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Abstract. We derive asymptotics for the probability that the origin is an extremal point of a random walk in R
n. We show that in

order for the probability to be roughly 1/2, the number of steps of the random walk should be between en/(C logn) and eCn logn for
some constant C > 0. As a result, we attain a bound for the π

2 -covering time of a spherical Brownian motion.

Résumé. Nous étudions le comportement asymptotique de la probabilité que l’origine soit un point extrémal d’une marche aléa-
toire dans R

n. Nous montrons que cette probabilité est proche de 1/2 si le nombre de pas de la marche aléatoire est entre en/(C logn)

et eCn logn pour une certaine constante C > 0. Comme corollaire, nous obtenons une borne pour le temps de π
2 -recouvrement d’un

mouvement brownien sphérique.
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1. Introduction

The object of this paper is to address the following question: given a random walk in Euclidean space, how long does
it typically take until the starting point of the random walk ceases to be an extremal point of its range? We approach
this question from a high-dimensional point of view. In particular, we try to derive asymptotics of some quantities
related to this question, as the dimension goes to infinity.

Let us give a more precise formulation of our question. Fix a dimension n ∈ N. For a set K ⊂ R
n, by ∂K we denote

its boundary, by Int(K) its interior, and by conv(K) we denote its convex hull. Let t1 ≤ · · · ≤ tN be a Poisson point
process on [0,1] with intensity α, let B(t) be an n-dimensional standard Brownian motion. Define X0 = 0,Xi = B(ti).
We call X1, . . . ,XN a random walk in R

n. We say that the origin is an extremal point of this random walk if 0 ∈ ∂K ,
where K := conv({X0,X1, . . . ,XN }).

Denote by p(n,α) the probability that the origin is an extremal point of the the random walk X0,X1, . . . ,XN .
For n ∈ N, note that p(n,α) is a decreasing function of α and denote by α(n) the smallest number, α, such that
p(n,α) ≤ 1

2 . Our aim in this note is to prove the following asymptotic bound:

Theorem 1.1. With α(n) defined as above, one has

ecn/ logn < α(n) < eCn logn

for some universal constants c,C > 0.
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Following rather similar lines, one can also prove that the same asymptotics are correct for the standard random
walk on Z

n. Namely, one can prove the following result:

Theorem 1.2. Let S1, . . . , SN be the standard random walk on Z
n. Define

N(n) = min

{
N ∈ N

∣∣∣P(
0 is an extremal point of conv{S1, . . . , SN }) ≤ 1

2

}
.

Then

ecn/ logn < N(n) < eCn logn

for some universal constants c,C > 0.

The latter theorem may be, in fact, more interesting for probabilists than the former. Nevertheless, we choose to
omit some of the details of its proof since it is more involved than the proof of Theorem 1.1, and the two proofs share
the same ideas. We will provide an outline of proof along with some remarks about the further technical work that
should be done in order to prove it.

Remark 1.1. By means of the so-called reflection principle, it may be shown that for a 1-dimensional, simple random
walk, the probability to remain non-negative after N steps is of the order 1/

√
N . The expectation of the first time it

becomes negative is therefore ∞. It follows that the expectation of the first time that the convex hull of a random walk
in any dimension contains the origin in its interior is also infinite.

A corollary of the above result concerns with covering times of the spherical Brownian motion. We define Sn−1 =
{x ∈ R

n, |x| = 1}, | · | being the standard Euclidean norm. Given a standard Brownian motion B(t) in R
n, n > 2, the

function θ(t) = B(t)
|B(t)| is almost surely defined for all t > 0. By the Dambis/Dubins–Schwarz theorem, there exists

a non-decreasing (random) function T (·) such that θ(T (·)) is a strong Markov process whose quadratic variation as
time t is equal to (n − 1)t . We refer to the process θ(T (t)) as a spherical Brownian motion (or a Brownian motion
on Sn−1). Furthermore, we denote by d(·, ·) the geodesic distance on Sn−1, equipped with the standard metric. The
ε-neighbourhood of a point x ∈ Sn−1 is defined as νx(ε) = {y ∈ Sn−1, d(x, y) < ε}. We say that a set A ⊂ Sn−1 is an
ε-covering of the sphere if

⋃
x∈A νx(ε) = Sn−1.

Let us now consider the following question: given a Brownian motion on Sn−1, how long does it typically take
until the path is not contained in an open hemisphere? Equivalently, how long does it take for a Brownian motion to
be a π/2-covering of the sphere? Covering times of random walks and Brownian in different settings is a subject that
has been widely studied in the past decades (see e.g., [1,5,6] and references therein). Matthews [6] studied the ε-cover
time for Brownian motion on an n-dimensional sphere. In his work, he considers the asymptotics as ε tends to zero
and the dimension is fixed.

One motivation for the study of covering times on the sphere is a technique for viewing multidimensional data
developed by Asimov [2], known as the Grand Tour. In this technique, a high-dimensional object (usually, a measure
on R

n) is analyzed through visual inspection of its projections onto subspaces of small dimension. When considering
one-dimensional marginals, the set of directions may be taken from the range of a spherical Brownian motion. In
this case, one may be interested in estimating how long should takes for the Brownian motion to visit the a certain
neighbourhood of all possible directions on the sphere, thus indicating that the set of inspected marginals is rather
dense.

