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Spatiotemporal simulation of minimum and maximum temperature is
a fundamental requirement for climate impact studies and hydrological or
agricultural models. Particularly over regions with variable orography, these
simulations are difficult to produce due to terrain driven nonstationarity. We
develop a bivariate stochastic model for the spatiotemporal field of mini-
mum and maximum temperature. The proposed framework splits the bivari-
ate field into two components of “local climate” and “weather.” The local
climate component is a linear model with spatially varying process coeffi-
cients capturing the annual cycle and yielding local climate estimates at all
locations, not only those within the observation network. The weather com-
ponent spatially correlates the bivariate simulations, whose matrix-valued co-
variance function we estimate using a nonparametric kernel smoother that
retains nonnegative definiteness and allows for substantial nonstationarity
across the simulation domain. The statistical model is augmented with a spa-
tially varying nugget effect to allow for locally varying small scale variabil-
ity. Our model is applied to a daily temperature data set covering the com-
plex terrain of Colorado, USA, and successfully accommodates substantial
temporally varying nonstationarity in both the direct-covariance and cross-
covariance functions.

1. Introduction. Stochastic simulation of physical variables such as mini-
mum or maximum temperature, precipitation amount and solar radiation are often
required as inputs to physical models over varying types of topography. Over plains
regions, agricultural and crop models require daily minimum and maximum tem-
perature simulations at locations that typically do not have direct observations. In
mountainous regions, hydrological models require stochastic weather realizations
for runoff, snowmelt and watershed modeling, as well as water resource planning
and climate impact assessment [Kustas, Rango and Uijlenhoet (1994), Semenov
and Barrow (1997)].

Stochastic weather generators (SWGs) are one approach to producing sim-
ulations of daily weather; they are simply probability models whose simula-
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tions are statistically similar to observations [Wilks and Wilby (1999)]. SWGs
can loosely be categorized into model-based [e.g., Racsko, Szeidl and Semenov
(1991), Richardson (1981)] and empirical approaches [e.g., Lall and Sharma
(1996), Rajagopalan and Lall (1999)]. Often these weather generators produce
simulations only at locations with observational data, but modern physical mod-
els require gridded daily weather. Hence, recent research has been directed toward
generating spatially consistent SWGs that are available at and between observation
locations [Wilks (1999), Kleiber, Katz and Rajagopalan (2012)]. Herein we focus
on a model-based approach to minimum and maximum temperature simulation
over a mix of complex terrain and relatively homogeneous terrain simultaneously.

Spatially consistent simulation over most agricultural regions can be accommo-
dated using isotropic or stationary models that are appropriate for regions with
relatively constant or slowly changing topography. Domains with highly variable
terrain, in particular, mountainous domains, are challenging for the majority of
univariate spatial models due to substantial nonstationarity of physical processes
in these areas. Weather over complex terrain is highly variable due to topography;
for example, at high elevations in the northern hemisphere, north facing slopes tend
to be cooler than lower elevations and south facing slopes and valleys can create
their own micro-climate relative to the surrounding high elevation. These conspire
to produce intricate spatial variability that is hard for models to capture. A typical
approach is to partition the space into homogeneous regions and model each region
separately. While a number of statistical nonstationary spatial models have been
proposed for univariate fields [Fuentes (2002), Haas (1990), Higdon (1998), Kim,
Mallick and Holmes (2005), Paciorek and Schervish (2006), Pintore and Holmes
(2006), Sampson and Guttorp (1992), Stroud, Müller and Sansó (2001)], fewer are
available for multivariate spatial simulation, which is of key concern for simulta-
neous minimum and maximum temperature simulation [Gelfand et al. (2004), Jun
(2011), Kleiber and Nychka (2012), Shaddick and Wakefield (2002)].

Some literature in geography and the atmospheric sciences is concerned with
deterministic interpolation of observed weather variables, often over domains
with complex terrain [Daly, Neilson and Phillips (1994), Hijmans et al. (2005),
Hutchinson (1995), Legates and Willmott (1990), Price et al. (2000), Running, Ne-
mani and Hungerford (1987), Thornton, Running and White (1997), Willmott and
Matsuura (1995)]. The common theme among these approaches is the inclusion of
high resolution digital elevation maps as well as other physical information such
as slope and aspect to deterministically interpolate meteorological variables. While
most of these models are sophisticated physical interpolation schemes, they [apart
from Thornton, Running and White (1997)] are chiefly concerned with monthly
or annual average quantities, and do not produce stochastic realizations of daily
weather, which is our primary interest. These schemes are also typically ad hoc,
and are not based on a formal statistical model.

Stochastic interpolation and simulation of physical variables has persistent in-
terest in the statistics literature. Often, precipitation holds the primary interest,



590 W. KLEIBER, R. W. KATZ AND B. RAJAGOPALAN

FIG. 1. Map of elevations in Colorado (in meters) and the 145 locations used from the Global
Historical Climatology Network. Four locations we later use for cross-validation are denoted (a) Kit
Carson, (b) Estes Park, (c) Buena Vista and (d) Delta.

as its mixed discrete-continuous and skewed nature pose substantial challenges
[Ailliot, Thompson and Thomson (2009), Allcroft and Glasbey (2003), Brown
et al. (2001), Durban and Glasbey (2001), Hughes and Guttorp (1999), Sansó and
Guenni (2000)]. However, recent authors have acknowledged the difficulties of
temperature modeling in complex terrain [Paciorek and Schervish (2006)], and
Gelfand, Banerjee and Gamerman (2005) is one of few to simultaneously model
temperature and precipitation.

The study domain in this paper is the state of Colorado. Figure 1 illustrates the
challenging terrain of Colorado, with eastern plains dipping to a minimum eleva-
tion of approximately 1000 m and the Rocky Mountains of central Colorado peak-
ing out at above 4000 m. The front range, the ridge separating the Rocky Moun-
tains from the eastern plains (running north-south on approximately the −105◦
longitude line), is especially difficult to accommodate using the currently available
multivariate covariance models, most of which are isotropic models, and do not al-
low for sudden boundaries or even gradually evolving spatial structures across a
domain. The 145 locations shown in Figure 1 are a subset of stations from the
Global Historical Climatology Network Database [GHCND; Peterson and Vose
(1997)]. Daily observations of minimum and maximum temperatures are avail-
able between a time period of at most 1893 through 2011. Associated with each
observation is a quality flag provided by the GHCND; we removed all flagged
observations to avoid poor quality observations.

In this paper we propose a framework for bivariate stochastic temperature sim-
ulation that splits the model into two components. The first component represents
local climate, allowing the average behavior of minimum and maximum tempera-
ture to vary with location, which is of critical concern in regions such as Colorado
with the average behavior of temperature in the Rocky Mountains being vastly dif-
ferent than that over the eastern plains. The second component can be interpreted
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as daily weather, yielding local variability in space and time, and preserving the
spatial correlation between both processes.

2. Stochastic model. Consider the bivariate process of minimum tempera-
ture, ZN(s, t), and maximum temperature, ZX(s, t), at location s ∈ R

2 on day
t = 1, . . . , T . Our model for the bivariate process is

ZN(s, t) = βN(s)′XN(s, t) + WN(s, t),(1)

ZX(s, t) = βX(s)′XX(s, t) + WX(s, t).(2)

The vector of coefficients βi (s) = (β0i (s), β1i (s), . . . , βpi(s))′, for i = N,X, may
be of different length for minimum and maximum temperatures, allowing for dis-
tinct sets of covariates, although for notational simplicity we assume both pro-
cesses share the same number of covariates, p + 1. The covariates Xi (s, t) =
(X0i (s, t), . . . ,Xpi(s, t))′ typically involve autoregressive and seasonality terms
and, if available, can contain additional information such as regional climate model
output. It is convenient to view the models of (1) and (2) as a sum of “local cli-
mate” plus “weather.” The local climate is dependent on spatially and temporally
varying covariates, and whose coefficients vary across the domain, allowing for
the relative influence of each covariate to depend on location. The weather terms,
WN(s, t) and WX(s, t), capture small scale variability and correlate the bivariate
temperature process across space.

