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Abstract. We study a class of rotation invariant determinantal ensembles in the complex plane; examples include the eigenvalues
of Gaussian random matrices and the roots of certain families of random polynomials. The main result is a criterion for a central
limit theorem to hold for angular statistics of the points. The proof exploits an exact formula relating the generating function of
such statistics to the determinant of a perturbed Toeplitz matrix.

Résumé. Nous étudions une classe d’ensembles déterminantaux dans le plan complexe invariants par rotation; cette classe com-
prend les cas des valeurs propres de matrices gaussiennes aléatoires et des zéros de certaines familles de polynomes aléatoires. Le
résultat principal est un critère pour l’existence d’un théorème de la limite centrale pour la statistique des angles entre les points.
La preuve utilise une formule exacte reliant la fonction génératrice de telles statistiques au déterminant d’une matrice de Toeplitz
perturbée.
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1. Introduction

Consider the probability measure on n complex points, z1, . . . , zn ∈ C, defined by

Pm,n(z1, . . . , zn) = 1

Zm,n

∏
j<k

|zj − zk|2
n∏

k=1

dm(zk), (1)

with a (positive) reference measure m on C. This is an instance of a determinantal ensemble, so named as the presence
of the Vandermonde interaction term

∏ |zi − zj |2 results in all k-fold (k ≤ n) correlations of the points being given
by a determinant of a certain k × k Gramian. Determinantal ensembles as such were identified in the mathematical
physics literature as a model of fermions [18], but also arise naturally in a number of contexts including random matrix
theory. For background, [13] and [22] are recommended.

Throughout the paper we restrict to the situation of radially symmetric weights, dm(z) = dμ(r)dθ , assuming that
m does not place positive mass at the origin. The standard examples in this set-up are the following:

Ginibre ensemble. Let M be an n × n random matrix in which each entry is an independent complex Gaussian of
mean zero and mean-square one. Then the n eigenvalues have joint density (1) with dm(z) = e−|z|2 d2z [10].

Circular Unitary Ensemble (CUE). Place Haar measure on n-dimensional unitary group U(n) and consider again
the eigenvalues. These points live on the unit circle T = {t ∈ C: |t | = 1}, and it is well known that their joint law is
given by (1) in which m is arc-length measure.
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Truncated Bergman process. Start with the random polynomial zn + ∑n−1
k=0 akz

k with independent coefficients
drawn uniformly from the disk of radius r in C. Condition the roots z1, . . . , zn to lie in the unit disk. Then, the r → ∞
limit of the conditional root ensemble is (1) where now m is the uniform measure on the disk of radius one. This nice
fact may be found in [12]; for an explanation of the name see [19].

Our aim is to identify conditions on μ under which a central limit theorem (CLT) for the quantity

Xf,n =
n∑

k=1

f (arg zk)

holds or not. Certainly the regularity of the test function f matters as well. An enormous industry has grown up around
CLT’s for linear statistics in determinantal and random matrix ensembles. Despite rather than because of this, there
are several reasons for making a special study of such “angular” statistics in the given setting.

The conventional wisdom is that choosing f sufficiently smooth produces Gaussian fluctuations with order one
variance (i.e., as n → ∞ the un-normalized Xf,n − EXf,n should posses a CLT). This is borne out by a number
of results pertaining to ensembles with symmetry and so real, or suitably “one-dimensional,” spectra. In the present
context in which points inhabit C, [21] proves a result of this type for C1 statistics of the Ginibre ensemble. See also
[1] which represents the most recent refinement of a series of extensions of [21] to smooth statistics for Ginibre-like
ensembles in which the Gaussian weight m is replaced by a more general e−V (z) (these are the normal matrix models).
On the other hand, a smooth function of arg z is not smooth in the variables (x, y) = z. Again back in the Ginibre
ensemble, [20] shows that the variance of Xf,n is of order logn (whenever f possesses an L2-derivative), though
is unable to establish a CLT. While there are a number of general results on CLT’s for determinantal processes in
whatever dimension, notably [23] which employs cumulants, the logarithmic growth in this case is not sufficiently
fast for those conclusions to be relevant. We also mention that for any determinantal process on C with radially
symmetric weight, the collections of moduli |z1|, |z2|, . . . are independent; this is spelled out nicely in [13]. Hence,
CLT’s for “radial” statistics in our ensembles may be proved by checking the classical Lindenberg conditions, see [9]
and [20] for details in the Ginibre case.

It is likely that the considerations of [21], which entail a refinement of the cumulant method, or those of [1] can be
adopted to the matter at hand. Here though we take an operator-theoretic approach, based on the following formula.
For any ϕ ∈ L∞(T),

Em,n

[
n∏

k=1

ϕ(arg zk)

]
= detMμ,n(ϕ), Mμ,n(ϕ) = (ϕk−��k,�)0≤k,�≤n−1, (2)

where ϕk = 1
2π

∫ 2π
0 ϕ(x)e−ikx dx, the kth Fourier coefficient of ϕ, and

�k,� = mk+�

(m2km2�)1/2
in which mk =

∫ ∞

0
rk dμ(r), (3)

the kth moment of the half-line measure μ. We identify ϕ defined on the unit circle T with the corresponding periodic
function defined on R. The brief derivation of (2) can be found in the Appendix.

This provides an explicit formula for the generating function of Xf,n by the choice ϕ = eiλf . A CLT for Xf,n will
then follow from sufficiently sharp n → ∞ asymptotics of the determinant on the right-hand side of (2). Of course, if
this is to be the strategy we must henceforth assume that mk < ∞ for all k.

In the case of CUE, all mk = 1, and the identity (2) reduces to Weyl’s formula relating the Haar average of a
class function in U(n) to a standard Toeplitz determinant. The strong Szegö limit theorem and its generalizations
to symbols of weaker regularity then imply a variety of CLT’s for linear spectral statistics in U(n), see for instance
[6,14] and [15] as well as the references therein. For more generic μ, what appears on the right-hand side of (2) is the
Hadamard product of (truncated) Toeplitz and Hankel operators. While Hankel determinants arise as naturally as their
Toeplitz counterparts in random matrix theory and several applications have prompted investigations of Toeplitz +
Hankel forms (see for example [3]), the present problem is the first to our knowledge to motivate an asymptotic study
of Toeplitz ◦ Hankel matrices. Though, as the title suggests, the analysis more closely follows the Toeplitz framework.
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To describe the regularity assumed on the various test functions f , we introduce the function space F�p(ν), 1 ≤
p < ∞ (see [16]), comprised of all f ∈ L1(T) such that

‖f ‖F�p(ν) :=
( ∞∑

n=−∞
|fn|pν

p
n

)1/p

< ∞. (4)

Here ν = {νn}∞n=−∞ is a positive weight, and again {fn} are the Fourier coefficients of f . We will in particular deal
with the cases p = 1 or p = 2, and power weights νn = (1 + |n|)σ , σ ≥ 0. In the latter case we simply denote the
space by F�

p
σ and write F�p when σ = 0.

As for the underlying probability measure μ, a natural criterion arises on the second derivative of the logarithmic
moment function.

Moment assumption. The function

ξ 	→ mξ :=
∫ ∞

0
rξ dμ(r), ξ ≥ 0, (5)

satisfies one of the following two sets of conditions.

(C1) or “β > 1”: It holds

(lnmξ)
′′ = O

(
ξ−β

)
, ξ → ∞ (6)

with β > 1.

(C2) or “1/2 < β ≤ 1”: It holds

(lnmξ)
′′ = hμ(ξ) + O

(
ξ−�

)
, ξ → ∞ (7)

for a differentiable function hμ(ξ) ≥ 0, ξ > 0, such that

hμ(ξ) = O
(
ξ−β

)
, h′

μ(ξ) = O
(
ξ−γ

)
, ξ → ∞ (8)

with 1/2 < β ≤ 1, �,γ > 1. Additionally,

ιμ(x) := 1

2

∫ x

1
hμ(ξ)dξ, (9)

tends to infinity as x → ∞.

Notice that since we have already assumed mk < ∞ for all k, mξ is infinitely differentiable for positive ξ . The typ-
ical behavior we have in mind in both (C1) and (C2) are asymptotics such as

(lnmξ)
′′ = αξ−β + O

(
ξ−�

)
, ξ → ∞, (10)

with α,β > 0, � > max{1, β} (and thus γ = 1 +β in case (C2)). As examples, we remark that for Ginibre, (lnmξ)
′′ =

1
2ξ−1 + O(ξ−2), while both CUE and truncated Bergman satisfy (lnmξ)

′′ = O(ξ−2). The transition from β ≤ 1
to β > 1 is particularly interesting; Section 2 discusses the moment conditions in greater detail. The restriction to
β > 1/2 is tied to the method in which we show that Mμ,n is a small perturbation of the associated Toeplitz form,
in either trace or Hilbert–Schmidt norm, and this breaks down at β = 1/2. By considering the perturbation in higher
Schatten norms it may be possible to push our strategy further.
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Theorem 1.1. Assume the moment condition (C2), and let σ = max{1/β,3/(2γ )}. Then, for (non-constant) real-
valued f ∈ F�2

σ , the normalized statistics

Xscal
f,n := Xf,n − nf0√

ιμ(2n)

converges in law to a mean zero Gaussian with variance
∑

k∈Z
k2|fk|2 as n → ∞.

Staying with (C2) if we assume the particular asymptotics (10), then it holds

ιμ(2n) ∼

⎧⎪⎪⎨
⎪⎪⎩

α log(2n)

2
, β = 1,

α(2n)1−β

2(1 − β)
, 1/2 < β < 1.

For canonical β = 1 cases like Ginibre, we have σ = 1 and hence the assumed regularity on f is optimal. For β < 1,
because the asymptotic variance of Xn,f is ∼n1−β and the mean is ∼n, one may conclude a CLT from [23] (even
for β ≤ 1/2), though for possibly different classes of f . This highlights what our method can and cannot accom-
plish.

Next we define the infinite version of the matrix Mμ,n(a) and the related Toeplitz operator,

Mμ(a) = (�j,kaj−k), T (a) = (aj−k), j, k ≥ 0, (11)

both viewed as bounded linear operators on �2 = �2(Z+), Z+ = {0,1,2, . . .}.

Theorem 1.2. Assume the moment condition (C1), and let f be real-valued and non-constant.

