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Studies of smoking behavior commonly use the time-line follow-back
(TLFB) method, or periodic retrospective recall, to gather data on daily
cigarette consumption. TLFB is considered adequate for identifying periods
of abstinence and lapse but not for measurement of daily cigarette consump-
tion, thanks to substantial recall and digit preference biases. With the develop-
ment of the hand-held electronic diary (ED), it has become possible to collect
cigarette consumption data using ecological momentary assessment (EMA),
or the instantaneous recording of each cigarette as it is smoked. EMA data,
because they do not rely on retrospective recall, are thought to more accu-
rately measure cigarette consumption. In this article we present an analysis of
consumption data collected simultaneously by both methods from 236 active
smokers in the pre-quit phase of a smoking cessation study. We define a statis-
tical model that describes the genesis of the TLFB records as a two-stage pro-
cess of mis-remembering and rounding, including fixed and random effects at
each stage. We use Bayesian methods to estimate the model, and we evaluate
its adequacy by studying histograms of imputed values of the latent remem-
bered cigarette count. Our analysis suggests that both mis-remembering and
heaping contribute substantially to the distortion of self-reported cigarette
counts. Higher nicotine dependence, white ethnicity and male sex are associ-
ated with greater remembered smoking given the EMA count. The model is
potentially useful in other applications where it is desirable to understand the
process by which subjects remember and report true observations.

1. Introduction. A common technique for eliciting consumption in studies
of substance abuse is the time-line follow-back (TLFB) method, in which one
asks subjects to report daily consumption retrospectively over the preceding week,
month or other designated period. In smoking cessation research, for example,
TLFB is one important method for measuring cigarette consumption and defining
periods of quit and lapse.
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Although TLFB is a practical approach to quantifying average smoking behav-
ior [Brown et al. (1998)], TLFB data can harbor substantial errors as measures of
daily consumption [Klesges, Debon and Ray (1995)]. TLFB questionnaires request
exact daily cigarette counts, which smokers are unlikely to remember, particularly
after several days have passed. Moreover, some smokers may understate consump-
tion to avoid the social stigma attached to excessive smoking or an inability to quit
[Boyd et al. (1998)]. Thus, smoking cessation studies typically require validation
of TLFB reports of zero consumption by biochemical measurement of exhaled
carbon monoxide or nicotine metabolites from saliva or blood.

A second concern is that histograms of TLFB-derived daily cigarette counts
commonly exhibit spikes at multiples of 20, 10 or even 5 cigarettes. This phe-
nomenon, known as “digit preference” or “heaping,” is thought to reflect a ten-
dency to report consumption in terms of packs (each pack in the US contains 20
cigarettes) or half or quarter packs. The heaps presumably arise because many
smokers do not remember precisely how many cigarettes they smoked and there-
fore report their count rounded off to a nearby convenient number. It has also been
hypothesized that some smokers consume exactly an integral number of packs per
day as a self-rationing strategy [Farrell, Fry and Harris (2003)], but evidence so far
suggests that such behavior, if it exists, causes only a small fraction of the observed
heaping [Wang and Heitjan (2008)]. Indeed, Klesges, Debon and Ray (1995) ob-
served that the distribution of biochemical residues of smoking is smooth, suggest-
ing that heaping is a phenomenon of reporting rather than consumption.

Recall bias and heaping bias in self-reported longitudinal cigarette counts po-
tentially affect estimates of both means and treatment effects. Moreover, heaping
may lead to underestimation of within-subject variability, thanks to smokers who
regularly report one pack rather than a precise count that varies around some mean
in the vicinity of 20. If a large enough fraction of subjects in a study are of this
kind, estimates of both within-subject and between-subject variability can be dis-
torted.

Although there has been substantial research on statistical modeling of heaping
and digit preference in a range of disciplines [Heitjan and Rubin (1990, 1991),
Ridout and Morgan (1991), Pickering (1992), Klerman (1993), Torelli and Trivel-
lato (1993), Dellaportas et al. (1996), Roberts and Brewer (2001), Wright and Bray
(2003) and Wolff and Augustin (2003)], the only such application in smoking ces-
sation research is that of Wang and Heitjan (2008), who described a latent-variable
rounding model for heaped univariate TLFB cigarette count data. They postulated
that the reported cigarette count is a function of the unobserved true count and a la-
tent heaping behavior variable. The latter can take one of four values, representing
exact reporting, rounding to the nearest 5, rounding to the nearest 10, and round-
ing to the nearest 20. Except for “exact” reporters (i.e., those who report counts
not divisible by 5), one obtains at best partial information on the true count and the
heaping behavior. They analyzed univariate count data from a smoking cessation
clinical trial, assuming a zero-inflated negative binomial distribution for the true
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underlying counts together with an ordered categorical logistic selection model for
heaping behavior given true count.

