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We develop statistically based methods to detect single nucleotide DNA
mutations in next generation sequencing data. Sequencing generates counts
of the number of times each base was observed at hundreds of thousands to
billions of genome positions in each sample. Using these counts to detect
mutations is challenging because mutations may have very low prevalence
and sequencing error rates vary dramatically by genome position. The dis-
creteness of sequencing data also creates a difficult multiple testing problem:
current false discovery rate methods are designed for continuous data, and
work poorly, if at all, on discrete data.

We show that a simple randomization technique lets us use continuous
false discovery rate methods on discrete data. Our approach is a useful way
to estimate false discovery rates for any collection of discrete test statistics,
and is hence not limited to sequencing data. We then use an empirical Bayes
model to capture different sources of variation in sequencing error rates. The
resulting method outperforms existing detection approaches on example data
sets.

1. Introduction. Highly-multiplex sequencing technologies have made DNA
sequencing orders of magnitude faster and cheaper [Shendure and Ji (2008)].
One promising application of next generation sequencing technologies is detect-
ing changes in the DNA of genetically mixed samples. Examples of this detection
problem include searching for somatic mutations in tumor tissue contaminated by
normal stroma, finding single nucleotide variants by pooled sequencing of multi-
ple samples, and detecting low-prevalence mutations in evolving virus populations.
Our goal is to find genome positions at which a fraction of the cells or viruses in
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the sample have mutated. The studies we consider are exploratory in nature, so any
mutations we detect will be tested further using more laborious methods.

Shendure and Ji (2008) describe the typical sequencing experiment. DNA from
the sample is extracted and fragmented. The fragments are used to form a DNA
library, possibly after amplification and size selection. The ends of the fragments in
the DNA library are sequenced to obtain fixed-length DNA segments called reads.
Aligning the reads to a reference genome yields counts of the number of times each
base (A,C,G,T ) is observed at each reference position. If every cell or virus in
the sample has the same base as the reference genome at a given position, any
observed base different from the reference base must be due to error. Such errors
can be caused by errors in sequencing or alignment.

We define the observed error rate as the proportion of bases observed at a given
position that are not equal to the reference base. For example, if the reference base
at a position were A and we observed 8 A’s and 2 C’s at the position, the ob-
served error rate would be 20%. Mutations appear in sequencing data as unusually
high observed error rates. For example, suppose we know that the true error rate
at a given genome position is exactly 1%. If we observe an error rate of 2% at
that position, and if the total count of all bases observed for that position is suffi-
ciently high to dismiss sampling noise, then we can infer that roughly 1% of the
cells in the sample carry a mutation. In practice, we do not know the true error
rate, which varies widely across positions and is affected by many steps in the se-
quencing experiment. Also, in most sequencing experiments, a large proportion of
the positions have few counts, making it important to account for sampling noise.
Distinguishing true mutations from uninteresting randomness requires statistical
modeling and analysis.

The discrete nature of sequencing data makes the mixed sample detection prob-
lem particularly challenging. It is difficult to detect small, continuous changes us-
ing discrete data. In addition, sequencing depth—the total number of {A,C,T ,G}
counts—varies dramatically across positions. For example, in targeted resequenc-
ing, the sequencing depth can vary over two to three orders of magnitude
[Natsoulis et al. (2011), Porreca et al. (2007)]. Any method must work for both
low and high depth positions, which rules out convenient large-sample approxi-
mations.

The discreteness of sequencing data also makes it difficult to tackle multiple
testing issues. False discovery rate (fdr) methods are a standard approach to con-
trolling type I error in exploratory studies; these methods can be interpreted as
empirical Bayes versions of Bayesian hypothesis tests [Benjamini and Hochberg
(1995), Efron et al. (2001), Efron (2004)]. Current fdr methods, however, are de-
signed for continuous data, and work poorly on discrete data.

In this paper, we develop an empirical Bayes approach to detect mutations in
mixed samples. First, in Section 2, we show continuous fdr methods can be applied
to discrete data. Our basic idea is to replace traditional discrete p-values with ran-
domized p-values that behave continuously, and then use continuous fdr methods.
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It is easy to show that the resulting method preserves the empirical Bayes inter-
pretation of false discovery rates. Our approach is a useful way to estimate false
discovery rates for any collection of discrete test statistics, and is not limited to
sequencing data.

Next, in Section 3, we present an empirical Bayes model for sequencing error
rates. Mutations appear in the data as unusually high error rates, so to detect muta-
tions accurately, we need to estimate the position-wise error distribution under the
null hypothesis of no mutation. We use a hierarchical model to separate the vari-
ation in observed error rates into sampling variation due to finite depth, variation
in error rate at a fixed position across samples, and variation in error rate across
positions. This model shares information across samples and across genome posi-
tions to estimate the sequencing error rate at each position. We use the position-
and sample-specific null distributions from this model to screen for mutations.

Finally, in Section 4, we apply our methods to two very different mutation de-
tection problems. The first problem is motivated by the detection of emerging mu-
tations in virus samples. We use a synthetic data set created by Flaherty et al.
(2012), where the truth is known, to evaluate the accuracy of our method and to
make comparisons. The second problem is the analysis of sequencing data from tu-
mor samples with matched normal samples. We use this larger and more complex
data set to illustrate the general applicability of our methods.

