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TREE-GUIDED GROUP LASSO FOR MULTI-RESPONSE
REGRESSION WITH STRUCTURED SPARSITY, WITH AN

APPLICATION TO EQTL MAPPING1

BY SEYOUNG KIM AND ERIC P. XING2

Carnegie Mellon University

We consider the problem of estimating a sparse multi-response re-
gression function, with an application to expression quantitative trait locus
(eQTL) mapping, where the goal is to discover genetic variations that influ-
ence gene-expression levels. In particular, we investigate a shrinkage tech-
nique capable of capturing a given hierarchical structure over the responses,
such as a hierarchical clustering tree with leaf nodes for responses and inter-
nal nodes for clusters of related responses at multiple granularity, and we seek
to leverage this structure to recover covariates relevant to each hierarchically-
defined cluster of responses. We propose a tree-guided group lasso, or tree
lasso, for estimating such structured sparsity under multi-response regres-
sion by employing a novel penalty function constructed from the tree. We
describe a systematic weighting scheme for the overlapping groups in the
tree-penalty such that each regression coefficient is penalized in a balanced
manner despite the inhomogeneous multiplicity of group memberships of the
regression coefficients due to overlaps among groups. For efficient optimiza-
tion, we employ a smoothing proximal gradient method that was originally
developed for a general class of structured-sparsity-inducing penalties. Using
simulated and yeast data sets, we demonstrate that our method shows a supe-
rior performance in terms of both prediction errors and recovery of true spar-
sity patterns, compared to other methods for learning a multivariate-response
regression.

1. Introduction. Recent advances in high-throughput technology for profil-
ing gene expressions and assaying genetic variations at a genome-wide scale have
provided researchers an unprecedented opportunity to comprehensively study the
genetic causes of complex diseases such as asthma, diabetes, and cancer. Expres-
sion quantitative trait locus (eQTL) mapping considers gene expression measure-
ments, also known as gene-expression traits, as intermediate phenotypes, and aims
to identify the genetic markers such as single nucleotide polymorphisms (SNPs)
that influence the expression levels of genes, which gives rise to the variability in
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clinical phenotypes or disease susceptibility across individuals. This type of analy-
sis can provide a deeper insight into the functional role of the eQTLs in the disease
process by linking the SNPs to genes whose functions are often known directly or
indirectly through other co-expressed genes in the same pathway.

The most commonly used method for eQTL analysis has been to examine the
expression level of a single gene at a time for association, treating genes as in-
dependent of each other [Cheung et al. (2005), Stranger et al. (2005), Zhu et al.
(2008)]. However, it is widely believed that many of the genes in the same biolog-
ical pathway are often co-expressed or co-regulated [Pujana et al. (2007), Zhang
and Horvath (2005)] and may share a common genetic basis that causes the vari-
ations in their expression levels. How to incorporate such information on relat-
edness of genes into statistical analysis of associations between SNPs and gene
expressions remains an under-addressed problem. One of the popular existing ap-
proaches is to consider the relatedness of genes after rather than during statistical
analysis of eQTL data, which obviously fails to fully exploit the statistical power
from this additional source of information. Specifically, in order to find the genetic
variations with pleiotropic effects that perturb the expressions of multiple related
genes jointly, in recent eQTL studies, the expression traits for individual genes
were analyzed separately, and then the results were examined for all genes in light
of gene modules to see if any gene sets are enriched for association with a com-
mon SNP [Zhu et al. (2008), Emilsson et al. (2008), Chen et al. (2008)]. This type
of analysis uses the information on gene modules only in the post-processing step
after a set of single-gene analyses, instead of directly incorporating the correlation
pattern in gene expressions in the process of searching for SNPs with pleitropic
effects.

Recently, a different approach for searching for SNPs with pleiotropic effects
has been proposed to leverage information on gene modules more directly [Segal
et al. (2003), Lee et al. (2006)]. In this approach, the module network originally de-
veloped for discovering clusters of co-regulated genes from gene expression data
was extended to include SNPs as potential regulators that can influence the activity
of gene modules. The main weakness of this method is that it computed the aver-
ages of gene-expression levels over those genes within each module and looked
for SNPs that affect the average gene expressions of the module. The operation of
computing averages can lead to a significant loss of information on the detailed
activity of individual genes and negative correlations within a module.

In this article we propose a tree-guided group lasso, or tree lasso, that directly
combines statistical strength across multiple related genes in gene expression data
to identify SNPs with pleiotropic effects by leveraging any given knowledge of a
hierarchical clustering tree over genes.3 The hierarchical clustering tree contains

3Here we focus on making use of the given knowledge of related genes to enhance the power of
eQTL analysis, rather than discovering or evaluating how genes are related, which are interesting
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FIG. 1. An illustration of a tree lasso. (a): The sparse structure in regression coefficients is shown
with white entries for zeros and gray entries for nonzero values. The hierarchical clustering tree rep-
resents the correlation structure in responses. The first two responses are highly correlated according
to the clustering tree, and are likely to be influenced by the same covariates. (b): Groups of variables
associated with each node of the tree in panel (a) in the tree-lasso penalty.

clusters of genes at multiple granularity, and genes within a cluster have correlated
expression levels. The leaf nodes of the tree correspond to individual genes, and
each internal node represents a cluster of genes at the leaf nodes of the subtree
rooted at the internal node in question. Furthermore, each internal node in the tree
is associated with a weight that represents the height of the subtree, or how tightly
the genes in the cluster for that internal node are correlated. As illustrated in Fig-
ure 1(a), the expression levels of genes in each cluster are likely to be influenced by
a common set of SNPs, and this type of sharing of genetic effects among correlated
genes is stronger among tightly correlated genes in the cluster at the lower levels
with a smaller height in the tree than among loosely correlated genes in the cluster
near the root of the tree with a greater height. This multi-level grouping structure
of genes can be available either as prior knowledge from domain experts, or can
be learned from the gene-expression data using various clustering algorithms such
as the hierarchical agglomerative clustering algorithm [Golub et al. (1999)].