The analysis of Wang and Heitjan (2008) has three important limitations: first,
they included only data from the last day of eight weeks of treatment, ignoring the
55 preceding days. Second, they assumed—without empirical verification—that
reported counts not divisible by 5 were accurate. And third, they assumed that the
preference for counts ending in 0 or 5 actually represented rounding rather than
some other form of reporting error. That is, a declared count of 20 cigarettes was
taken to mean that the true count was somewhere between 10 and 30 cigarettes,
and was merely misreported as 20. In the absence of more accurate data on the true,
underlying count, attempts to model heaping must rely on some such assumptions.

Precise assessment of smoking behavior has taken on increasing importance
as researchers explore the value of reducing consumption as a way to lessen the
harms of smoking [Shiffman et al. (2002), Hatsukami et al. (2002)] and to improve
the chance of ultimately quitting [Shiffman, Ferguson and Strahs (2009), Cheong,
Yong and Borland (2007)]. The advent of the inexpensive hand-held electronic di-
ary (ED) that allows the instantaneous recording of ad libitum smoking has created
the possibility of making much more accurate measurements. Such evaluation is an
instance of ecological momentary assessment [EMA; Stone and Shiffman (1994)],
in that it generates records of events logged as they occur in real-life settings. In
Shiffman (2009), researchers asked 236 participants in a smoking cessation study
to use a specially programmed ED to record each cigarette as it was smoked over
a 16-day pre-quit period; moreover, the ED periodically prompted the smokers
to record any cigarettes they had missed. At days 3, 8 and 15, subjects visited
the clinic to complete a TLFB assessment of daily smoking since the preceding
visit (2, 5 or 7 days previously), stating how many cigarettes they had smoked
each day. The study found that while the TLFB data contained the expected heaps
at multiples of 10 and 20, the EMA data had practically none. Average smoking
rates from the two methods were moderately correlated (r = 0.77), but the within-
subject correlation of daily consumption between TLFB and EMA was modest
(r = 0.29). Self-report TLFB consumption was on average higher than EMA (by
2.5 cigarettes), but on 32% of days, subjects recorded more cigarettes by EMA
than they later recalled by TLFB.

These data provide us with an opportunity—unprecedented, so far as we
know—to study the relationship between self-reports of daily cigarette consump-
tion by TLFB and EMA. To describe this relationship, we develop a statistical
model with two components: the first is a regression that predicts the patient’s no-
tional “remembered” cigarette count (a latent factor) from the EMA count. The
second is a regression that predicts the rounding behavior—described as in Wang
and Heitjan (2008) with an ordinal logistic regression—from the remembered
count and fully observed predictors. The models include random subject effects
that describe the propensities of the subjects to mis-remember their actual con-
sumption (in the first component) and to report the remembered consumption with
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a characteristic degree of accuracy (in the second). Assuming that EMA represents
the true count, the first component of the model allows us to examine the recall
bias resulting from mis-remembering, while the second component describes the
heaped reporting errors.

2. Notation and model. Let Yit denote the observed heaped TLFB con-
sumption for subject i on day t , i = 1, . . . , n, t = 1, . . . ,mi , and let Yi =
(Yi1, . . . , Yimi

)T denote the vector of TLFB data for subject i. Let Xit be the EMA
consumption on subject i, day t , and let Xi = (Xi1, . . . ,Ximi

)T be the vector of
EMA data for subject i. We furthermore let Zi = (ZR

i ,ZH
i ) be a vector of base-

line predictors for subject i, with ZR
i representing predictors of recall and ZH

i

predictors of heaping. These predictor sets may overlap.

2.1. A model for remembered cigarette count. The first part of our model as-
sumes that for each day and subject there is a notional remembered cigarette count,
denoted Wit [Wi = (Wi1, . . . ,Wimi

)T ]. We assume Wit is distributed as Poisson
conditionally on a random effect bi , the EMA smoking pattern Xit and the covari-
ate vector Zi , with mean

E(Wit |Xit ,Zi, bi) = exp
(
β0 + ln(Xit )β1 + ZR

i β2 + bi

)
.(2.1)

The parameters β1 and β2 represent the effects of EMA consumption and baseline
predictors, respectively, on the latent remembered count. The random effect bi ,
which we assume normally distributed with mean 0 and variance σ 2

b , represents
heterogeneity among subjects. We note that there are no 0 values of Xit in the
Shiffman data, which are from a pre-quit study in which subjects were encouraged
to smoke as normal. Thus, we can include ln(Xit ) as a predictor. In more general
contexts where 0 EMA counts are possible, one can adjust the model in simple
ways to avoid this problem. Moreover, when excessive 0 counts occur in the TLFB
data, one can fit a zero-inflated count model, as in Wang and Heitjan (2008), for
the remembered count.