(a) If f ∈ F�2
1/β for β < 2 or f ∈ F�2

1/2 ∩ L∞(T) for β ≥ 2, then

Xf,n − nf0 ⇒ Z

as n → ∞ with a mean-zero random variable Z = Z(f ;μ) of finite, positive variance

Var(Z) = 2
∞∑

k=1

k|fk|2 +
∞∑

j,k=0

(
1 − �2

j,k

)|fj−k|2.

(b) If f ∈ F�1
σ or f ∈ F�2

σ+ε , where σ = max{1,2/β}, ε > 0, then the higher cumulants cm of Z may be described
as follows. Introduce the recursion

Cm = Mμ

(
f m
)− m−1∑

k=1

(
m − 1

k

)
Cm−kMμ

(
f k
)
, m ≥ 1.

Then c2(Z) = Var(Z) = traceC2 +∑∞
k=1 k|fk|2, while cm(Z) = traceCm for m ≥ 3.

For CUE, �k,� ≡ 1, and one can check that cm = 0 for all m ≥ 3 and so Z is Gaussian. That is to say the obvious:
Theorem 1.2 reduces to the strong Szegö theorem. In general though it does not appear efficient to compute the
cumulants of Z from the formula above, even in explicit, and seemingly simple examples like truncated Bergman for

which �k,� = 2
√

(k+1)(�+1)
k+�+2 . The more basic problem which remains open is to determine when Z is Gaussian, i.e., for

what μ does cm vanish for all m ≥ 3.
We conjecture this is only the case for CUE, or when μ places all its mass on a single point. The intuition stems

from the calculation performed below in Proposition 2.2, which shows that if, for example, μ has a “nice” density
supported on some [a, b] (0 ≤ a < b < ∞), the normalized counting measure of points will concentrate on |z| = b as
n → ∞ while there will remain O(1) points of modulus ∈ [a, b − ε] (for whatever ε > 0). A Gaussian noise should
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result from the O(n) points interacting about |z| = b, while the (non-Gaussian) statistics of the phases of the points of
modulus < b will not wash in the type of centered (but not scaled) limit considered in Theorem 1.2.

Theorems 1.1 and 1.2 are intimately connected to the following, direct generalization of the Szegö–Widom limit
theorem to the determinants of Mμ,n(a).

Theorem 1.3.

(a) Assume the moment condition (C2), let σ = max{1/β,3/(2γ )} and B = F�2(ν) such that νm = ν−m, νm is
increasing (m ≥ 1), and

νm ≥ max
{(

1 + |m|)σ ,

√
1 + m2ιμ

(
2|m|2σ

)}
, sup

m≥1

ν2m

νm

< ∞. (12)

Let a ∈ B and suppose T (a) is invertible on �2. Then

lim
n→∞

detMμ,n(a)

G[a]n exp(ιμ(2n)Ω[a]) = F [a], (13)

with some constant F [a] and

G[a] = exp
([loga]0

)
, Ω[a] = 1

2

∞∑
k=−∞

k2[loga]k[loga]−k. (14)

(b) Assume the moment condition (C1), let a ∈ L∞(T) ∩ F�2
1/2 if β ≥ 2 or a ∈ F�2

1/β if 1 < β < 2. Suppose T (a) is

invertible on �2. Then

lim
n→∞

detMμ,n(a)

G[a]n = E[a], (15)

for a constant E[a]. If further a ∈ F�1
σ or a ∈ F�2

σ+ε , σ = max{1,2/β}, ε > 0, there is the expression

E[a] = det
(
T
(
a−1)Mμ(a)

)
. (16)

The convergences in (13) and (15) is uniform (in a) on compact subsets of the indicated function spaces.

The assumption that T (a) is invertible is a natural assumption on the symbol; it is the condition in the (scalar)
Szegö–Widom theorem (see [4], Ch. 10, and [24]). One of the general versions of that theorem pertains to symbols
drawn from the Krein algebra K = L∞(T) ∩ F�2

1/2 (which contains discontinuous functions). Hence, at least for
β ≥ 2, we achieve the same level of generality.

Except for the Krein algebra K, the various classes of symbols occurring above are Banach algebras continuously
embedded in C(T). For those classes, the assumption that T (a) be invertible is equivalent to requiring that a possesses
a continuous logarithm loga on the unit circle T, which then enters the definition of the constant G[a] and Ω[a]. In
other words, the continuous function a is nonzero on all of T and has winding number zero. In case of K, where a can
be discontinuous, we must define

G[a] = [T −1(a−1)]
00 (17)

as the (0,0)-entry in the matrix representation of the inverse Toeplitz operator, as is well known in the context of the
classical Szegö–Widom theorem.

The quite technical assumptions in (12) can be simplified in special situations such as (10). Then, in case 1/2 <

β < 1 we can take B = F�2
σ , σ = 1/β , while in case β = 1 we can take B = F�2(ν), νm = C(1+|m|) log1/2(2+|m|),

which is only slightly stronger than one might expect.
The constant E[a] can be expressed via a well defined operator determinant (16) (see, e.g., [11] for the underlying

notions). Its explicit evaluation appears quite hard, although in the CUE case where Mμ(a) = T (a) its evaluation is
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classical [24] (see also [4,7,8]). It is exactly this evaluation problem that ties to the identification of Z in Theorem 1.2.
The constant F [a] involves an even more complicated operator determinant.

The theorems above are derived in Sections 6 and 7, as a consequence of a more general result, Theorem 4.4
(Section 4), on the asymptotics of determinants of type (2). Section 3 lays out various preliminaries required for
the proof of Theorem 4.4, and also explains how we employ the moment assumption. Section 5 provides detailed
asymptotics of a certain trace term occurring in Theorem 4.4 which is tied to the variance of Xf,n.

Throughout we have considered fixed radial measures μ; any simple scaling of μ in n will not affect any appraisal
concerning the angular statistics. There are however examples of interest which fall out of this set-up. Take for instance
the so-called spherical ensemble connected to A−1B in which A and B are independent n×n Ginibre matrices. The re-
sulting eigenvalues form a determinantal process with dμn(r) = r(1+ r2)−(n+1) dr [17]. Another example is provided
by the roots of the degree-n complex polynomial with Mahler measure one, for which dμn(r) = r min(1, r−2n−2)dr

[5]. Our methods could perhaps be adopted to both situations, but we do not pursue this.

2. On the moment condition

Of the key examples, both CUE and truncated Bergman satisfy (lnmξ)
′′ = O(ξ−2), while the Ginibre ensemble

satisfies (lnmξ)
′′ = O(ξ−1). A few more examples are contained in the following.

Proposition 2.1. Consider positive measures on R+ with density dμ(r) = μ(r)dr and corresponding moment func-
tion mξ = ∫∞

0 rξμ(r)dr .

(i) If μ(r) is supported on a finite interval [a, b], and is “regular” at b as in μ(r) = c(b − r)α−1 for r ∈ (b − δ, b]
and α > 0, then (lnmξ)

′′ = αξ−2 + O(ξ−3).
(ii) If μ(r) = p(r)e−crα

for polynomials p and α > 0, then (lnmξ)
′′ = αξ−1 + O(ξ−2).

(iii) If μ(r) = e−c(ln(e+r))q for q > 1, then (lnmξ)
′′ = αξ(2−q)/(q−1) + O(ξ (3−2q)/(q−1)) upon choosing c =

α1−q(q1/(1−q) − qq/(1−q)).

Proof. We start with explicit instances of cases (i) and (ii). For (i), there is no loss in assuming that [a, b] = [0,1] and
we consider further μ(i)(r) = (1 − r)α−11[0,1]. For case (ii), consider a simple polynomial term μ(ii)(r) = rpe−rα

.
Then we have,

lnm
(i)
ξ = lnΓ (ξ + 1) − lnΓ (ξ + α + 1) + lnΓ (α)

and

lnm
(ii)
ξ = lnΓ

(
(ξ + p + 1)/α

)− lnα.

From this point the verifications may be completed using that d2

dz2 lnΓ (z) = z−1 + (1/2)z−2 + O(z−3) for large real
values of z.

More generally, for case (i) we write

(lnmξ)
′′ = 〈(ln r)2rξ 〉μ

〈rξ 〉μ − 〈(ln r)rξ 〉2
μ

〈rξ 〉2
μ

and note that Laplace asymptotic considerations yield: for d = 0,1,2, 〈(log r)drξ 〉μ = 〈(log r)drξ 〉μ(i) + O(e−Cδξ ),

which is more than enough to show that one has the same asymptotics for any such μ as for μ(i). That (ii) extends to
more general polynomials p(r) is self-evident.

For case (iii) we only mention that it is most convenient to consider the asymptotically equivalent object mξ =∫∞
0 eξr−crq

dr (after an obvious change of variable) for which the leading order arises from a neighborhood of the
stationary point r∗ = (ξ/cq)1/(q−1). The details are straightforward. �

The above is intended to be illustrative; no attempt to optimize the regularity conditions on μ has been made. We
also mention here without proof that the measure dμ(r) = e−er

dr produces a moment sequence for which there is
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the not strictly polynomial decay (lnmξ)
′′ = O( 1

ξ ln ξ
). Further, by Fourier inversion, one may produce measures for

which (logmξ)
′′ is exactly α(1 + ξ)−β for 0 < β ≤ 2, β �= 1, α > 0.

Moment condition and the mean measure. Our condition(s) on the moment sequence also dictate the limit shape of
the mean measure of the points. This object is given by

dΛn(z) =
(

1

n

n−1∑
k=1

|z|2k

2πm2k

)
dm(z);

as the name suggests Em,n[# points in A] = n
∫
A

dΛn(z) for (measurable) A ⊆ C, see again [13]. We provide one
description of the shift from a “β = 1” setting, resulting in an extended limit support, to a “β > 1” setting for which
the limit support is degenerate. This is in line with the conjecture discussed after Theorem 1.2.

Proposition 2.2. For all sufficiently large ξ let the moment sequence mξ = ∫∞
0 rξ dμ(r) satisfy

(lnmξ)
′′ = α

ξ + 1
+ ε(ξ) (18)

with α ≥ 0 and ε ∈ L1(R+). Then there exists a rescaling of Pm,n so that dΛn converges weakly to either: a weighted
circular law with density 1

2πα
|z|1/α−2 on |z| ≤ 1 when α > 0, or to the uniform measure on |z| = 1 when α = 0.

Note, ε is necessarily nonnegative when α = 0. And of course, when α = 1/2 the advertised limit is the standard
circular law (see e.g. [2]).