Let E(n) be the expected time it takes the spherical Brownian is a π
2 -covering of the sphere, in other words,

E(n) = E
[
inf

{
t > 0;0 is in the interior of conv

({
SBn(s);0 < s ≤ t

})}]
,

where SBn(s) is Brownian motion on Sn−1. A corollary of our bounds for α(n) is a corresponding bound for the
asymptotics of E(n), as n goes to infinity. Namely,
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Corollary 1.1. There exists a universal constant C > 0 such that

1

C logn
< E(n) < C logn ∀n ≥ 1.

The above corollary and the work of Matthews complete each other in a certain sense: The asymptotics derived by
Matthews for E(n) in the case of ε-covering, when ε → 0, is roughly E(n) ∼ √

nεn−3 log(ε−1). In other words, for
small ε, the time is exponential in the dimension. Our result therefore suggests a rather significant phase shift as ε

approaches π/2.
Another possible application the last corollary is related to the following illumination problem: a high-dimensional

convex object (say, a planet) is rotating randomly. A single light source is located very far from the object. How long
will it take until every point on the surface of the object has been illuminated at least once?

The organization of the rest of this paper is as follows: the lower bound of Theorem 1.1 will be proven in Section 2
and the upper bound will be proven in Section 3. Section 4 is devoted to filling some of the missing details for the
proof of Theorem 1.2. In Section 5, we prove Corollary 1.1. Finally, in Section 6, we list some further facts that can
be derived using the same methods of proof and raise some questions for possible further research.

Throughout this note, the symbols C, C′, C′′, c, c′, c′′ denote positive universal constants whose values may change
between different formulas. We write f (n) = O(g(n)) if there is a positive constant M > 0 such that f (n) < M(g(n))

for all n, and we write f (n) = o(g(n)) if f (n)/g(n) → 0 as n → ∞. Given a subset A ⊂ R
n, by conv(A) we denote

the convex hull of A. Given two random variables, X and Y , the notation X ∼ Y is to say that the two variables have
the same distribution. For random vector X ∈ R

n we denote its barycenter by b(X) := E[X], and its covariance matrix
by Cov(X) := E[(X − b(X)) ⊗ (X − b(X))].

2. The lower bound

The aim of this section is to prove the following bound:

Theorem 2.1. There exists a universal constant c > 0 such that the following holds: Suppose α < ecn/ logn. Let B(t)

be a standard Brownian motion in R
n. Then

P
(
0 is in the interior of conv

({
B(t)|α−1 ≤ t ≤ 1

}))
< 0.1. (1)

In particular, if t1 ≤ · · · ≤ tN are points generated according to a Poisson process on [0,1] with intensity cα, inde-
pendently of B(t), then

P
(
0 is an extremal point of the set

{
B(0),B(t1), . . . ,B(tN )

})
>

1

2
. (2)

Before we begin the proof, we will need the following ingredient: recall Bernstein’s inequality, [4], which can be
states as follows.

Theorem 2.2 (Bernstein’s inequality). Let X1, . . . ,Xn be independent random variables. Suppose that for some
positive L > 1 and every integer k > 0,

E
[∣∣Xi − E[Xi]

∣∣k] <
E[X2

i ]
2

Lk−2k!. (3)

Then

P

(∣∣∣∣∣
n∑

i=1

(
Xi − E[Xi]

)∣∣∣∣∣ > 2t

√√√√ n∑
i=1

Var[Xi]
)

< e−t2

for every 0 < t <

√∑n
i=1 Var[Xi ]

2L
.
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Proof of Theorem 2.1. First of all, we note that equation (2) follows easily from equation (1). Indeed, by a small
enough choice of the constant c, we can make sure that with probability at least 3/4, none of the points t1, . . . , tN fall
inside the interval [0, α−1]. We turn to prove equation (1).

By choosing a suitable (small enough) value for the constant c, we may always assume that the dimension, n, is
larger than some universal constant. Define m = 
 cn

logn
�, where the value of the constant c > 0 will be chosen later

on. Since the probability in equation (1) is increasing with α, we may assume that α = 2m−1. Moreover, in order
to simplify the below formulas, we note that by using a scaling argument we can assume that our time interval is
[0,2m−1] (rather than the interval [0,1]), and show that

P
(
0 is in the interior of conv

({
B(t)|1 ≤ t ≤ 2m−1})) <

1

4
.

We will show that with high probability there exists a vector v which demonstrates that the origin is not in the interior,
i.e., that 〈B(t), v〉 > 0 for all 1 ≤ t ≤ 2m−1.

The construction of the vector v is as follows. Define

vi = B
(
2i

) − B
(
2i−1),

for i = 0, . . . ,m − 1, and

v = 1√
m

m−1∑
i=0

vi√
E[|vi |2]

= 1√
m

m−1∑
i=0

vi√
n(

√
2)i−1

.

Note that the vectors vi√
E[|vi |2]

are independent, identically distributed Gaussian random vectors with expectation 0

and with covariance matrix 1
n

Id. It follows that the vector v is also a Gaussian random vector whose expectation is 0
and whose covariance matrix is equal to 1

n
Id. A calculation then gives

P

(
1

2
< |v| < 2

)
> 1 − e−c′n (4)

for some universal constant c′ > 0.
Fix 0 ≤ k ≤ m − 1. Let us inspect the scalar product p = 〈B(2k), v〉. For all 0 ≤ i ≤ m − 1, we denote vi =

(vi,1, . . . , vi,n). Note that both B(2k) and v are linear combinations of vi ’s with deterministic coefficients, hence p

admits the form

p =
n∑

j=1

m−1∑
i=0

m−1∑
l=0

αiβlvi,j vl,j

for some constants {αi}m−1
i=0 , {βl}m−1

l=0 . Define

wj =
m∑

i=1

m∑
l=1

αiβlvi,j vl,j for j = 1, . . . , n.