2.2. A model for the latent heaping process. Following Wang and Heitjan
(2008), we assume that a latent rounding indicator Git [Gi = (Gi1, . . . ,Gimi

)T ]
dictates the degree of rounding to be applied to the notional remembered
count Wit . Specifically, we let Git take one of four possible values: Git = 1
implies reporting the exact count, Git = 2 implies rounding to the nearest mul-
tiple of 5, Git = 3 implies rounding to the nearest multiple of 10, and Git = 4
implies rounding to the nearest multiple of 20. We assume that the probability
distribution of the heaping indicator depends on Wit , a subject-level random ef-
fect ui ∼ N(0, σ 2

u ) that is independent of bi , and a baseline predictor vector ZH
i .

Specifically, we propose the following proportional odds model for the conditional
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distribution of Git :

f (Git |Wit ,Zi, ui) =

⎧⎪⎪⎨
⎪⎪⎩

1 − q(γ1 + ηit + ui), if g = 1;
q(γ1 + ηit + ui) − q(γ2 + ηit + ui), if g = 2;
q(γ2 + ηit + ui) − q(γ3 + ηit + ui), if g = 3;
q(γ3 + ηit + ui), if g = 4.

(2.2)

Here ηit = Witγ0 + ZH
i β3, and q(·) is the inverse logit function q(x) = exp(x)/

(1 + exp(x)). The parameters γ1 > γ2 > γ3 refer to the successive intercepts of the
logistic regressions, γ0 refers to its slope with respect to the remembered count,
and β3 refers to its slopes with respect to the vector of heaping predictors ZH

i . The
random effect ui describes between-subject differences in heaping propensity not
otherwise accounted for in the model.

2.3. The coarsening function. As in Wang and Heitjan (2008), the model links
the observed Yit to the latent Wit and Git via the coarsening function h(·, ·):

Yit = h(Wit ,Git ), i = 1, . . . , n, t = 1, . . . ,mi.

For example, at time t , subject i with Wit = 14 and Git = 1 reports h(14,1) = 14,
whereas h(14,2) = 15, h(14,3) = 10, and h(14,4) = 20. Figure 1 illustrates this
heaping mechanism.

A coarsened outcome yit may arise from possibly several (wit , git ) pairs. We
denote the set of such pairs as WG(yit ) = {(wit , git ) :yit = h(wit , git )}. For ex-
ample, a reported consumption of yit = 5 may represent a precise unrounded

FIG. 1. Reported cigarette count Y as a function of the underlying count W and the rounding
behavior G.
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value [(wit , git ) = (5,1)] or rounding across a range of nearby values [(wit , git ) ∈
{(3,2), (4,2), (5,2), (6,2), (7,2)}]. For subject i, the probability of the observed
yit at time t is the sum of the probabilities of the (wit , git ) pairs that would give
rise to it. The density of reported consumption yit given the random effects can
therefore be expressed as

f (yit |bi, ui) = ∑
(wit ,git )∈WG(yit )

f (wit |bi)f (git |wit , ui).

2.4. Estimation. We estimate the model by a Bayesian approach that employs
importance sampling [Gelman et al. (2004), Tanner (1993)] to avoid iterative simu-
lation of parameters. The steps are as follows: we first compute the posterior mode
and information using a quasi-Newton method with finite-difference derivatives
[Dennis and Schnabel (1983)]. We then approximate the posterior with a multi-
variate t5 density with mean equal to the posterior mode and dispersion equal to
the inverse of the posterior information matrix at the mode. Next, we draw a large
number (4000) of samples from this proposal distribution, at each draw comput-
ing the importance ratio r of the true posterior density to the proposal density. We
then use sampling-importance resampling (SIR) to improve the approximation of
the posterior [Gelman et al. (2004)]. We evaluate posterior moments by averag-
ing functions of the simulated parameter draws with the importance ratios r as
weights. The choice of a t with a small number of degrees of freedom as the im-
portance density is intended to balance the convergence of the MC integrals and
the efficiency of the simulation.

