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We describe a new general connection between �-coalescents and ge-
nealogies of continuous-state branching processes. This connection is based
on the construction of an explicit coupling using a particle representation in-
spired by the lookdown process of Donnelly and Kurtz. This coupling has
the property that the coalescent comes down from infinity if and only if the
branching process becomes extinct, thereby answering a question of Bertoin
and Le Gall. The coupling also offers new perspective on the speed of coming
down from infinity and allows us to relate power-law behavior for N�(t) to
the classical upper and lower indices arising in the study of pathwise proper-
ties of Lévy processes.

1. Introduction and main results. Coalescents with multiple collisions, also
known as �-coalescents are Markovian models of coagulation. Introduced and
first studied independently by Pitman [25] and by Sagitov [28] (also considered in
a contemporaneous work of Donnelly and Kurtz [14]), these processes have been
intensely researched in the last decade. The research is mostly motivated by the
fact that �-coalescents arise naturally as scaling limits for the genealogy in certain
exchangeable population dynamics models. We refer to [5, 6] for an introduction
and a survey of the relevant literature.

The standard �-coalescent starts with infinitely many microscopic particles that
coalesce into larger clusters as time runs. Our interest in this paper concerns the
small-time behavior of (standard) �-coalescents, in particular the phenomenon of
coming down from infinity (a precise definition will be given below). Our main goal
is to answer a question which arose from work of Bertoin and Le Gall [10]. They
observed that the Schweinsberg condition [29] for coming down from infinity for
�-coalescents is equivalent to the condition for extinction of related continuous-
state branching processes (CSBPs), and asked if a deeper connection exists be-
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tween these two classes of processes. In this paper, we construct an explicit cou-
pling between a given �-coalescent and a certain associated CSBP, and therefore
answer the above question of Bertoin and Le Gall.

This coupling makes use of a particle system representation based on a look-
down process in the spirit of Donnelly and Kurtz [13, 14]. Apart from its interest
from a purely theoretical point of view, our coupling gives a new understanding of
the asymptotic form of the “speed of coming down from infinity” (as discussed by
the authors in [2]) and leads to precise quantitative results for the corresponding
�-coalescent observed at small times. In particular, the power-law exponents for
the number of blocks in a particular �-coalescent are shown to coincide with the
classical notion of upper and lower indices of the Lévy measure of the associated
CSBP.

The methodology in this paper has several points in common with [3, 4], where
an analogous link between Beta-coalescents and α-stable continuous-state branch-
ing processes was used. However, in these papers the central tool was an explicit
embedding of the lookdown process into the (stable) continuous random tree,
which allowed for many explicit computations. Here, we show that the correct way
to generalize this picture for an arbitrary �-coalescents is directly via the particle
system approach of the lookdown process.

In the rest of the paper, we denote by d= the equivalence in distribution. We
also use the standard Bachmann–Landau notation ∼,O(·), o(·),� for comparing
asymptotic behavior of deterministic and stochastic functions and sequences.

1.1. Coalescents and CSBPs. Let � be an arbitrary finite measure on [0,1],
and let (�t , t ≥ 0) denote the associated �-coalescent. The Markov jump process
(�t , t ≥ 0) takes values in the set of partitions of {1,2, . . .}. Its law is specified
by the requirement that, for any n ∈ N, the restriction �n of � to {1, . . . , n} is
a continuous-time Markov chain with transition rates given as follows: whenever
�n has b ∈ [2, n] blocks, any given k-tuple of blocks coalesces at rate λb,k :=∫
(0,1] rk−2(1 − r)b−k�(dr).