2.1. Local climate component. The coefficients βki(s), for i = N,X and
k = 0, . . . , p, allow the average behavior of temperature to vary with location. This
is crucially important in areas of complex terrain or over large domains where
variable orography and general circulation patterns give rise to varying climate
[Chandler (2005), Johnson et al. (2000), Kleiber, Katz and Rajagopalan (2012)].
Pepin and Losleben (2002) point out that climate change trends in Colorado are
highly dependent on the terrain. Direct estimates of these coefficients are usually
only available at locations within the observation network, so we model the coeffi-
cients as spatial Gaussian processes. In particular, we suppose βki(s) has mean μki

and Matérn covariance augmented with a nugget effect, with variance parameter
σ 2

ki , range aki , smoothness νki and nugget effect τ 2
ki [Guttorp and Gneiting (2006)].

The goal of a spatial model for the coefficients βki(s) is for interpolation from the
observational network locations to a chosen grid. The Matérn is an isotropic co-
variance function that is especially useful for kriging [Stein (1999)]. One might
consider using a nonstationary function for the coefficient covariance model, but
in our experience (see the example section below), the simpler stationary model
works well for local climate interpolation.

For Colorado, we use the following covariates:

XN(s, t) =
(

1, cos
(

2πt

365

)
, sin

(
2πt

365

)
,ZX(s, t − 1),ZN(s, t − 1), rt

)′
,(3)
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with the corresponding case for XX(s, t) reversing indices N and X. The harmon-
ics allow for seasonality in minimum and maximum temperatures, and we include
bivariate autoregressive terms to account for temporal persistence of temperature.
The final covariate, rt , is a linear drift of length T between −1 and 1 (for numeri-
cal stability), which we include to control for temperature trends over the 119 year
period of our data set, noting that these trends do not necessarily reflect global
warming. These covariates were selected using a BIC criterion at all individual
stations; that is, fitting a model to each location independently, the model with
all of the above covariates had the smallest BIC value for all stations within the
GHCND in Colorado, as compared to any subset of the selected covariates. We
considered models with higher order harmonics and autoregressive lags, but the
results were nearly identical to those presented below, hence, we favor the simpler
set of covariates.

Suppose we observe the bivariate process (ZN(s, t),ZX(s, t))′ at locations
s = s1, . . . , sn and time points t = 1, . . . , T . At each location within the observa-
tion network, we estimate local parameters β̂ki(s) by ordinary least squares. These
estimates have low uncertainty; in the Colorado network, the location with the
sparsest observational record still has more than 10,000 available observations.
Conditional on the estimates β̂ki(s), we estimate the spatial Gaussian process pa-
rameters μki, σ

2
ki, aki, νki and τ 2

ki by maximum likelihood, exploiting the Gaussian
process assumption. These spatially varying coefficients models [Gelfand et al.
(2003)] have been used for probabilistic forecasting, with a similar two-step esti-
mation procedure [Kleiber et al. (2011), Kleiber, Raftery and Gneiting (2011)].

At an arbitrary location s0, not necessarily within the observation network,
we spatially interpolate the estimates β̂ki = (β̂ki(s1), . . . , β̂ki(sn))

′ via kriging
[Cressie (1993)]. In particular, the kriging estimator is

β̂ki(s0) = c′�−1(β̂ki − μki1) + μki

and the interpolation variance is

σ 2
ki + τ 2

ki − c′�−1c,

where 1 is a vector of 1s of length n, c′ = (Cov(βki(s0), βki(s1)), . . . ,

Cov(βki(s0), βki(sn))) and (�)j,� = Cov(βki(sj ), βki(s�)) for j, � = 1, . . . , n. As
kriging is an exact interpolator, when s0 = s� for any � = 1, . . . , n, the interpolator
returns the ordinary least squares estimate β̂ki(s�).

In the next section we exploit a nonparametric estimator of the covariance func-
tion for the bivariate weather process. Key to the nonparametric estimator being
consistent is a large number of realizations of the process [Kleiber and Nychka
(2012)] which we have available for the residual weather processes, whereas the
coefficient processes of the local climate component have only one realization.
Hence, we favor the parametric model with a two-step estimation procedure for
local climate.
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2.2. Weather component. To simulate spatially correlated fields of minimum
and maximum temperatures consistent with observed spatial patterns, we require
a bivariate spatial model for WN(s, t) and WX(s, t). In particular, we model these
weather processes as a zero-mean bivariate spatial Gaussian process indexed by
day of the year. For locations x,y, and arbitrary time point t , the bivariate covari-
ance model is

Cov
(
Wi(x, t),Wj (y, t + 1)

) = 0,(4)

Cov
(
Wi(x, t),Wi(y, t)

) = Cii

(
x,y, d(t)

) + τi(x,y)21[x=y],(5)

Cov
(
Wi(x, t),Wj (y, t)

) = Cij

(
x,y, d(t)

)
for i �= j(6)

for i, j = N,X, where d(t) ∈ {1, . . . ,365} is just the calendar day of the year on
which time point t falls.

The covariance model of (4), (5) and (6) implies some important assumptions.
First, we assume temporal dependence has been accounted for in the local mean
function (e.g., via autoregressive terms) so that the weather process is temporally
independent, hence (4). Indeed, exploratory plots such as autocorrelation functions
and empirical covariance functions indicate the bivariate autoregression of (3) is
sufficient to account for the temporal persistence of temperature in Colorado; see
the example section below. Second, the covariance and cross-covariance functions
Cii(x,y, d(t)) and Cij (x,y, d(t)) depend on the day of year, allowing the bivariate
process to have seasonally dependent second-order structure.

In (5), τi(x)2 = τi(x,x)2 is a local nugget effect, accounting for small scale vari-
ability as well as measurement error. In the geostatistical literature, Cii(x,x, d(t))

is often termed the marginal variance, while Cii(x,x, d(t)) + τi(x)2 is called the
sill, that is, the total variance at a given location [Cressie (1993)]. Unlike most
geostatistical models [Christensen (2011) being a notable departure], we allow the
nugget effect to vary with location, as we expect the small scale variability to be
highly dependent on orography.