Clearly, the wj ’s are independent and identically distributed, so there exist numbers a, b such that

wj ∼ X(aX + bY ), (5)

where X,Y are independent standard Gaussian random variables.
Our next goal is to calculate the expectation and the variance of wj . To that end, we may write, for all j = 1, . . . , n,

wj =
(

k∑
i=0

vi,j

)(
1√
nm

m−1∑
l=0

vl,j

(
√

2)l−1

)
= 1√

nm

k∑
i=0

m−1∑
l=0

1

(
√

2)l−1
vi,j vl,j . (6)
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So

E[wj ] ≥ 1√
nm

E[v2
k,j ]√

2
k−1

=
√

2
k−1

√
nm

,

which means that

E[p] ≥
√

2
k−1√

n√
m

. (7)

Next, in order to estimate Var[wj ] we use (6) again to obtain

E
[
w2

j

] = 1

nm
E

[(
k∑

i=0

m−1∑
l=0

1

(
√

2)l−1
vi,j vl,j

)2]

= 1

nm

( ∑
i �=l,0≤i≤k,

0≤l≤m−1

1

2l−1
E

[
v2
l,j

]
E

[
v2
i,j

] +
∑
i �=l,

0≤i,l≤k

1
√

2
i+l−2

E
[
v2
l,j

]
E

[
v2
i,j

] +
k∑

i=0

1

2i−1
E

[
v4
i,j

])

≤ 1

nm

(
m

k∑
i=0

2i + 2
∑

0≤i≤l≤k

1

2i−1
E

[
v2
l,j

]
E

[
v2
i,j

] + 3
k∑

i=0

2i

)
<

2k+2

n
.

So

Var[p] < 2k+2. (8)

Note that E[p] >
√

n
8m

Var[p] >
√

0.1c−1 logn
√

Var[p].
It follows from representation (5), from that fact that a standard Gaussian random variable, X, satisfies E[|X|p] ≤

pp/2 for all p > 1, and from the Cauchy–Schwarz inequality that

E
[∣∣wj − E[wj ]

∣∣p]
<

(
10 Var[wj ]

)p/2
p! ∀p ∈ N. (9)

We may therefore invoke Theorem 2.2 on the random variables wj . Setting t =
√

n
10m

, L = 10
√

2
k+2

√
n

and plugging

into (3) leads to:

P

(∣∣p − E[p]∣∣ >

√
m

10n

√
Var[p]

)
< e−n/(10m).

Plugging in (7) and (8) and using the assumption that c can be smaller than any universal constant gives

P

(
p <

1

2
E[p]

)
< e−n/(10m) < n−5.

Define A to be the following event:

A =
{〈

v,B
(
2k

)〉
>

1

2

√
n

m

√
2
k−1

,∀0 ≤ k ≤ m − 1

}
.

Applying a union bound for k = 0, . . . ,m − 1, we learn that

P(A) > 1 − 1

n2
. (10)
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Recall that the distribution of the maximal value of a Brownian bridge (see e.g., [8], page 34) starting at y = a at time
0 and ending at y = b at time T is

fMa→b(T )(y) = 1{y /∈[a,b]}4
y − (a + b)/2

T
e−(2/T )(y−a)(y−b). (11)

Define the events

Ck := {〈
B(t), v

〉
> 0,∀2k ≤ t ≤ 2k+1}.

Our next goal is to show that when conditioning on A, the probability of Ck is close to one, using the following
idea: instead of generating the Brownian motion, one can alternatively generate the points B(2k) and then “fill in” the
missing gaps by independent Brownian bridges. When the event A holds, the endpoints of the bridges 〈B(t), v〉,2k ≤
t ≤ 2k+1 are quite large with respect to the standard deviation of their midpoint, and we may use (11).

More formally, let B̃(t) be a Brownian bridge such that B(0) = B(1) = 0, independent of B(t). Define

Bk(t) = B
(
2k

) + (
B

(
2k+1) − B

(
2k

))
t + √

2
k
B̃(t).

By a representation theorem for the Brownian bridge, the functions Bk(t) and B(2k +2kt) share the same distribution.
Moreover, if an event Ã is measurable by the sigma algebra generated by the points B(2j ),0 ≤ j ≤ m − 1, then the
distribution of these two functions is the same, event when conditioned on the event Ã. Therefore, one has

P(Ck|A) = P
(〈
Bk(t), v

〉
> 0,∀0 ≤ t ≤ 1|A)

.

Since the maximum of a Brownian bridge is monotone with respect to its endpoints, it follows that

P
(〈

Bk(t), v
〉
> 0,∀0 ≤ t ≤ 1|A)

> P

(〈
B̃(t), v

〉
<

√
n

8m
,∀0 ≤ t ≤ 1

)
. (12)

Using (11) then yields

P(Ck|A) > 1 − exp
(− logn/

(
8c|v|2)). (13)

Using the above with (4) and choosing c small enough, we get

P(Ck|A) > 1 − 1

n3
.