Letting θ = (β0, β1, β2, β3, σb, γ1, γ2, γ3, γ0, σu), the likelihood contribution
from subject i is

L(θ;yi) =
∫ ∫ mi∏

t=1

∑
(wit ,git )∈WG(yit )

f (wit |bi)f (git |wit , ui)

(2.3)
× f (bi)f (ui) dbi dui;

we approximate the integral in (2.3) by Gaussian quadrature. We choose proper
but vague priors for the parameters, which we assume are a priori independent (ex-
cept for γj , j = 1,2,3, as noted below). The parameter β1 in the Poisson mixed
model (2.1), representing the slope of the latent recall on the EMA recorded con-
sumption, is given a normal prior β1 ∼ N(1,102), whereas the priors of the other
regression parameters in both model parts are set to N(0,102) subject to the con-
straint γ1 > γ2 > γ3. We assign the random-effect variances inverse-gamma priors
with mean and SD both equal to 1, a reasonably vague specification [Carlin and
Louis (2000)]. We obtain the posterior mode and information using SAS PROC
NLMIXED, and implement Bayesian importance sampling in R.
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3. Model checking. With heaped data, the unavailability of simple graphi-
cal diagnostics such as residual plots complicates model evaluation. We therefore
resort to examination of repeated draws of latent quantities from their posterior
distributions, in the spirit of Bayesian posterior predictive checks [Rubin (1984),
Gelman, Meng and Stern (1996), Gelman et al. (2005)]. Specifically, we evaluate
the adequacy of model assumptions using imputed values of the latent recall W ,
which we compare to its implied marginal distribution under the model.

Imputations of latent Wi and Gi are ultimately based on the posterior density
f (θ |yi) of the model parameter θ given the observed data yi . Heitjan and Rubin
(1990), sampling univariate y values, used an acceptance-rejection procedure to
draw quantities analogous to our W and G from a confined bivariate normal distri-
bution. In our model, the correlation within Wi and Gi vectors poses a challenge
to simulation. Note, however, that given the subject-specific effects bi and ui , the
components of Wi and Gi are independent. Thus, we can readily simulate (Wi,Gi)

from the joint posterior of (Wi,Gi, bi, ui). For each simulated θ and the observed
data yi , the posterior distribution of (Wi,Gi, bi, ui) is

f (wi, gi, bi, ui |yi, θ) = f (wi, gi, bi, ui |θ)
f (yi |wi, gi, bi, ui, θ)

f (yi |θ)
.

Because the values of wit and git together determine yit , we have that

f (yi |wi, gi, bi, ui, θ) =
mi∏
t=1

I
(
(wit , git ) ∈ WG(yit )

)
,

where I is an indicator function. Accordingly,

f (wi, gi, bi, ui |yi, θ)

∝ f (wi, gi, bi, ui |θ)

mi∏
t=1

I
(
(wit , git ) ∈ WG(yit )

)

= f (wi, gi |bi, ui, θ)f (bi, ui |θ)

mi∏
t=1

I
(
(wit , git ) ∈ WG(yit )

)

= f (wi |bi, θ)f (gi |wi,ui, θ)f (bi, ui |θ)

mi∏
t=1

I
(
(wit , git ) ∈ WG(yit )

)

=
(

mi∏
t=1

f (wit |bi, θ)f (git |wit , ui, θ)I
(
(wit , git ) ∈ WG(yit )

))

× f (bi |σb)f (ui |σu).

Thus, given random effects bi and ui , the imputation of (wi, gi) is obtained by
independent draws of (wit , git ), t = 1, . . . ,mi , which can be implemented as an
acceptance-rejection procedure. We therefore impute the data as follows:
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(1) Make independent draws, θ(k), k = 1, . . . ,K from f (θ |yi) by SIR.
(2) Given θ(k), for i = 1, . . . , n, independently draw b

(k)
i ∼ N(0, σ

(k)2
b ) and

u
(k)
i ∼ N(0, σ

(k)2
u ).

(3) For i = 1, . . . , n, given θ(k) and b
(k)
i , for t = 1, . . . ,mi , draw w

(k)
it as Pois-

son with mean (2.1). Then given θ(k), u
(k)
i and w

(k)
it , draw misreporting type g

(k)
it

from (2.2). If I ((w
(k)
it , g

(k)
it ) ∈ WG(yit )) = 0, discard (w

(k)
it , g

(k)
it ) and repeat this

step until I ((w
(k)
it , g

(k)
it ) ∈ WG(yit )) = 1.

To assess model fit, we plot K histograms of the imputed latent count w. Im-
plausible patterns in these histograms, such as peaks or troughs at multiples of 5,
suggest incorrect modeling of the heaping. We can also base discrepancy diagnos-
tics specifically on the fractions of reported consumptions that are divisible by 5.