At any fixed time point t [i.e., calendar day d(t)], we require the matrix-valued
covariance function

C
(
x,y, d(t)

) =
(

CNN

(
x,y, d(t)

)
CNX

(
x,y, d(t)

)
CXN

(
x,y, d(t)

)
CXX

(
x,y, d(t)

) )
(7)

to be a nonnegative definite matrix function. Specifically, at arbitrary locations
s1, . . . , sn, the covariance matrix of the random vector(

WN(s1, t),WX(s1, t),WN(s2, t),WX(s2, t), . . . ,WN(sn, t),WX(sn, t)
)′
,

which is made up of blocks C(sk, s�, d(t)), must be nonnegative definite.
Over regions with complex terrain, temperature observations can exhibit sub-

stantial nonstationarity [Paciorek and Schervish (2006)]. While some multivari-
ate spatial models that can account for nonstationarity are available [e.g., Gelfand
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et al. (2004), Kleiber and Nychka (2012)], these are parametric models with lo-
cally varying parameter functions that are difficult to estimate. We aim to ex-
ploit the large number of replications and reasonably well covered observation
network of the GHCND over Colorado, and propose a nonparametric estimator
of the matrix-valued covariance function that retains nonnegative definiteness. In
particular, suppose the bivariate process is observed at locations sk, k = 1, . . . , n,
and times t = 1, . . . , T . Then our nonparametric estimator of Cij (x,y, d(t0)) in (5)
and (6), at location pair (x,y) and time point t0 is

Ĉij

(
x,y, d(t0)

)

=
(

T∑
t=1

n∑
k=1

n∑
�=1

Kλt

(∥∥d(t0), d(t)
∥∥
d

)
Kλ

(‖x − sk‖)
Kλ

(‖y − s�‖)
(8)

× Wi(sk, t)Wj (s�, t)

)

/(
T∑

t=1

n∑
k=1

n∑
�=1

Kλt

(∥∥d(t0), d(t)
∥∥
d

)
Kλ

(‖x − sk‖)
Kλ

(‖y − s�‖))

for i, j = N,X. Here, Kλ is a kernel function with bandwidth λ, and we use
Kλ(‖h‖) = (1/λ) exp(−‖h‖/λ). We use the Euclidean norm ‖ · ‖, and the distance
function ‖·, ·‖d is the distance between days of the year so that ‖d1, d2‖d = |d1 −
d2| for |d1 −d2| ≤ 182 and ‖d1, d2‖d = |365−|d1 −d2|| for |d1 −d2| > 182, where
d1, d2 = 1, . . . ,365, for example, ‖1,365‖d = 1. Occasionally Zi(sk, t) [and sub-
sequently Wi(sk, t)] is not available in practice due to instrument failure or disrup-
tions in communications. The estimator we use operationally is a slightly modified
version of (8), where we make the convention Wi(s, t)1[Wi(s,t) is observed] = 0 when
Wi(s, t) is missing. It is convenient to define the single-time-point smoothed em-
pirical covariance function

R̂ij (x,y, t)

=
(

n∑
k=1

n∑
�=1

Kλ

(‖x − sk‖)
Kλ

(‖y − s�‖)
Wi(sk, t)Wj (s�, t)

× 1[Wi(sk,t) is observed]1[Wj (s�,t) is observed]
)

(9)

/(
n∑

k=1

n∑
�=1

Kλ

(‖x − sk‖)
Kλ

(‖y − s�‖)

× 1[Wi(sk,t) is observed]1[Wj (s�,t) is observed]
)
.
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Notice R̂ij (x,y, t) is just a (spatially) smoothed empirical covariance function over
the available observations on day t . R̂ij (x,y, t) is a nonnegative definite multivari-
ate covariance function, a property we show in the Appendix. Our adjusted version
of (8) that accounts for missing observations then is

Ĉij

(
x,y, d(t0)

) =
∑T

t=1 Kλt (‖d(t0), d(t)‖d)R̂ij (x,y, t)∑T
t=1 Kλt (‖d(t0), d(t)‖d)

.(10)

As Ĉij (x,y, d(t0)) is a positively weighted linear combination of multivariate co-
variance functions, it is again nonnegative definite. The estimator for missing ob-
servations (10) reduces to the original estimator (8) when no observations are miss-
ing and, hence, (8) is also nonnegative definite.

The estimator (8) is a smoothed version of daily empirical covariance matri-
ces. The first level of smoothing yields an estimate of spatial covariance at any
arbitrary location pairs in the domain. The temporal smoothing shares information
between adjacent time points, where we assume that spatial covariance on a given
day is similar to that in a short period leading up to that day, and in a short period
following that day. This estimator is a generalization of kernel smoothed empirical
covariance estimators considered by Oehlert (1993), Guillot, Senoussi and Mon-
estiez (2001) and Jun et al. (2011) to the multivariate process setting evolving
across time.

We estimate the time bandwidth λt by predictive leave-one-out cross-validation,
leaving out local empirical variance estimates. The estimated bandwidth for time
is λ̂t = 7.8 days. We use cross-validation for the temporal bandwidth, as we as-
sume the temporal evolution of spatial covariance is slowly evolving across time,
for example, we do not expect a sharp change in spatial covariance between June 1
and June 2. In our experience, using cross-validation for the spatial bandwidth pa-
rameter λ oversmooths the spatial covariance function. When kernel smoothing
a mean function, cross-validation is generally acknowledged to yield more vari-
ability than is expected for a smoothly varying mean function, and typically the
bandwidth must be inflated [Wand and Jones (1995)]. However, this experience is
under the assumption that the mean function is varying smoothly across the do-
main, and in regions of complex terrain we expect the opposite behavior, where
sharp boundaries of the covariance function may exist due to sudden changes in
elevation. For example, cross-validation implies the optimal spatial bandwidth is
75 km, which implies an effective range of the kernel function (i.e., up to 5%
weight) of approximately 225 km, greatly oversmoothing regions such as the San
Luis Valley in southern Colorado, at approximately 100 km across. Hence, we
choose a bandwidth such that the effective distance of the kernel function coincides
with the 5% quantile of all intersite distances (62 km); the heuristic argument is
that, for approximately evenly distributed observation locations, the covariance es-
timator at a given location uses the nearest 5% of available network locations and
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down-weights remote locations; this ad hoc criterion implies a spatial bandwidth
of λ̂ = 22 km.

The estimator (8) is asymptotically unbiased for Cij (x,y, d(t0)) when the
domain sample size increases and the bandwidth decreases to zero sufficiently
quickly. A short argument is given in the Appendix. In fact, it can be shown that
the estimator is consistent for Cij (x,y, d(t0)), using arguments similar to those of
Kleiber and Nychka (2012), but this is beyond the scope of the present paper.

All that remains to be estimated is the local nugget effect τi(s)2. At each obser-
vation location sk, k = 1, . . . , n, and time point t = 1, . . . , T , let Wi(sk, t) be the
estimated residual Zi(sk, t) − β̂i (sk)

′Xi (sk, t). Define the local empirical variance
on day d = 1, . . . ,365 as

σ̂i(sk, d)2 = 1

#{t |d(t) = d}
∑

{t |d(t)=d}
Wi(sk, t)

2,

where # denotes cardinality of the set, with the natural redefinition for missing
values of Wi(sk, t). Intuitively, a good estimator for τi(sk)

2 is

τ̂i(sk)
2 = 1

365

365∑
d=1

(
σ̂i(sk, d)2 − Ĉii(sk, sk, d)

)
,(11)

since, by the law of large numbers, σ̂i(sk, d)2 → Cii(sk, sk, d) + τi(sk)
2, where

the convergence is taken as T → ∞, and by the argument in the Appendix,
Ĉii(sk, sk, d) → Cii(sk, sk, d). While theoretically appealing, in practice, due to
the smoothing in Ĉii , at some locations the estimate τ̂i (sk) is negative. Hence, in
similar spirit we use (11), but set the invalid estimates to zero.

Estimates of τi(s)2 are gathered at arbitrary locations, that is, not necessarily
within the observation network, by imposing a probabilistic spatial structure on
τi(s). In particular, we model τi(s) as a Gaussian process with spatially constant
mean and Matérn covariance function, augmented with a nugget effect. Just as for
the spatial parameters of the βki(s), we estimate the spatial parameters of τi(s) by
maximum likelihood, conditional on the estimates {τ̂i (sk)}nk=1. While the estimates
τ̂i(sk) at observation locations are always valid, the kriging interpolator of τi(s)
may occasionally take on very small negative values; in our example below we did
not experience such an issue, but in other domains these degenerate estimates may
be artificially set to zero.