Proof. Choose q � 1 so that (18) is in effect for s ≥ q , and then integrate the equality twice: first over q ≤ s ≤ t , and
then in t from k to k + � to find

ln

(
mk+�

mk

)
= α� logk + c� + o(1). (19)

(Here c = (lnm)′(q) + α lnm(q) − ∫∞
q

ε(s)ds, and the o(1) holds in k − we view � as fixed.) Next compute the �th
absolute moment in the mean measure: which here can be considered as supported on R+,

∫
C

|z|� dΛn(z) = 1

n

n−1∑
k=0

m2k+�

m2k

= 1

n

(
2αec

)� n−1∑
k=1

kα�
(
1 + o(1)

)
. (20)

Neglecting the multiplicative errors, in the case α = 0 the sum (20) converges to ec� for any �, unambiguously
the moment sequence defined by placing unit mass at the place ec ∈ R+. When α > 0, we rescale Pm,n by

sending {zi}1≤i≤n 	→ {n−αzi}1≤i≤n. Then, the sum converges to (2αec)� ec�

α�+1 as n → ∞. Matching constants in∫ b

0 t� d(t/b)p+1 = p+1
p+�+1b� identifies (uniquely) the scaled α > 0 moment sequence with that of the measure with

density (p + 1)tp/bp+1 on [0, b] where b = 2αec and p = 1−α
α

. Thus the limiting mean measure is also identified. In
either case, α > 0 or α = 0, an additional rescaling will place the outer edge of the support at one. �

3. Hilbert–Schmidt and trace class conditions

Our results hinge on being able to consider Mμ(a) as a suitable compact perturbation of the Toeplitz operator T (a)

(see (11)). Here we will establish sufficient conditions on a and μ such that

Kμ(a) = Mμ(a) − T (a) = ((�j,k − 1)aj−k

)
), j, k ≥ 0,

is Hilbert–Schmidt or trace class operator. We refer to [11] for general information about these notions. Since T (a) is
bounded on �2 whenever a ∈ L∞(T), under the appropriate conditions Mμ(a) is then also bounded. While it might
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be interesting to ask for necessary and sufficient conditions for the boundedness of Mμ(a) and the compactness of
Kμ(a), we think it is a non-trivial issue, which we will not pursue here.

The compactness properties of Kμ(a) rely mainly on the “shape” of �j,k near the diagonal. An application of
Hölder’s inequality shows that 0 < �j,k ≤ 1. More detailed information on �j,k is provided by the following technical
lemma, for which we use the set of indices,

Iδ = {(j, k) ∈ Z+ × Z+: |j − k|δ < (j + k)/2
}
, (21)

always assuming δ ≥ 1 (Z+ = {0,1, . . .}). The factor 1/2 in Iδ is only for technical convenience. In particular,
(j, k) ∈ Iδ implies j, k ≥ 1.

Part (a) of the following lemma will be used at several places, while the more elaborate part (b) is used only in
Lemma 5.2 and under the assumption �,γ > 1 ≥ β > 1/2 (see the moment condition (C2)), although the statement
remains true in general. Notice that for � ≤ β , part (b) reduces to part (a) since one can put hμ = 0. Throughout what
follows we will utilize the notation a ∨ b := max{a, b}.

Lemma 3.1.

(a) Let β > 0, δ ≥ 1, βδ ≥ 2, and assume that the measure μ satisfies the condition

(lnmξ)
′′ = O

(
ξ−β

)
, ξ → ∞.

Then, for (j, k) ∈ Iδ with � = j − k,σ = j + k, we have the uniform estimate

�j,k = 1 + O

(
�2

σβ

)
. (22)

(b) Let β,γ,� > 0, δ ≥ 1, βδ ≥ 2, γ δ ≥ 3, �δ ≥ 2, and assume that there exists a differentiable function hμ(ξ) ≥ 0
such that

(lnmξ)
′′ = hμ(ξ) + O

(
ξ−�

)
, ξ → ∞,

and

hμ(ξ) = O
(
ξ−β

)
, h′

μ(ξ) = O
(
ξ−γ

)
, ξ → ∞.

Then, for (j, k) ∈ Iδ with � = j − k,σ = j + k, we have the uniform estimate

�j,k = 1 − �2

2
hμ(σ ) + O

(
�4

σ 2β
∨ |�|3

σγ
∨ �2

σ�

)
. (23)

Proof. We can assume without loss of generality that � > 0. Then

ln�j,k = lnmσ − lnmσ+� + lnmσ−�

2
= −�2

2
(lnmη)

′′, η ∈ (σ − �,σ + �),

after applying the mean-value theorem twice. We can write η = σ(1 + τ), where the error term τ is estimated by
|τ | ≤ |�|/σ ≤ |�|δ/σ ≤ 1/2 using δ ≥ 1.

In case (a) we can conclude that

ln�j,k = O

(
�2

ηβ

)
= O

(
�2

σβ

)
.

Because βδ ≥ 2 we get �2 ≤ σ 2/δ ≤ σβ . Hence the above term is bounded and exponentiating yields the assertion. In
case (b) we first obtain

ln�j,k = −�2

2
hμ(η) + O

(
�2

η�

)
.
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Now we apply once more the mean value theorem to obtain the estimate

ln�j,k = −�2

2
hμ(σ ) + O

( |�|3
σγ

∨ �2

σ�

)
.

Notice that, as above, η = σ(1 + τ) with |τ | ≤ 1/2. All these terms are bounded because 2/δ ≤ β , 3/δ ≤ γ , and
2/δ ≤ �. The assertion is obtained upon exponentiating. �

Part (a) of the lemma translates immediately into the estimates that follow.

Proposition 3.2. Let β > 1/2 and assume that the measure μ satisfies the assumption

(lnmξ)
′′ = O

(
ξ−β

)
, ξ → ∞.

Put σ = 1/2 ∨ 1/β . Then there exists a constant Cμ > 0 such that Kμ(a) is Hilbert–Schmidt and the estimate∥∥Kμ(a)
∥∥

C2(�
2)

≤ Cμ‖a‖F�2
σ

holds whenever a ∈ F�2
σ .

Proof. Put δ = 2σ = 1 ∨ 2/β so that Lemma 3.1(a) is applicable. The operator Kμ(a) is Hilbert–Schmidt if and only
if the sum

∑
(j,k)∈Z

2+ |aj−k|2(1 − �j,k)
2 is finite (this quantity is the square of the Hilbert–Schmidt norm). We have

that ∑
(j,k)∈Z

2+

|aj−k|2(1 − �j,k)
2 ≤

∑
(j,k)/∈Iδ

|aj−k|2 +
∑

(j,k)∈Iδ

|aj−k|2(1 − �j,k)
2

≤
∑

(d,s)∈Z×Z+
|d|δ≥s/2

|ad |2 +
∑

(d,s)∈Z×Z+
|d|δ<s/2

|ad |2 d4

s2β

≤ C
∑
d∈Z

|ad |2|d|δ + C
∑
d∈Z

|ad |2|d|4+δ(1−2β).

Line one just uses �j,k ∈ (0,1]. In line two we make the substitution d = j − k, s = j + k and employ Lemma 3.1(a),
and the final line uses the fact β > 1/2. Furthermore, as δβ ≥ 2 we see that the second term in this last line does not
exceed the first one, and that in turn is equal to the square of ‖a‖F�2

σ
(δ = 2σ ). �

Next we establish two sufficient conditions for Kμ(a) to be trace class. It is not hard to show that one is not weaker
than the other, i.e., neither of the two function classes pointed out below is contained in the other.

Proposition 3.3. Let β > 1 and assume that the measure μ satisfies the assumption

(lnmξ)
′′ = O

(
ξ−β

)
, ξ → ∞.

Put σ = 1 ∨ 2/β . Then there exists Cμ > 0 and, for each ε > 0, Cμ,ε > 0 such that

(a) Kμ(a) is trace class and the estimate∥∥Kμ(a)
∥∥

C1(�
2)

≤ Cμ‖a‖F�1
σ

holds whenever a ∈ F�1
σ ;
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(b) Kμ(a) is trace class and the estimate∥∥Kμ(a)
∥∥

C1(�
2)

≤ Cμ,ε‖a‖F�2
σ+ε

holds whenever a ∈ F�2
σ+ε .

Proof. Here we put δ = σ = 1 ∨ 2/β and notice that then Lemma 3.1(a) is again applicable.
(a) We first estimate the trace norm of Kμ(tm), m ∈ Z. Without loss of generality assume m > 0. Then Kμ(tm) has

entries on the mth diagonal given by {�k+m,k − 1}∞k=0. This operator is trace class if and only if its trace norm

∞∑
k=0

|�k+m,k − 1| < ∞.

We split and overestimate this sum by a constant times

∑
(k+m,k)/∈Iδ

1 +
∑

(k+m,k)∈Iδ

m2

(2k + m)β
,

using Lemma 3.1(a) for the second part. Now (k + m,k) ∈ Iδ means that mδ < (2k + m)/2, i.e., 2k > 2mδ − m.
Noting that 2k ≤ 2mδ − m implies k < mδ , and 2k > 2mδ − m implies 2k > mδ , the previous terms are overestimated
by

∑
0≤k<mδ

1 +
∑

k≥mδ/2

m2

(2k)β
≤ mδ + Cm2+δ(1−β) ≤ (1 + C)mδ.

Here we used β > 1 and δβ ≥ 2, and all estimates are uniform in m. Thus ‖Kμ(tm)‖C1(�
2) = O(|m|δ). From here the

proof of (a) follows immediately.
(b) Introduce the diagonal operator Λ = diag((1 + k)−1/2−ε), ε > 0, acting on �2. As Λ is Hilbert–Schmidt it

suffices to prove that the operator with the matrix representation of Kμ(a)Λ−1 is Hilbert–Schmidt. The squared
Hilbert–Schmidt norm of Kμ(a)Λ−1 equals∑

(j,k)∈Z
2+

|aj−k|2(1 + k)1+2ε(1 − �j,k)
2.

As before we split the sum into two parts,∑
(j,k)/∈Iδ

|aj−k|2(1 + j + k)1+2ε +
∑

(j,k)∈Iδ

|aj−k|2(1 − �j,k)
2(1 + j + k)1+2ε,

slightly overestimating it further. Now we make the substitution d = j − k ∈ Z and s = j + k ∈ Z+. We arrive at the
upper estimate for the first term∑

(d,s)∈Z×Z+
|d|δ≥s/2

|ad |2(1 + s)1+2ε ≤ C
∑
d∈Z

|ad |2(1 + |d|)δ(2+2ε) ≤ C‖a‖2
F�2

δ(1+ε)

.