We will always assume that �(0) is the trivial partition {{i} : i ∈ N}. Let us call
N�(t) the number of blocks of �(t) the coalescent at time t . The first question
one may ask about these processes is whether the number of blocks ever becomes
finite. In his seminal paper [25] Pitman noted that [provided �({1}) = 0] as a con-
sequence of the strong Markov property, the following striking dichotomy holds:
either P(N�(t) = ∞,∀t ≥ 0) = 1 or P(N�(t) < ∞,∀t > 0) = 1. In the latter case
the coalescent is said to come down from infinity. Finding a necessary and suf-
ficient condition for this phenomenon was naturally one of the first problems to
be studied. As part of his thesis work, Schweinsberg [29] derived the following
criterion: the �-coalescent comes down from infinity if and only if

∞∑
b=2

(
b∑

k=2

(k − 1)

(
b

k

)
λb,k

)−1

< ∞.(1)
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Over the subsequent years, a series of remarkable links were discovered be-
tween �-coalescents and continuous-state branching processes (CSBP), for some
special cases of �. The case of Kingman’s coalescent (� = δ0) was analyzed
by Perkins [24] in 1991, though he used a somewhat different language. Bertoin
and Le Gall [7] studied the case of the Bolthausen–Sznitman coalescent (where
�(dx) = dx is the uniform measure on [0,1]), and then Birkner et al. [11] stud-
ied all the Beta-coalescents cases [where � is the Beta(2 − α,α) distribution, and
α ∈ (0,2)].

While seeking a way to understand the above results as special cases of a general
theorem, Bertoin and Le Gall [10] made the following observation. Consider the
function

ψ(q) :=
∫ 1

0

(
e−qx − 1 + qx

)
x−2�(dx), q ≥ 0.(2)

Then ψ is the Laplace exponent of a spectrally positive Lévy process and is thus
the branching mechanism of a CSBP (Zt , t ≥ 0). (Definitions and elementary
properties of CSBPs may be found, for instance, in [21, 22] and [5] and Chapter 6
of [1].) In particular Grey [19] showed that a ψ-CSBP becomes extinct almost
surely in finite time if and only if∫ ∞

1

dq

ψ(q)
< ∞.(3)

THEOREM 1 (Bertoin and Le Gall, [10]). Conditions (1) and (3) are equiva-
lent. In other words, a particular (standard) �-coalescent comes down from infin-
ity if and only if the corresponding CSBP becomes extinct.

The proof of Bertoin and Le Gall (see the end of Section 4 in [10]) is direct
and analytical. However, Theorem 1 strongly suggests that a general probabilistic
connection exists, and this prompted Bertoin and Le Gall to ask for a probabilistic
proof of their result.

The main goal of the present work is to provide an explicit coupling that makes
Theorem 1 “obvious.” In fact, the coupling yields much more information, includ-
ing a quantitative estimate on N�(t) for small times t (Propositions 15 and 17).
This estimate matches the “speed of coming down from infinity” obtained by the
authors in [2] with a martingale method. In fact, the present coupling construction
suggested that completely general result in the first place.

Organization and contents of the paper. Our coupling is based on a particle
system representation for �-coalescents and a connection to a version of Donnelly
and Kurtz’s lookdown process. Both for the sake of completeness and of explaining
the differences between our construction and that of [14], we will start by defining
the lookdown process. More precisely, we will show that this construction is fea-
sible whenever its driving point process π = ∑

i δ(ti ,pi), given on (0,∞) × (0,1)
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satisfies
∑

ti≤t p
2
i < ∞ for all t ≥ 0. This result, which we believe is of indepen-

dent interest, is stated in Proposition 3.
We will then apply this construction to two distinct point processes, one arising

from the �-coalescent and the other from the associated CSBP. This is done in
Section 2. We then use these representations to obtain a coupling between the two
processes. This allows us to conclude that the genealogy of the CSBP is, at small
times, “close” to the �-coalescent. On the other hand, the CSBP gets extinct in
finite time if and only if the number of individuals with descendants alive at a
future time t > 0 is finite (Proposition 9). This directly yields Theorem 1 and its
stronger quantitative version, Theorem 15.

We next use these results together with certain pathwise properties of Lévy pro-
cesses and CSBPs to discuss the regularity of N�(t) as t → 0. Our main result
there (Proposition 20) shows that the power-law behavior for N�(t) is intimately
related to the classical upper and lower indices of the Lévy measure of ψ , follow-
ing Blumenthal and Getoor [12] and Pruitt [27]. The Appendix contains an exam-
ple of a measure � that is not “well-behaved,” in the sense that the corresponding
�-coalescent comes down from infinity but the lower and the upper indices are
different. We show how this leads to truly oscillatory behavior for N�(t), which
highlights potential difficulties in the analysis of small-time behavior of general
�-coalescents.