2. Multiple testing tools for discrete data. In this section, we show how
continuous false discovery methods can be applied on discrete data. We begin by
briefly reviewing the basic steps in a standard empirical fdr analysis as described
by Efron (2004), and showing that none of the steps can be directly applied to
discrete data. We then use a randomization technique to translate each step to the
discrete setting.

2.1. A continuous false discovery rate analysis. Consider the following mul-
tiple testing problem. We observe continuous valued data xi, i = 1, . . . ,P , and,
based on a model for the null hypothesis, we have a null distribution Fi for each xi .
We think that most xi are null, and we want to find the few that are not. For ex-
ample, our nulls could be normal, Fi = N (0, σ 2

i ), and we could be searching for
unusually large xis. Typically, we use the null distributions to form a p-value for
each case:

pi = Fi(zi).

The pi’s all have the same distribution under the null, since if xi ∼ Fi , pi ∼
Unif(0,1).

An fdr analysis as outlined by Efron (2004) proceeds in three major steps. First,
we check the validity of our null distributions. If our nulls are correct, and most
xi are null, then most xi ∼ Fi . This means that if our nulls are correct, most pi ∼
Unif(0,1). We can thus use the distribution of the pi to check if our nulls are
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correct. If they are, the p-value histogram should be uniform through most of the
unit interval, possibly with some extra mass near 0 and 1 from truly nonnull xis.
If the p-value histogram has this form, our nulls are at least correct on average
[Gneiting, Balabdaoui and Raftery (2007) make this precise].

Often, however, the p-value histogram reveals that our null distributions are
wrong. If this happens, our next step is to correct our null distributions. One way
to do this is to estimate the null using the data [Efron (2004)]. When our null
distributions are wrong, Efron suggests modeling the null p-values as still having a
common distribution, but fitting that distribution using the data instead of assuming
it is Unif(0,1). Since most of our hypotheses presumably are null, we can estimate
such an “empirical null” by fitting the distribution of the center of the data. We
then use that fitted null distribution to make better p-values. If H : [0,1] �→ [0,1]
is the cdf of the fitted null p-value distribution, this correction changes our null
distributions Fi to H ◦ Fi and our p-values pi to H(pi).

Finally, once our nulls have been corrected, we can proceed to the final step of
estimating the local false discovery rate

fdr(xi) = P(Hi0|xi),

where Hi0 is the event that the ith null hypothesis is true. Using Bayes’ rule, and
the one-to-one relationship between xi and the transformed p-values, we can ex-
press the false discovery rate as

fdr(xi) = P(Hi0)fnull(pi)

f (pi)
,(2.1)

where fnull(pi) and f (pi) are the null and marginal distributions of the p-values.
Note that we can reasonably model the p-values as having the same marginal
distribution because they all have the same distribution under the null.

We estimate the false discovery rate by estimating each of the three quantities
on the right side of (2.1). Because we think that most hypotheses are null, we can
simply bound P(Hi0) by 1, and since we have corrected our null distributions,
we know that fnull is the uniform density. Last, we can estimate the marginal dis-
tribution f using the observed p-values. Substituting these quantities into (2.1)
yields an estimated fdr, which we can use to find nonnull hypotheses based on the
magnitudes of the xi ’s.

2.2. Discrete data problems. The three core steps in our continuous false dis-
covery rate analysis are checking the null distributions, possibly estimating an em-
pirical null, and estimating fdr’s. Each step relies on the assumption that if we
knew the correct null distributions of our test statistics, the null p-values would be
uniform. This assumption fails for discrete data: even when all of our null distribu-
tions are correct, the p-values corresponding to the truly null hypotheses will still
not be uniform, and, in general, will have different distributions.
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FIG. 1. p-values pi = Fi(xi), where xi ∼ Fi = Poisson(10).

For example, suppose we observe data xi , i = 1, . . . ,P , and we think that each
xi has the same null distribution Fi = Poisson(10). We can form p-values pi =
Fi(xi) as before. Figure 1 shows that even though our null distributions are correct,
the p-values are far from Unif(0,1). Furthermore, if the null distributions Fi are
Poisson(μi) with μi varying across i, then it is not hard to see that the pi will have
different null distributions. Checking the uniformity of the p-values does not tell
us if our null distribution is correct or wrong, and it is not clear how to transform
the pi to be uniform. Because the p-values are not uniform under the correct null,
we cannot use the uniformity of the p-values to check our nulls. And since each p-
value can have a different null distribution even when our model is correct, it makes
little sense to model the p-values as having the same null or marginal distributions.
This means that we cannot use existing methods for estimating empirical nulls and
computing fdr’s on discrete data.