Finally, combining with (10) and using a union bound yields

P
(〈

B(t), v
〉
> 0,∀1 ≤ t ≤ 2m−1) > P(A)

(
1 −

m∑
k=1

(
1 − P(Ck|A)

))
> 1 − 1

n
.

The proof is complete. �

3. The upper bound

The goal of this section is the proof of the following estimate:

Theorem 3.1. There exists a universal constant C > 0 such that the following holds: Let α = eCn logn. Let t1 ≤ · · · ≤
tN be points generated according to a Poisson process on [0,1] with intensity α, and let B(t) be a standard Brownian
motion, independent of the point process. Consider the random walk B(0),B(t1), . . . ,B(tN ). The probability that the
origin is an extremal point of this random walk is smaller than n−n.
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We open the section with some well-known facts concerning the probabilities that random walks and discrete
Brownian bridges stay positive. Again let 0 ≤ t1 ≤ · · · ≤ tN ≤ 1 be a Poisson point process on [0,1] with intensity α,
and let W(t) be a standard 1-dimensional Brownian motion. Consider the random walk W(0),W(t1), . . . ,W(tN). By
slight abuse of notation, for 1 ≤ j ≤ n, denote W(j) = W(tj ). Let us calculate the probability that W(j) ≥ 0 for all
1 ≤ j ≤ N .

Recall the second arcsine law of P. Levi (see e.g., [7], Chapter 5, p. 137). Define a random variable

X =
∫ 1

0
1{W(t)<0} dt.

According to the second arcsine law, X has the same distribution as (1 +C2)−1 where C is a Cauchy random variable
with parameter 1. Using the definition of the Poisson distribution, this means that

P
(
B(ti) > 0,∀1 ≤ i ≤ N(m)

) = E
[
e−α(1+C2)−1] = 1

π

∫ ∞

−∞
e−α/(1+x2) 1

1 + x2
dx

= 2

π

∫ π/2

0
e−α cos2 t dt = 1

π

∫ 1

0
e−αw 1√

w(1 − w)
dw

= 1

π
√

α

∫ α

0
e−s 1√

s(1 − s/α)
ds.

It is easy to check that the latter integral has a limit as α → ∞. Consequently,

P
(
B(ti) > 0,∀1 ≤ i ≤ N

) = 1√
α

(
1

π

∫ ∞

0

e−s

√
s

ds

)(
1 + o

(
1

α

))

= 1√
πα

(
1 + o

(
1

α

))
. (14)

Now suppose that W(t) is a Brownian bridge such that W(0) = W(1) = 0 and consider the discrete Brownian bridge
W(0),W(t1), . . . ,W(tN),W(1).

The cyclic shifting principle (see e.g., [3]) is the following observation: for every 0 ≤ s ≤ 1, define Γs(t) = t + s,
where the sum is to be understood as a sum on the torus [0,1]. Then the function W ◦ Γs(t) − W(s) has the same
distribution as the function W(t). Now, since there is exactly one choice i between 1 and N such that W(tj ) − W(ti)

will be non-negative for every 1 ≤ j ≤ N , it follows that for only one choice of 1 ≤ i ≤ N , the function

W ◦ Γti (·) − W(ti)

will be positive for all the points tj − ti , 1 ≤ j ≤ N (where the subtraction is again understood on the torus [0,1]).
Since the points t1, . . . , tN are independent of the function W(t), it follows that

P
(
W(ti) ≥ 0,∀1 ≤ i ≤ N

) = E

[
1

N

]
= 1

α
+ O

(
1

α3/2

)
(15)

(recall that N was a Poisson random variable with expectation α).
We now have the necessary ingredients for proving the upper bound.

Proof of Theorem 3.1. For 0 ≤ s1 < · · · < sn ≤ 1, s = (s1, . . . , sn), define Fs to be the convex hull of B(s1),

. . . ,B(sn). This is a.s. an (n − 1)-dimensional simplex. Let Es be the measure zero event that Fs is a facet in the
boundary of the convex hull of the random walk. Our aim is to show that with high probability, none of the events Es

hold for s1 = 0, which means that the convex hull does not contain any facet the origin is a vertex of which.
For a point s defined as above, we define r(s) = (r1, . . . , rn) by r1 = s1, ri = si − si−1 for 2 ≤ i ≤ n. The point

r(s) lives in the n-dimensional simplex, which we denote by Δn. Analogously, for a point r ∈ Δn define by s(r) the
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corresponding point s = (s1, . . . , sn). By slight abuse of notation we will also write Er and Fr , allowing ourselves to
interchange freely between s and r .

Denote by Wr the measure zero event that the point r ∈ Δn is also in the Poisson process (hence the event that all
the points r1, r1 + r2, . . . , r1 + · · · + rn are in the set {0, t1, . . . , tN }).

For a Borel subset A ⊂ Δn, define

μ(A) = E

[∑
r∈A

1Er

]
,

the expected number of facets Fr , with r ∈ A, and

ν(A) = E

[∑
r∈A

1Wr

]
.

Clearly μ and ν are σ -additive, and μ � ν. Denote

pn(r) = dμ

dν
(r) ∀r ∈ Δn.

So pn(r) can be understood as P(Er |Wr).
Define Δ̃n = Δn ∩ {r1 = 0} and

D = {
r = (r1, . . . , rn) ∈ Δn|ri > 0,∀2 ≤ i ≤ n

}
.