Our method is based on a multivariate regression method with a regularization
function that is constructed from the hierarchical clustering tree. This regularizer
induces a structured shrinkage effect that encourages multiple correlated responses
to share a similar set of relevant covariates, rather than having independent sets of

problems in their own right, and are studied widely [Segal et al. (2003)]. If the gene co-expression
pattern is not available, one can simply run any off-the-shelf hierarchical agglomerative clustering
algorithm on the gene-expression data to obtain one before applying our method. It is beyond the
scope of this paper to discuss, compare, and further develop such algorithms for clustering genes or
learning trees.
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relevant covariates. This is a biologically and statistically desirable bias not present
in existing methods for identifying eQTLs. For example, assuming that the SNPs
are represented as covariates, gene expressions as responses, and the association
strengths as regression coefficients in a regression model, a multivariate regression
with an L1 regularization, called the lasso, has been applied to identify a small
number of SNPs with nonzero association strengths [Wu et al. (2009)]. Here, the
lasso treats multiple responses as independent of each other and selects relevant
covariates for each response variable separately. Although the L1 penalty in the
lasso can be extended to the L1/L2 penalty, also known as the group-lasso penalty,
for union support recovery, where all of the responses are constrained to have the
same relevant covariates [Obozinski, Wainwright and Jordan (2008), Obozinski,
Taskar and Jordan (2010)], in this case, the rich and heterogeneous relatedness
among the responses as captured by a weighted tree cannot be taken into account.

Our method extends the L1/L2 penalty to the tree-lasso penalty by letting the
hierarchically-defined groups overlap. The tree-lasso penalty achieves structured
sparsity, where the related responses (i.e., gene expressions) in the same group
share a common set of relevant covariates (i.e., SNPs), in a way that is properly
calibrated to the strength of their relatedness and consistent with their overlapping
group organization. Although several schemes have been previously proposed to
use the group-lasso penalty with overlapping groups to take advantage of a more
complex structural information on response variables, due to their ad hoc weight-
ing scheme for different overlapping groups in the regularization function, some
regression coefficients were penalized arbitrarily more heavily than others, leading
to an inconsistent estimate [Zhao, Rocha and Yu (2009), Jacob, Obozinski and Vert
(2009), Jenatton, Audibert and Bach (2009)]. In contrast, we propose a systematic
weighting scheme for overlapping groups that applies a balanced penalization to all
of the regression coefficients. Since the tree lasso is a special case of overlapping
group lasso, where the weights and overlaps of groups are determined according to
the hierarchical clustering tree, we adopt for efficient optimization the smoothing
proximal gradient (SPG) method [Chen et al. (2011)] that was developed for opti-
mizing a convex loss function with a general class of structured-sparsity-inducing
penalty functions including overlapping group lasso.

Compared to our previous work on the graph-guided fused lasso that leverages
a network structure over responses to achieve structured sparsity [Kim and Xing
(2009)], the tree lasso has a considerably lower computational time, and allows
more than thousands of response variables to be analyzed simultaneously as is
necessary in a typical eQTL mapping. This is in part because the computation
time in the graph-guided fused lasso depends on the number of edges in the graph
that can be as large as |V | × |V |, where |V | is the number of response variables,
whereas in the tree lasso, it is determined by the number of nodes in the tree, which
is bounded by twice the number of response variables. Another potential advantage
of the tree lasso is that it relaxes the constraint in the graph-guided fusion penalty
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that the regression coefficients should take the similar values for a covariate rela-
vant to multiple correlated responses. Although introducing this bias through the
fusion penalty in the graph-guided fused lasso offered the benefit of combining
weak association signals and reducing false positives, it is expected that relaxing
this constraint could further increase the power. The L1/L2 penalty in our tree reg-
ularization achieves a joint selection of covariates for multiple related responses,
while allowing different values for the regression coefficients corresponding to the
selected covariate and correlated response variables.

Although the hierarchical agglomerative clustering algorithm has been widely
popular as a preprocessing step for regression or classification tasks [Golub et al.
(1999), Sørlie et al. (2001), Hastie et al. (2001)], our proposed method is the first
to make use of the full results from the clustering algorithm given as tree structure
and subtree-height information. Most of the previous classification or regression
methods that build on the hierarchical clustering algorithm used summary statis-
tics extracted from the hierarchical clustering tree such as subsets of genes forming
clusters or averages of gene expressions within each cluster, rather than using the
tree as it is [Golub et al. (1999), Hastie et al. (2001)]. In the tree lasso, we use
the full hierarchical clustering tree as prior knowledge to construct a regulariza-
tion function. Thus, the tree lasso incorporates the full information present in both
the raw data and the hierarchical clustering tree to maximize the power for detect-
ing weak association signals and to reduce false positives. In our experiments, we
demonstrate that our proposed method can be successfully applied to select SNPs
affecting the expression levels of multiple genes, using both simulated and yeast
data sets.

The remainder of the paper is organized as follows. In Section 2 we provide
a brief discussion of previous work on sparse regression estimation. In Section 3
we introduce the tree lasso and describe an efficient optimization method based on
SPG. We present experimental results on simulated and yeast eQTL data sets in
Section 4, and conclude in Section 5.

2. Background on multivariate regression approach for eQTL mapping.
Let us assume that data are collected for J SNPs and K gene-expression traits
over N individuals. Let X denote the N × J matrix of SNP genotypes for covari-
ates, and Y the N × K matrix of gene-expression measurements for responses. In
eQTL mapping, each element of the X takes values from {0,1,2} according to the
number of minor alleles at the given locus in each individual. Then, we assume a
linear model for the functional mapping from covariates to response variables:

Y = XB + E,(2.1)

where B is the J × K matrix of regression coefficients and E is the N × K ma-
trix of noise terms distributed as mean 0 and a constant variance. We center each
column of X and Y such that the mean is zero, and consider the model without
an intercept. Throughout this paper, we use subscripts and superscripts to denote
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rows and columns of a matrix, respectively (e.g., βj and βk for the j th row and
kth column of B).