2.3. Randomized p-values. One way to fix this problem is to randomize the p-
values to make them continuous. Randomized p-values are familiar from classical
hypothesis testing [Lehmann and Romano (2005)], and have long been used in the
forecasting literature to assess predictive distributions for discrete data [Brockwell
(2007), Czado, Gneiting and Held (2009), Kulinskaya and Lewin (2009)] recently
used randomized p-values to construct versions of the Bonferroni and Benjamini–
Hochberg multiple testing procedures for discrete data. Their approach, however,
has drawbacks that make it unsuitable for our purposes. It offers no way to check
the nulls, to fit an empirical null, or to use existing continuous fdr methods. More
seriously, it produces a “probability of rejection” for each case, not a false discov-
ery rate, and is too computationally expensive to apply to even moderately large
data sets.

We propose using existing continuous false discovery rate methods on random-
ized p-values. Let

ri = F−
i (xi) + Ui

(
F(xi) − F−

i (xi)
)

(2.2)
= PFi

(X < xi) + UiPFi
(X = xi),
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where F−
i = P(Xi < xi) denotes the left-limit function of the cdf Fi , Ui are i.i.d.

Unif(0,1) independent of all the xi , and PFi
denotes probability under X ∼ Fi . In

other words, we use ri ∼ Unif(F−
i (xi),Fi(xi)) instead of pi = Fi(xi).

The key property of ri is that if our null distribution Fi is correct, then ri ∼
Unif(0,1) under the null. This modification (of pi to ri) allows us to apply con-
tinuous fdr methods to the ri . Theorem 2.1 makes this property more precise: The
closer ri is to uniform, the closer our true null distribution is to the assumed null Fi ,
and vice versa. The theorem (proved in the Appendix) also holds for the nonran-
dom discrete p-value functions proposed by Czado, Gneiting and Held (2009),
which can be used instead of our randomized p-values in everything that follows.

THEOREM 2.1. Let x be a discrete random variable, F be our predicted dis-
tribution for x, and G be the true distribution of x. Let r = F−(x) + U(F(x) −
F−(x)) be our constructed randomized p-value, with density h(r), cdf H(r), and
let hunif(t) = 1, Hunif(t) = t be the uniform density and cdf.

Then

DKL(Hunif‖H) = DKL(G‖F),

DKL(H‖Hunif) = DKL(F‖G),

sup
r∈[0,1]

|H(r) − Hunif(r)| = sup
x

|F(x) − G(x)|,

where for two distribution functions P and Q, DKL(P‖Q) = ∫
log( dP

dQ
)dP is the

Kullback–Liebler divergence. In particular, r ∼ Unif(0,1) if and only if F = G.

Theorem 2.1 says that if our null distribution Fi is correct, then ri is uniform
under the null. Moreover, if our null distribution is close to the true null in the
Kullback–Liebler or Kolmogorov distance, then r is close to uniform in the same
sense under the null. Consider our previous example, where xi ∼ Poisson(10).
Figure 2 shows that ri are uniform if we use the correct Poisson(10) null. If we use
the wrong null, Poisson(5), then ri are clearly not uniform. The distance between
the distribution of ri and the uniform distribution is exactly the distance between
the assumed null Poisson(5) and the correct null Poisson(10).

Theorem 2.1 lets us check our null distributions, fit empirical null distributions,
and estimate false discovery rates using tools developed for continuous data. Con-
sider the first problem, checking the null distributions. We know that most xi each
come from their null distribution, and that if we have assumed the correct null
distributions, ri ∼ Unif(0,1) under the null. We can check for systematic depar-
tures from the assumed null distributions by assessing the ri histogram just as
we checked our nulls using the p-value histogram for continuous data, using any
model assessment tool from the continuous fdr literature.

Next, consider estimating an empirical null distribution. We can use continuous
empirical null methods to fit a null distribution H to ri . Just as in the continuous
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FIG. 2. Histograms of randomized p-values ri under the correct Poisson(10) null (left) and the
incorrect Poisson(5) null (right). The Kolmogorov distance between the distribution of ri under
the incorrect null and the uniform distribution is 0.6464, exactly the Kolmogorov distance between
Poisson(5) and Poisson(10). The distance from the empirical cdf of the realized ri in the histogram
to the uniform distribution is 0.6465, which is different only because of the randomness in x and r .

case, we can then use H to fix our null distributions, changing Fi to F̃i = H ◦ Fi ,
and substituting F̃ in place of F in (2.3) to make new randomized p-values r̃i .
Theorem 2.1 says that if r̃i is approximately uniform, F̃i is close to the true null
distribution.

Finally, consider estimating fdr. Using Bayes’ rule, we can write

fdr(xi) = P(Hi0)Pnull(xi)

Pmarg(xi)
,

where Pnull and Pmarg are the null and marginal distributions of xi . Rewriting in
terms of r̃i , this is,

fdr(xi) = P(Hi0)Pnull(r̃i ∈ [F̃−
i (xi), F̃i(xi)])

Pmarg(r̃i ∈ [F̃−
i (xi), F̃i(xi)])

.(2.3)

As before, we bound P(Hi0) by 1, and since r̃i are uniform under the null,

Pnull
(
r̃i ∈ [F̃−

i (xi), F̃i(xi)]) = F̃i(xi) − F̃−
i (xi).

We can model the r̃i as having approximately the same marginal distribution since
they are all Unif(0,1) under the assumed null distribution. This lets us use the
distribution of r̃i to estimate the marginal probability in the denominator of (2.3).
Substituting these three values into (2.3) gives us an estimated false discovery rate.
Randomization thus lets us translate the three key steps in a continuous fdr analysis
to the discrete setting.