Let s = (s1, . . . , sn) and ε > 0 be such that si − si−1 > ε for all 2 ≤ i ≤ n. Define

Q = r
({

(x1, . . . , xn);xi ∈ [si , si + ε], for i = 1, . . . , n
})

.

Then, by the independence of the number of Poisson points on disjoint intervals,

ν(Q) = E

[
n∏

i=1

#
{
j ; tj ∈ [si , si + ε]}

]
= (εα)n.

By the σ -additivity of ν, it follows that for a measurable A ⊂ Δn \ Δ̃n,

ν(A ∩ D) = αn Voln
(
s(A)

) = αn Voln(A),

where in the last equality we use the fact that the Jacobian of the function r → s(r) is identically one. Using analogous
considerations on Δ̃n, we get

ν(A ∩ D) = αn Voln(A) + αn−1 Voln−1(A ∩ Δ̃n)

for all A ⊂ Δn measurable. By the definition of pn(r),

μ(A) = αn

∫
A

pn(r)dλn(r) + αn−1
∫

A∩Δ̃n

pn(r)dλn−1(r),

for all measurable A ⊂ Δn, λn,λn−1 being the respective Lebesgue measures.
We would like to obtain an upper bound for μ(Δ̃n). Using the above formula, this is reduced to obtaining an upper

bound for pn(r). To that end, we use the following idea: the representation theorem for the Brownian bridge suggests
that we may equivalently construct B(t) by first generating the differences B(sj ) − B(sj−1) as independent Gaussian
random vectors, and then “fill in” the gaps between them by generating a Brownian motion up to B(s1), a Brownian
bridge for each 1 < j ≤ n, and a “final” Brownian motion between B(sn) and B(1), all of the above independent from
each other. To make it formal, fix r ∈ Δn and define s = s(r). For all i, 2 ≤ i ≤ n, we write

Di = B(ti) − B(ti−1)
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and define Ci : [si−1, si] → R
n by

Ci(t) = B(t) − B(si−1) − t − si−1

si − si−1

(
B(si) − B(si−1)

)
,

the bridges that correspond to the intervals [si−1, si]. Finally, we define two functions B0 : [0, s1] → R
n and Bf :

[sn,1] → R
n by B0(t) = B(s1 − t) − B(s1) and Bf (t) = B(t) − B(sn). By the independence of the differences of

a Brownian motion on disjoint intervals and by the representation theorem for the Brownian bridge, it follows that
the variables {Di}ni=2, {Ci}ni=2,B0,Bf are all independent, each Ci being a Brownian bridge and B0 and Bf being
Brownian motions.

Define θs to be an orthogonal unit normal to Fs . Denote

C̃i = 〈Ci, θs〉 ∀2 ≤ i ≤ n,

and also B̃0 = 〈B0, θs〉 and B̃f = 〈Bf , θs〉. Since θs is fully determined by {Di}ni=2, it follows that {C̃i}ni=2, B̃0 and
B̃f are independent. Observe that for all 2 ≤ i ≤ n, C̃i is a one-dimensional Brownian bridge fixed to be zero at its
endpoints, and B0 and Bf are one-dimensional Brownian motions starting from the origin.

A moment of reflection reveals that the event Es is reduced to the intersection of the following conditions for one
of the two possible choices of θs :

(i) Ws holds.
(ii) For all 2 ≤ i ≤ n, the function C̃i is non-negative at all points tj such that si ≤ tj ≤ si+1.

(iii) The function B̃0 is non-negative at all points tj such that tj < s1.
(iv) The function B̃f is non-negative at all points tj such that sn < tj ≤ 1.

As explained above, {C̃i}ni=2, B̃0 and B̃f are independent, thus we can estimate p(r) using equations (14) and (15).
We get

pn(r) =
(

n∏
j=2

1

αrj

)
1

π
1√

αr1
√

αrn+1

n+1∏
j=1

(
1 + O

(
1

αrj

))
. (16)

Using the fact that each probability in the product can be bounded by 1, we see that there exists a constant c > 0 such
that

pn(r) < cn

(
n∏

j=2

min

{
1

αrj
,1

})
min

{
1√
αr1

,1

}
min

{
1√

αrn+1
,1

}

= cn

αn

(
n∏

j=2

min

{
1

rj
, α

})
min

{
1√
r1

,
√

α

}
min

{
1√
rn+1

,
√

α

}
.

Now,

F(Δ̃n) = αn−1
∫

Δ̃n

p(r)dλn−1(r)

= αn−1
∫

Δn−1

pn−1(r)λn−1(r) < αn−1
∫

Kn−1

pn−1(r)λn−1(r),

where Kn−1 = {0} × [0,1]n−1 is the (n − 1)-dimensional cube. So

F(Δ̃n) < αn−1 cn

αn−1/2

(∫ 1

0
min

{
1

r
,α

}
dr

)n−1 ∫ 1

0
min

{
1√
r
,
√

α

}
dr

<
cn

√
α

(∫ 1

0
min

{
1

r
,α

}
dr

)n−1 ∫ 1

0

1√
r

dr <
(c′ logα)n√

α
.
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Suppose α = n2Ln having L > 3, then

(c′ logα)n√
α

= (2nLc′ logn)n

nLn
=

(
2nLc′ logn

nL

)n

<

(
2Lc′′

nL−2

)n

.