When J is large and the number of relevant covariates is small, the lasso offers
an effective method for identifying the small number of nonzero elements in B
[Tibshirani (1996)]. The lasso obtains B̂lasso by solving the following optimization
problem:

B̂lasso = arg min
B

1

2
‖Y − XB‖2

F + λ‖B‖1,(2.2)

where ‖ · ‖F is the Frobenius norm, ‖ · ‖1 is the matrix L1 norm, and λ is a tuning
parameter that controls the amount of sparsity in the solution. Setting λ to a small
value leads to a smaller number of nonzero regression coefficients.

The lasso estimation in (2.2) is equivalent to selecting relevant covariates for
each of the K responses separately, and does not provide any mechanism to enforce
a joint selection of common relevant covariates for multiple related responses. In
the literature of multi-task learning, an L1/L2 penalty, also known as a group lasso
penalty [Yuan and Lin (2006)], has been adopted in multivariate-response regres-
sion to take advantage of the relatedness of the response variables and recover the
union support—the pattern of nonzero regression coefficients shared across all of
the responses [Obozinski, Wainwright and Jordan (2008)]. This method is widely
known as the L1/L2-regularized multi-task regression in the machine learning
community, and its estimate for regression coefficients is given as

B̂L1/L2 = arg min
B

1

2
‖Y − XB‖2

F + λ
∑
j

‖βj‖2
,(2.3)

where ‖ · ‖2 denotes an L2 norm. In L1/L2-regularized multi-task regression, an
L2 norm is applied to the regression coefficients for all responses for each covari-
ate, βj , and these L2 norms for the J covariates are combined through an L1 norm
to encourage only a small number of covariates to take nonzero regression coeffi-
cients. Since the L2 part of the penalty does not have the property of encouraging
sparsity, if the j th covariate is selected as relevant, then all of the elements of βj

would take nonzero values, although the regression coefficient values for the co-
variate are still allowed to vary across different responses. When applied to eQTL
mapping, this method is significantly limited since it is not realistic to assume that
the expression levels of all of the genes are influenced by the same set of relevant
SNPs. A subset of co-expressed genes may be perturbed by a common set of SNPs,
and genes in a different pathway are less likely to be affected by the same SNPs.
The sparse group lasso [Friedman, Hastie and Tibshirani (2010)] can be adopted
to relax this constraint by adding a lasso penalty to (2.3) so that individual regres-
sion coefficients within each L2 norm can be set to zeros. However, this method
shares the same limitation as the L1/L2-regularized multi-task regression in that
it cannot incorporate complex grouping structures in the responses such as groups
at multiple granularity as in the hierarchical clustering tree.
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3. Tree lasso for exploiting hierarchical clustering tree in eQTL mapping.
We introduce the tree lasso that considerably adds flexibility and power to these
existing methods by taking advantage of the complex correlation structure given
as a hierarchical clustering tree over the responses. We present a highly efficient
algorithm for estimating the parameters in a tree lasso that is based on the smooth-
ing proximal gradient descent developed for a general class of structured-sparsity-
inducing norms.

3.1. Tree lasso. In a microarray experiment, gene-expression levels are mea-
sured for more than thousands of genes at a time, and many of the genes show
highly correlated expression levels across samples, implying they may share a
common regulator or participate in the same pathway. In addition, in eQTL anal-
ysis, it is widely believed that genetic variations such as SNPs perturb modules of
related genes rather than acting on individual genes. As these gene modules are of-
ten derived and visualized by running the hierarchical agglomerative clustering al-
gorithm on gene expression data, a natural extension of sparse regression methods
for eQTL mapping is to incorporate with them the output of the hierarchical clus-
tering algorithm to identify genetic variations that influence gene modules in the
clustering tree. In this section, we build on the L1/L2-regularized regression and
introduce a tree lasso that can directly leverage hierarchically-organized groups of
genes to combine statistical strength across the expression levels of genes within
each group. Although our work is primarily motivated by eQTL mapping in genet-
ics, the tree lasso is generally applicable to any multivariate-response regression
problem, where the hierarchical group structure over the responses is given as de-
sirable sources of structural bias, such as in many computer vision [Yuan and Yan
(2010)] and natural language processing applications [Zhang (2010), Zhou, Jin and
Hoi (2010)], where dependencies among visual objects and among parts of speech
are well known to be valuable to enhance prediction performance.

Assume that the relationship among the K responses is represented as tree T

with a set of vertices V of size |V |. As illustrated in Figure 1(a), each of the K

leaf nodes is associated with a response variable, and each of the internal nodes
represents a group of the responses located at the leaves of the subtree rooted at
the given internal node. Internal nodes near the bottom of the tree correspond to
tight clusters of highly related responses, whereas the internal nodes near the root
represent groups with weak correlations among the responses in its subtree. This
tree structure may be provided as prior knowledge by domain experts or external
resources (e.g., gene ontology databases in our eQTL mapping problem), or can be
learned from the data for response variables using methods such as the hierarchical
agglomerative clustering algorithm. We assume that each node v ∈ V of the tree
is associated with height hv of the subtree rooted at v, representing how tightly its
members are correlated. In addition, we assume that the heights hv’s of the internal
nodes are normalized so that the height of the root node is 1.
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Given this tree T over the K responses, we generalize the L1/L2 regularization
in (2.3) to a tree regularization by expanding the L2 part of the L1/L2 penalty into
an overlapping group lasso penalty. The overlapping groups in tree regularization
are defined based on tree T as follows. Each node v ∈ V of tree T is associated
with group Gv whose members are the response variables at the leaf nodes of the
subtree rooted at node v. For example, Figure 1(b) shows the groups of responses
and the corresponding regression coefficients that are associated with each of the
nodes of the tree in Figure 1(a). Given these overlapping groups, we define the tree
lasso as

B̂T = arg min
B

1

2
‖Y − XB‖2

F + λ
∑
j

∑
v∈V

wv‖βGv

j ‖
2
,(3.1)

where β
Gv

j is a vector of regression coefficients {βk
j |k ∈ Gv}. Since a tree associ-

ated with K responses can have at most 2K nodes, the number of L2 terms that
appear in the tree-lasso penalty is upper-bounded by |V | = 2K for each covariate.