It is important to note that although we use randomized p-values, the variability
in the randomization does not significantly affect our final fdr estimates. Given F̃ ,
the false discovery rate in (2.3) is a deterministic function of the data x, so the
randomization step affects our fdr estimate only through the estimated empirical
null F̃ and the marginal distribution of r̃i . These quantities depend on the em-
pirical distribution of all or most of the r̃i’s, and do not depend strongly on any
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individual r̃i . For large P , the empirical distribution of r̃i will be close to its true
distribution, which is a deterministic function of the xi ’s. Thus, for large P , the
variability in the randomization will have little effect on our fdr estimates. For
small P , if the extra variability from randomization is a concern, we can substitute
the nonrandom p-value functions proposed by Czado, Gneiting and Held (2009)
with essentially no change to our analysis.

3. Modeling sequencing error rates. In this section, we turn to the appli-
cation of detecting DNA mutations and present an empirical Bayes model for se-
quencing error rates. Mutations appear in the data as unusually high observed error
rates, so detecting mutations accurately requires understanding the normal varia-
tion in error rates. We begin by describing two example data sets and summarizing
the existing approaches. Then, we describe a hierarchical model for observed er-
ror rates that accounts for sample effects, genome position, and finite depth. Our
model shares information across positions and samples to estimate error rates and
quantify their variability.

3.1. Example data sets: Virus and tumor. Our first example is motivated by the
problem of detecting rare mutations in virus and microbial samples. Deep, targeted
sequencing has been used to identify mutations that are carried by a very small
proportion of individuals in the sample. Detecting these rare mutations is impor-
tant, because they represent quasispecies that may expand after vaccine treatment.
We use the synthetic DNA admixture data from Flaherty et al. (2012), in which
a reference and a mutant version of a synthetic 281 base sequence are mixed at
varying ratios. The mutant differs from the reference at 14 known positions. This
data set contains six samples, 3 of which are 100% reference, the other 3 con-
tain a 0.1% mixture of the mutant sequence. These samples were sequenced on
an Illumina GAIIx platform. The reads were then aligned to the reference se-
quence, yielding nonreference counts (“errors”) xij and depth Nij for each po-
sition (i = 1, . . . ,P = 281, j = 1, . . . , S = 6) [see Flaherty et al. (2012) for more
details]. Our goal is to find the mutations, which appear in the data as unusually
large error rates xij /Nij .

Our second example is a comparison of normal and tumor tissue in S = 28
lymphoma patients, plus tissue from one healthy individual sequenced twice as
a control. A set of regions containing a total of P = 309,474 genome positions
was extracted from each sample and sequenced on the Illumina GAIIx platform,
yielding nonreference counts xij , yij and depths Nij ,Mij for the normal and tumor
tissues. Our goal is to find positions that show biologically interesting differences
between the normal and tumor samples, such as positions that are mutated in the
tumor or variant positions in the normal that have seen a loss of heterozygosity.
These appear in the data as significant differences between the error rates xij /Nij

and yij /Mij .
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The two detection problems pose different challenges. Since virus genomes are
short, they can be sequenced to uniformly high depth. For example, the synthetic
virus data from Flaherty et al. (2012) has depth in the hundreds of thousands.
Human tissue, however, is usually sequenced to a lower, more variable depth. The
tumor data has a median depth of 171, but the depth varies over five orders of
magnitude, from 0 to over 100,000. Discreteness is thus a more serious problem
for the tumor application than it is for the virus application. The tumor data also
exhibits much more variation in error rates, from less than 0.1% to over 20%,
because the human genome is harder to target and map.

Analyzing the virus data is difficult primarily because we are interested in very
rare mutations. A mutation carried by 0.1% of the viruses may be biologically
interesting, but one carried by 0.1% of the tumor cells is typically less interesting,
since biologists usually are interested in mutations present in a substantial fraction
of the tumor cells. Despite the high sequencing depth, it is difficult to detect such
a small change in base proportions using discrete counts.

3.2. Existing approaches. Most current methods for variant detection in se-
quencing data are designed to analyze samples of DNA from pure, possibly
diploid, cells. In pure diploid samples, variants are present at levels of either 50%
or 100% of the sample, and are thus much easier to detect than variants in mixed
samples, where they may be present at continuous fractions. Nearly all existing
methods, including the widely used methods of Li, Ruan and Durbin (2008) and
McKenna et al. (2010), rely on sequencing quality scores from the Illumina plat-
form and mapping quality metrics to identify and filter out high-error positions.
Storing and processing these quality metrics is computationally intensive, and
methods utilizing these metrics are not portable across experimental platforms.

Muralidharan et al. (2012) proposed a method to detect single nucleotide vari-
ants in normal diploid DNA. Their method uses a mixture model with mixture
components corresponding to different possible genotypes, and pools data across
samples to estimate the null distribution of sequencing errors at each position.
They showed that this approach, which avoids using quality metrics, outperforms
existing quality metric based approaches.