4. Simulations. To examine the performance of our approach, we conducted
simulations replicating the structure of the Shiffman data with m = 12 nonvisit-
day observations per subject. Each data set consisted of n = 100 subjects, and
for simplicity we do not consider baseline covariates. For each subject we first
set xi as an observed EMA count vector from the data and generated a random
effect bi ∼ N(0, σ 2

b = 0.09). We then generated Wit values as independent Poisson
deviates with conditional mean (2.1). With β0 = 2.358, β1 = 0.2628, when bi = 0
and EMA count xit = 20, the mean latent recall is 23.2, and when xit = 30 it
is 25.8. With the random effect distributed as designated above, the marginal mean
recalls for xit = 20 and xit = 30 are 24.3 and 27.0, respectively.

Next we generated the latent heaping behavior indicator Git from (2.2). We set
the parameters to their estimates from the Shiffman data: the intercepts γ1, γ2, γ3
were −1.485, −5.280 and −10.141, respectively, and the slope γ0 was 0.1098. We
simulated the random effect ui ∼ N(0, σ 2

u = 7.1). Under this setting, when ui = 0
and wit = 22, the probability of exact reporting is 28.3%, and the probabilities
of rounding to the nearest multiples of 5, 10 and 20 are 66.3%, 5.4% and 0.04%,
respectively. When the latent count wit = 36, these probabilities are 7.8%, 71.2%,
20.8% and 0.2%, respectively. The simulated latent wit and git determined yit as
illustrated in Figure 1.

These parameter values allow for considerable discrepancy between remem-
bered and recorded consumption. To examine our methods when the latent recall
and EMA match more closely, we conducted a second simulation under parameter
values that gave better agreement. In this scenario, we assumed β0 = 0 and β1 = 1
with bi ∼ N(0,0.05). Thus, when bi = 0, the expected precise recall E(wit ) = xit ,
and the marginal mean recalls are 20.5 and 30.8 for EMA counts of 20 and 30, re-
spectively. We set the parameters in the heaping behavior models at −1.07, −4.37,
−6.52 and 0.088 for γ1, γ2, γ3 and γ0, respectively, and σ 2

u = 5.9. In this case,
when uit = 0, the probabilities of reporting exactly and to the nearest multiples of
5, 10 and 20 for a true count of 22 are 29.6%, 62.3%, 7.1% and 1%, respectively.
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TABLE 1
Results of 100 simulations of the mis-remembering/heaping model

True Mean of SD of Coverage of
Parameter value estimate estimate Bias

√
MSE 95% CI (%)

Case 1: Estimated mis-remembering

Latent recall
β0 2.36 2.36 0.07 0.002 0.07 95
β1 0.26 0.26 0.02 0.001 0.02 93
σb 0.30 0.30 0.02 0.001 0.02 95

Heaping behavior
γ1 −1.49 −1.53 0.56 −0.04 0.56 94
γ2 −5.28 −5.31 0.66 −0.03 0.66 98
γ3 −10.14 −9.99 2.55 0.15 2.54 80
γ0 0.11 0.11 0.02 0.002 0.02 96
σu 2.67 2.61 0.29 −0.06 0.29 98

Case 2: Minimal mis-remembering

Latent recall
β0 0.0 −0.01 0.09 −0.01 0.09 94
β1 1.0 1.00 0.03 0.005 0.03 94
σb 0.22 0.22 0.02 −0.001 0.02 97

Heaping behavior
γ1 −1.07 −1.08 0.43 −0.007 0.43 98
γ2 −4.37 −4.36 0.60 0.007 0.59 94
γ3 −6.52 −6.43 0.66 0.09 0.67 94
γ0 0.088 0.090 0.02 0.002 0.02 95
σu 2.44 2.41 0.27 −0.02 0.27 95

Table 1 presents summaries of 100 simulations of estimates of the parameter
θ = (β0, β1, σb, γ1, γ2, γ3, γ0, σu). Under both scenarios, the MLEs of the fixed-
effect coefficients fell near the true values on average, with no more than 0.5%
bias for the parameters in the recall model and no more than 2.7% bias for those
in the heaping model. The random effects variance estimates are also well esti-
mated, with bias less than 1%. The coverage probabilities of nominal 95% confi-
dence intervals range from 93% to 98%, except for γ3 in case 1, where coverage
is only 80%. The poor coverage rate for this parameter is a consequence of in-
stability in the inverse Hessian matrix; it can be improved by creating parametric
bootstrap confidence intervals (Table 2). The simulation shows good performance
of the MLEs, and, as the sample size is large, we expect the Bayesian estimates
to behave similarly. Moreover, the maximization part of the MLE calculation can
help identify multimodality of the likelihood, should it occur, and singularity of
the Hessian that we use in the Bayesian sampling.
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TABLE 2
Results of 100 simulations of the mis-remembering/heaping model with parameters estimated from

the data (case 1) and SEs computed by the parametric bootstrap

True Mean of SD of Coverage of
Parameter value estimate estimate Bias

√
MSE 95% CI (%)