Each group of regression coefficients β
Gv

j in (3.1) is weighted with wv such
that the group of responses near the leaf of the tree is more likely to have common
relevant covariates, while ensuring the amount of penalization aggregated over all
of the overlapping groups for each regression coefficient to be the same for all
regression coefficients. We define wv’s in (3.1) in terms of two quantities gv’s and
sv’s, given as sv = hv and gv = 1−hv , that are associated with each internal node v

of height hv in tree T . The sv represents the weight for selecting relevant covariates
separately for the responses associated with each child of node v, whereas the gv

represents the weight for selecting relevant covariates jointly for the responses for
all of the children of node v. We first consider a simple case with two responses
(K = 2) and a tree of three nodes that consists of two leaf nodes (v1 and v2) and
one root node (v3), and then generalize this to an arbitrary tree. When K = 2, the
penalty term in (3.1) can be written as

∑
j

∑
v∈V

wv‖βj
Gv

‖
2
= ∑

j

[
s3(|βj

1 | + |βj
2 |) + g3

(√
(β

j
1 )2 + (β

j
2 )2

)]
,(3.2)

where the group weights are set to wv1 = s3, wv2 = s3, and wv3 = g3. Equation
(3.2) has a similar form to the elastic-net penalty [Zou and Hastie (2005)], with
the slight difference that the elastic net uses the square of the L2 norm. The L1
norm and L2 norm in (3.2) are weighted by s3 and g3, and play the role of setting
β1

j and β2
j to nonzero values separately or jointly. A large value of gv indicates

that the responses are highly related, and a joint covariate selection is encouraged
by heavily weighting the L2 part of the penalty. When s3 = 0, the penalty in (3.2)
is equivalent to the L1/L2-regularized multi-task regression in (2.3), where the re-
sponses share the same set of relevant covariates, whereas setting g3 = 0 in (3.2)
leads to a lasso penalty. In general, given a single-level tree with all of the re-
sponses under a single parent node, the tree-lasso penalty corresponds to a linear
combination of L1 and L2 penalties as in (3.2).
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Now, we generalize this process of obtaining wv’s in the tree-lasso penalty for
the special case of a single-level tree to an arbitrary tree. Starting from the root
node and traversing down the tree recursively to the leaf nodes, at each of the root
and internal nodes, we apply the similar operation of linear combination of the L1
norm and L2 norm as in (3.2) as follows:∑

j

∑
v∈V

wv‖βGv

j ‖
2
= ∑

j

Wj (vroot),(3.3)

where

Wj(v) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sv · ∑
c∈Children(v)

|Wj(c)| + gv · ‖βGv

j ‖
2
, if v is an internal node,

∑
m∈Gv

|βm
j |, if v is a leaf node.

Then, it can be shown that the following relationship holds between wv’s and (sv ,
gv)’s:

wv =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

gv

∏
m∈Ancestors(v)

sm, if v is an internal node,

∏
m∈Ancestors(v)

sm, if v is a leaf node.

The above weighting scheme extends the linear combination of the L1 and L2
penalty in (3.2) hierarchically, so that the L1 and L2 norms encourage separate
and joint selections of covariates for the given groups of responses. The sv’s and
gv’s determine the balance between these L1 and L2 norms. If sv = 1 and gv =
0 for all v ∈ V , then only separate selections are performed, and the tree-lasso
penalty reduces to the lasso penalty. On the other hand, if sv = 0 and gv = 1 for all
v ∈ V , the penalty reduces to the L1/L2 penalty in (2.3) that constrains all of the
responses to have the same set of relevant covariates. The unit contour surfaces of
various penalties for β1

j , β2
j , and β3

j with groups as defined in Figure 1 are shown
in Figure 2.

The seemingly complex method for determining the weights wv’s for groups in
the tree-lasso penalty has the property of ensuring all of the regression coefficients
to be overall penalized by an equal amount across all nested overlapping groups
as they appear in a balanced manner. Proposition 1 (as stated and proved in the
supplemental article [Kim and Xing (2012)]) shows that even if each response k

belongs to multiple groups associated with different internal nodes {v :k ∈ Gv}
and appears multiple times in the overall penalty in (3.3), the sum of weights over
all of the groups that contain the given response is always one. Thus, the weight-
ing scheme in (3.3) guarantees that all of the individual regression coefficients are
overall penalized equally. Although several variations of group lasso with over-
lapping groups have been proposed previously, all of those methods weighted
the L2 norms for overlapping groups with arbitrarily defined weights, resulting
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(a) (b) (c)

(d) (e)

FIG. 2. Unit contour surfaces for {β1
j , β2

j , β3
j } in various penalties, assuming the tree structure

over responses in Figure 1. (a): Lasso, (b): tree lasso with g1 = 0.5 and g2 = 0.5, (c): g1 = 0.7 and
g2 = 0.7, (d): g1 = 0.2 and g2 = 0.7, and (e): g1 = 0.7 and g2 = 0.2.

in unbalanced weights for different regression coefficients [Zhao, Rocha and Yu
(2009), Jenatton, Audibert and Bach (2009)]. It was empirically shown that these
arbitrary weighting schemes give an inconsistent estimate [Jenatton, Audibert and
Bach (2009)].

Below, we provide an example of the process of constructing a tree-lasso penalty
based on the simple tree over three responses in Figure 1(a). For more complex
trees over a large number of responses, the same procedure can be applied, travers-
ing the tree recursively from the root to the leaf nodes.

EXAMPLE 1. Given the tree in Figure 1, for the j th covariate the penalty of
the tree lasso in (3.3) can be written as follows:

Wj(v1) = |β1
j |, Wj (v2) = |β2

j |, Wj (v3) = |β3
j |,

Wj (v4) = gv4 · ‖βGv4
j ‖

2
+ sv4 · (|Wj(v1)| + |Wj(v2)|)

= gv4 · ‖βGv4
j ‖

2
+ sv4 · (|β1

j | + |β2
j |),

Wj (vroot) = Wj(v5) = gv5 · ‖βGv5
j ‖

2
+ sv5 · (|Wj(v4)| + |Wj(v3)|)

= gv5 · ‖βGv5
j ‖

2
+ sv5 · gv4‖β

Gv4
j ‖

2
+ sv5 · sv4(|β1

j | + |β2
j |) + sv5 |β3

j |.
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The tree-lasso penalty that we introduced above can be easily extended to other
related types of structures such as trees with different branching factors and a for-
est that consists of multiple trees. In addition, our proposed regularization can be
applied to a pruned tree whose leaf nodes contain groups of variables instead of
individual variables.