2. Preliminaries. In this section we describe a general procedure known as
the lookdown construction, enabling one to construct measure valued processes
from point processes on [0,1] × R+. The material discussed in this section is
mostly well known, but we prefer to give a brief account of the theory to set the
ground for the construction of the coupling in Section 3. Unless stated otherwise,
we henceforth assume that �({0}) = �({1}) = 0.

2.1. Lookdown construction. The lookdown construction was first introduced
by Donnelly and Kurtz in 1996 [13]. Their goal was to give a construction of the
Fleming–Viot superprocess that provides an explicit description of the genealogy
of the individuals in the population; see [17] for a reader-friendly introduction to
these notions. Donnelly and Kurtz subsequently modified their construction in [14]
to include more general measure-valued processes (such as the Dawson–Watanabe
superprocesses). It is this version that we use here, and that we will apply to
the generalized Fleming–Viot superprocesses (which are dual to �-coalescents)
as well as to the ratio processes associated to CSBPs. Our approach here shares
common points with that of [11].

For a given (infinite size) population evolving in continuous time, let the ge-
netic types of individuals be encoded as numbers in [0,1]. More precisely, for
each i ≥ 1 and t ≥ 0, let ξi(t) ∈ [0,1] be the genetic type of the individual i (or
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level i) at time t . As will be seen soon, for our models, the infinite particle system
((ξ1(t), ξ2(t), . . .), t ≥ 0) is such that the limiting empirical measure


t(·) = lim
n→∞

1

n

n∑
i=1

δξi(t)(·)

exists simultaneously for all t , almost surely. The process (
t(·), t ≥ 0) is a con-
venient way to track the evolution of the genetic composition of the population.

We first offer an informal description followed by a formal one in Definition 2.
The evolution of (ξi(t))i≥1 is driven by a point process (i.e., a countable collec-
tion of random points) π = (pi, ti)i∈N in [0,1] × R+, and a family of i.i.d. coin
tosses. Each atom of π corresponds to a birth (or resampling) event. Changes in
(ξi(t), t ≥ 0)i≥1 occur only at birth event times. Let (p, t) ∈ π . Then at time t ,
for each level i ≥ 1, a coin is tossed, where the probability of head equals p, in-
dependently over levels. Those levels for which the coin comes up heads (let us
denote this set by Ip,t ) modify their label to ξmin Ip,t (t−). In words, each level in
Ip,t immediately adopts the type of the smallest level participating in this birth
event. For the remaining levels reassign the types so that their relative order im-
mediately prior to this birth event is preserved. More precisely, for each i /∈ Ip,t ,
let ξi(t−) = ξφ(i)(t) where φ is the unique increasing bijection from N \ {min Ip,t }
onto N \ Ip,t .

A more formal description follows. Fix (Ui,j )i,j≥1, a collection of i.i.d. uniform
variables on [0,1]. Let π = {(pi, ti) : i ∈ N} be a fixed point process on [0,1]×R+
such that for any 0 ≤ t < ∞, ∑

i:ti≤t

p2
i < ∞.(4)

[When we apply this construction later, π will be random and we will work condi-
tionally given π . Condition (4) will then hold almost surely.] For each n ≥ 1, con-
struct the label process associated with π as follows. We fix an infinite sequence
of exchangeable random variables (ξi(0))i≥1. Set ξn

i (0) = ξi(0), i = 1, . . . , n. For
each j ≥ 1 and i ∈ {1, . . . , n} define

Ai(tj ,pj ) ≡ Aj(i) := {Ui,j ≤ pj } and
(5)

i1(j) := min
{
i ≥ 1 :Aj(i) occurs

}
.