A different approach to variant detection was proposed by Natsoulis et al.
(2011), who use techniques based on domain knowledge, such as repeat masking
(see Section 4.2) and double-strand confirmation (evidence for the variant must
be present in both the forward and reverse reads covering the position) to identify
high-error positions and eliminate false calls. This method can also be used to call
mutations in tumors using matched normal samples.

Although most current methods for variant detection are designed for pure
diploid samples, a few methods for detecting rare variants in virus data have re-
cently been proposed. Hedskog et al. (2010) find simple upper confidence limits
for the error rate and use them to test for variants. Flaherty et al. (2012) use a Beta-
Binomial model, that is, less conservative but much more powerful. Their model
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for sequencing error rates is similar in form to ours, but uses a Beta distribution
for error rates that we find does not fit the data. Hedskog et al. (2010) and Flaherty
et al. (2012) also do not account for the effects of sample preparation on the error
rates. Finally, both papers simply use a Bonferroni bound to avoid multiple testing
concerns. This is reasonable since the data they analyze have only a few hundred
positions, but it makes their methods inapplicable to large genomic regions where
multiple testing is a more serious problem.

3.3. Sequencing error rate variation. Sequencing error rates show three types
of variation. The first type of error rate variation comes from finite depth. Consider
a nonmutated position, where all nonreference counts are truly errors. Given the
depth and an error rate, we can model the nonreference counts as binomial,

x ∼ Binomial(N,p).(3.1)

Because N is finite, the observed error rate x/N will vary around the true error
rate p. This type of variation is easily handled by the binomial model.

The second type of variation is positional: as shown by Muralidharan et al.
(2012) and Flaherty et al. (2012), different positions in the genome have different
error rates. This means that each position has its own error rate p in our binomial
model (3.1). Suppose we have extremely large depth, so that the binomial variation
in the observed error rate x/N is negligible. A large observed error rate at a given
position is still not enough to report a mutation, because that position may simply
be noisy. We can account for the positional variation in error rates by aggregating
data across samples to estimate the baseline sequencing error p at each position.

The last type of variation is variation across samples. Small differences in sam-
ple preparation and sequencing, such as the sample’s lane assignment on the Il-
lumina chip, can create differences in the sequencing error rate at each position,
even when the sample contains no mutations. For example, suppose that we have
extremely large depth, that we have estimated the positional error rate p perfectly,
and that we observe an error rate x/N , that is, higher than p. We still cannot
conclude that the position is mutated, because the difference between x/N and p

may be due to sample preparation. We can account for cross-sample variation by
aggregating data across positions to estimate sample effects.

Figure 3 illustrates these three sources of variation. It plots, on the logit scale,
observed error rates x/N for two reference samples from the synthetic data of
Flaherty et al. (2012). Each point in the plot represents a position. There are no mu-
tant positions, so all points represent null observed error rates. The figure shows
that error rates in the two samples are highly correlated and depend strongly on
genome position. The binomial variation due to finite depth causes some of the
spread around the diagonal. Sample variation also causes spread around the diag-
onal, as well as a systematic bias-error rates for the second sample are slightly but
significantly higher than error rates in the first. These two samples were actually
sequenced in the same lane; we observed stronger sample effects when comparing
data from different lanes. We also saw similar behavior on the tumor data.
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FIG. 3. Observed error rates logit(x/N) for two reference samples in the virus data. The solid
green line is the x = y diagonal. The error rates for the second sample are slightly but significantly
biased upward. The dashed blue line shows the diagonal shifted to account for this bias.

3.4. Modeling the variation. Figure 3 also suggests a model for sequencing
error rates—when plotted on the logit scale, the error rates are dispersed evenly
around a shifted diagonal. Figure 4 shows that the dispersion in error rates is
roughly normal. Accordingly, we can model the logit sequencing error rate in each
sample as a sum of a positional error rate, sample bias, and normally distributed
sample noise. Given the error rate, we observe binomial counts. This model makes
sense biologically: sample preparation for these two data sets includes PCR am-

FIG. 4. Differences between observed error rate x/N and positional error rate μ for the three
reference samples, on the logit scale. The mean error rate μ was estimated by averaging logit(x/N)

for each position over the reference samples.
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plification, an exponential process, so it is plausible that differences in sample
preparation produce additive effects on the logit scale.

This formulation yields the following hierarchical model for the unmatched mu-
tation detection problem such as in the virus application:

logitpij ∼ N (logitμi + δj , σ
2
j ),

(3.2)
xij |pij ∼ Binomial(Nij ,pij ),

where μi is the positional error rate, δj is a sample-specific error rate bias (con-
stant across positions), and σj measures the sample specific noise in error rates.
Fitting μ, δ, and σ provides information on the positional error rates, sample bi-
ases, and cross-sample variability in our data.

This model allows us to test whether an observed error rate is unusual enough to
be a mutation. For example, consider applying the model to the virus data. Once we
fit the parameters, as described in Section 3.4.1, the model gives a null distribution
for the observed error rate at each position. We can then compare the observed
error rates for each position in a clinical sample to its null distribution and use the
false discovery rate methods from Section 2 to find mutated positions.