For the second term, employ (1 − �j,k)
2 ≤ C(j − k)4(1 + j + k)−2β , by Lemma 3.1(a), to find that it is bounded by

a constant times

∑
(j,k)∈Iδ

|aj−k|2 (j − k)4

(1 + j + k)2β−1−2ε
≤

∑
(d,s)∈Z×Z+

|d|δ<s/2

|ad |2 d4

(1 + s)2β−1−2ε
.
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Without loss of generality we could have chosen ε > 0 small enough such that β > 1 + ε. Then we can estimate
further by a constant times∑

d∈Z

|ad |2|d|4+δ(2+2ε−2β) ≤
∑
d∈Z

|ad |2|d|δ(2+2ε) ≤ ‖a‖2
F�2

σ(1+ε)

.

This proves the assertion. �

Remark. The condition β > 1 is (in a certain sense) necessary to ensure that Kμ(a) is trace class. More precisely,
assume that the measure μ satisfies the condition

(lnmξ)
′′ = α

ξβ
+ O

(
ξ−�

)
, α > 0,1/2 < β ≤ 1, � > β. (24)

Choose δ > 2/β > 1. Using Lemma 3.1(b) it follows easily that

�j,k = 1 − α(j − k)2

2(1 + j + k)β

(
1 + o(1)

)
for indices (j, k) ∈ Iδ . Moreover for each fixed m, the entries (k,m + k) belongs to Iδ for all sufficiently large
k ≥ k0(m). Thus the mth diagonal has entries

am(�k,k+m − 1) = am

αm2

2(1 + m + 2k)β

(
1 + o(1)

)
, k ≥ k0(m).

This growth (in k) is too large to allow Kμ(a) to be trace class unless mam = 0. That is, under (24), the operator
Kμ(a) can only be trace class in the trivial case of constant symbol.

4. Determinant asymptotics

Recall that given a function a ∈ L∞(T) with Fourier coefficients an, the Toeplitz and the Hankel operator acting on
�2 = �2(Z+), are defined by their infinite matrix representations

T (a) = (aj−k), H(a) = (aj+k+1), 0 ≤ j, k < ∞. (25)

It is well known that the relations

T (ab) = T (a)T (b) + H(a)H(b̃), (26)

H(ab) = T (a)H(b) + H(a)T (b̃), (27)

hold, where b̃(t) = b(t−1), t ∈ T. For later use, introduce the flip operators and the projection operators acting on �2,

Wn : {x0, x1, . . .} 	→ {xn−1, xn−2, . . . , x1, x0,0,0, . . .},
Pn : {x0, x1, . . .} 	→ {x0, x1, . . . , xn−2, xn−1,0,0, . . .}, Qn = I − Pn,

where n ∈ {1,2,3, . . .}, as well as the forward and backward shift operators,

Vn : {xk}∞k=0 	→ {yk}∞k=0, yk =
{

0 if k < n,
xk−n if k ≥ n,

V−n : {xk}∞k=0 	→ {xn+k}∞k=0.

It is easy to verify that V±n = T (t±n), Wn = H(tn), and

VnV−n = Qn, V−nVn = I, WnPn = PnWn = Wn, W 2
n = Pn. (28)
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Consistent with previous notation, we denote by Tn(a) and Mμ,n(a) the n × n upper-left submatrices of the matrix
representation of T (a) and Mμ(a), i.e.,

Tn(a) = PnT (a)Pn, Mμ,n(a) = PnMμ(a)Pn.

Here we identify the upper-left n × n block in the matrix representation of the operators on the right-hand sides with
the Cn×n matrices on the left-hand sides.

In this section we are going to establish the main auxiliary result (Theorem 4.4), which reduces the asymptotics
of the determinant detMμ,n(a) to the asymptotics of a trace (or already gives the determinant asymptotics up to the
computation of a constant). This and the main results hold either for the Krein algebra K = L∞(T) ∩ F�2

1/2 (see [4],
Ch. 10), or for several subalgebras of C(T), which satisfy “suitable conditions.” Therefore, it seems convenient to
formulate Theorem 4.4 below in a quite general context and to make use of the following definition.

Definition 4.1. Given a unital Banach algebra B which is continuously embedded in L∞(T), denote by Φ(B) the set
of all a ∈ B such that the Toeplitz operator T (a) is invertible on �2. We say such a Banach algebra B suitable if:

(a) B is continuously embedded in K = L∞(T) ∩ F�2
1/2.

(b) If a ∈ Φ(B), then a−1 ∈ Φ(B).

The next proposition demonstrates the suitability of several Banach algebras which appear in the main results.

Proposition 4.2. With W = F�1
0 denoting the Wiener algebra, the following are suitable Banach algebras:

(i) W ∩ F�2
σ = F�2

σ for σ > 1/2;
(ii) F�1

σ for σ ≥ 1/2;
(iii) W ∩ F�2

1/2 and K = L∞(T) ∩ F�2
1/2;

(iv) W ∩ F�2(ν) provided that ν−n = νn ≥ n1/2, {νn}∞n=1 is increasing, and supn≥1
ν2n

νn
< ∞.

Proof. First of all, the above are indeed Banach algebras. This is elementary for F�1
σ . A proof for W ∩ F�2

σ , σ ≥ 0,
can be found in [4], Thm. 6.54, while the more general space W ∩ F�2(νσ ) is treated in [16]. For K see, e.g., [4],
Thm. 10.9. As for (i), note that F�2

σ is continuously embedded in W whenever σ > 1/2. Further, property (a) of
suitability is immediate for these spaces.

Recall that a unital Banach algebra B is called inverse closed in Banach algebra B0 ⊃ B if a ∈ B and a−1 ∈ B0

implies that a−1 ∈ B . For all the Banach algebras B above, except for K, using simple Gelfand theory and the density
of the Laurent polynomials it is easily seen that the maximal ideal space can be naturally identified with T. (In the
case of (iv), this is also proved in [16].) By a standard argument, this implies that these Banach algebras are inverse
closed in C(T), thus also in L∞(T). For a proof of the inverse closedness of K in L∞(T) see again [4], Thm. 10.9.

As for property (b), take a ∈ Φ(B), i.e., a ∈ B such that T (a) is invertible on �2. From the theory of Toeplitz
operators it is well known that then a is invertible in L∞(T). By the inverse closedness we thus have a−1 ∈ B . Now
we observe that b ∈ K implies that both H(b) and H(b̃) are Hilbert–Schmidt. Using the formulas

I = T (a)T
(
a−1)+ H(a)H

(
ã−1), I = T

(
a−1)T (a) + H

(
a−1)H(ã), (29)

and the implied compactness of the Hankel operators, it follows that T (a−1) is a Fredholm regularizer for T (a).
(For information about Fredholm operators, see, e.g., [11].) Hence T (a−1) is also Fredholm with index zero and thus
invertible (by Coburn’s lemma [4], Sec. 2.6). But this means that a−1 ∈ Φ(B). �

The next proposition shows (besides a technical result (ii)) that the constant G[a] is well defined for all a ∈ Φ(B).
This constant appears in our limit theorem as it did appear in the classical Szegö–Widom limit theorem. We follow
closely the arguments of [4], Ch. 10.
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Proposition 4.3. Let B be a suitable Banach algebra, and a ∈ Φ(B).

(i) With [∗]00 the (0,0)-entry of the matrix representation on �2, the constant

G[a] := [T −1(a−1)]
00 (30)

is nonzero.
(ii) With An = PnT

−1(a−1)Pn, we have detAn = G[a]n, and

A−1
n → T

(
a−1), (

A∗
n

)−1 → T
(
a−1)∗

strongly on �2 as n → ∞. (A∗ is the adjoint of A.) Moreover, the mappings

Λn :a ∈ Φ(B) 	→ A−1
n ∈ L

(
�2),

are equi-continuous, L(�2) being the space of bounded linear operators on �2.
(iii) If b ∈ B , then eb ∈ Φ(B) and G[eb] = eb0 , where b0 is the 0th Fourier coefficient.

Proof. (i)–(ii) If a ∈ Φ(B), then a−1 ∈ Φ(B) and T (a−1) is invertible. Hence the definitions of G[a] and An make
sense. Notice that for n = 1, we have detA1 = A1 = [T −1(a−1)]00 = G[a]. Consequently, (i) will follow from the
invertibility of An in the case n = 1.

To show the invertibility of An we use a block operator inversion formula, sometimes also referred to as Kozak’s
formula. If P is a projection, Q = I − P is the complementary projection, and A is an invertible operator, then
PAP |Im(P ) is invertible if and only if so is QA−1Q|Im(Q). In fact, the formula

(PAP )|−1
Im(P ) = PA−1P |Im(P ) − PA−1Q

(
QA−1Q

)|−1
Im(Q)QA−1P |Im(P ) (31)

holds, which can be easily verified (see also [4], Prop. 7.15).
Applying the above to An = PnT

−1(a−1)Pn we see that An is invertible if and only if QnT (a−1)Qn is invertible,
and in this case we have

A−1
n = PnT

(
a−1)Pn − PnT

(
a−1)Qn

(
QnT

(
a−1)Qn

)−1
QnT

(
a−1)Pn. (32)

Notice that QnT (a−1)Qn is nothing but the “shifted” Toeplitz operator. Using the shift operators V±n satisfying the
relations (28), we obtain (QnT (a−1)Qn)

−1 = VnT
−1(a−1)V−n and hence

A−1
n = PnT

(
a−1)Pn − PnT

(
a−1)VnT

−1(a−1)V−nT
(
a−1)Pn. (33)

We have thus shown that An is invertible and in particular (i). Moreover, from this representation it follows immedi-
ately that the mappings Λn are equi-continuous. If suffices to remark that the operators Pn and V±n have norm one, and
that the various mappings b ∈ Φ(B) 	→ b−1 ∈ Φ(B), b ∈ B 	→ T (b) ∈ L(�2), B ∈ GL(�2) 	→ B−1 ∈ GL(�2) are con-
tinuous. (Here GL(�2) stands for the group of all invertible bounded linear operator on �2.) Using that Pn = P ∗

n → I

strongly, and V ∗
n = V−n → 0 strongly on �2, it follows that A−1

n and their adjoints converge strongly.
In order to prove detPnT

−1(a−1)Pn = G[a]n is suffices to prove that

detAn

detAn−1
= G[a] (34)

for n ≥ 1. For n = 1 with detA0 := 1, this is just the definition of G[a]. By noting that An−1 = Pn−1AnPn−1 it follows
from Cramer’s rule that

detAn−1

detAn

= [A−1
n

]
n−1,n−1
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for n ≥ 2 while the statement is obvious for n = 1. Reformulating the above expression (33) for A−1
n one step further,

we have

A−1
n = WnT

(
ã−1)Wn − WnH

(
ã−1)T −1(a−1)H (a−1)Wn = WnT

−1(ã)Wn. (35)

Here we use the general formulas

PnT (b)Pn = WnT (b̃)Wn, PnT (b)Vn = WnH(b̃), V−nT (b)Pn = H(b)Wn.

as well as an identity relating the inverses of T (a−1) and T (ã) to each other (which either can be derived from (31)
or by using (26), (27)). Due to the definition of the Wn, we see that the lower-right entry of A−1

n does not depend on
n for n ≥ 1, i.e.,

[
A−1

n

]
n−1,n−1 = [T −1(ã)

]
00 = 1/G[a],

the last equality following from (34) for n = 1. This completes the proof of (34) for all n.
(iii) Using (29) it can be seen that T (e−λb) is a Fredholm regularizer of T (eλb), λ ∈ [0,1]. Due to the stability of the

Fredholm index under perturbation, all these operators have Fredholm index zero; hence they are invertible (Coburn’s
lemma [4], Sec. 2.6). This proves eb ∈ Φ(B). A proof of G[eb] = eb0 can now be given via an approximation argument
and by using Wiener–Hopf factorization (see [4], Prop. 10.4). �

Before stating the main result of this section, we introduce two conditions on a Banach algebra B ⊆ L∞(T).