For i ≤ n, let

mj(i) :=
i∑

l=1

1Aj (l), i ≥ 1,(6)

be the number of levels smaller or equal to i that participate in the birth event
(pj , tj ). Denote by J the set of atom indices {j ≥ 1 :mj(n) ≥ 2} for which two
or more levels in {1, . . . , n} participate in the corresponding birth event. Order the
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collection of indices in J so that tj1 < tj2 < · · ·; this is almost surely possible due
to (4); see Proposition 3, below. Define (ξn

i (t))1≤i≤n to be constant over [tjk
, tjk+1).

Moreover, if j ∈ J , modify the labels at time tj as follows: for each 1 ≤ i ≤ n

declare

ξn
i (tj ) = ξn

i−(mj (i)−1)+(tj−)1Aj (i)c + ξn
i1(j)(tj−)1Aj (i),(7)

where mj(i) is defined in (6).
Finally, observe a crucial property of the above construction: if 1 ≤ m < n, then

the restriction of ξn to the first m levels yields ξm, and in symbols,((
ξn

1 (t), . . . , ξn
m(t)

)
, t ≥ 0

) ≡ ((
ξm

1 (t), . . . , ξm
m (t)

)
, t ≥ 0

)
.(8)

This fact is a simple consequence of the (lookdown) updating rule (7) that makes
the type at level i depend only on the previous types at levels up to (and includ-
ing) i. Therefore, one can unambiguously define the label process (ξi, i = 1,2, . . .)

simultaneously for all i, as

ξi(t) := ξ i
i (t) ≡ lim

n→∞ ξn
i (t) ∀t ≥ 0,∀i ≥ 1.(9)

DEFINITION 2. We call ξ := (ξi(t), t ≥ 0)i≥1 the label process associated
to π . We may write ξπ for ξ in order to indicate this association. Unless other-
wise specified we always assume that the (ξi(0))i≥1 are i.i.d. uniformly distributed
on [0,1].

In the sequel we will often focus on (Nπ(t), t ≥ 0), the number of (distinct)
types in the population process, defined by

Nπ(t) := #
{
ξ1(t), ξ2(t), . . .

}
, t ≥ 0.(10)

Note that Nπ(t) ∈ {1,2, . . .} ∪ {∞} and Nπ(0) = ∞, due to our assumptions on
ξ(0).

The next proposition justifies the above definition of ξ and ensures that the cor-
responding limiting empirical measure exists (as a càdlàg Markov process when
the process π is a Poisson point process). These facts will be used in the construc-
tion of the coupling without further reference in the sequel.

PROPOSITION 3. Let π be a point process satisfying (4), and let (ξi)i≥1 be its
label process. Then the limit 
t = limn→∞ 1

n

∑n
i=1 δξi(t) exists simultaneously for

all t almost surely and is càdlàg with respect to the weak topology.
Moreover, if π is random and satisfies (4) almost surely, (
t , t ≥ 0) is a Markov

process in its own filtration provided U(t) = ∑
i:ti≤t p

2
i has independent incre-

ments.

DEFINITION 4. The process (
t , t ≥ 0) is the lookdown (measure-valued)
process associated to π . We may write 
π

t instead of 
t to make explicit the
dependence on the point process π .
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PROOF OF PROPOSITION 3. The proof can essentially be found in [14], up
to a few modifications due to the difference in points of view. We explain how to
adapt their arguments to our setting. Recall the notation of Definition 2. To show
that ξn is well defined, note that, almost surely,

#
{
j ≥ 1 : tj ∈ [0, t] and mj(n) ≥ 2

}
< ∞ ∀t ≥ 0.(11)

Indeed, for each j the indicator 1{mj (n)≥2} has expectation 1 − (1 − pj )
n −

npj (1 − pj )
n−1 ≤ (n

2

)
p2

j , and assumption (4) together with Borel–Cantelli lemma
ensures (11). Thus the dynamic (inductive) update (7) is feasible, and the la-
bel process ξ associated to π is well defined. A crucial feature of ξ is that
for each fixed t > 0, the sequence (ξi(t), i = 1,2, . . .) is exchangeable. Indeed,
(ξi(0), i = 1,2, . . .) is an exchangeable family, and the transitions preserve the ex-
changeability. An application of de Finetti’s theorem now yields the existence of
the limit


t = lim
n→∞
n

t where 
n
t := 1

n

n∑
i=1

δξi(t)(12)

for any fixed time t , and hence for all t ∈ Q simultaneously, almost surely.
To see that the limit 
t actually exists simultaneously for all t with probability

one is more delicate and is proved by Donnelly and Kurtz in [14]. Essentially one
can adapt the proof of their Lemma 3.4 to see that for each fixed T > 0, ε > 0
and each Borel bounded function f : [0,1] �→ R, there exists a positive sequence
(δl)l>0 such that