3. Minimum and maximum temperature in Colorado. We fit our model to
the data from the 145 GHCND locations shown in Figure 1. For simplicity, we
removed all leap days from the 119 years of available data, so that each year has
365 days. Using all available data, we fit local climate parameters by ordinary
least squares and estimate temporally varying multivariate spatial covariances us-
ing the nonparametric estimator (10) applied to the observed residuals. We then
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simulate the bivariate process for a 119 year trajectory to compare to the observed
bivariate series. The first day’s (January 1, 1893) simulation requires autoregres-
sive terms in (1) and (2); we initialize using the climatological domain average of
minimum and maximum temperatures on December 31. The resulting simulations
are masked to share the same missing value pattern as the observations.

Recall the assumption implied by equation (4), where we assume temporal
dependence has been accounted for in the local mean function via the bivariate
autoregression. Figure 2 contains empirical autocorrelation functions for the ob-
served residuals WN(s, t) and WX(s, t) at four network stations, shown in Figure 1.

FIG. 2. Empirical autocorrelation functions for minimum and maximum temperature residuals at
locations (a) Kit Carson, (b) Estes Park, (c) Buena Vista and (d) Delta.
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These locations we view as representative of four distinct regimes of Colorado:
eastern plains (a, Kit Carson), front range (b, Estes Park), Rocky Mountains (c,
Buena Vista) and the western slopes (d, Delta). It is evident that the bivariate au-
toregression accounts for the majority of temporal persistence in temperature; the
maximal lag-1 autocorrelation coefficient for the residual processes at these four
stations is 0.06 at Estes Park, whereas all other coefficients are less than or equal
to 0.03.

To motivate the flexibility of the nonparametric estimator (8), we compare it to
a state-of-the-art isotropic bivariate spatial model. In particular, we fit a bivariate
Matérn model [Gneiting, Kleiber and Schlather (2010), Apanasovich, Genton and
Sun (2012)] augmented with a nugget effect, where

Cii(x,y, t) = 1

2νi−1
(νi)

(
ai‖x − y‖)νi Kνi

(
ai‖x − y‖) + τ 2

i 1[x=y],(12)

CNX(x,y, t) = ρNX

1

2νNX−1
(νNX)

(
aNX‖x − y‖)νi KνNX

(
aNX‖x − y‖)

(13)

for i = N,X, where Kν is a modified Bessel function of the second kind of order ν,
and νNX = (νN + νX)/2 and aNX = min(aN, aX). We fit the parameters by max-
imum likelihood, viewing each bivariate estimated residual (WN(s, t),WX(s, t))
as independent across time. In the stochastic weather simulation literature, it is
customary to fit separate models for each season. While our nonparametric esti-
mator is available on any day, to facilitate comparisons to the bivariate Matérn,
we fit both models to only the summer months (JJA), and compare empirical to
simulated correlations and cross-correlations under both the isotropic and non-
parametric models; Figure 3 displays these results. The stationary model tends to
overestimate spatial correlation for both minimum and maximum temperatures,
whereas our nonstationary model adequately captures low and high correlations

FIG. 3. Scatterplots comparing empirical pairwise station correlation to simulated correlations
using a bivariate stationary model (grey dots) or the nonstationary nonparametric model (black
dots) over the summer months (JJA). The diagonal line indicates perfect agreement between model
and empirical correlations.
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FIG. 4. Plots of spatial correlation and cross-correlation functions, Cij (s0, ·, d(t)), on d(t) =
June 1 where s0 is a grid location in the eastern plains (top row) or a grid location in the Rocky
Mountains (bottom row), with grid locations indicated by black dots. Each pixel’s color indicates the
model estimated spatial correlation between the pixel location and the dot.

simultaneously. The third panel of Figure 3 shows empirical against simulated
cross-correlations. Substantial nonstationarity of cross-correlation across Colorado
is well modeled by our nonparametric approach, but the stationary model clearly
fails, putting most cross-correlations at around 0.10, whereas the empirical esti-
mates suggest the true cross-correlations should vary between −0.10 and 0.40.

Our nonparametric matrix covariance estimator (8) accommodates nonstation-
ary behavior of the multivariate process. Figure 4 shows two covariance functions
on June 1, one whose first argument is based at a grid location in the eastern plains
of Colorado, and the second covariance function whose first argument is based at
a grid location in the Rocky Mountains. The top row is the covariance function for
the plains-based grid location; particularly for maximum temperature, and lesser
so for minimum temperature, there is strong positive within variable correlation
throughout the plains region, suggesting that maximum temperatures are highly
correlated across the plains. At the front range boundary (approximately −105◦
longitude), there is a sharp drop off in spatial correlation from approximately 0.80
over the plains to 0.40 in the Rocky Mountains. This is due to the fact that tem-
perature is more highly correlated within the two main types of topography of
Colorado, either the plains or mountains, but not between the two types. Hence,
our estimator is able to capture the sharp boundary between the eastern plains and
Rocky Mountains for within variable spatial correlation. Our estimator also iden-
tifies the positive cross-correlation between minimum and maximum temperatures
in the plains, but allows the two processes to be effectively independent over the
Rocky Mountains. This nonstationarity of cross-correlation is very difficult to ac-
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FIG. 5. Same as Figure 4, except for d(t) = January 1 instead of June 1.

commodate using extant models, and has only been recently acknowledged in the
literature [Kleiber and Genton (2013)].

Not only does our estimator allow for substantial nonstationarity, the amount
and type of nonstationarity is allowed to vary across time. Figure 5 shows the
same plots of spatial direct and cross-correlation on January 1, during winter, as
opposed to the summer estimates of Figure 4. In terms of direct covariance, we see
the length scale of minimum temperature correlation drastically increase for both
the plains- and mountain-based grid locations. In the plains, the spatial correlation
structure of maximum temperature is similar during both the winter and summer;
on the other hand, this spatial correlation in the mountainous region over winter
has a substantially different pattern than over summer. The correlation structure
of the weather component for maximum temperature in the Rocky Mountains is
clearly nonstationary, implying lower correlation between the example grid point
and the southwestern slopes of the Rockies, but having higher correlation along
a northwest to southeast transect along the western slopes and through the Rocky
Mountains; this pattern makes sense climatologically, as the band of high correla-
tion connects the low lying western Grand Valley area through the lower mountains
north of the San Juan chain to the San Luis Valley in southern Colorado. A simi-
lar pattern is present for the cross-correlation function, which is distinct from the
summer behavior which indicated near-independence between minimum and max-
imum temperatures over the complex topography.

A notable departure of our model from typical geostatistical approaches is in
allowing the nugget effect to vary with location. Our motivation is that the small
scale spatial structure is expected to be dampened in the eastern plains with sta-
ble orography, but potentially inflated over the mountainous region of Colorado.
Figure 6 displays the local estimates τ̂i (s) for i = N,X at the locations within our
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FIG. 6. Estimated nuggets τ̂N (s) and τ̂X(s) at observation network locations, units are degrees
Celsius.

observation network. For both minimum and maximum temperatures, the nugget
effects tend to be less over the eastern plains, indicating less fine scale spatial
structure (although there is yet some evidence of small scale structure in the maxi-
mum temperature nuggets here). Over the Rocky Mountains, especially the north-
ern Rockies, minimum temperature exhibits inflated nugget effects, indicating fine
scale spatial processes in the complex terrain. Similarly, the finest scale spatial
structures indicated by these nugget effects for maximum temperature fall almost
directly along the front range, the longitude line of approximately −105◦, indicat-
ing highly variable maximum temperatures between the boundary of the plains and
sudden mountainous terrain. The inclusion of a spatially varying τi(s) allows the
statistical model to retain increased variability along the front range, for example,
while simultaneously generating tempered fields over the eastern plains and fields
of medium variability over the main Rockies and western slopes.