(TC) For all a ∈ B the operator Kμ(a) is trace class and ‖Kμ(a)‖C1(�
2) ≤ C‖a‖B.

(HS) For all a ∈ B the operator Kμ(a) is Hilbert–Schmidt and ‖Kμ(a)‖C2(�
2) ≤ C‖a‖B .

Propositions 3.2 and 3.3 identify Banach algebras B which satisfy (TC) or (HS), depending naturally on the un-
derlying measure μ (the constant C = C(μ)).

Theorem 4.4. Let B ⊂ L∞(T) be a suitable Banach algebra.

(a) Suppose B satisfies (TC). Then for a ∈ Φ(B) we have

lim
n→∞

detMμ,n(a)

G[a]n = E[a], (36)

where

E[a] = det
(
T
(
a−1)Mμ(a)

)
.

The constant E[a] is a well-defined operator determinant, and the convergence (36) is uniform in a ∈ Φ(B) on
compact subsets of Φ(B).

(b) Suppose B satisfies (HS). Then for a ∈ Φ(B) we have

lim
n→∞

detMμ,n(a)

G[a]n · exp(tracePnT (a−1)Kμ(a)Pn)
= H [a] (37)

with

H [a] = det
(
T
(
a−1)Mμ(a)e−T (a−1)Kμ(a)

)
.

Again, the constant H [a] is a well-defined operator determinant, and the convergence (37) is uniform in a ∈ Φ(B)

on compact subsets of Φ(B).
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Proof. The first steps in the proof of (a) and (b) are the same. As in the previous proposition define An =
PnT

−1(a−1)Pn. Recall (29) to conclude that

T (a) = T −1(a−1)+ L(a), L(a) := −T −1(a−1)H (a−1)H(ã)

with L(a) being trace class. The latter follows from the fact that H(b) and H(b̃) are Hilbert–Schmidt for b ∈ B ⊆ K,
while appropriate norm estimates also hold. Moreover, property (b) of the suitability of B implies that the mapping

a ∈ Φ(B) 	→ L(a) ∈ C1
(
�2)

is continuous. Now we can write

Mμ,n(a) = Pn

(
T −1(a−1)+ L(a) + Kμ(a)

)
Pn

= An + Pn

(
L(a) + Kμ(a)

)
Pn.

Using Proposition 4.3(ii) we obtain

detMμ,n(a)

G[a]n = det
(
Pn + A−1

n Pn

(
L(a) + Kμ(a)

)
Pn

)
. (38)

(a) Assume condition (TC). Then Kμ(a) is trace class, and the mapping a ∈ Φ(a) 	→ Kμ(a) ∈ C1(�
2) is continuous.

Consequently, again by Proposition 4.3(ii),

det
(
Pn + A−1

n Pn

(
L(a) + Kμ(a)

)
Pn

)
converges to the well defined operator determinant

det
(
I + T

(
a−1)(L(a) + Kμ(a)

))
,

which equals

det
(
T
(
a−1)(T (a) + Kμ(a)

))= det
(
T
(
a−1)Mμ(a)

)
.

As to the uniform convergence on compact subset of Φ(B), it is enough to show that the family of maps

a ∈ Φ(B) 	→ det
(
Pn + A−1

n Pn

(
L(a) + Kμ(a)

)
Pn

) ∈ C

are equi-continuous. To see this we use the equi-continuity of a ∈ Φ(B) 	→ A−1
n ∈ L(�2) and the continuity of a ∈

Φ(B) 	→ L(a) + Kμ(a) ∈ C1(�
2) along with fact that sup‖A−1

n ‖ < ∞ for each a ∈ Φ(B). This implies that the maps

a ∈ Φ(B) 	→ A−1
n Pn

(
L + Kμ(a)

)
Pn

are equi-continuous and bounded. Finally, in order to pass to the determinant we use the general estimate∣∣det(I + A) − det(I + C)
∣∣≤ ‖A − C‖1 exp

(
max

{‖A‖1,‖C‖1
})

,

which holds for trace class operators A,C.
(b) Now assume condition (HS). In view of (38) introduce

Cn = A−1
n Pn

(
L(a) + Kμ(a)

)
Pn.

Then

Cn = A−1
n PnL(a)Pn + PnT

(
a−1)Kμ(a)Pn + Dn
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with

Dn = (A−1
n Pn − PnT

(
a−1))Kμ(a)Pn.

From (32) and Pn = I − Qn we obtain

A−1
n Pn − PnT

(
a−1) = −PnT

(
a−1)Qn − PnT

(
a−1)Qn

(
QnT

(
a−1)Qn

)−1
QnT

(
a−1)(I − Qn)

= −PnT
(
a−1)Qn

(
QnT

(
a−1)Qn

)−1
QnT

(
a−1).

Using the same arguments as in the derivation of (33) and (35), this equals

−WnH
(
ã−1)T −1(a−1)V−nT

(
a−1),

whence

Dn = −WnH
(
ã−1)T −1(a−1)V−nT

(
a−1)Kμ(a)Pn.

Since H(ã−1) and Kμ(a) are each Hilbert–Schmidt, and V−n → 0 strongly, it follows that Dn → 0 in the trace
norm. Moreover, from the explicit representation it is seen that the family of mappings a ∈ Φ(B) 	→ Dn ∈ C1(�

2) is
equi-continuous.

Further, by Proposition 4.3(ii), A−1
n PnL(a)Pn → T (a−1)L(a) converges in the trace norm, and the family of maps

a ∈ Φ(B) 	→ A−1
n PnL(a)Pn ∈ C1(�

2) is equi-continuous.
In contrast, PnT (a−1)Kμ(a)Pn converges only in the Hilbert–Schmidt norm to T (a−1)Kμ(a), while the mappings

a ∈ Φ(B) 	→ PnT (a−1)Kμ(a)Pn ∈ C2(�
2) are equi-continuous.

We can now conclude that on each compact subset of Φ(B), the afore-mentioned maps are actually uniformly equi-
continuous and uniformly bounded. Hence we have uniform convergence of the corresponding sequences of operators
in the trace class or Hilbert–Schmidt norm.

With C = T (a−1)L(a)+T (a−1)Kμ(a) = T (a−1)Mμ(a), noting that L(a) = T (a)−T (a−1)−1, it follows that, as
n → ∞,

(I + Cn)e
−PnT (a−1)Kμ(a)Pn − I → (I + C)e−T (a−1)Kμ(a) − I,

uniformly on compact subset of Φ(B) in trace norm. Consequently,

lim
n→∞ det

(
(I + Cn)e

−PnT (a−1)Kμ(a)Pn
)= det

(
(I + C)e−T (a−1)Kμ(a)

)
,

also uniformly. �

Let us summarize what we have achieved thus far:
Assuming the moment condition (C1), i.e., “β > 1,” we have both the trace class condition (TC) and the

Hilbert–Schmidt condition (HS) available (see Proposition 3.2 and 3.3). The easiest way is to assume (TC) and
use Theorem 4.4(a) to conclude a limit theorem. However, the trace class conditions are much stronger than the
Hilbert–Schmidt conditions, and it is worthwhile to see what can be done assuming only the latter. Then we can apply
Theorem 4.4(b), and are left with the computation of traces (which will be done in Proposition 5.1 below). While we
get a better result assuming only (HS), the constant expression will be more complicated.

Assuming the moment condition (C2), i.e., “1/2 < β ≤ 1,” Kμ(a) will in general not be trace class (see the remark
at the end of Section 3). Therefore we are left with Theorem 4.4(b) and the computation of the traces, which in this
case is more difficult and will occupy most of the next section.

5. Asymptotics of the trace

As just pointed out, in order to make use of part (b) of Theorem 4.4, we need to evaluate the trace term. We distinguish
between the two cases indicated above.
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The case of β > 1 is completely settled by the following proposition, which shows that the trace converges to a
constant.

Proposition 5.1. Assume the moment condition (C1), and put σ = 1/2 ∨ 1/β . Then, for a, b ∈ F�2
σ , we have

trace
(
PnT (b)Kμ(a)Pn

)= τμ(a, b) + o(1), n → ∞, (39)

where

τμ(a, b) :=
∞∑

j,k=0

bk−j aj−k(�j,k − 1). (40)

The series (40) converges absolutely. Moreover, the convergence (39) is uniform in (a, b) on compact subsets of
F�2

σ × F�2
σ .

Proof. By Proposition 3.2 the operator Kμ(a) is a Hilbert–Schmidt and hence bounded and linear. Consequently the
trace equals

trace
(
PnT (b)Kμ(a)Pn

)=
∞∑

j=0

n−1∑
k=0

bk−j aj−k(�j,k − 1).

We claim that the estimate

∞∑
j,k=0

∣∣bk−j aj−k(�j,k − 1)
∣∣≤ C‖a‖F�2

σ
‖b‖F�2

σ
(41)

holds. Indeed, put δ = 2σ = 1 ∨ 2/β , recall 0 < �j,k ≤ 1, and split the sum into∑
(j,k)/∈Iδ

|bk−j aj−k| +
∑

(j,k)∈Iδ

∣∣bj−kaj−k(�j,k − 1)
∣∣,

where Iδ is defined in (21). Using Lemma 3.1(a) and substituting m = j − k and � = j + k we can overestimate this
by

∑
(m,�)∈Z×Z+

2|m|δ≥�

|b−mam| +
∑

(m,�)∈Z×Z+
2|m|δ<�

|b−mam|m
2

�β
≤ C

∞∑
m=−∞

|b−mam||m|δ + C

∞∑
m=−∞

|b−mam||m|2+δ(1−β).