3.2. Parameter estimation. Although the tree-lasso optimization problem in
(3.1) is convex, the main challenges for solving equation (3.1) arise from the non-
separable L2 terms over βGv

g ’s in the nonsmooth penalty. While the coordinate
descent algorithm has been successfully applied to nonsmooth penalties such as
the lasso and group lasso with nonoverlapping groups [Friedman et al. (2007)],
it cannot be applied to the tree lasso because the overlapping groups with non-
separable terms in the penalty prevent us from obtaining a closed-form update
equation for iterative optimization. While the optimization problem for the tree
lasso can be formulated as a second-order cone program and solved with the inte-
rior point method [Boyd and Vandenberghe (2004)], this approach does not scale
to high-dimensional problems such as eQTL mapping that involves a large num-
ber of SNPs and gene-expression measurements. Recently, a smoothing proximal
gradient (SPG) method was developed for an efficient optimization of a convex
loss function with a general class of structured-sparsity-inducing penalty functions
that share the same challenges of nonsmoothness and nonseparability [Chen et al.
(2011)]. The SPG can handle a wide variety of penalties such as the overlapping
group lasso and fused lasso, and as the tree lasso is a special case of the overlapping
group lasso, we adopt this method in our paper. As we detail below in this section,
SPG first decouples the nonseparable terms in the penalty by reformulating it with
a dual norm, and introduces a smooth approximation of the nonsmooth penalty.
Then, in order to optimize the objective function with this smooth approxima-
tion of the penalty, SPG adopts the fast iterative shrinkage thresholding algorithm
(FISTA) [Beck and Teboulle (2009)], an accelerated gradient descent method, to
optimize the objective function an accelerated gradient descent method.

3.2.1. Reformulation of the penalty function. We rewrite (3.1) by splitting the
tree-lasso penalty into two parts corresponding to two sets of nodes in tree T ,
Vint = {v||Gv| > 1} for all of the internal nodes and Vleaf = {v||Gv| = 1} for all of
the leaf nodes, as follows:

B̂T = arg min
1

2
‖Y − XB‖2

F + λ

J∑
j=1

∑
v∈Vint

wv‖βGv

j ‖
2

(3.4)

+ λ

J∑
j=1

∑
v∈Vleaf

wv‖βGv

j ‖
2
.

We notice that in the above equation, the first penalty term for Vint contains over-
lapping groups, whereas the second penalty term for Vleaf is equivalent to the
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weighted lasso penalty λ
∑J

j=1
∑K

k=1 wv(k)|βk
j |, where wv(k) represents the weight

for the leaf node associated with the kth response.
Since the penalty term associated with Vint contains overlapping groups and

therefore is nonseparable, we rewrite this term by introducing a vector of auxiliary
variables α

Gv

j for each covariate j and group Gv and by reformulating it with a

dual norm representation ‖βGv

j ‖2 = max‖αGv
j ‖2≤1(α

Gv

j )T β
Gv

j to obtain

�(B) ≡ λ

J∑
j=1

∑
v∈Vint

wv‖βGv

j ‖2

(3.5)

= λ

J∑
j=1

∑
v∈V ′

wv max
‖αGv

j ‖2≤1
(α

Gv

j )T β
Gv

j = max
A∈Q

〈CBT ,A〉,

where 〈U,V〉 ≡ Tr(UT V) denotes a matrix inner product, and A is a
(
∑

v∈Vint
|Gv|) × J matrix given as

A =

⎛
⎜⎜⎝

α
G1
1 · · · α

G1
J

...
. . .

...

α
G|Vint|
1 · · · α

G|Vint|
J

⎞
⎟⎟⎠

with domain Q ≡ {A|‖αGv

j ‖2 ≤ 1,∀j ∈ {1, . . . , J }, v ∈ Vint}. In addition, C in
(3.5) is a (

∑
v∈Vint

|Gv|) × K matrix whose elements are defined as

Ck
(v,i) =

{
λwv, if k ∈ Gv,
0, otherwise,

with rows indexed by (v, i) such that v ∈ Vint and i ∈ Gv , and columns indexed by
k ∈ {1, . . . ,K}. We note that the nonseparable terms over β

Gv

j ’s in the tree-lasso
penalty are decoupled in the dual-norm representation in (3.5).

3.2.2. Smooth approximation to the nonsmooth penalty. The reformulation in
(3.5) is still nonsmooth in B, which makes it nontrivial to optimize. To overcome
this challenge, SPG introduces a smooth approximation of (3.5) as follows:

fμ(B) = max
A∈Q

〈CBT ,A〉 − μd(A),(3.6)

where d(A) ≡ 1
2‖A‖2

F is a smoothing function with the maximum value D ≡
maxA∈Q d(A) = J |Vint|

2 , and μ is the parameter that determines the amount of
smoothness. We notice that when μ = 0, we recover the original nonsmooth
penalty in f0(B). It has been shown [Chen et al. (2011)] that fμ(B) is convex
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and smooth with gradient

∇fμ(B) = (A∗)T C,

where A∗ is the optimal solution to (3.6), composed of (α
Gv

j )∗ = S(
λwvβ

Gv
j

μ
), given

the shrinkage operator S(·) defined as

S(u) =
⎧⎨
⎩

u
‖u‖2

, if ‖u‖2 > 1,

u, if ‖u‖2 ≤ 1.
(3.7)

In addition, ∇fμ(B) is Lipschitz continuous with the Lipschitz constant Lμ =
‖C‖2/μ, where ‖C‖ ≡ max‖V‖F ≤1 ‖CVT ‖F is a matrix spectral norm. We can

show that ‖C‖ = λmaxk∈{1,...,K}
√∑

v∈Vint s.t. k∈Gv
(wv)2.