∑
l≥0 δl < ∞ and such that for all l,m ≥ k

P

(
sup
t≤T

∣∣∣∣
∫ 1

0
f (x)
m

t (dx) −
∫ 1

0
f (x)
l

t (dx)

∣∣∣∣ > ε

)
≤ δk.(13)

This implies that the sequence
∫ 1

0 f (x)
m
t (dx) is almost surely Cauchy. Since the

space of bounded measurable functions is separable (see, e.g., Lemma 1.2 in [14])
this is enough to guarantee existence (
t , t ≥ 0) as a process with values in the set
of Borel measures. Moreover 
n

t converges for all t ≤ T simultaneously almost
surely.

Now assume that π is a random point process satisfying (4) and that (U(t), t ≥
0) has independent increments. Then it is easy to check that the label process
(ξi(t), t ≥ 0) is Markov (in its own filtration). The Markov property for 
 then
follows directly from the fact that exchangeable laws on [0,1]∞ are by De Finetti’s
theorem in one-to-one correspondence with the law of their empirical measure on
[0,1]. [Note that, however, (
t , t ≥ 0) is not Markov with respect to the strictly
greater filtration of the label process, since the type of individual 1 will tend to
take over the population as time evolves.] A similar argument is used in [18],
Proposition 3, to prove the Feller property for generalized Fleming–Viot processes
with immigration. The context there is slightly more general since the case of the
so-called 
-Fleming–Viot where simultaneous resampling events are allowed is
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considered. However, the driving point measure used in [18] is Poissonian whereas
we authorize more general point processes. �

REMARK 5. Donnelly and Kurtz [14] work under a different set of assump-
tions. Their setup is more general in the sense that they do not assume the consis-
tency of the finite-n label processes (ξn

i (t), t ≥ 0)1≤i≤n. (Furthermore, note that
they also include a Markov mutation diffusion operator that drives the motion of
labels in between reproduction events.) In fact, the total number of particles is
allowed to vary in their setting. For this reason, their construction does not make
sense conditionally given the (limiting) point process π , which is an important fea-
ture of our construction. The main novelty in our setting is the observation that the
assumption (4) is in fact all that is needed to guarantee existence of the measure-
valued process (
t , t ≥ 0) (it is also clear that this condition is necessary for the
very construction of the label process). In the notation of Donnelly and Kurtz, this
amounts to checking that the process (Un(t), t ≥ 0) converges in distribution to
(U(t), t ≥ 0).

2.2. Ancestral partitions, Fleming–Viot processes and �-coalescents. We
next apply Proposition 3 in two different settings, corresponding to the Fleming–
Viot process and to the CSBP, respectively. The upshot of this construction is a
convenient way to track the respective genealogies. This is achieved through the
ancestral partition process, associated to the process ξ constructed in Proposi-
tion 3.

Let π be a point process satisfying (4), and ξπ its associated label process. Note
that for each s > 0, the shifted point process π−s := {(p, t − s) : (p, t) ∈ π, t ≥ s}
also satisfies (4), and that, due to the updating rule (7), the label updates of the
associated label process {ξπ−s

(t), t ≥ 0} are the same as those of {ξπ (t), t ≥ s}.
The difference between the two processes is manifested through their initial states,
since for i 
= j we have ξπ−s

i (0) 
= ξπ−s

j (0), almost surely, while it is possible that
ξπ
i (s) = ξπ

j (s). Now fix some T > 0.