Since δβ ≥ 2, we obtain (41) via Cauchy–Schwarz.
The convergence (39) of the trace now follows from (41) by dominated convergence. The absolute convergence of

(40) is also a consequence of (41). Finally, again by (41), the mappings

Λn : (a, b) ∈ F�2
σ × F�2

σ 	→ trace
(
PnT (b)Kμ(a)Pn

)
, n ≥ 1

are equi-continuous. Convergence and equi-continuity imply the uniform convergence on compact subsets. �

We remark that the function τμ(a, b) is bilinear and continuous in a, b ∈ F�2
σ . Formally τμ(a, b) equals the trace

of T (b)Kμ(a), though note the assumptions made in the proposition are not sufficient to insure T (b)Kμ(a) is trace
class. Indeed, there exists a ∈ F�2

σ such that Kμ(a) is not trace class (and one can choose b = 1). Of course, if Kμ(a)

is trace class, we have equality (and the proposition is a triviality).
Now we turn to the case 1/2 < β ≤ 1, for which the trace does not converge to a constant. It provides the second

order asymptotics of the detMμ,n(a). In terms of the random matrix interpretation, the asymptotics of the trace gives
the shape of the variance for the corresponding linear statistics. We begin with the following estimate.
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Lemma 5.2. Assume the moment condition (C2), and put δ = 2σ = 2/β ∨ 3/γ . Then for a, b ∈ F�2
σ it holds

trace
(
PnT (b)Kμ(a)Pn

)= −1

2

∞∑
m=−∞

m2b−mamp(δ)
n,m + E1(a, b; δ) + o(1), n → ∞. (42)

Here E1 is some constant and

p(δ)
n,m =

∑ ′
2|m|δ<�≤2n

hμ(�), (43)

where the prime indicates that the summation is taken over all � ∈ Z+ with the same parity as m. The convergence
(42) is uniform in (a, b) on compact subsets of F�2

σ × F�2
σ .

Proof. As in the previous lemma, the operator Kμ(a) is Hilbert–Schmidt and the trace evaluates to

trace
(
PnT (b)Kμ(a)Pn

)=
∞∑

j=0

n−1∑
k=0

bk−j aj−k(�j,k − 1).

We can split the double series into∑
(j,k)/∈Iδ

k<n

bk−j aj−k(�j,k − 1) and
∑

(j,k)∈Iδ

k<n

bk−j aj−k(�j,k − 1), (44)

where the first term is dominated by∑
(j,k)/∈Iδ

|bk−j aj−k| ≤ C‖a‖F�2
σ
‖b‖F�2

σ
.

Consequently, the first term in (44) converges as n → ∞ to the constant∑
(j,k)/∈Iδ

bk−j aj−k(�j,k − 1), (45)

and using equi-continuity we see that the convergence is uniform on compact subsets.
For the second term in (44) we bring in the estimate of Lemma 3.1(b),

�j,k = 1 − m2

2
hμ(�) + O

(
m4

�2β
∨ |m|3

�γ
∨ m2

��

)
, (j, k) ∈ Iδ,

together with the substitution � = j + k, m = j − k. As to the applicability of this lemma, note that δ� > δ ≥ 2/β ≥ 2.
Hence the second term in (44) equals

−
∑

(j,k)∈Iδ

k<n

b−mam

m2

2
hμ(�) +

∑
(j,k)∈Iδ

k<n

b−mamO

(
m4

�2β
∨ |m|3

�γ
∨ m2

��

)
. (46)

The error term here can be overestimated by a constant multiple of∑
m∈Z

|b−mam| · (|m|4+δ(1−2β) ∨ |m|3+δ(1−γ ) ∨ |m|2+δ(1−�)
)≤ ‖a‖F�2

σ
‖b‖F�2

σ
.

Here, we first converted the sum over (j, k) to that over (m,�) ∈ Z × Z+ restricted to 2|m|δ < � and then summed
over the � variable. After this one notes that our conditions imply that the exponents 4 + δ(1 − 2β), 3 + δ(1 − γ ), and
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2 + δ(1 − �) are all less than δ = 2σ . In other words, the error in (46) is dominated by a corresponding absolutely
convergent series. As such it converges to the constant

∑
(j,k)∈Iδ

b−mam

(
�j,k − 1 + m2

2
hμ(�)

)
(47)

as n → ∞. In fact, the convergence is uniform on compact subsets of F�2
σ × F�2

σ , which can be most easily seen by
equi-continuity. In view of what follows, the constant E1(a, b; δ) is now identified as the sum of (45) and (47).

Turning to the first term in (46), the summation expressed in terms of (m,�) ∈ Z × Z+ is over all indices such that
� < 2n + m, 2|m|δ < �, and such that the parity of � and m is the same. That is, what we have for the leading order is

∞∑
m=−∞

b−mam

m2

2

( ∑ ′
2|m|δ<�<2n+m

hμ(�)

)
(48)

while

∞∑
m=−∞

b−mam

m2

2

( ∑ ′
2|m|δ<�≤2n

hμ(�)

)
(49)

is what is claimed in (42).
We next show that

sn,m :=
∑ ′

2|m|δ<�<2n+m

m2hμ(�) −
∑ ′

2|m|δ<�≤2n

m2hμ(�) = O

( |m|δ
nε

∨ |m|δ
nβ

)
, (50)

as n → ∞, uniformly in m, where ε = β + 1 − 3/δ > 0. This will imply that the difference between (48) and (49)
converges (uniformly) to zero as n → ∞.

To see (50) we distinguish four cases:

1. m > 0 and 2|m|δ < 2n. Then sn,m = O(m3/nβ). Since m < n1/δ we have

m3

nβ
≤ mδn(3−δ)/δ

nβ
= mδ

nε

in case δ < 3, while the bound is mδ/nβ in the case δ ≥ 3.
2. m > 0 and 2n ≤ 2|m|δ . Then sn,m = O(m3/mβδ), and since m ≥ n1/δ , we have

m3

mβδ
= mδ

mβδ+δ−3
≤ mδ

nβ+1−3/δ
= mδ

nε
.

3. m < 0 and 2|m|δ < 2n + m. Then sn,m = O(|m|3/(2n − |m|)β), |m| < (n − |m|/2)1/δ ≤ n1/δ , and we have

|m|3
(n − |m|/2)β

≤ |m|δ(n − |m|/2)(3−δ)/δ

(n − |m|/2)β
= |m|δ

(n − |m|/2)ε
≤ |m|δ

(n − n1/δ/2)ε

in case δ < 3, or |m|δ/(n − n1/δ/2)β in the case δ ≥ 3.
4. m < 0 and 2n + m ≤ 2|m|δ . Then sn,m = O(|m|3/|m|βδ), n ≤ |m|δ + |m|/2 ≤ 2|m|δ , and

|m|3
|m|βδ

= |m|δ
|m|βδ+δ−3

≤ C
|m|δ

nβ+1−3/δ
= C

|m|δ
nε

.
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From here it follows that difference of (48) and (49) is bounded by a constant multiple of n−ε∧β‖a‖F�2
σ
‖b‖F�2

σ
, and

the indicated convergence is uniform in (a, b) even on bounded subsets of F�2
σ × F�2

σ . The proof is finished. �

Next we estimate the leading term from the previous lemma.

Lemma 5.3. Assume the moment assumption (C2), and define p
(δ)
n,m for δ > 1 by (43).

(i) If c ∈ W = F�1, then

∞∑
m=−∞

cmp(δ)
n,m = ιμ(2n)

∞∑
m=−∞

cm + o
(
ιμ(2n)

)
, n → ∞. (51)

(ii) If c ∈ F�1(ν̂) with ν̂m = 1 + ιμ(2|m|δ), then, with some constant E2,

∞∑
m=−∞

cmp(δ)
n,m = ιμ(2n)

∞∑
m=−∞

cm + E2(c; δ) + o(1), n → ∞. (52)

The convergence holds uniformly in c on compact subsets of W and F�2(ν̂), respectively.

Proof. First set

s±
μ (x) =

∑
1≤�≤x

(−1)�=±1

hμ(�).

Standard estimates using the assumptions on hμ and the fact that the functions s±
μ (x) are increasing gives s±

μ (x) =
ιμ(x) + C± + o(1) as x → ∞ for constants C±. Granted this, for either point (i) or (ii), we split the sum over even
and odd indices. In particular,∑

m even

cmp(δ)
n,m =

∑
m even

cm max
{
0, s+

μ (2n) − s+
μ

(
2|m|δ)}

= s+
μ (2n)

∑
m even

cm −
∑

m even

cm min
{
s+
μ (2n), s+

μ

(
2|m|δ)}.

The first term on the right-hand side gives one half of the leading asymptotics. Next we show that for part (i), the
second term is o(s+

μ (2n)), while for part (ii) the second term is a constant plus o(1).
Indeed, for part (i), we write the second term as

s+
μ (2n)

∑
m even

cm min

{
1,

s+
μ (2|m|δ)
s+
μ (2n)

}
.

This renormalized series is dominated by the series
∑ |cm|. Moreover, for each fixed m, the minimum converges to

zero as n → ∞. Dominated convergence then implies that the series is o(1) as n → ∞. Similar considerations can be
carried out for the odd term, concluding the proof of part (i).

As for part (ii), take again the even terms:∑
m even

cm min
{
s+
μ (2n), s+

μ

(
2|m|δ)}.

This sum is now dominated by (a constant times)

∞∑
m=−∞

|cm|(1 + ιμ
(
2|m|δ))< ∞, (53)
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while for each fixed m, the minimum converges to s+
μ (2|m|δ) as n → ∞. So dominated convergence yields that the

above equals

∑
m even

cms+
μ

(
2|m|δ)+ o(1).

The terms involving the summation over odd m give a similar contribution, and collecting everything we arrive at, in
case (ii):∑

cmp(δ)
n,m =

∑
m even

cm

(
s+
μ (2n) − s+

μ

(
2|m|δ))+ ∑

m odd

cm

(
s−
μ (2n) − s−

μ

(
2|m|δ))+ o(1).