3.2.3. Smoothing proximal gradient (SPG) method. By substituting the penal-
ty term for Vint in (3.4) with fμ(B) in (3.6), we obtain an objective function whose
nonsmooth component contains only the weighted lasso penalty as follows:

B̂T = arg min
B

1

2
‖Y − XB‖2

F + fμ(B) + λ

J∑
j=1

K∑
k=1

wk|βk
j |.(3.8)

The smooth part of the above objective function is

h(B) = ‖Y − XB‖2
F + fμ(B)(3.9)

and its gradient is given as

∇h(B) = XT (XB − Y) + (A∗)T C,(3.10)

which is Lipschitz-continuous with the Lipschitz constant,

L = λmax(XT X) + Lμ = λmax(XT X) + ‖C‖2

μ
,(3.11)

where λmax(XT X) is the largest eigenvalue of (XT X).
The key idea behind SPG is that once we introduce the smooth approximation

of (3.5), the only nonsmooth component in (3.8) is the weighted lasso penalty and
FISTA can be adopted to optimize (3.8). The SPG algorithm for the tree lasso is
given in Algorithm 1. In order to obtain the proximal operator associated with the
weighted lasso penalty, we rewrite QL(B,Wt ) in (3.12) as follows:

QL(B,Wt ) = 1

2

∥∥∥∥B −
(

Wt − 1

L
∇h(Wt )

)∥∥∥∥
2

2
+ λ

L

J∑
j=1

K∑
k=1

wv(k)|βk
j |,
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Algorithm 1 Smoothing proximal gradient descent (SPG) for tree lasso

Input: X, Y, C, B0, Lipschitz constant L, desired accuracy ε.
Initialization: set μ = ε

2D
where D = maxA∈Q

1
2‖A‖2

F = J |Vint|/2, θ0 = 1,
W0 = B0.
Iterate For t = 0,1,2, . . . , until convergence of Bt :

1. Compute ∇h(Wt ) according to (3.10).
2. Solve the proximal operator associated with the �1-norm:

Bt+1 = arg min
B

QL(B,Wt )

(3.12)

≡ h(Wt ) + 〈B − Wt ,∇h(Wt )〉 + λ‖B‖1 + L

2
‖B − Wt‖2

2.

3. Set θt+1 = 2
t+3 .

4. Set Wt+1 = Bt+1 + 1−θt

θt
θt+1(Bt+1 − Bt ).

Output: B̂ = Bt+1.

and obtain the closed-form solution for Bt+1 in (3.12) by soft-thresholding:

βk
j = sign(vk

j )max
(

0, |vk
j | −

λwv(k)

L

)
, j = 1, . . . , J and k = 1, . . . ,K,

where vk
j ’s are elements of V = (Wt − 1

L
∇h(Wt )). The Lipschitz constant L given

as in (3.11) plays the role of determining the step size in each gradient descent it-
eration, although this value can be expensive to compute for large J . As suggested
in Chen et al. (2011), a back-tracking line search can be used to determine the step
size for large J [Boyd and Vandenberghe (2004)].

It can be shown that the convergence rate of Algorithm 1 is O(1
ε
) iterations,

given the desired accuracy ε [Chen et al. (2011)]. If we precompute and store XT X
and XT Y, the time complexity per iteration of SPG for the tree lasso is O(J 2K +
J

∑
v∈V |Gv|), compared to O(J 2(K + |Vint|)2(KN + J (|Vint| + ∑

v∈V |Gv|)))
for the interior point method for the second-order cone program. Thus, the time
complexity for SPG is quadratic in J and linear in max(K ,

∑
v∈V |Gv|), which

is significantly more efficient than cubic in both J and K for the interior point
method.

4. Experiments. We demonstrate the performance of our method on simu-
lated data sets and the yeast data set of genotypes and gene expressions, and com-
pare the results with those from the lasso and the L1/L2-regularized multi-task
regression that do not assume any structure over responses. In all of our experi-
ments, we determine the regularization parameter λ by fitting models on a training
set for a range of values for λ, computing the prediction error of each model on a
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validation set, and then selecting the value of a regularization parameter that gives
the lowest prediction error. We evaluate these methods based on two criteria, sen-
sitivity/specificity in detecting true relevant covariates and prediction errors on test
data sets. We note that the 1− (specificity) and sensitivity are equivalent to type I
error rate and 1− (type II error rate), respectively. Test errors are obtained as mean
squared differences between the predicted and observed response measurements
based on test data sets that are independent of training and validation data sets.

4.1. Simulation study. We simulate data using the following scenario analo-
gous to eQTL mapping. We simulate (X,Y) with K = 60, J = 200, and N = 150
as follows. We first generate the genotypes X by sampling each element in X from
a uniform distribution over {0,1,2} that corresponds to the number of mutated al-
leles at each SNP locus. Then, we set the values of B by first selecting nonzero
entries and filling these entries with predefined values. We assume a hierarchical
structure with four levels over the responses, and select the nonzero elements of
B so that the groups of responses described by the tree share common relevant
covariates. The hierarchical clustering tree as used in our simulation is shown in
Figure 3(a) only for the top three levels to avoid a clutter, and the true nonzero ele-
ments in the regression coefficient matrix are shown as white pixels in Figure 3(b)
with responses (gene expressions) as rows and covariates (SNPs) as columns. In
all of our simulation study, we divide the full data set of N = 150 into training and
validation sets of sizes 100 and 50, respectively.

To illustrate the behavior of different methods, we fit the lasso, the L1/L2-
regularized multi-task regression, and our method to a single data set simulated

(a) (b) (c)

(d) (e)

FIG. 3. An example of regression coefficients estimated from a simulated data set. (a): Hier-
archical clustering tree of four levels over responses. Only the top three levels are shown to
avoid clutter. (b): True regression coefficients. Estimated parameters are shown for (c): lasso,
(d): L1/L2-regularized multli-task regression, and (e): tree lasso. The rows represent responses and
the columns covariates.
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with the nonzero elements of B set to 0.4, and show the results in Figure 3(c)–(e),
respectively. Since the lasso does not have any mechanism to borrow statistical
strength across different responses, false positives for nonzero regression coef-
ficients are distributed randomly across the matrix B̂lasso in Figure 3(c). On the
other hand, the L1/L2-regularization method blindly combines information across
all responses regardless of the correlation structure. As a result, once a covariate
is selected as relevant for a response, it gets selected for all of the other responses,
and we observe vertical stripes of nonzero values in Figure 3(d). When the hier-
archical clustering structure in Figure 3(a) is available as prior knowledge, it is
visually clear from Figure 3(e) that our method is able to suppress false positives,
and to recover the true relevant covariates for correlated responses significantly
better than other methods.