An increasingly important consideration in climate science is the effect of
climate change on extremes [Easterling et al. (2000)]. Our model is not ex-
plicitly designed to replicate extreme events, as we focus mainly on the first
and second order properties of minimum and maximum temperatures. Figure 7
shows Q–Q plots for daily domain-wide extrema. In particular, we find the
minimal and maximal domain-wide temperatures Zi,min(t) = mins{Zi(s, t)} and
Zi,max(t) = maxs{Zi(s, t)}, and compare simulated to observed daily statistics for
i = N,X. Our model replicates the statistical properties of ZN,min(t),ZX,min(t)

and ZN,max(t) very well, at even the most extreme tails of these domain ex-
trema. However, we simulate domain-wide maximal maximum temperatures that
are slightly too high, on average about 2◦C. Overall, even though our approach
does not explicitly model extreme temperatures, we are able to capture the spatial
extrema with reasonable accuracy.

While our model adequately replicates domain-wide extrema, the related quan-
tity of spatially consistent local extrema is critically important to replicate. In par-
ticular, for energy use forecasting and modeling, if a large number of locations
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FIG. 7. Q–Q plots for daily spatial extrema, comparing (a) domain minimum of minimum tempera-
ture, (b) domain maximum of maximum temperature, (c) domain maximum of minimum temperature
and (d) domain minimum of maximum temperature, units are degrees Celsius.

experience unusually low or high temperatures simultaneously, then the load on
the energy grid can be much greater than if the temperature anomaly were highly
localized. Figure 8 shows log frequencies (i.e., the log number of days) of the
number of stations whose local weather process Wi(s, t) either exceeded the local
90% quantile (i.e., the quantile using only data from location s) or fell below the
local 10% quantile, corresponding to local hot or cold events, respectively. Our
approach captures the spatial frequencies of unusual local cold temperatures ex-
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FIG. 8. Log frequency of observed and simulated local residual threshold exceedances. Each bar’s
height is the log freqeuency (i.e., log number of days) that an exact number of the observation network
stations had weather that exceeded the local 90% quantile for (a) maximum temperature, or whose
weather fell below the local 10% quantile for (b) minimum temperature.

tremely well, and tends to simulate local heat events over slightly inflated regions
when many stations experience hot events, although usually fewer than seven extra
days on average.

Our nonparametric weather component covariance estimator (8) is not opti-
mized for cross-validation. To assess the interpolative properties of our estimator,
we hold out data from the four network stations shown in Figure 1, represent-
ing four distinct regimes of Colorado. We predict the local standard deviations
Ĉii(s, s, d)1/2 for i = N,X and compare these to the locally estimated values of
Ĉii(s, s, d)1/2 when station data is retained. Figure 9 contains the local and pre-
dicted estimates for all days of the calendar year. Clearly the weather component
variability is highly dependent on season as well as location, particularly for max-
imum temperature there is substantially greater variability in the eastern plains
(3◦–5◦C) compared to the mountain regions (2◦–3.5◦C). Our predictive local stan-
dard deviations (dashed lines in Figure 9) generally agree closely with the local
estimates, although there is a slight tendency to under-predict local standard de-
viation at Kit Carson by 0.1◦–0.3◦C. Not only are the raw values well predicted,
but the climatological curvature is preserved as well; for example, we successfully
replicate the increased variability of maximum temperature over the western slopes
during springtime with relatively constant variability throughout the three remain-
ing seasons (panel d) while simultaneously producing significant seasonality over
the eastern plains, with low variability during summer and high variability during
winter (panel a).

Table 1 shows the interpolated coefficients with predictive standard deviation,
along with the locally estimated parameters β̂ki(s) for k = 0, . . . ,5 and i = N,X

for s being one of the four held out network stations. All locally estimated pa-
rameters are within the 95% predictive confidence interval, except for four cases
for maximum temperature. Our predictive intervals are calibrated; the coverage
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FIG. 9. Locally estimated standard deviations (Ĉii (s, s, d)1/2) for i = N,X on all days of the
calendar year d = 1, . . . ,365, and predicted standard deviations for the four hold out stations s =
(a) Kit Carson, (b) Estes Park, (c) Buena Vista and (d) Delta.

of the 95% interpolation intervals for leave-one-station-out cross-validation over
all locations was, at worst, 92.4% for β2X(s). Notice that the local estimates vary
substantially between locations, indicating that indeed the local climate varies over
the domain. Hence, we are able to successfully predict the local weather compo-
nent parameters and local climate component parameters at these four hold out
locations which are representative of four regimes in Colorado.

Finally, we illustrate the final product of our approach in Figure 10 which dis-
plays four days of gridded simulations of minimum and maximum temperatures
over Colorado. Marginally, we visually see the temporal persistence of temperature
over a period of days, as both minimum and maximum temperatures experience a
period of cooling over June 1–4. Notice the effect of local climate is to keep the
Rocky Mountain region cooler for both variables, allowing higher minimum and
maximum temperatures to fall over the eastern plains of Colorado. We also see
slightly warmer temperatures on the western slopes, as the Rocky Mountains de-
cay in elevation to the western border of Colorado. The cross-correlation between
the two variables is also present, as both variables are seen to cool across the do-
main simultaneously.
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TABLE 1
Interpolated estimates (with predictive standard deviation) of the local climate component

coefficients with the validating locally estimated parameters. Locations are s = (a) Kit Carson,
(b) Estes Park, (c) Buena Vista and (d) Delta. Predictions are starred if the truth is outside of the

predictive 95% confidence interval. Units are degrees Celsius for β0, β1 and β2, unitless for β3 and
β4, and degrees Celsius per century for β5

Kriged estimate (kriging standard deviation) Local estimate

a b c d a b c d

β0N(s) −2.70 (1.40) −5.43 (1.32) −6.37 (1.35) −4.39 (1.34) −3.43 −4.76 −4.58 −4.49
β1N(s) −3.94 (0.45) −2.45 (0.41) −2.89 (0.43) −1.78 (0.42) −4.48 −2.01 −2.66 −1.69
β2N(s) −1.08 (0.25) −0.63 (0.23) −0.81 (0.24) −0.36 (0.24) −1.07 −0.68 −0.58 −0.19
β3N(s) 0.20 (0.06) 0.28 (0.06) 0.27 (0.06) 0.27 (0.06) 0.20 0.27 0.21 0.25
β4N(s) 0.46 (0.06) 0.41 (0.06) 0.47 (0.06) 0.50 (0.06) 0.45 0.38 0.49 0.52
β5N(s) 0.55 (1.30) 0.53 (1.30) 0.57 (1.30) 0.60 (1.30) 0.42 0.67 0.58 0.72

β0X(s) 6.99 (1.08) 4.40 (0.98) 3.27 (1.02) 4.31 (1.01) 7.28 4.03 3.62 4.36
β1X(s) −4.30∗ (0.41) −3.80 (0.38) −3.81∗ (0.39) −3.77 (0.39) −5.29 −3.30 −3.00 −4.08
β2X(s) −1.26∗ (0.15) −1.31 (0.14) −1.29∗ (0.14) −0.93 (0.14) −1.58 −1.20 −0.93 −0.90
β3X(s) 0.03 (0.07) −0.01 (0.07) −0.02 (0.07) −0.03 (0.07) −0.05 −0.01 −0.02 −0.08
β4X(s) 0.63 (0.05) 0.67 (0.05) 0.69 (0.05) 0.75 (0.05) 0.64 0.70 0.75 0.78
β5X(s) 0.30 (0.80) 0.31 (0.80) 0.31 (0.80) 0.30 (0.80) −0.42 0.67 0.48 0.13

4. Discussion. In this paper we introduce a framework for stochastic bivari-
ate minimum and maximum temperature simulation over complex domains. The
framework distinguishes between local climate and weather processes. The local
climate is accommodated through a linear model whose coefficients are spatially
varying, and the weather process is modeled as a bivariate spatial Gaussian pro-
cess with a nonparametric estimate of the matrix-valued covariance function that
retains nonnegative definiteness at arbitrary locations. We successfully capture the
temporally varying spatial dependence between minimum and maximum temper-
atures over the state of Colorado, which exhibits challenging complex terrain that
is difficult for extant models to accommodate.