Next, consider tumor data with matched normals. We model the normal tissue
error rates as in (3.2), and introduce extra parameters to account for additional
error rate variation between normal and tumor tissue from the same patient:

logitpij ∼ N (logitμi + δj , σ
2
j ),

logitqij |pij ∼ N (logitpij + ηj , τ
2
j ),

xij |pij , qij ∼ Binomial(Nij ,pij ),

yij |pij , qij ∼ Binomial(Nij , qij ),

where pij , qij are the normal and tumor error rates, respectively; δj , ηj are sample
effects, σj is the noise variance for the normal tissue, and τj is the noise variance
for the difference between tumor and normal tissue. After fitting the parameters as
described in Section 3.4.1, we use this model to find the conditional null distribu-
tion for the tumor error rates, given the observed normal error rates. That is, we
use the model to find null distributions for

yij

Mij

∣∣∣∣ xij

Nij

,

and then use the false discovery rate approach in Section 2 to find mutated posi-
tions.

The logit-normal model naturally handles the discreteness and wide range of
depths in our data. It separates the observed error rate variation into depth, posi-
tional variation, and sample effects, and combines the different sources of variation
to give the appropriate null distribution in each case.
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3.4.1. Fitting. The best way to fit our model will depend on the data set, so
we will discuss the fitting in only general terms.

Estimating μ,δ, and η is usually straightforward. For example, in the virus data
set, we use the median of the observed error rates for each position over all of the
reference samples to estimate μ, then estimate δ using all of the positions in each
sample,

δ̂j = median
(

logit
xij

Nij

− logit μ̂i

)
.

Similar ideas can also be applied to estimate these parameters for the tumor data.
Estimating the sample error rate variances σ and τ can be more difficult. The

simplest and fastest approach is to use the method of moments as an approximate
version of maximum likelihood. This works well if depths are large, as in the virus
data. If depths are small, as in the tumor data, the method of moments works badly
and it is better to use the maximum likelihood.

The tumor data also has extra sources of variability, which we discuss briefly
to illustrate how our method can be adapted to the specific characteristics of a
data set. Because of genetic variation between people, not all normal samples have
the same base at each position. For example, at single nucleotide polymorphic
positions (SNPs), heterozygous samples have an observed “error rate” close to
0.5 against the reference genome, while homozygous samples have an observed
error rate close to 0. We account for SNP positions by using a simple mixture
model to genotype the samples and estimating μi separately for each genotype.
We also increase σ 2

j for positions with multiple genotypes to account for the extra
uncertainty due to possibly incorrect genotyping.

Another source of extra variability comes from the technology used to gener-
ate our data set: The 309,474 genome positions are regions of the genome that
have been targeted by primers and amplified. We observe empirically that regions
treated with some primers have more variable error rates across samples. These re-
gions can be identified using extra data generated by the sequencer. We account for
this extra variability by fitting different error variances σj and τj for each genomic
region, and using a high quantile of the region-wise variabilities as our σj .

The logit-normal prior for p makes it difficult to calculate the marginal distribu-
tions of counts, find predictive distributions, and fit σ, τ by maximum likelihood.
We approximate the logit-normal distribution with a Beta distribution. If

p ∼ Beta
(

1

σ 2(1 − μ)
,

1

σ 2μ

)
,

then it is easy to show using Stirling’s formula that logitp has approximate mean
logitμ, variance σ 2, skewness

σ
(
μ3 − (1 − μ)3)

,
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and excess kurtosis

2σ 2(
μ4 + (1 − μ)4)

.

If σ is small and μ is close to 0 or 1, as they are in our data, then logitp is
approximately N (logitμ,σ 2). This Beta approximation makes it much easier to
calculate marginal and posterior distributions.

4. Results.

4.1. Virus data. We first tested our method by applying it to the virus data,
described in Section 3.1. In this synthetic data, we know the locations of the 14
variant positions, and we know that the mutant base is present in 0.1% of the
viruses in each case. We did not use any information about the mutations’ location
or prevalence when fitting our model. Thus, we can use this data to evaluate our
method’s power and specificity.

Our model fits the data reasonably well. Figure 5 shows the p-values histograms
for the reference and clinical samples; randomization is unnecessary since the
depth is so high (the median depth is 775,681, and 95% of positions have depth
between 271,192 and 1,689,977). The p-values are fairly uniform for the refer-
ence samples, and also uniform in the clinical samples except for a spike near 0
that indicates that some positions are truly nonnull. Since our null distributions
fit the data accurately enough, we did not need to estimate an empirical null. We
used the log-spline fdr estimation method proposed by Efron (2004) to estimate

FIG. 5. Histogram of p-values for the virus data, reference samples (top plot) and clinical samples
(bottom plot).
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TABLE 1
Detection results on clinical samples of the synthetic virus data

Our method, Our method,
ˆfdr ≤ 0.1 ˆfdr ≤ 0.01 Flaherty et al.

