take R > L given by Lemma 5.6 and R0 = R0(ω) given by Lemma 7.1.

Due to Lemma 5.6, P{r± < R} > 0, where r± was introduced in Lemma 5.3. That
lemma, along with the ergodicity of the flow (θ t ) and Poincaré Recurrence theo-
rem, allows us to find n > 0 such that r±(θ−nω) < R and τ± = τ±

R0
(θ−nω) < n.

If V = V1 or V = V2, then for any x ∈ BR0 and for sufficiently large t , any γ ∈
M

t,x
0,R,V must (by Lemma 7.1) belong to M

t,x
0,y for some y ∈ BR0 , and, consequently,

Lemma 5.3 implies γ (n) ∈ BR .
Lemma 5.6 and the Poincaré Recurrence theorem imply that there is n′ > n and

a point (t∗, x∗) such that for sufficiently large t and for all z, x ∈ BR , every γ ∈
Mt,x

n,z passes through (t∗, x∗). Therefore, for these values of t and any x ∈ BL ⊂
BR , any two minimizers γ1 ∈ M

t,x
0,R,V1

and γ2 ∈ M
t,x
0,R,V2

pass through (t∗, x∗).
Therefore

M
t,x
0,R,V1

|[t∗,t] = M
t,x
0,R,V2

|[t∗,t],
which implies

�0,t
ω v1|BL

= �0,t
ω v2|BL

,

and the forward attraction follows since one can take v2 = uω.
The proof of the backward attraction is similar, and we omit it.
The global solution uniqueness also follows automatically if (12) holds with

probability 1. If all we know is that (12) holds with positive probability, then we
can use its invariance under the dynamics and the ergodicity of (θ t ) to see that then
it holds with probability 1. �
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8. Global minimizers. A path γ : R → R is called a global minimizer if
γ |[t0,t1] ∈ M

t1,γ (t1)
t0,γ (t0)

for any t0, t1 satisfying t0 < t1. A global minimizer is called re-
current if there is R > 0 and a two-sided sequence (tk)k∈Z such that limk→±∞ tk =
±∞ and γ (tk) ∈ BR for all k.

THEOREM 8.1. With probability 1, there is a unique recurrent global mini-
mizer γ .

SKETCH OF PROOF. We can use Lemma 5.6 to derive sequentially that (i) for
any T1 > 0 and for sufficiently large values T2 the restrictions onto [−T1, T1] of
minimizers in M

T2,0−T2,0
can be bounded by the process of localization radii r±(θ tω),

t ∈ [−T1, T1] ; (ii) for any T1 > 0, and for sufficiently large values T2, these mini-
mizers pass through common points before −T1 and after T1, and, therefore, coin-
cide between these points. We conclude that as T2 → ∞ the minimizers stabilize
on any finite interval, and the restriction of the resulting limiting trajectory γ = γω

on any finite time interval is a minimizer. Moreover, |γω(t)| < r±(θ tω) and the
recurrence property of γω follows.

If γ̃ is another recurrent global minimizer, then again one can use Lemma 5.6 to
prove that there is a sequence of times (sk)k∈Z such that limk→±∞ sk = ±∞ and
γ̃ (sk) = γω(sk). Therefore, γ̃ has to coincide with γω. �

The following statement can be proven in a similar way:

THEOREM 8.2. If γ̃ is one of the one-sided infinite minimizers constructed
in Remark 5.2, then there is τ > 0 such that restrictions of γ and γ̃ on (−∞, τ ]
coincide.

This property shows that the global minimizer has superstrong attraction prop-
erty in the reverse time. In previously considered situations the exponential con-
vergence of one-sided minimizers in the reverse time was a manifestation of hy-
perbolicity of the global minimizer. In analogy with that case, it is natural to refer
to the property of finite-time supercontraction described in Theorem 8.2 as “hy-
perhyperbolicity.”

Global minimizers for the Burgers equation with spatially periodic forcing. Let
us now change the framework and switch to the Burgers equation with spatially
periodic random forcing. One of the questions that has not been answered for the
periodic Burgers equation is the fluctuations of the global minimizer. This question
was posed to the author by Yakov Sinai. The goal of this section is to prove that for
the Poissonian forcing on the circle S1, the unique global minimizer has diffusive
behavior.

Let us consider the Burgers dynamics on S
1 = R/Z under Poissonian forcing

with intensity measure given by dt ×m(dx) on the cylinder R×S
1 for some Borel
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measure m on S
1. If we restrict ourselves to the set U0 = {u :

∫
S1 u = 0}, then the

potential V of any v ∈ U0 is well-defined, and we can define the dynamics via (4),
(5) with the only correction that paths are in S

1.
The set U0 is invariant under this dynamics. In fact, between occurences of

Poissonian points, we are solving the usual unforced Burgers equation and the
mean velocity stays constant. On the other hand it is easy to see that the mean
velocity is continuous in time even at the time corresponding to the occurence
of a forcing point. A continuous piecewise constant function is constant, and our
invariance claim follows.

The theory that was developed above for the Poisson forcing on the line, applies
to this case as well, so one has a unique global attracting soliution. One also has
a unique global minimizer γω with asymptotic slope 0 corresponding to the mean
velocity 0. To formulate the main theorem we must unfold S

1 onto its universal
cover R and treat γω as a continuous path on R.

THEOREM 8.3. There is a nonrandom number D > 0 such that γω(t)/
√

D|t |
converges in distribution to the standard Gaussian random variable as t → ∞.

PROOF. The times between occurrences of Poisson points are exponentially
distributed. Therefore, the set of all Poisson points (tk(ω), xk(ω)) such that there
are no other Poisson points in [tk − 1, tk + 1]×S

1 is unbounded in both directions.
We agree that · · · < t−2 < t−1 < 0 < t0 < t1 < t2 < · · ·. It is easy to check that the
global minimizer γ passes through all these points on the cylinder (or their lifts on
the universal cover).

Let us denote �kt = tk − tk−1, �kx = xk − xk−1(mod 1) and �kγ = γ (tk) −
γ (tk−1). Notice that all random variables from sequences (xk)k∈Z, (�kt)k∈Z, and
realizations of Poissonian point field between tk−1 and tk are jointly independent.
They are also identically distributed within each sequence, the tails of �kt are
exponential and the distribution of xk is m(dx)/m(S1).

Since �kγ is a functional of �kt , �kx, and the realization of the Poissonian
field between tk−1 and tk , the sequence (�kγ )k∈Z of identically distributed random
variables is 1-dependent (the dependence comes only through xk occuring in both
�kx and �k+1x).

We know that there is no systematic drift, that is, (γ (tk) − γ (t0))/(tk − t0) → 0
as k → ∞. By the law of large numbers, (tk − t0)/k → h = E(t1 − t0), so (γ (tk)−
γ (t0))/k → 0, and E(γ (t1) − γ (t0)) = 0.

Therefore, by Bernstein’s CLT for m-dependent random variables, we conclude
that the distribution of (γ (tk) − γ (t0))/

√
σ 2k converges weakly to the standard

Gaussian one, where σ 2 = E(γ (t1) − γ (t0))
2. Applying the law of large numbers

once again, we conclude that

γ (t)√
σ 2t/h

d−→ N (0,1)
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as t → ∞ along the sequence (tk). To finish the proof, one has to extend this
convergence to all intermediate values of t , but this is not hard since the tails of
�kt are exponential. This completes the proof with D = σ 2/h. �

REMARK 8.1. It is also possible to prove a functional version of the above
CLT with two-sided Wiener measure in the role of the limiting distribution for
appropriately normalized global minimizer.
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