Our nonparametric estimator smooths multivariate spatial covariance over space
as well as time. This approach allows spatial dependence to be highly different
during winter than during summer, for instance, and also retains nonstationary
spatial structures both within each process and between processes. The estimator
is available at any location, not only those within the observation network, and
always retains nonnegative definiteness, allowing for gridded simulations. The es-
timator relies on kernel-smoothed empirical covariance functions, and our current
approach to spatial bandwidth selection is ad hoc. One future route of research
may be to decide on a quantitative approach to bandwidth selection when sharp
boundaries and highly variable covariances are expected across the study domain,
notably different than most mean function smoothing literature [Wand and Jones
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FIG. 10. Gridded simulation of daily minimum and maximum temperatures on days June 1–4.
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(1995)]. A second potential direction of research may be to develop a nonparamet-
ric kernel-smoothed estimate of the multivariate covariance function that is robust
against outliers and still retains nonnegative definiteness.

While our approach does not explicitly model extremes, our simulations indi-
cate reasonable replication of tail behavior, even domain-wide extrema. A limita-
tion in using Gaussian processes is that there is a lack of clustering at high levels,
both spatially and temporally [Sibuya (1960)]. This is one potential explanation
for the behavior of Figure 7(b), where domain-wide maximal maximum temper-
atures were simulated slightly above the observed extremes, although we would
expect to see similar behavior in panels (a), (c) and (d). An approach that includes
a Gaussian process model for the bulk of the distribution along with a model for
spatial extremes may improve extremal performance.

One consideration of our model is that we do not explicitly force the simulation
of maximum temperature to be greater than or equal to minimum temperature; in
our Colorado example maximum temperature was less than minimum temperature
for approximately one tenth of a percent of our simulations. It may be of interest
to adopt the models of Jolliffe and Hope (1996) or Jones and Larsen (2004) to our
situation if this issue is of critical concern.

The clearest route of future research is to extend our ideas to a full stochastic
weather simulator that can simulate spatially correlated fields of multiple variables
such as minimum and maximum temperatures, precipitation amount, solar radia-
tion, wind direction/wind speed and relative humidity simultaneously. Indeed, in
complex terrains the practitioner will need to rely on highly flexible spatial models
to replicate the strong nonstationarities exhibited by these various processes, as
well as the complicated spatially evolving relationship between them.

APPENDIX

In this Appendix we show the nonparametric estimator (9) is nonnegative defi-
nite, from which it follows that (8) and (10) are also nonnegative definite. Below,
we present an argument that (8) is asymptotically unbiased for Cij (x,y, d(t0)).

The nonnegative definiteness property is not restricted to a bivariate process,
so assume there are p spatial processes Wi(s, t), i = 1, . . . , p, with observation
network locations sm,m = 1, . . . , n. Define Ui(s, t) = Wi(s, t)1[Wi(s,t) is observed],
noting that if Wi(s, t) is unavailable at a particular location and time, Ui(s, t) = 0.

Consider evaluating Rij (xk,x�, t) at any arbitrary locations xk and x�, k, � =
1, . . . ,N , and define the arbitrary vector a = (a11, . . . , a1N,a21, . . . , apN). Set �

to be the covariance matrix made up of the functions Rij (·, ·, t) corresponding to
the random vector

(
W1(x1, t),W1(x2, t), . . . ,Wp(xN, t)

)′
.
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Then, absorbing the denominator into the kernel functions of Rij (xk,x�, t), and
writing R′

ij (xk,x�, t) for this normalized function, we have

a′�a =
p∑

i,j=1

N∑
k,�=1

aikaj�R
′
ji(x�,xk, t)

=
p∑

i,j=1

N∑
k,�=1

aikaj�

n∑
m,r=1

Kλ

(‖x� − sm‖)
Kλ

(‖xk − sr‖)
Ui(sr , t)Uj (sm, t)

=
n∑

m,r=1

p∑
i,j=1

N∑
k,�=1

(
aikKλ

(‖xk − sr‖)
Ui(sr , t)

)(
aj�Kλ

(‖x� − sm‖)
Uj(sm, t)

)

=
(

n∑
r=1

p∑
i=1

N∑
k=1

aikKλ

(‖xk − sr‖)
Ui(sr , t)

)2

≥ 0.

To show that (8) is asymptotically unbiased for Cij (x,y, d(t0)), we disregard
the smoothing over time, since asymptotically we do not have a finer resolution
of time points (but for consistency we would assume an increasing number of
realizations per each day of the year). In particular, suppose we observe the bivari-
ate process (WN(sk),WX(sk)) for s1, . . . , sn ∈ D ⊂ R

d , which are samples from a
distribution with strictly positive probability density f : D → R

+, with empirical
c.d.f. Fn(x) = 1

n

∑n
k=1 1[sk≤x], where the indicator function is 1 if the inequality

holds for all indices of x. The density f , with corresponding c.d.f. F , allows the
network density to vary across the domain. We additionally suppose n → ∞ and
λ → 0 such that λ ∼ n−1/d+ε for some small 0 < ε < 1/d2.

Suppressing the time indexing from our notation, we can write

Ĉij (x,y) = 1

n2λ2d

n∑
k=1

n∑
�=1

K ′
λ

(‖x − sk‖)
K ′

λ

(‖y − s�‖)
Wi(sk)Wj (s�),

where the denominator of (8) is absorbed into the kernel functions of the numer-
ator, yielding standardized functions K ′

λ. Here we only consider the direct covari-
ance estimators at a location x ∈ D \ ∂D, Cii(x,x); the same argument applies for
the direct and cross-covariance functions Cij (x,y) for x �= y. We have

EĈii(x,x) = 1

n2λ2d

n∑
k,�=1

K ′
λ

(‖x − sk‖)
K ′

λ

(‖x − s�‖)
E

(
Wi(sk)Wi(s�)

)
(14)

= 1

n2λ2d

n∑
k,�=1

K ′
λ

(‖x − sk‖)
K ′

λ

(‖x − s�‖)
Cii(sk, s�)(15)

+ 1

n2λ2d

n∑
k=1

K ′
λ

(‖x − sk‖)2
τi(sk, sk)

2.(16)
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Invoking Lemma 7 of Kleiber and Nychka (2012), in the limit as n → ∞, we
can pass from the sum to the integral. Assume the empirical c.d.f. Fn is close to
the limiting c.d.f. F , where supx |Fn(x) − F(x)| = Dn where Dn = o(1/(nλd)).
This rate holds, for example, if D = [0,1], F is the uniform density and Fn is the
empirical c.d.f. of the uniform grid (1/n,2/n, . . . , n/n). For d > 1, if n grows as
Md , a rate of Dn ∼ 1/n1/d can be derived for sampling locations on a regular grid
with limiting uniform distribution [Kleiber and Nychka (2012)]. Then we have

EĈii(x,x) = 1

λ2d

∫∫
D2

K ′
λ

(‖u − x‖)
K ′

λ

(‖v − x‖)
Cii(u,v)dF(u)dF(v)

(17)

+ 1

nλ2d

∫
D

K ′
λ

(‖u − x‖)2
τi(u,u)2 dF(u) + O(Dn).