Latent recall
β0 2.36 2.36 0.08 −0.003 0.08 90
β1 0.26 0.26 0.02 0.001 0.02 90
σb 0.30 0.30 0.02 −0.001 0.02 95

Heaping behavior
γ1 −1.49 −1.61 0.55 −0.12 0.56 94
γ2 −5.28 −5.42 0.69 −0.14 0.70 96
γ3 −10.14 −10.61 3.56 −0.47 3.58 87
γ0 0.11 0.11 0.02 0.005 0.02 95
σu 2.67 2.64 0.32 −0.03 0.32 92

5. Data analysis. We applied the method of Section 2 to the Shiffman data,
with the aim of evaluating our posited two-stage process as an explanation for
the discrepancy between actual and reported consumption. To focus on the link
between the self-report and true count, our first analysis included only log EMA
count in (2.1) and a visit day indicator in (2.2). The latter is important because it
seems reasonable that distance in time from the event would be a strong predictor
of heaping coarseness. Our second analysis expanded the recall model to include
a range of baseline characteristics: demographics (age, sex, race and education);
addiction; measures of nicotine dependence [the Fagerström Test for Nicotine De-
pendence (FTND) and the Nicotine Dependence Syndrome Scale (NDSS)]; and
EMA compliance measured as the daily percentage of missed prompts. Age, edu-
cation, FTND and EMA compliance are considered as quantitative variables, sex
and race are binary indicators, and addiction is a categorical variable taking three
levels (possible, probable and definite). They are the first variables that a smok-
ing researcher would think to investigate, and could potentially affect remembered
count or heaping probability. The two measures of nicotine dependence FTND and
NDSS showed only a modest correlation, with Spearman r = 0.56 in our data. So
we considered both in the model. The data set and programming code are included
in the supplementary materials [Wang et al. (2012)].

5.1. Evaluating goodness of fit. We evaluated model fit by creating multiple
draws from the posterior predictive distribution of latent quantities as discussed in
Section 3. Lack of smoothness in the histogram of the imputed latent count would
suggest an inadequate heaping model.

We evaluated goodness of fit for the model that includes log EMA count in (2.1)
and a visit day indicator in (2.2). The top row in Figure 2 displays the histograms
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FIG. 2. Top row: histogram of self-reported cigarette consumption. Lower three rows: histograms
of draws from the posterior distribution of the latent exact consumption recall.

of TLFB cigarette consumption at days 3 (a visit day), 9 and 14. The spikes at
10, 15, 20, 25, 30, etc. are characteristic of self-reported cigarette counts [Wang
and Heitjan (2008)]. As many as 70% of subjects reported cigarette smoking in



1700 WANG, SHIFFMAN, GRIFFITH AND HEITJAN

multiples of 5 for nonvisit-day consumption, whereas for the visit day (day 3) that
number is only 48%. Only 1/4 of the counts on the visit day ended in 0.

The next three rows represent independent draws of the latent count Wit . The
spikes at multiples of 20, 10 or 5 have disappeared. Compared to the self-reported
count, the percentage of subjects whose exact counts are divisible by 5 (or 10
or 20) is smaller and consistent across time. Averaged over three imputations, the
fraction of counts ending in multiples of 5 is 27%, 25% and 23% on days 3, 9
and 14, respectively, and 15%, 14% and 12% end in multiples of 10. These checks
indicate that our model offers a plausible explanation for the heaping.