True positives (of 42) 42 39 42
False positives 1 0 10

Power 100% 93% 100%
False positive rate 2.32% 0% 19.23%

the false discovery rate ˆfdrij for each position in each sample. Finally, we declared

any position with ˆfdr less than a given threshold to be a mutation.
Table 1 compares our results to the method of Flaherty et al. (2012). Our method

produces fewer false discoveries while maintaining excellent power. If we use an
ˆfdr threshold of 10%, our method detects all 42 mutations (14 in each clinical sam-

ple) and makes 1 false discovery, for a false positive rate of 2.3%. A more stringent
fdr threshold of 1% eliminates all false discoveries, at the cost of missing 3 muta-
tions. Our method’s high power and low false discovery rate is especially notable
given that the mutation is only present at 0.1% within the sample.

4.2. Tumor data. Next, we applied our method to the tumor data, also de-
scribed in Section 3.1. Our model fits the data relatively well, but not as accurately
as it fits the virus data. We can assess the model by examining the last sample pair,
which actually consists of a healthy person’s normal tissue that was sequenced
twice as though it were normal and tumor tissue.

Figure 6 shows the histogram of randomized and unrandomized p-values for
the last sample pair. The randomized p-values rij are uniform through most of the
unit interval, indicating that most of our fitted null distributions are close to the
true null distributions. In contrast, the unrandomized p-value histogram tells us
next to nothing about our null distributions.

Our null distributions do not give a perfect fit: the rij appear to be enriched
near 0 and 1, so if we thought the null were uniform, our false discovery rates
would be misleadingly small near 0 and 1. Empirical nulls are not very helpful
here, because they are fit to the center of the distribution rather than the tails.
Inspecting the sample reveals that the null distribution is enriched near 0 and 1
because the error rates p and q are more variable very close to 0 and 1 than our
normal model predicts. We will discuss this issue a bit more later.

Although our null distributions are mostly correct for the last sample, they are
not as good on some other samples. Figure 7 shows the randomized p-value his-
togram for the seventh sample pair, which shows the most deviation from unifor-
mity. The underdispersion in Figure 7 means that our null distributions are system-
atically too wide on that sample.
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FIG. 6. Randomized rij (top plot) and unrandomized pij (bottom plot) values for the last normal
tumor pair (actually the same normal tissue sequenced twice).

We fit empirical nulls to correct our null distributions. Figure 8 shows a normal
quantile–quantile plot of randomized p-values for sample 7, transformed to the
normal scale by zij = �−1(rij ). The QQ plot is straight through the bulk of the
data, indicating that our null can be corrected by centering and scaling on the
normal scale. Our corrected null will still be too light-tailed in the far tails, but, as
for the last sample, these points correspond to very small changes in error rate very
close to 0 and 1, which we will discuss later. Accordingly, we used the median and
a robust estimator of scale [Sn, described by Rousseeuw and Croux (1993)] on zij

to estimate a location and scale for our empirical null in each sample. Figure 9
shows that this yielded much more uniform randomized p-values.

Finally, we estimated the density of the empirical null adjusted randomized p-
values using a log-spline. We then estimated the fdr. To ease computation, we

FIG. 7. Randomized p-values ri for the seventh normal tumor pair. This sample had the least
uniform ri .
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FIG. 8. Normal QQ plot of zij = �−1(rij ) for sample 7.

approximated the fdr expression in equation (2.3). Instead of estimating

Pmarg
(
r̃i ∈ [F̃−

i (xi), F̃i(xi)]),
we fit fmarg and used the approximation

Pmarg
(
r̃i ∈ [F̃−

i (xi), F̃i(xi)])(4.1)

≈ f̂marg
(1

2

(
F̃−

i (xi) + F̃i(xi)
))(

F̃i(xi) − F̃−
i (xi)

)
.(4.2)

Substituting (4.2) into (2.3) yields an estimate of the false discovery rate ˆfdrij for
each position in each sample.

As mentioned, many positions had a low ˆfdr while being biologically uninter-
esting due to the heavier tail of the null p-value distribution around 0 and 1. Our
model looks at differences between normal and tumor error rates on the logit scale,
which exaggerates differences near 0 and 1; for example, on the logit scale, 0.001
and 0.003 are as far from each other as 0.5 and 0.75. Such small changes near 0
and 1 are also more likely to be false positives, since null error rates are more

FIG. 9. Empirical null randomized p-values r̃i for the seventh normal tumor pair. The empirical
null yields much more uniform p-values (compare to Figure 7).
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variable very near 0 and 1 than our model predicts. Even if they were real, muta-
tions present at such small fractions in tumor tissue are too rare to be biologically
interesting. For most tumor analysis scenarios, we want to find mutations that are
present in a fairly large fraction of the cells in the tumor tissue, with the prevalence
threshold determined by the biologist.

To find such mutations, we estimated the change in error rate at each position
for each sample using a very simple “spike and slab” model. We supposed that
either the normal and tumor error rates were the same, or they were different, in
which case we knew nothing about either. Under this model, the expected error
rate difference given the data is

�ij = E(qij − pij |x, y)

= P(qij 	= pij |x, y)

(
yij

Mij

− xij

Nij

)
,

which we can estimate by

�̂ij = ˆfdrij

(
yij

Mij

− xij

Nij

)
.

We required a position to have a large �̂ (|�̂| ≥ 0.25) as well as a low ˆfdr ( ˆfdr ≤
0.1) to be called a biologically interesting mutation.