Making the change of variables to a = (u − x)/λ and b = (v − x)/λ yields∫∫
D′2

K ′(‖a‖)
K ′(‖b‖)

Cii(λa + x, λb + x)dF(a)dF(b)

(18)

+ 1

nλd

∫
D′

K ′(‖a‖)2
τi(λa + x, λa + x)2 dF(a) + O(Dn)

for an appropriate translated domain D′. As λ ∼ n−1/d+ε , the second term of (18)
converges to zero. The arguments from Kleiber and Nychka (2012) applied to the
first term of (18) then yield the unbiasedness of Cii(x,x).

REFERENCES

AILLIOT, P., THOMPSON, C. and THOMSON, P. (2009). Space–time modelling of precipitation by
using a hidden Markov model and censored Gaussian distributions. J. R. Stat. Soc. Ser. C. Appl.
Stat. 58 405–426. MR2750013

ALLCROFT, D. J. and GLASBEY, C. A. (2003). A latent Gaussian Markov random-field model for
spatiotemporal rainfall disaggregation. J. Roy. Statist. Soc. Ser. C 52 487–498. MR2012972

APANASOVICH, T. V., GENTON, M. G. and SUN, Y. (2012). A valid Matérn class of cross-
covariance functions for multivariate random fields with any number of components. J. Amer.
Statist. Assoc. 107 180–193. MR2949350

BROWN, P. E., DIGGLE, P. J., LORD, M. E. and YOUNG, P. C. (2001). Space–time calibration of
radar rainfall data. J. Roy. Statist. Soc. Ser. C 50 221–241. MR1833274

CHANDLER, R. E. (2005). On the use of generalized linear models for interpreting climate variabil-
ity. Environmetrics 16 699–715. MR2196280

CHRISTENSEN, W. F. (2011). Filtered kriging for spatial data with heterogeneous measurement error
volumes. Biometrics 67 947–957. MR2829269

CRESSIE, N. A. C. (1993). Statistics for Spatial Data, revised ed. Wiley, New York. MR1239641
DALY, C., NEILSON, R. P. and PHILLIPS, D. L. (1994). A statistical-topographic model for mapping

climatological precipitation over mountainous terrain. Journal of Applied Meteorology 33 140–
158.

DURBAN, M. and GLASBEY, C. A. (2001). Weather modelling using a multivariate latent Gaussian
model. Agricultural and Forest Meteorology 109 187–201.

EASTERLING, D. R., MEEHL, G. A., PARMESAN, C., CHANGNON, S. A., KARL, T. R. and
MEARNS, L. O. (2000). Climate extremes: Observations, modeling, and impacts. Science 289
2068–2074.

http://www.ams.org/mathscinet-getitem?mr=2750013
http://www.ams.org/mathscinet-getitem?mr=2012972
http://www.ams.org/mathscinet-getitem?mr=2949350
http://www.ams.org/mathscinet-getitem?mr=1833274
http://www.ams.org/mathscinet-getitem?mr=2196280
http://www.ams.org/mathscinet-getitem?mr=2829269
http://www.ams.org/mathscinet-getitem?mr=1239641


610 W. KLEIBER, R. W. KATZ AND B. RAJAGOPALAN

FUENTES, M. (2002). Spectral methods for nonstationary spatial processes. Biometrika 89 197–210.
MR1888368

GELFAND, A. E., BANERJEE, S. and GAMERMAN, D. (2005). Spatial process modelling for uni-
variate and multivariate dynamic spatial data. Environmetrics 16 465–479. MR2147537

GELFAND, A. E., KIM, H.-J., SIRMANS, C. F. and BANERJEE, S. (2003). Spatial modeling with
spatially varying coefficient processes. J. Amer. Statist. Assoc. 98 387–396. MR1995715

GELFAND, A. E., SCHMIDT, A. M., BANERJEE, S. and SIRMANS, C. F. (2004). Nonstationary
multivariate process modeling through spatially varying coregionalization. TEST 13 263–312.
MR2154003

GNEITING, T., KLEIBER, W. and SCHLATHER, M. (2010). Matérn cross-covariance functions for
multivariate random fields. J. Amer. Statist. Assoc. 105 1167–1177. MR2752612

GUILLOT, G., SENOUSSI, R. and MONESTIEZ, P. (2001). A positive definite estimator of the
non-stationary covariance of random fields. In GeoENV 2000: Third European Conference on
Geostatistics for Environmental Applications (P. Monestiez, D. Allard and R. Froidevaux, eds.)
Kluwer Academic, Dordrecht, Netherlands.

GUTTORP, P. and GNEITING, T. (2006). Studies in the history of probability and statistics. XLIX.
On the Matérn correlation family. Biometrika 93 989–995. MR2285084

HAAS, T. C. (1990). Lognormal and moving window methods of estimating acid deposition. J. Amer.
Statist. Assoc. 85 950–963.

HIGDON, D. (1998). A process-convolution approach to modelling temperatures in the North At-
lantic Ocean. Environ. Ecol. Stat. 5 173–190.

HIJMANS, R. J., CAMERON, S. E., PARRA, J. L., JONES, P. G. and JARVIS, A. (2005). Very high
resolution interpolated climate surfaces for global land areas. International Journal of Climatol-
ogy 25 1965–1978.

HUGHES, J. P. and GUTTORP, P. (1999). A non-homogeneous hidden Markov model for precipita-
tion occurrence. Applied Statistics 48 15–30.

HUTCHINSON, M. F. (1995). Interpolating mean rainfall using thin plate smoothing splines. Inter-
national Journal of Geographical Information Systems 9 385–403.

JOHNSON, G. L., DALY, C., TAYLOR, G. H. and HANSON, C. L. (2000). Spatial variability and
interpolation of stochastic weather simulation model parameters. Journal of Applied Meteorology
39 778–795.

JOLLIFFE, I. T. and HOPE, P. B. (1996). Bounded bivariate distributions with nearly normal
marginals. Amer. Statist. 50 17–20. MR1449442

JONES, M. C. and LARSEN, P. V. (2004). Multivariate distributions with support above the diagonal.
Biometrika 91 975–986. MR2126045

JUN, M. (2011). Non-stationary cross-covariance models for multivariate processes on a globe.
Scand. J. Stat. 38 726–747. MR2859747

JUN, M., SZUNYOGH, I., GENTON, M. G., ZHANG, F. and BISHOP, C. H. (2011). A statistical
investigation of the sensitivity of ensemble-based Kalman filters to covariance filtering. Monthly
Weather Review 139 3036–3051.

KIM, H.-M., MALLICK, B. K. and HOLMES, C. C. (2005). Analyzing nonstationary spatial data
using piecewise Gaussian processes. J. Amer. Statist. Assoc. 100 653–668. MR2160567

KLEIBER, W. and GENTON, M. G. (2013). Spatially varying cross-correlation coefficients in the
presence of nugget effects. Biometrika 100 213–220.