5.2. The fitted model. In order to assess the impact of the assumed correla-
tion structure, we fit the model as proposed in (2.1) and (2.2) and also a model
that excludes random effects. Posterior modes and 95% credible intervals (CIs)
appear in Tables 3 and 4. The estimates in both the remembered count model that
characterizes the latent recall process and the heaping behavior model are sen-
sitive to the assumption of random effects. The Bayesian information criterion
(BIC) of the model with two random effects is 14,705 when including EMA as
the only predictor and 14,059 when including EMA and the baseline patient char-
acteristic predictors. The BICs for the corresponding models excluding random
effects are 18,340 and 16,641, respectively. Thus, the evidence is overwhelming
that the mixed model is preferable. Furthermore, we included the patient charac-
teristic predictors as covariates in both the remembered count model and heaping
process model, but this model (BIC = 14,079) is less favorable compared to the

TABLE 3
Estimated parameters from the Shiffman data under simple models for recall (EMA only) and

heaping (remembered count and visit day indicator)

Random effects model Independence model

Posterior Posterior
Parameter mode 95% CI mode 95% CI

Latent recall: Poisson model
Intercept: β0 2.32 [2.24,2.40] 1.14 [1.09,1.20]
ln(EMA): β1 0.27 [0.25,0.30] 0.68 [0.66,0.69]
σ 2
b 0.09 [0.08,0.11]

Heaping behavior: proportional odds model
Intercept 1: γ1 −1.50 [−2.17,−0.85] −1.06 [−1.30,−0.84]
Intercept 2: γ2 −5.21 [−6.14,−4.43] −2.94 [−3.26,−2.65]
Intercept 3: γ3 −10.15 [−12.49,−8.48] −4.17 [−4.59,−3.82]
Exact count (latent): w 0.11 [0.09,0.13] 0.07 [0.06,0.08]
Visit day −2.96 [−3.50,−2.50] −1.29 [−1.54,−1.06]
σ 2
u 6.65 [5.12,9.08]
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TABLE 4
Estimated parameters from the Shiffman data under an expanded model for recall

Random effects model Independence model

Posterior Posterior
Parameter mode 95% CI mode 95% CI

Latent recall: Poisson model
Intercept: β0 2.34 [2.21,2.49] 1.51 [1.44,1.58]
ln(EMA): β1 0.25 [0.23,0.28] 0.53 [0.51,0.55]
Addicted

Possible vs. definite 0.07 [−0.10,0.24] 0.05 [0.01,0.09]
Probable vs. definite −0.01 [−0.11,0.08] −0.02 [−0.04,0.006]

FTND 0.06 [0.04,0.08] 0.04 [0.03,0.05]
NDSS 0.08 [0.05,0.12] 0.05 [0.04,0.06]
EMA compliance 0.13 [−0.28,0.51] 0.39 [0.29,0.49]
Age 0.002 [−0.001,0.006] 0.003 [0.002,0.004]
Race (black vs. white) −0.14 [−0.27,−0.01] −0.06 [−0.10,−0.03]
Sex (male vs. female) 0.16 [0.10,0.23] 0.12 [0.09,0.23]
Education −0.001 [−0.03,0.02] 0.003 [−0.004,0.009]
σ 2
b 0.06 [0.05,0.07]

Heaping behavior: proportional odds model
Intercept 1: γ1 −1.62 [−2.35,−0.90] −1.14 [−1.37,−0.91]
Intercept 2: γ2 −5.52 [−6.42,−4.61] −3.15 [−3.47,−2.82]
Intercept 3: γ3 −10.31 [−12.65,−8.37] −4.54 [−4.99,−4.08]
Exact count: w 0.11 [0.09,0.14] 0.07 [0.06,0.08]
Visit day −2.99 [−3.51,−2.47] −1.26 [−1.50,−1.02]
σ 2
u 6.79 [4.73,8.68]

model with the covariates in just the latent remembered count model. None of
these predictors is significant in the heaping process model (results not shown).

The 95% CI of β1 is [0.23,0.28], indicating that remembered consumption is
positively associated with recorded EMA consumption. In addition, baseline pa-
tient characteristics FTND, NDSS, race and gender have significant effects on the
recall process. For fixed EMA count, the following characteristics are associated
with greater remembered smoking: higher nicotine dependence (measured by both
FTND and NDSS), white ethnicity (compared to black) and male sex.

Figure 3 displays the estimated curve of the mean of Wit against the EMA count.
A natural hypothesis is that the estimated latent mean agrees with EMA, which
would be reflected in the Poisson model by an estimated intercept of 0 and slope
of 1; one might call this a model of unbiased memory. To the contrary, Figure 3
shows that the fitted mean curve diverges substantially from the 45◦ line, with
the lighter smokers on average overestimating their consumption and the heav-
ier smokers underestimating consumption. The mean remembered consumption
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FIG. 3. Estimate of the conditional mean of recalled count given EMA count in the Poisson
mis-remembering model. Covariates are fixed at education = high school, addicted = definitely,
race = white, sex = female, and mean values of the quantitative predictors: FTND = 5.97,
NDSS = −0.023, age = 43.5, and EMA noncompliance = 10.1%.

agrees with the true count roughly in the range 22–26 cigarettes, or slightly more
than a pack per day.