We may clearly assume that n ≥ 2. It follows that there exists a universal constant C > 0 such that whenever L ≥ C/2,
we have F(Δ̃n) < n−n. Note that the assumption that L ≥ C/2 may be written α ≥ eCn logn. Finally, an application
of Markov’s inequality then teaches us that in this case, the probability of having one face containing the origin is
smaller than n−n, which finishes the proof. �

We have now established Theorem 1.1.

4. The discrete setting

The aim of this section is to sketch the proof of Theorem 1.2.
Fix a dimension n ∈ N. Let S1, . . . , SN be a standard random walk on Z

n. The following lemma is the discrete
analogue of formulas (14) and (15) derived in the previous section:

Lemma 4.1. Suppose N > 2. Let θ ∈ Sn−1. Define

S̃j := 〈θ, Sj 〉 ∀1 ≤ j ≤ N.

The following estimates hold:

P(S̃j ≥ 0,∀1 ≤ j ≤ N) <
10n√

N
(17)

and

P(S̃j ≥ 0,∀1 ≤ j ≤ N |S̃N = 0) <
2 logN

N
. (18)

Proof. The proof of (18) follows again from the cyclic shifting principle, explained in the last section. However, it is
a bit more involved than the continuous case, since a discrete random walk can attain its global minimum more than
once. Define by Zi the event that S̃k = 0 for exactly i distinct values of k, and define

pi = P
({S̃j ≥ 0,∀1 ≤ j ≤ N} ∩ Zi |S̃N = 0

)
and

p = P(S̃j ≥ 0,∀1 ≤ j ≤ N |S̃N = 0) =
∞∑
i=1

pi.

We now use the following observation: consider random walk conditioned on attaining a certain value T ∈ R, � times.
The probability that T is the global minimum of this random walk is smaller than 2−�, since each of the segments
between two points can be reflected around the value T . It follows that

∞∑
i=�log2 N�+2

pi ≤
∞∑

i=�log2 N�+2

2−i+1 ≤ 1

N
.

By the cyclic shifting principle, described in the previous section, we have pi ≤ i/N . So

p =
∞∑
i=1

pi ≤ 1

N
+

�log2 N�+2∑
i=1

i

N
.

Equation (18) follows.
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We turn to prove (17). Denote θ = (θ1, . . . , θn). Without loss of generality, we can assume that the θi ’s are all
non-negative and decreasing. Define the event

A := {S̃1 = θ1}.
Clearly,

P(S̃j ≥ 0,∀1 ≤ j ≤ N) ≤ P(S̃j ≥ 0,∀1 ≤ j ≤ N |A).

Define M̃N = max1≤j≤N {S̃j }. From the symmetry of the random walk,

P(S̃j ≥ 0,∀1 ≤ j ≤ N |A) = P(MN−1 ≤ θ1).

Observe that once a random walk went past θ1 for the first time, it is still at most 2θ1. Thus, using the reflection
principle, conditioning on the event MN−1 > θ1, we have

P(S̃N−1 > 2θ1|MN−1 > θ1) ≤ 1

2
.

Therefore,

P(MN−1 > θ1) ≥ 2P(S̃N−1 > 2θ1),

and so,

P(MN−1 ≤ θ1) ≤ 1 − 2P(S̃N−1 > 2θ1) = P
(|S̃N−1| ≤ 2θ1

)
.

Define

φ = (θ1,0, . . . ,0) ∈ R
n

and define a new random walk, Wj = 〈φ,Sj 〉. Next we show that for all a ∈ R,

P
(|S̃N−1| < a

) ≤ P
(|WN−1| < a

)
. (19)

Indeed, for all λ ∈ R,

E
[
exp(λS̃N−1)

] =
N−1∏
j=1

E
[
exp

(
λ(S̃j − S̃j−1)

)]

≥
N−1∏
j=1

E
[
exp

(
λ(Wj − Wj−1)

)] = E
[
exp(λWN−1)

]
,

where the last equality follows from the independence of the differences Wj − Wj−1. Using the symmetry of this
differences gives, for all λ ∈ R,

E
[
exp(λS̃N−1) + exp(−λS̃N−1)

] ≥ E
[
exp(λWN−1) + exp(−λWN−1)

]
,

which implies (19). We are left with estimating P(|WN−1| ≤ 2θ1). We have

P
(|WN−1| < a

) =
N−1∑
k=0

(
1

n

k(n − 1

n

)N−1−k (
N − 1

k

) 2∑
j=−2

(
k


k/2� + j

))
<

10n√
N

.

This finishes the proof. �
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Sketch of the proof of Theorem 1.2. We begin with the upper bound. We follow that same lines as the ones in the
proof of Theorem 3.1. The only extra tool needed for the proof of the upper bound is Lemma 4.1.

Fix N ∈ N. For 1 ≤ j ≤ N and t = j
N

, define B(t) := Zj . Let r = (r1, . . . , rn) ∈ Δn ∩ 1
N

Z
n, and tk = ∑k

j=1 rj .
Define the event Er in the same manner:

Er := {
conv

(
B(t1), . . . ,B(tn)

)
is contained in the boundary of K

}
.

For A ⊂ Δn ∩ 1
N

Z
n, define

F(A) = E

[∑
r∈A

1{Er }
]
.

Next, for any r ∈ Δn ∩ 1
N

Z
n, equations (17) and (18) are used to obtain

P(Er) < 100(logN)2nn2

(
n∏

j=2

min

{
1

Nrj
,1

})
min

{
1√
Nr1

,1

}
min

{
1√

Nrn+1
,1

}
.