KLEIBER, W., KATZ, R. W. and RAJAGOPALAN, B. (2012). Daily spatiotemporal precipitation
simulation using latent and transformed Gaussian processes. Water Resources Research 48

KLEIBER, W. and NYCHKA, D. (2012). Nonstationary modeling for multivariate spatial processes.
J. Multivariate Anal. 112 76–91. MR2957287

KLEIBER, W., RAFTERY, A. E. and GNEITING, T. (2011). Geostatistical model averaging for lo-
cally calibrated probabilistic quantitative precipitation forecasting. J. Amer. Statist. Assoc. 106
1291–1303. MR2896836

http://www.ams.org/mathscinet-getitem?mr=1888368
http://www.ams.org/mathscinet-getitem?mr=2147537
http://www.ams.org/mathscinet-getitem?mr=1995715
http://www.ams.org/mathscinet-getitem?mr=2154003
http://www.ams.org/mathscinet-getitem?mr=2752612
http://www.ams.org/mathscinet-getitem?mr=2285084
http://www.ams.org/mathscinet-getitem?mr=1449442
http://www.ams.org/mathscinet-getitem?mr=2126045
http://www.ams.org/mathscinet-getitem?mr=2859747
http://www.ams.org/mathscinet-getitem?mr=2160567
http://www.ams.org/mathscinet-getitem?mr=2957287
http://www.ams.org/mathscinet-getitem?mr=2896836


TEMPERATURE SIMULATION OVER COMPLEX TERRAIN 611

KLEIBER, W., RAFTERY, A. E., BAARS, J., GNEITING, T., MASS, C. F. and GRIMIT, E. (2011).
Locally calibrated probabilistic temperature forecasting using geostatistical model averaging and
local Bayesian model averaging. Monthly Weather Review 139 2630–2649.

KUSTAS, W. P., RANGO, A. and UIJLENHOET, R. (1994). A simple energy budget algorithm for
the snowmelt runoff model. Water Resources Research 30 1515–1527.

LALL, U. and SHARMA, A. (1996). A nearest neighbor bootstrap for resampling hydrological time
series. Water Resources Research 32 679–693.

LEGATES, D. R. and WILLMOTT, C. J. (1990). Mean seasonal and spatial variability in global
surface air temperature. Theoretical and Applied Climatology 41 11–21.

OEHLERT, G. W. (1993). Regional trends in sulfate wet deposition. J. Amer. Statist. Assoc. 88 390–
399.

PACIOREK, C. J. and SCHERVISH, M. J. (2006). Spatial modelling using a new class of nonstation-
ary covariance functions. Environmetrics 17 483–506. MR2240939

PEPIN, N. and LOSLEBEN, M. (2002). Climate change in the Colorado Rocky Mountains: Free air
versus surface temperature trends. International Journal of Climatology 22 311–329.

PETERSON, T. C. and VOSE, R. S. (1997). An overview of the Global Historical Climatology Net-
work temperature database. Bulletin of the American Meteorological Society 78 2837–2849.

PINTORE, A. and HOLMES, C. (2006). Spatially adaptive non-stationary covariance functions via
spatially adaptive spectra. Unpublished manuscript.

PRICE, D. T., MCKENNEY, D. W., NALDER, I. A., HUTCHINSON, M. F. and KESTEVEN, J. L.
(2000). A comparison of two statistical methods for spatial interpolation of Canadian monthly
mean climate data. Agricultural and Forest Meteorology 101 81–94.

RACSKO, P., SZEIDL, L. and SEMENOV, M. (1991). A serial approach to local stochastic weather
models. Ecological Modelling 57 27–41.

RAJAGOPALAN, B. and LALL, U. (1999). A k-nearest neighbor simulator for daily precipitation and
other weather variables. Water Resources Research 35 3089–3101.

RICHARDSON, C. W. (1981). Stochastic simulation of daily precipitation, temperature, and solar
radiation. Water Resources Research 17 182–190.

RUNNING, S. W., NEMANI, R. R. and HUNGERFORD, R. D. (1987). Extrapolation of synoptic
meteorological data in mountainous terrain and its use for simulating forest evapotranspiration
and photosynthesis. Canadian Journal of Forest Research 17 472–483.

SAMPSON, P. D. and GUTTORP, P. (1992). Nonparametric estimation of nonstationary spatial co-
variance structure. J. Amer. Statist. Assoc. 87 108–119.

SANSÓ, B. and GUENNI, L. (2000). A nonstationary multisite model for rainfall. J. Amer. Statist.
Assoc. 95 1089–1100. MR1821717

SEMENOV, M. A. and BARROW, E. M. (1997). Use of a stochastic weather generator in the devel-
opment of climate change scenarios. Climatic Change 35 397–414.

SHADDICK, G. and WAKEFIELD, J. (2002). Modelling daily multivariate pollutant data at multiple
sites. J. Roy. Statist. Soc. Ser. C 51 351–372. MR1920802

SIBUYA, M. (1960). Bivariate extreme statistics. I. Ann. Inst. Statist. Math. Tokyo 11 195–210.
MR0115241

STEIN, M. L. (1999). Interpolation of Spatial Data: Some Theory for Kriging. Springer, New York.
MR1697409

STROUD, J. R., MÜLLER, P. and SANSÓ, B. (2001). Dynamic models for spatiotemporal data. J. R.
Stat. Soc. Ser. B Stat. Methodol. 63 673–689. MR1872059

THORNTON, P. E., RUNNING, S. W. and WHITE, M. A. (1997). Generating surfaces of daily me-
teorological variables over large regions of complex terrain. Journal of Hydrology 190 214–251.

WAND, M. P. and JONES, M. C. (1995). Kernel Smoothing. Monographs on Statistics and Applied
Probability 60. Chapman & Hall, London. MR1319818

http://www.ams.org/mathscinet-getitem?mr=2240939
http://www.ams.org/mathscinet-getitem?mr=1821717
http://www.ams.org/mathscinet-getitem?mr=1920802
http://www.ams.org/mathscinet-getitem?mr=0115241
http://www.ams.org/mathscinet-getitem?mr=1697409
http://www.ams.org/mathscinet-getitem?mr=1872059
http://www.ams.org/mathscinet-getitem?mr=1319818


612 W. KLEIBER, R. W. KATZ AND B. RAJAGOPALAN

WILKS, D. S. (1999). Simultaneous stochastic simulation of daily precipitation, temperature and
solar radiation at multiple sites in complex terrain. Agricultural and Forest Meteorology 96 85–
101.

WILKS, D. S. and WILBY, R. L. (1999). The weather generation game: A review of stochastic
weather models. Progress in Physical Geography 23 329–357.

WILLMOTT, C. J. and MATSUURA, K. (1995). Smart interpolation of annually averaged air temper-
ature in the United States. Journal of Applied Meteorology 34 2577–2586.

W. KLEIBER

DEPARTMENT OF APPLIED MATHEMATICS

UNIVERSITY OF COLORADO

BOULDER, COLORADO

USA
E-MAIL: william.kleiber@colorado.edu

R. W. KATZ

INSTITUTE FOR MATHEMATICS APPLIED TO GEOSCIENCES

NATIONAL CENTER FOR ATMOSPHERIC RESEARCH

BOULDER, COLORADO

USA

B. RAJAGOPALAN

DEPARTMENT OF CIVIL, ENVIRONMENTAL

AND ARCHITECTURAL ENGINEERING

UNIVERSITY OF COLORADO

BOULDER, COLORADO

USA

mailto:william.kleiber@colorado.edu

	Introduction
	Stochastic model
	Local climate component
	Weather component

	Minimum and maximum temperature in Colorado
	Discussion
	Appendix
	References
	Author's Addresses