Figure 4 shows the estimated heaping probability as a function of remembered
cigarette consumption for visit and nonvisit days. The possibility of rounded-off
reporting increases rapidly as the remembered count increases, although surpris-
ingly the probability of rounding to the nearest 20 is not large for either type of
day. When the perception of smoking is more than two packs, say, 41 cigarettes,
the chance of heaped reporting rises to more than 84%, of which 37% is attributed
to half-pack rounding. The results confirm that the degree of heaping is much
smaller on visit days. For example, only 51% of subjects round off the visit-day
count when reporting 41 cigarettes, and among those 39% round off to the nearest
multiple of 5.

6. Discussion. We have developed a model to describe the process whereby
exact longitudinal measurements become distorted by retrospective recall. Our ap-
proach uses latent processes to explain the data as a result of mis-remembering
and rounding: a model of the latent exact value describes subject-level recall and
allows for association over time and with baseline predictors, while a misreport-
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FIG. 4. Estimated rounding behavior given EMA count in the proportional odds heaping model.

ing model describes the dependence of heaping coarseness on the latent value and
other predictors. Random effects represent individual propensities in recall and
heaping; in our data, inferences depend strongly on the inclusion of these random
effects.

The data suggest that both mis-remembering and heaping contribute substan-
tially to the distortion of cigarette counts. The curve of mean remembered count
as a function of EMA count departs markedly from the 45◦ line, with lighter
smokers overstating consumption and heavier smokers understating consump-
tion. The remembered smoking coincides with the accurate EMA count at around
24 cigarettes, suggesting that the popularity of reporting one pack per day is par-
tially a result of the general heaping behavior rather than a particular affinity for
remembering a pack a day. The curves of heaping probabilities suggest that exact
reporting is uncommon and practically disappears beyond about 40 cigarettes/day.
Nevertheless, it is interesting just how much of the misreporting is due to mis-
remembering. The remembered cigarette consumption depends not only on true
consumption, but also on the subject’s sex, race and degree of nicotine depen-
dence.

The interpretation of our model components as representing memory and round-
ing depends on the assumption that EMA data are exact. Of course, even EMA data
are subject to errors, as smokers may neglect to record cigarettes both at the time
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of smoking and later. Yet good correspondence with smoking biomarkers strongly
supports the use of EMA over TLFB as a proxy for the truth [Shiffman (2009)].

We have implemented our model with a combination of standard numer-
ical methods including Gaussian quadrature, quasi-Newton optimization and
sampling-importance resampling. Our experience suggests that with the model as
specified, and incorporating a modest numbers of predictors, the method is robust
and efficient. Increasing the number of random effects would increase the time
demands (from the numerical integration) and raise the possibility of numerical
instability (from possible errors in integration). For more extensive models, so-
phisticated approaches based on MCMC sampling would be necessary.

Our model allows for the inclusion of covariates to better explain the discrep-
ancy between smokers’ self-perceived behaviors and reality. It also provides a
basis for predicting true counts (effectively the EMA data) from reported TLFB
counts. This would be a valuable activity in the large number of studies that do
not collect EMA data. To predict true counts from the recalled counts, we first
need to estimate the parameters θ in the model using a subset of the primary study
or an external independent study that collects both TLFB count Y and accurate
EMA count X. Then we can impute the true count together with the latent remem-
bered count and heaped reporting behavior. Specifically, the posterior distribution
of (Wi,Gi, xi, bi, ui) is

f (wi, gi, xi, bi, ui |yi, θ)

= f (wi, gi, xi, bi, ui |θ)
f (yi |wi, gi, xi, bi, ui, θ)

f (yi |θ)

∝
(

mi∏
t=1

f (wit |xit , bi, θ)f (git |wit , ui, θ)I
(
(wit , git ) ∈ WG(yit )

))

× f (xi)f (bi |σb)f (ui |σu),

where f (xi) is the density function of the true count. Imputation follows simi-
lar steps as described in Section 3 with θ set equal to the maximum likelihood
estimates.

The methods developed here also can have application in a wide variety of set-
tings in social and medical science involving self-reported data—for example, as-
sessing sexual risk behavior, trial drug consumption, eating episodes and financial
expenditures.
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SUPPLEMENTARY MATERIAL

Data and programming code for the analysis (DOI: 10.1214/12-
AOAS557SUPP; .zip). It contains the daily TLFB and EMA data set, and SAS
and R code to implement the method.

http://dx.doi.org/10.1214/12-AOAS557SUPP
http://dx.doi.org/10.1214/12-AOAS557SUPP
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