In order to systematically evaluate the performance of the different methods,
we generate 50 simulated data sets, and show in Figure 4(a) receiver operating
characteristic (ROC) curves for the recovery of the true nonzero elements in the
regression coefficient matrix averaged over these 50 data sets. Figure 4(a) repre-
sents results from data sets with true nonzero elements in B set to 0.2. Additional
results for true nonzero elements in B set to 0.4 and 0.6 are available in Online
Appendix Figures 1A and 1B [Kim and Xing (2012)]. Our method clearly outper-
forms the lasso and the L1/L2-regularized multi-task regression. Especially when
the signal-to-noise ratio is low in Figure 4(a), the advantage of incorporating the
prior knowledge of the tree as a correlation structure over responses is significant.

We compare the performance of the different methods in terms of prediction
errors, using an additional 50 samples as test data. The prediction errors averaged
over 50 simulated data sets are shown in Figure 4(b) for data sets generated from
0.2 for true nonzero elements of regression coefficients. Additional results for data
sets generated from 0.4 and 0.6 for true nonzero elements of regression coefficients
are shown in Online Appendix Figures 2A and 2B, respectively. In addition to the

(a) (b)

FIG. 4. Comparison of various sparse regression methods on simulated data sets. (a): ROC curves

for the recovery of true relevant covariates. (b): Prediction errors. In simulation, β
j
k = 0.2 is used for

the nonzero elements of the true regression coefficient matrix. Results are averaged over 50 simulated
data sets.
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results from sparse regression methods, we include the prediction errors from the
null model that has only an intercept term. We find that our method shown as “T”
in Figure 4(b) has lower prediction errors than all of the other methods. In the
tree lasso, in addition to directly using the true tree structure in Figure 3(a), we
also consider the scenario in which the true tree structure is not known a priori. In
this case, we learn a tree by running a hierarchical agglomerative clustering algo-
rithm on the K ×K correlation matrix of the response measurements, and use this
tree along with the weights hv’s associated with each internal node in our method.
Since the tree obtained in this manner represents a noisy realization of the true
underlying tree structure, we discard the nodes for weak correlation near the root
of the tree by thresholding the normalized hv’s at ρ = 0.9 and 0.7, and show the
prediction errors obtained from these thresholded trees as “T0.9” and “T0.7” in
Figure 4(b). Even when the true tree structure is not available, our method is able
to benefit from taking into account the correlation structure among responses, and
gives lower prediction errors. We performed the same experiment while varying
the threshold ρ in the range of [0.6, 1.0], and obtained similar prediction errors
across different values of ρ (results not shown). This shows that the meaningful
clustering information that the tree lasso takes advantage of lies mostly in the tight
clusters at the lower levels of a tree rather than the clusters of loosely related vari-
ables near the root of the tree.

4.2. Analysis of yeast data. We analyze the yeast eQTL data set of the geno-
type and gene-expression data for 114 yeast strains [Zhu et al. (2008)] using vari-
ous sparse regression methods. We focus on the chromosome 3 with 21 SNPs and
expression levels of 3,684 genes, after removing those genes whose expression
levels are missing in more than 5% of the samples. Although it is widely known
that genes are organized into functional modules within which gene-expression
levels are often correlated, the hierarchical module structure over correlated genes
is not directly available as prior knowledge, and we learn the tree by running the
hierarchical agglomerative clustering algorithm on gene-expression data. We use
only the internal nodes with heights hv < 0.7 or 0.9 in our method. The goal of
the analysis is to search for SNPs (covariates) whose variation induces a significant
variation in the gene-expression levels (responses) over different strains. By apply-
ing our method that incorporates information on gene modules at multiple granu-
larity in the hierarchical clustering tree, we expect to be able to identify SNPs that
influence the activity of a group of genes that are co-expressed or co-regulated.

In Figure 5(a), we show the K × K correlation matrix of the gene expressions
after reordering the rows and columns according to the results of the hierarchical
agglomerative clustering algorithm. The estimated B is shown for the lasso, the
L1/L2-regularized multi-task regression, and our method with ρ = 0.9 and 0.7
in Figure 5(b)–(e), respectively, where the rows represent genes and the columns
SNPs. The regularization parameter is chosen based on prediction errors on a val-
idation set of size 10. The lasso estimates in Figure 5(b) are extremely sparse and
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(a) (b) (c) (d) (e)

FIG. 5. Results for the yeast eQTL data set. (a): Correlation matrix of the gene expression data,
where rows and columns are reordered after applying hierarchical agglomerative clustering. Esti-
mated regression coefficients are shown for (b): lasso, (c): L1/L2-regularized multi-task regression,
(d): tree lasso with ρ = 0.9, and (e): with ρ = 0.7. In panels (b)–(e), the rows represent genes (re-
sponses) and the columns SNPs (covariates).

do not reveal any interesting structure in SNP-gene relationships. We believe that
the association signals are very weak as is typically the case in the eQTL study, and
that the lasso is unable to detect such weak signals without combining statistical
strength across multiple genes with correlated expressions. The estimates from the
L1/L2-regularized multi-task regression are not sparse across gene expressions,
and tend to form vertical stripes of nonzero regression coefficients as can be seen
in Figure 5(c). On the other hand, our method in Figure 5(d)–(e) reveals clear
groupings in the patterns of associations between gene expressions and SNPs. In
addition, as shown in Figure 6, our method performs significantly better in terms
of prediction errors on the test set obtained from the 10-fold cross-validation.