Define Δ0 = Δn ∩ 1
N

Z
n ∩ {r1 = 0}. We are left with estimating

F(Δ0) =
∑
r∈Δ0

P(Er).

This can be done by showing that these are Riemann sums converging to an integral which can be estimated in the
same manner as in Theorem 3.1. An analogous calculation gives

F(Δ0) ≤ (Cn2 log3 N)n√
N

for some universal constant C > 0, which implies the upper bound.
Next, we prove the lower bound. Again follow the same lines as in the proof of Theorem 2.1.
Assume that N = 2m−1 where m = 
 cn

logn
�, the value of the constant c will be chosen later. We construct a vector

v in an analogous manner to the construction in Theorem 2.1. Define v0 = Z1 and

vi = S2i − S2i−1

for i = 1, . . . ,m − 1. Define

v = 1√
m

m−1∑
i=0

vi√
E[|vi |2]

= 1√
m

m∑
i=1

vi

(
√

2)i−1
.

Fix a 1 ≤ k ≤ m, and define

p = 〈S2k , θ〉.

The expectation and variance of p can be computed directly, as in the proof of Theorem 2.1. Defining, the wj ’s
analogously, Chernoff’s inequality can be used to prove the bound (9). Theorem 2.2 is used to show that for a small
enough value of c,

P

(
p <

1

2
E[p]

)
< n−5.
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By applying a union bound, we can make sure that 〈S2k , θ〉 ≥ 1
2E[〈S2k , θ〉] for all 1 ≤ k ≤ m. Next, a formula analo-

gous to (11) should be applied in order to control the conditional random walks found between consecutive points of
the form 2k . To this end, we observe that for our random walk S̃n := 〈θ, Sn〉 one has

P

(
max

1≤j≤k
S̃j < u

)
≤ P

(
max

1≤j≤k
S̃j < u

∣∣S̃k = 0
)

∀k ∈ N, u > 0.

Hence, instead of bounding a conditional random walk, we may bound the usual random walk. Using Bernstein’s
inequality, Theorem 2.2, in order to derive a bound analogous to (13). Using a union bound gives

P
(〈Sj , v〉 > 0,∀1 ≤ j ≤ N

)
> 1 − 1

n
.

This finishes the sketch of proof. �

5. Spherical covering times

The goal of this section is to prove Corollary 1.1.
Let B(t) be a standard Brownian motion in R

n, n > 2. Denote θ(t) = B(t)
|B(t)| and observe that θ(t) is almost surely

well-defined for all t > 0. Let T (t) be the solution of the equation

T ′(t) = ∣∣B(
T (t)

)∣∣2
, T (0) = 1.

We denote by [S]t the quadratic variation of an Itö process, St , between time 0 and time t . We have

d

dt
[θ ◦ T ]t = T ′(t)

(n − 1)( d
dt

[B]t )|t=T

n|B(T (t))|2

= n − 1

n

(
d

dt
[B]t

)∣∣∣∣
t=T

= n − 1,

which implies that θ(T (t)) is a strong Markov process, and is therefore a spherical Brownian motion.

Proof of Corollary 1.1. First, observe that for every τ > 0, the origin lies in the interior of conv({B(t);1 ≤ t ≤ τ }) if
and only if it lies in the interior of conv({θ(t);1 ≤ t ≤ τ }), thus we have E(n) = E[τ1] where

τ1 = inf{τ > 0;Fτ holds},
and

Fτ = {
0 ∈ Int

(
conv

({
B

(
T (s)

);0 ≤ s ≤ τ
}))}

.

We aim to use the bounds from Theorems 2.1 and 3.1. For that, we will need to establish certain bounds on the
distribution of T −1(s) for a given s > 0.

Since E(|B(T )|2) = nT , it follows that E(T (t)) = ent + 1. Using Markov’s inequality gives

P
(
T (t) > 10ent + 10

) ≤ 0.1. (20)

By Theorem 2.1, there exists a constant c > 0 such that for

τ2 = inf
{
τ > 0;T (τ) ≥ ecn/ logn

}
,

one has

P(Fτ2) < 0.1. (21)
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According to equation (20),

P(τ2 < c1/ logn) < 0.1, (22)

for some universal constant c1 > 0. Using a union bound with (21) and (22) gives

P(τ1 < c1/ logn) < 0.2,

which implies

E[τ1] ≥ 0.8c1/ logn.

The lower bound is established.
We continue with the upper bound. Observe that T (t) is a bijective map from [0,∞) to [1,∞). We may define

f (s) = T −1(s) for all s ≥ 1. One has

f ′(s) = 1

T ′(f (s))
= 1

|B(s)|2 .

Consequently, by Fubini’s theorem,

E
[
f (s)

] =
∫ s

1
E

[
1

|B(t)|2
]

dt =
∫ s

1

1

t
E

[
1

|Γ |2
]

dt,

where Γ is a standard Gaussian random vector in R
n. A calculation gives E[ 1

|Γ |2 ] < C1
n

for some universal constant

C1 > 0. It follows that E[f (s)] ≤ C1 log s
n

. By Markov’s inequality,

P

(
f (s) >

10C1 log s

n

)
< 0.1. (23)

According to Theorem 3.1, there exists a universal constant C > 0 such that for

τ3 = inf
{
τ > 0;T (τ) ≥ eCn logn

}
,

one has

P(Fτ3) > 0.9. (24)

Now, an application of equation (23) with s = eCn logn gives

P(τ3 > C2 logn) < 0.1 (25)

for some universal constant C2 > 0. Using a union bound with equations (24) and (25) gives

P(τ1 > C2 logn) < 0.2.