Thresholding for both false discovery rate and estimated effect size yielded 427
mutation calls on the clinical samples. Assessing these calls is difficult. Unlike for
the synthetic data, we do not know which positions are truly mutated or null for
the tumor data. Since all putative mutations in the tumor samples are new changes,
and would be unique to each sample, we cannot assess our mutation calls using
databases of known variants. Also, targeted deep resequencing is currently the
best technology for variant detection, so, short of resequencing the entire genomic
region at even higher depth, we cannot use some other gold-standard experimental
method to validate our calls.

We therefore use a simple domain-knowledge based proxy, enrichment in repet-
itive regions, as a crude check that our method gives useful results. Repetitive re-
gions are segments of DNA that repeat themselves with high sequence similarity
at multiple places in the genome. They confuse the DNA targeting, extraction,
and mapping steps in the experiment, and have been a major source of false calls
for previous variant detection methods. Because of this, most existing variant de-
tection methods use repeat detection algorithms to find repetitive regions, and then
use the output of these algorithms to refine their calls. The most common approach
has been to simply ignore calls in regions that are designated as repetitive, since
otherwise the calls would be dominated by false calls in these regions.

Masking repetitive regions has some disadvantages. First, different repeat de-
tection algorithms often disagree, so the choice of repeat detection method and
associated parameters can substantially impact the final list of calls. Second, many
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functional areas of the genome, such as exons, contain repeated genetic material.
For example, roughly 8.5% of our tumor data, which consists almost entirely of
exons, lie in repetitive regions (the exact percentage depends on the repeat detector
and parameters used). If we simply ignore mutation calls in repetitive regions, we
may miss important mutations in functional regions.

Our approach does not rely on any information about whether a position lies in a
repetitive region. The high error rates in repetitive regions are reproducible across
samples, and thus by modeling the error rate as a function of genome position,
we can account for the higher error rates in repetitive regions without using any
explicit information about repetitiveness.

Of the 427 mutations found in the tumor data by our method, 95 (22.1%) lie in
repetitive regions. In comparison, Natsoulis et al. (2011) make 1305 calls before
their final repeat masking step, 470 (36%) of which are in repetitive regions. Al-
though our calls are somewhat enriched in repetitive regions, they are less enriched
than the calls made by Natsoulis et al. (2011) before repeat masking, despite not
using any domain knowledge explicitly. This is a rough indication that our posi-
tional error-rate model is estimating higher error rates in repetitive regions.

Our method makes more calls than Natsoulis et al. (2011) in low depth regions.
We make a 233 gain of allele calls, 47 (20.1%) of which are in repetitive regions.
Of the 186 calls we make outside of repetitive regions, 103 are among the 165 gain
of allele calls made by Natsoulis et al. (2011). Nearly half of the 83 calls made by
our method outside repetitive regions and not made by Natsoulis et al. (2011) are
in low depth regions of the genome. We would like to think that this indicates
our method is able to achieve higher power in low depth regions by pooling data
across samples to estimate the null distribution of the error rates. We cannot know
the truth, however, without a rigorous validation experiment.

4.3. Summary. In this paper, we have shown that empirical Bayes ideas can
be usefully applied to detect mutations in high throughput sequencing data from
mixed DNA samples. We used a hierarchical model to account for different sources
of variation in sequencing error rates. This model let us weigh the different sources
against one another, and naturally accommodates the discreteness and depth vari-
ation in our data. We also adapted continuous fdr methods to discrete data using a
simple randomization scheme. Combining the new multiple testing methods with
the empirical null distributions for sequencing error rates yielded a powerful, sta-
tistically sound way to detect mutations in mixed samples.

APPENDIX

We prove Theorem 2.1, which justifies the use of randomized p-values. From
the construction of r , we have that

r|x ∼ Unif(F−(x),F (x)).
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Thus, the unconditional density of r is

h(r) = ∑
x

PG(x)

PF (x)
Ir∈[F−(x),F (x)],

where PF and PG denote probability under F and G respectively. This means that

DKL(Hunif‖hH) =
∫

log
(

h(r)

hunif(r)

)
h(r) dr

= ∑
x

∫ F(x)

F−(x)

PG(x)

PF (x)
log

[
PG(x)

PF (x)

]
dr

= ∑
x

PG(x) log
PG(x)

PF (x)

= DKL(G‖F).

The other Kullback–Liebler equality is proved similarly.
For the Kolmogorov distance, note that the cdf of r , H , is piecewise linear, and

the uniform cdf Hunif(r) = r is also linear. This means that |H − Hunif| reaches its
maximum at one of the knots of H , and these are 0, 1, and F(x) for all possible
values of x. Since H(0) = Hunif(0) = 0 and H(1) = Hunif(1) = 1, the maximum
has to occur at some F(x). At these points, though,

H(F(x)) = PG

(
r ≤ F(x)

)

= ∑
x∗≤x

(
F(x∗) − F−(x∗)

)PG(x∗)
PF (x∗)

= G(x)

so

sup
r

|H(r) − Hunif(r)| = sup
x

|H(F(x)) − F(x)|
= sup

x
|G(x) − F(x)|.
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