From here the constant

E2(c; δ) = C+
∑

m even

cm + C−
∑

m odd

cm −
∞∑

m=−∞
cm

∑ ′
1≤�≤2|m|δ

hμ(�)

is identified. The uniform convergence on compacts is seen by using the equi-continuity of the corresponding map-
pings. �

We now combine the previous two lemmas into the following theorem. Notice that part (i) will be used to prove
Theorem 1.1, while part (ii) is used to show Theorem 1.3(a).

Theorem 5.4. Assume the moment condition (C2), and put σ = 1/β ∨ 3/(2γ ).

(i) If a, b ∈ F�2
σ , then

trace
(
PnT (b)Kμ(a)Pn

)= Ω(a,b) · ιμ(2n) + o
(
ιμ(2n)

)
, n → ∞, (54)

where

Ω(a,b) = −1

2

∞∑
m=−∞

m2amb−m = − 1

4π

∫ 2π

0
a′(eit)b′(eit)dt,

and the convergence (54) is uniform in (a, b) on compact subsets of F�2
σ × F�2

σ .

(ii) Let B = F�2
σ ∩ F�2(ν) with νm =

√
1 + m2ιμ(2|m|2σ ). Then, for a, b ∈ B ,

trace
(
PnT (b)Kμ(a)Pn

)= Ω(a,b) · ιμ(2n) + Cμ(a, b) + o(1), n → ∞, (55)

with a certain constant Cμ(a, b). The convergence (54) is uniform in (a, b) on compact subsets of B × B .

Proof. (i) We employ Lemma 5.2 and Lemma 5.3(i) with cm = m2b−mam and δ = 2σ . Since σ ≥ 1/β ≥ 1, we obtain
from Cauchy–Schwarz that c ∈ F�1

2σ−2 ⊆ W . Hence

trace
(
PnT (b)Kμ(a)Pn

)= − ιμ(2n)

2

∞∑
m=−∞

cm + o
(
ιμ(2n)

)
, n → ∞,

with the convergence being uniform in a, b on compact subsets of F�2
σ . The computation of the constant Ω(a,b) is

straightforward.
(ii) Lemma 5.2 is applied without any change. This produces the constant factor E1 which could be neglected in

case (i). Lemma 5.3(ii) is now applicable because a, b ∈ F�2(ν) along with Cauchy–Schwarz implies that c ∈ F�1(ν̂).
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We thus obtain the asymptotics (52). Combined with Lemma 5.2 we arrive at (55) with the overall constant evaluated
from E1 and E2,

Cμ(a, b) =
∞∑

j,k=0

bk−j aj−k

(
�j,k −1+ (j − k)2

2
hμ(j +k)

)
− C+

2

∑
m even

m2amb−m− C−
2

∑
m odd

m2amb−m. (56)

The constant C± were defined at the beginning of the proof of Lemma 5.3. The absolute convergence of the above
series is guaranteed by estimates on am and bm that follow from the choice of B . �

6. Limit theorems: the case β > 1 (C1)

As pointed out at the end of Section 4, we can proceed in two ways, by using either Theorem 4.4 (a) or (b) depending
whether we have the trace class (TC) or Hilbert–Schmidt (HS) condition available. In turn, Propositions 3.2 and 3.3
indicate which condition is in effect given the underlying assumptions. We start with the proof of Theorem 1.3(b).

Put B = F�1
σ , or B = F�2

σ+ε , ε > 0 with σ = 1 ∨ 2/β . Then Proposition 3.3 implies that B satisfies the trace class
condition (TC), and Proposition 4.2 shows that the Banach algebra B is suitable. Now apply Theorem 4.4(a) in order
to get (15) in Theorem 1.3(b). In particular, we obtain the correct identification of the constant E[a] as a well-defined
operator determinant.

As for the constant G[a], which is given by (30) in Proposition 4.3(iii), notice first that standard Toeplitz theory
implies that a ∈ C(T) does not vanish on T and has winding zero. (Recall that a ∈ B ⊂ C(T) and the T (a) is assumed
to be invertible.) Hence there exists a continuous logarithm loga. Because the Banach algebra B under consideration
contain all smooth functions and contains the set of Laurent polynomials as a dense subset, an approximation argument
implies that loga ∈ B . Now Proposition 4.3(iii) implies that G[a] is also given by (14).

Next, put B = L∞(T) ∩ F�2
1/2 (β ≥ 2) or B = F�2

1/β (1 < β < 2). Again suitability of B is guaranteed by Propo-
sition 4.2, and Proposition 3.2 implies (HS). Now we can use Theorem 4.4(b), and we are left with the asymptotics
of the trace, which is settled by Proposition 5.1. We obtain the same convergence (15) in Theorem 1.3(b) under the
stated (more general) conditions, but the constant E[a] must be identified as

E[a] = eτμ(a,a−1) det
(
T
(
a−1)Mμ(a)e−T (a−1)Kμ(a)

)
.

Clearly, if a satisfies the stronger conditions, then both expressions for E[a] coincide (see also the remark after
Proposition 5.1). This concludes the proof of Theorem 1.3(b).

For the main application (Theorem 1.2), the behavior of the (centered) linear statistic Xf,n − nf0 = Xf −f0,n is ac-
cessed through considering symbols aλ = eiλ(f −f0). Notice that Proposition 4.3(iii) implies aλ ∈ Φ(B) and G[aλ] = 1.
Applying what we have just proved (Theorem 1.3(b)) and (2) we immediately obtain

lim
n→∞ Em,n

[
eiλ(Xf,n−nf0)

]= E(f,λ) (57)

with

E(f,λ) := eτμ(a−1
λ ,aλ) det

(
T
(
a−1
λ

)
Mμ(aλ)e

−T (a−1
λ )Kμ(aλ)

)
(58)

under the conditions stated in Theorem 1.2(a). The convergence (57) is locally uniform in λ. Hence E(f,λ) is analytic
in λ and E(f,0) = 1. This implies that E(f,λ) is a proper moment generating function, and hence Xf,n − nf0
converges in distribution to some random variable Z .

In order to identify the mean and the variance of Z we rewrite (57) as

lim
n→∞ detMμ,n

(
eλb
)= eiλc1−λ2c2/2+···

abbreviating b = i(f − f0), where c1 stands for the means and c2 for the variance, and the series expansion hold in a
neighborhood of zero. Due to locally uniform convergence we can take the first and second derivative of the logarithm
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and put λ = 0 to get c1 and c2. Using the formula (log detF(λ))′ = traceF ′(λ)F−1(λ) we obtain

c1 = lim
n→∞ traceMμ,n(f − f0) = 0,

c2 = − lim
n→∞ trace

(
Mμ,n

(
b2)− (Mμ,n(b)

)2)
.

We decompose the Mμ,n matrices into the Toeplitz matrices Tn and the error terms Kμ,n and use a general formula
for Toeplitz matrices,

Tn(φψ) = Tn(φ)Tn(ψ) + PnH(φ)H(ψ̃)Pn + WnH(φ̃)H(ψ)Wn,

see Section 4 for the notation. Noting that the trace of Kμ,n(b
2) equals zero it follows that

c2 = − lim
n→∞ trace

(
PnH(b)H(b̃)Pn + WnH(b̃)H(b)Wn − 2Tn(b)Kμ,n(b) − Kμ,n(b)2)

= −2
∞∑

k=1

kbkb−k + 2
∞∑

j,k=0

(�j,k − 1)bj−kbk−j +
∞∑

j,k=0

(�j,k − 1)2bj−kbk−j

= 2
∞∑

k=1

kfkf−k +
∞∑

j,k=0

(
1 − �2

j,k

)
fj−kfk−j . (59)

Notice that for f real, f−k = fk , so that in any case c2 > 0 unless f is constant. The absolute convergence of the
above series follows from the same estimate used in the proof of Proposition 5.1 for (41). Recall that it is assumed
f ∈ F�2

σ , σ = 1/2 ∨ 1/β . This concludes the proof of the first part of Theorem 1.2.
For second part, notice that under the stronger conditions, the constant simplifies to

E(f,λ) = det
(
T
(
e−iλ(f −f0)

)
Mμ

(
eiλ(f −f0)

))= det
(
T
(
e−iλf )Mμ

(
eiλf )). (60)

From this expression, via differentiation, the formulas for the zero mean and the variance (59) can be obtained as well.
What exactly Z is though is hard to understand from (58) or (60). The following is the best we have; it completes the
proof of Theorem 1.2.

Proposition 6.1. Let β > 1, σ = 1 ∨ 2/β and assume either b ∈ F�1
σ or b ∈ F�2

σ+ε , ε > 0. Then there exists δ > 0
such that for λ ∈ C with |λ| < δ it holds that

det
(
T
(
e−λb

)
Mμ

(
eλb
)) = exp

(
λ2

2
trace

(
H(b)H(b̃)

)+ ∞∑
n=2

λn

n! trace(Bn)

)
, (61)

where the (trace class) operators Bn are defined by the recursion

Bn+1 = Mμ

(
bn+1)− n∑

k=1

(
n

k

)
Bn+1−kMμ

(
bk
)
, n ≥ 0.

Ahead of the proof, we write out the first couple of Bn’s. With Mk = Mμ(bk) we obtain B1 = M1,

B2 = M2 − M2
1 ,

B3 = M3 − 2M2M1 − M1M2 + 2M3
1 ,

B4 = M4 − 3M3M1 − M1M3 − 2M2
2 + 6M2M

2
1 + 3M1M2M1 + 3M2

1M2 − 6M4
1 .

When μ is the unit mass at 1, then Mμ(b) = T (b) and one has that log det(T (e−λb)T (eλb)) equals λ2 trace(H(b)H(b̃))

(according to the Szegö–Widom limit theorem). That is, we have the above expressions with Mk replaced by Tk =
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T (bk) while at the same time traceB2 = trace(H(b)H(b̃)) and traceBm = 0 for all m ≥ 3. (This means that the
cumulants of Z of order three and higher are vanishing.) Back in the general case, we can subtract from the Bk given
by the above formulas the corresponding expressions for the special case Mk = Tk and then take traces. Substituting
Mk = Tk + Kk with Kk = K(bk), yields

trace(B2) = trace
(
H(b)H(b̃)

)− trace
(
2T1K1 + K2

1

)
,

trace(B3) = −3 trace(K2T1 + K1T2 + K2K1) + 2 trace
(
3K2

1T1 + 3K1T
2

1 + K3
1

)
,

trace(B4) = −4 trace(T3K1 + K3T1 + K3K1) − 2 trace
(
2T2K2 + K2

2

)
+ 12 trace

(
T2T1K1 + T2K1T1 + T2K

2
1 + K2T

2
1 + K2T1K1 + K2K1T1 + K2K

2
1

)
− 6 trace

(
4T 3

1 K1 + 4T 4
1 K2

1 + 2T1K1T1K1 + 4T1K
3
1 + K4

1

)
.