In other words,

P
(
0 ∈ Int

(
conv

({
θ
(
T (t)

);0 ≤ t ≤ C2 logn
})))

> 0.8.

Now, by the strong Markov property and time-homogeneouity of θ ◦ T , we also have

P
(
0 ∈ Int

(
conv

({
θ
(
T (t)

); kC2 logn ≤ t ≤ (k + 1)C2 logn
})))

> 0.8

for all k ∈ N. Finally, since the above event is invariant under rotations,

P
(
0 ∈ Int

(
conv

({
θ
(
T (t)

);0 ≤ t ≤ kC2 logn
})))

> 1 − 0.2k.
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In other words,

P(τ1 > C2k logn) < 0.2k,

which easily implies that E[n] ≤ C3 logn, for some universal constant C3 > 0. The proof is complete. �

6. Remarks and further questions

In this section state a few results that can easily be obtained using the same ideas used above, and suggest possible
related directions of research.

6.1. Probability for intermediate points in the walk to be extremal

The methods used above can easily be adopted in order to estimate the probability that an intermediate point of
a random walk is an extremal point. To see this, observe that this probability is equivalent to the probability that
the origin is an extremal point of two independent random walks of length λN and (1 − λ)N respectively. Thus,
Theorem 3.1 can still be used for an upper bound since either λ ≥ 1

2 or 1 − λ ≥ 1
2 . For the lower bound we should do

a little extra work: we follow the lines of the proof of Theorem 2.1, only defining the vector v as

v = λv1 + (1 − λ)v2,

where v1 and v2 are constructed in the same manner that the vector v is constructed in Theorem 2.1. The exact same
calculations can be carried out to show that with high probability v separates the origin from the points of both of the
random walks. This yields,

Proposition 6.1. There exist universal constants C,c > 0 such that the following holds: Let S1, S2, . . . be the standard
random walk on Z

n and let j,N ∈ N, j < N . Then:

(i) If N > eCn logn then P(Sj ∈ Int(conv{S1, . . . , SN })) > 1
2 .

(ii) If N < ecn/ logn then P(Sj ∈ ∂ conv{S1, . . . , SN }) > 1
2 .

6.2. Covering times and comparison to independent origin-symmetric random points

The result of Corollary 1.1 can also be viewed as an upper bound on a certain mixing time of the spherical Brownian
motion: Let μ be an origin-symmetric distribution on R

n which is absolutely continuous with respect to the Lebesgue
measure. There is a beautiful proof by Wendel, [9], if X1, . . . ,XN are independent random vectors with law μ, one
has

P
(
0 /∈ conv{X1, . . . ,XN }) = 1

2N−1

n−1∑
k=0

(
N − 1

k

)
. (26)

Hence, the probability does not depend on μ as long as it is centrally symmetric and absolutely continuous. Note that
in order for this probability to be 1

2 one should take N(n) ≈ n logn.
This suggests that the correct mixing time in the sense of the π

2 -covering should be 1
n

.
An easy computation shows that after time of order 1

n
, a Brownian motion that started at an arbitrary point on the

sphere will be approximately uniformly distributed on the sphere in the sense that the density will be bounded between
two universal constants, independent of the dimension. If we assume that the correct mixing time is therefore 1

n
for

this purpose, this suggests that our upper bound of en logn should be a natural conjecture for the correct asymptotics in
Theorem 1.1.
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6.3. A random walk that does not start from the origin

Our techniques may be also used to find the asymptotics of the time it takes for the origin to be encompassed by a
random walk when the starting point is different than the origin. By the scaling property of Brownian motion,

P
(
0 ∈ Int

(
conv

{
B(t);1 ≤ t ≤ M

})) = P
(
0 ∈ Int

(
conv

{
B(t);L ≤ t ≤ LM

}))
for all M > 1,L > 0. Using the concentration of |B(t)| around its expectation, it is not hard to derive,

Proposition 6.2. There exist universal constants C,c > 0 such that the following holds: Let B(t) be a Brownian
motion started at a point x0 whose distance from the origin is L. Then:

(i) If M > L2eCn logn then P(0 ∈ Int(conv{B(t);0 ≤ t ≤ M})) > 1
2 .

(ii) If M < L2ecn/ logn then P(0 ∈ Int(conv{B(t);0 ≤ t ≤ M})) < 1
2 .

6.4. Possible further research

In this note we try to find the correct asymptotics, with respect to the dimension n, of the value N such that p(n,N) ≈
1
2 . One related question is:

Question 6.1. For a fixed value of n, how does p(n,N) behave asymptotically as N → ∞?

In view of (26) and the discussion following it, one might expect that this probability could have approximately the
following law, for a certain range of values of N ,

p ≈ (logN)n

Nc
,

where p is the probability in question, n is the dimension and N is the length of the random walk, and c > 0 is some
constant.

Two other possible questions are:

Question 6.2. Given two numbers j, k < N , what is the joint distribution of Sj , Sk being extremal points of the random
walk S1, . . . , SN ? Is there repulsion or attraction between extremal points of a random walk?

Question 6.3. How does the result of Theorem 1.1 change is one replaces the Brownian motion by a p-stable process?
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