Given the estimates of B in Figure 5, we look for an enrichment of gene on-
tology (GO) categories among the genes with nonzero estimated regression coef-
ficients for each SNP. A group of genes that form a module often participate in
the same pathway, leading to an enrichment of a GO category among the mem-
bers of the module. Since we are interested in identifying SNPs influencing gene
modules, and our method encourages this joint association through the hierarchical
clustering tree, we hypothesize that our method would reveal more significant GO
enrichments in the estimated nonzero elements in B. Given the tree-lasso estimate,

FIG. 6. Prediction errors for the yeast eQTL data set.
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(a) (b) (c)

FIG. 7. Enrichment of GO categories for genes whose expression-levels are influenced by the same
SNP based on the regression coefficients estimated from the yeast eQTL data set. The number of SNPs
with significant enrichment is shown for GO categories within (a): biological process, (b): molecular
function, and (c): cellular component.

we search for GO enrichment in the set of genes that have nonzero regression co-
efficients for each SNP. On the other hand, the estimates of the L1/L2-regularized
method are not sparse across genes. Thus, we threshold the absolute values of the
estimated B at 0.005, 0.01, 0.03, and 0.05, and perform GO enrichment analysis
for only those genes with βk

j above the threshold.
In Figure 7, we show the number of SNPs with significant enrichments at differ-

ent p-value cutoffs for subcategories within each of the three broad GO categories,
including biological processes, molecular functions, and cellular components. For
example, within biological processes, SNPs were found to be enriched for GO
terms such as mitocondrial translation, amino acid biosynthetic process, and or-
ganic acid metabolism. Regardless of the thresholds for selecting significant as-
sociations in the estimates from the L1/L2-regularized multi-task regression, our
method generally finds more significant enrichment. Although due to the lack of
ground-truth information, the results in Figure 7 do not directly demonstrate that
our method led to more significant findings than other methods, they provide ev-
idence that our method was successful in finding SNPs with pleiotropic effects
that influence gene modules rather than focusing on identifying SNPs that affect
individual genes as in the lasso.

Table 1 lists the enriched GO categories (p-value < 1.0 × 10−5) for SNPs
and the groups of genes whose expression levels are affected by the given SNP
based on the tree-lasso estimate of association strengths. For comparison, in the
last column of Table 1, we include the enriched GO categories for roughly simi-
lar genomic locations that have been previously reported in Zhu et al. (2008) us-
ing the conventional single-SNP/single-gene statistical test for association. While
the tree-lasso results mostly recover the previously-reported GO enrichments, we
find many additional enrichments that are statistically significant. This observation
again provides us with indirect evidence that the tree lasso can extract fine-grained
information on gene modules perturbed by genetic polymorphisms.
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TABLE 1
Enriched GO categories for genes whose expression levels are influenced by the same SNP in the
yeast eQTL data set. The results in columns 1–4 are based on the tree-lasso estimate of regression

coefficients. The last column shows the enriched GO categories reported in Zhu et al. (2008)
(BP: biological processes, MF: molecular functions, CC: cellular components)

Previously
SNP reported
loc. Module GO category enrichment [Zhu
in Chr3 size (overlap/#genes) p-value et al. (2008)]

64,300 203 BP: Amino acid biosynthetic process (36/92) 3.8 × 10−20

75,000 167 BP: Amino acid biosynthetic process (46/92) 8.7 × 10−37 BP: Organic
BP: Organic acid metabolism (62/244) 2.6 × 10−30 acid metabolism
MF: Transferase activity (47/476) 7.0 × 10−6 (1.6 × 10−42)

76,100 186 MF: Catalytic activity (106/1379) 3.3 × 10−6

79,000 167 BP: Amino acid biosynthetic process (52/92) 6.1 × 10−46

MF: Catalytic activity (99/1379) 5.4 × 10−7

86,000 103 BP: Amino acid biosynthetic process (29/92) 6.3 × 10−22

MF: Oxidoreductase activity (20/197) 2.3 × 10−5

100,200 68 BP: Amino acid biosynthetic process (19/92) 1.4 × 10−13

105,000 168 BP: Amino acid biosynthetic process (45/92) 3.2 × 10−35

MF: Transferase activity (47/476) 1.0 × 10−5

175,800 89 BP: Amino acid biosynthetic process (34/92) 1.7 × 10−31

MF: Catalytic activity (59/1379) 2.1 × 10−6

210,700 23 BP: Branched chain family 3.4 × 10−9 BP: Response to
amino acid biosynthetic process (6/12) chemical stimulus
BP: Response to pheromone (8/69) 4.1 × 10−8 (7.6 × 10−7)

228,100 195 BP: Mitochondrial translation (32/77) 2.9 × 10−19

CC: Mitochondrial part (77/345) 9.3 × 10−30

MF: Hydrogen ion transporting ATP synthase 3.3 × 10−10

activity, rotational mechanism (9/9)

240,300 258 CC: Cytosolic ribosome (110/140) 9.6 × 10−107

MF: Structural constituent of ribosome 8.1 × 10−75

(104/189)

240,300 40 BP: Generation of precursor 6.1 × 10−13

metabolites and energy (17/132)

CC: Mitochondrial inner membrane (13/126) 1.7 × 10−8

MF: Transmembrane transporter activity 2.8 × 10−7

(14/195)

301,400 274 MF: snoRNA binding (13/16) 1.0 × 10−10



TREE LASSO FOR EQTL MAPPING 1115

5. Discussion. In this article we proposed a novel regularized regression ap-
proach, called the tree lasso, that identifies covariates relevant to multiple related
responses jointly by leveraging the correlation structure in responses represented
as a hierarchical clustering tree. We discussed how this approach can be used in
eQTL analysis to learn SNPs with pleiotropoic effects that influence the activi-
ties of multiple co-expressed genes. For optimization, we adopted the smoothing
proximal gradient approach that was originally developed for a general class of
structured-sparsity-inducing penalties, as the tree-lasso penalty can be viewed as a
special case. Our results on both the simulated and yeast data sets showed a clear
advantage of the tree lasso in increasing the power of detecting weak signals and
reducing false positives.

SUPPLEMENTARY MATERIAL

The balanced weighting scheme of tree lasso and additional experimen-
tal results (DOI: 10.1214/12-AOAS549SUPP; .pdf). We prove that the weighting
scheme of the tree-lasso penalty achieves a balanced penalization of all regression
coefficients. We also provide additional experimental results on the comparison of
the tree lasso with other sparse regression methods using simulated data sets.
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