All products under the traces are trace class operators and thus each of the above objects can be computed explic-
itly in terms of infinite sums. Still, the expressions become increasingly intractable, and we do not see how further
simplifications are possible.

Proof of Proposition 6.1. Set aλ = eλb and split the determinant E[aλ] = detT (a−1
λ )Mμ(aλ) into two parts E[aλ] =

E1(λ)E2(λ) where

E1(λ) = detT
(
a−1
λ

)
eλT (b), E2(λ) = det e−λT (b)Mμ(aλ).

First of all, both expressions are well defined because the expressions under the determinant are of the form identity
plus trace class. Indeed, this has been shown for T (a−1

λ )eλT (b) in [7], Prop. 7.1. Now observe that Mμ(aλ) is a trace
class perturbation of T (aλ).

It has been shown in [8], Sec. 3 (see also the proof of Thm. 2.5 in [3]) that

E1(λ) = exp

(
λ2

2
trace

(
H(b)H(b̃)

))
.

It is straightforward to verify that E2(λ) depends analytically on λ (see again [7,8]). Assume now that |λ| is
sufficiently small such that Mμ(aλ), being close to the identity operator, is invertible and hence the determinants E2(λ)

are nonzero. Notice that E2(0) = 1, whence there is no problem of defining a logarithm in a small neighborhood of
zero,

f (λ) := log det e−λT (b)Mμ(aλ).

Recall that for invertible analytic operator-valued functions F(λ) of the form identity plus trace class we have the
well-known formula (log detF(λ))′ = traceF ′(λ)F−1(λ). As a consequence, for invertible A(λ) and B(λ), whose
product is identity plus trace class, we have(

log detA(λ)B(λ)
)′ = trace

(
A−1(λ)A′(λ) + B ′(λ)B−1(λ)

)
. (62)

From this we obtain

f ′(λ) = trace
(
Mμ(aλ)

′M−1
μ (aλ) − T (b)

)
.

For small |λ| introduce the well-defined analytic function B(λ) defined by B(0) = 0 and

B ′(λ) = Mμ(aλ)
′M−1

μ (aλ).

Writing out this relation in terms of power series (with B(λ) =∑∞
k=1 λkBk/k!) it follows that( ∞∑

k=0

λkBk+1

k!

)( ∞∑
k=0

λkMμ(bk)

k!

)
=

∞∑
n=0

λnMμ(bn+1)

n! .
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Inspection of the nth coefficient (n ≥ 0) produces

Mμ

(
bn+1)= Bn+1 +

n∑
k=1

(
n

k

)
Bn+1−kMμ

(
bk
)

which implies the recursion. Noting that f (0) = 0, B(0) = 0, and f ′(λ) = trace(B ′(λ) − T (b)) yields

E2(λ) = det e−λMμ(b)Mμ(aλ) = exp
(
trace

(
B(λ) − λT (b)

))
.

Since we have B1 = Mμ(b) from the recursion and traceKμ(b) = 0 (�kk = 1) the proof is finished. �

7. Limit theorems: the case 1/2 < β ≤ 1 (C2)

We first prove Theorem 1.3(a). Put B = F�2(ν) with the conditions on ν stated there. It follows immediately that
B ⊆ F�2

σ with σ ≥ 1/β ≥ 1. Hence by Proposition 3.2 the Hilbert–Schmidt condition (HS) holds. Moreover, Propo-
sition 4.2 implies that B is a suitable Banach algebra. Hence we can use Theorem 4.4(b) and obtain (37) with the
constant H [a]. We are left with determining the asymptotics of the trace of PnT (a−1)Kμ(a)Pn, for which we can use
Theorem 5.4(ii). Therein our Banach algebra is continuously embedded into the Banach space F�2

σ ∩ F�2(ν) (with
possibly different ν). With b = a−1 the asymptotics equals Ω(a,a−1) · ιμ(2n) + Cμ(a, a−1) + o(1) with

Ω[a] := Ω
(
a, a−1)= − 1

4π

∫ 2π

0
a′(eit)(a−1(eit))′dt = 1

4π

∫ 2π

0

(
a′(eit )

a(eit )

)2

dt.

This gives the correct constant in (14). As for the constant F [a] in (13) we remark that

F [a] = eCμ(a,a−1) det
(
T
(
a−1)Mμ(a)e−T (a−1)Kμ(a)

)
, (63)

where Cμ(a, a−1) is given by (56), but we make no attempt to simplify the expression. Notice that both Theo-
rem 5.4(ii) and Proposition 4.2(iv) require the rather complicated Banach algebra B = F�2(ν).

We now turn to the proof of Theorem 1.1, assuming that B = F�2
σ with σ = 1/β ∨ 3/(2γ ). There is no change in

the applicability of Theorem 4.4(b), though the function to which it is applied is appropriately rescaled in n. This is
where the statements about uniform convergence are needed.

We replace Xf,n with f ∈ B by

Xscal
f,n := Xf,n − nf0√

ιμ(2n)
= Xgn,n, gn

(
eix) := f (eix) − f0√

ιμ(2n)
, (64)

and have that

Em,n

[
eiλXscal

f,n
]= detMμ,n(aλ,n)

with aλ,n = eiλgn . Since ιμ(2n) → ∞, the elements gn (n ∈ N) lie in a compact subset of B , and so aλ,n lie in a
compact subset of Φ(B) (recall Proposition 4.3(iii)).

By Theorem 4.4(b)

lim
n→∞

detMμ,n(aλ,n)

G[aλ,n]n · exp(tracePnT (a−1
λ,n)Kμ(aλ,n)Pn)

= lim
n→∞H [aλ,n],

due to uniform convergence on compact subsets. The regularized determinant H [aλ,n] converges to H [1] = 1 since
T (a−1

λ,n)Kμ(aλ,n) → T (1)Kμ(1) = 0 in the Hilbert–Schmidt norm. Here we have to use Proposition 3.3 and the
estimate implied by (HS).
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Again by Proposition 4.3(iii), G[aλ,n] = 1. To evaluate the trace we will use Theorem 5.4(i). Define

h = iλ(f − f0) and sn =√ιμ(2n)

and introduce the functions pn, qn ∈ B via series expansion

aλ,n = eh/sn = 1 + h/sn + pn/s
2
n, a−1

λ,n = e−h/sn = 1 − h/sn + qn/s
2
n.

Notice immediately that pn → h2/2 and qn → h2/2 in the norm of B . Denoting tn(b, a) = trace(PnT (b)Kμ(a)Pn)

we have that

tn
(
a−1
λ,n, aλ,n

)= − tn(h,h)

s2
n

+ −tn(h,pn) + tn(qn,h) + s−1
n tn(pn, qn)

s3
n

because in general tn(b,1) = tn(1, a) = 0. Theorem 5.4(i) says that for a, b ∈ B we have tn(b, a) = Ω(a,b)s2
n + o(s2

n)

and that the convergence is uniform on compact sets. Hence, applying this to all of the above expressions involving tn
and using that pn and qn are from compact subsets of B , it follows that

lim
n→∞ tn

(
a−1
λ,n, aλ,n

)= −Ω(h,h) = −λ2

2

∞∑
k=−∞

k2fkf−k = − λ2

4π

∫ 2π

0

(
f ′(eix))2 dx.

This implies, uniformly on bounded sets of λ and compact sets of f ∈ B ,

lim
n→∞ Em,n

[
eiλXscal

f
]= exp

(
−λ2

2

∑
k∈Z

k2fkf−k

)
= exp

(
− λ2

4π

∫ 2π

0

(
f ′(eix))2 dx

)
(65)

completing the proof of Theorem 1.1.

Appendix: On the Toeplitz ◦ Hankel formula

We wish to compute the integral

Im,n(ϕ) = 1

Zm,n

∫
Cn

n∏
k=1

ϕ(arg zk)
∏
k<�

|zk − z�|2
n∏

k=1

dm(zk),

where m is radial and Zm,n is chosen so that Im,n(1) = 1.
To begin, write∏

|zk − z�|2 = det
[[

z�−1
k

] · [z̄�−1
k

]T ]
,

where [z�−1
k ] denotes the n × n matrix with z�−1

k in row k and column �. That is to say,

∏
|zk − z�|2 = det

⎡
⎢⎣

n
∑n

k=1 z̄k

∑n
k=1 z̄2

k . . .∑n
k=1 zk

∑n
k=1 zkz̄k

∑n
k=1 zkz̄

2
k . . .

...
...

...
. . .

⎤
⎥⎦ .

Now expand the first column on the right-hand side via the linearity of the determinant, writing it as sum of n deter-
minants with first column [1, zk, z

2
k, . . . , z

n−1
k ]. By the product structure of

∏
ϕ(arg zk)dm(zk) each of the resulting n

integrals are the same. Thus, we can replace the
∏ |zk − z�|2 in the measure with

det

⎡
⎢⎣

1
∑n

k=1 z̄k

∑n
k=1 z̄2

k . . .

z1
∑n

k=1 zkz̄k

∑n
k=1 zkz̄

2
k . . .

...
...

...
. . .

⎤
⎥⎦= det

⎡
⎢⎣

1
∑n

k=2 z̄k

∑n
k=2 z̄2

k . . .

z1
∑n

k=2 zkz̄k

∑n
k=2 zkz̄

2
k . . .

...
...

...
. . .

⎤
⎥⎦ ,
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at the cost of introducing a constant factor which may be absorbed into Zm,n. This procedure may be repeated, and
after the nth iteration we conclude that

Im,n(ϕ) = 1

Zm,n

∫
Cn

n∏
k=1

ϕ(arg zk)det
[
z�−1
k z̄k−1

k

]
1≤k,�≤n

n∏
k=1

dm(zk)

= 1

Z̃m,n

det

[
1

2π

∫
C

ϕ(arg z)z�z̄k dm(z)

]
0≤k,�≤n−1

,

after using the linearity of the determinant once more. And, as

1

2π

∫
C

ϕ(arg z)z�z̄k dm(z) = ϕk−�

∫ ∞

0
rk+� dμ(r) = ϕk−�mk+�,

setting ϕ ≡ 1 we find that Z̃m,n =∏n−1
k=0 m2k , and so formula (2).
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