DEFINITION 6. The ancestral partition process (RT (t),0 ≤ t ≤ T ) takes val-
ues in the space of level partitions (or partitions of N). For each t ≤ T , RT (t) is de-
fined by the equivalence relation: i ∼ j in RT (t) if and only if ξi(T ) and ξj (T ) de-

scend from the same level at time t , or equivalently, if ξπ−t

i (T − t) = ξπ−t

j (T − t);
see also equation (2.3) in [11].

Note that RT (T ) is the trivial partition {{i} : i ∈ N} and that RT (t1) is a coarser
partition than RT (t2), whenever 0 ≤ t1 ≤ t2 ≤ T .

We now briefly recall the definition of generalized Fleming–Viot processes as
well as their link to �-coalescents. A generalized �-Fleming–Viot process (in the
sense of Bertoin and Le Gall [9]) (ρt , t ≥ 0) is a Markov process taking values
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in the space M of probability measures on [0,1]. Its generator L is defined as
follows: given a finite measure � on [0,1],

LF(μ) =
∫
(0,1]

y−2�(dy)

∫
[0,1]

μ(dx)
(
F

(
(1 − y)μ + yδx

) − F(μ)
)
,(14)

where F :M → R is a bounded continuous function. In words, a number y be-
tween 0 and 1 is sampled at rate y−2�(dy). A type x is sampled from ρt−. Then
ρt is obtained from ρt− by scaling down ρt− by (1 − y) and adding to the result
an atom at x of mass y.

THEOREM 7. Let � be a finite measure on [0,1]. Let π be a Poisson point
process on [0,1] × R with intensity x−2�(dx) ⊗ dt . Then the lookdown process

π (cf. Definition 4) is a �-generalized Fleming–Viot process with generator (14),
started from the uniform measure on [0,1]. Furthermore, the ancestral partition
process (RT (T − t),0 ≤ t ≤ T ) is the �-coalescent, run for time T .

PROOF. A careful proof of this fact can be found in Lemma 3.6 of [11], that is
directly based on the work of Donnelly and Kurtz [14]. We include a simpler proof
which relies instead on the duality introduced by Bertoin and Le Gall [8]. We start
with the claim that the ancestral partition process (RT (T − t),0 ≤ t ≤ T ) is the �-
coalescent. This follows simply from the following observation: let π ′ be the point
process obtained from π by applying the transformation (p, t) �→ (p,T − t). Then
π ′ has same law as π restricted to [0, T ] and is thus a Poisson point process on
[0,1] × [0, T ] with intensity x−2�(dx) ⊗ dt1[0,T ](t). Now, the updating rule (7)
can be rephrased as follows: at each atom (x, t) of π ′ one flips a coin for each
active ancestral lineage with probability of heads equal to p and the lineages that
come up heads merge. This is precisely the Poisson process construction of �-
coalescents; see, for example, Theorem 3.2 in [5].

Let (ρt , t ≥ 0) be a Fleming–Viot process, and let

Ft(x) = ρt

([0, x]), 0 ≤ x ≤ 1

be the associated bridge process. Denote by F−1
t the càdlàg inverse of the map

x �→ Ft(x). Let V1,V2, . . . , be i.i.d. uniform random variables in [0,1], indepen-
dent of (ρt , t ≥ 0). By the Glivenko–Cantelli theorem (see, e.g., (7.4) in Chapter 1
of Durrett [16]), noting that (F−1

t (Vi), i ≥ 1) are i.i.d. samples from the random
measure ρt , we have for each fixed t ≥ 0

ρt = lim
n→∞

1

n

n∑
i=1

δ
F−1

t (Vi)
almost surely,(15)

where the limit is taken in the sense of the weak topology on probability measures.
Bertoin and Le Gall [9] proved that the �-coalescent (�t , t ≥ 0) is dual to the

generalized Fleming–Viot process corresponding to � in the following sense: if
n ≥ 1 and f is any continuous function on [0,1]n, then

E
(
f

(
F−1

t (V1), . . . ,F
−1
t (Vn)

)) = E
(
f

(
Y

(
�n(t),V ′

1, . . . , V
′
n

)))
,(16)
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where �n(t) denotes the restriction of �t to [n], the random variables (V ′
1, . . . , V

′
n)

are i.i.d. uniform on [0,1], and independent of (�t , t ≥ 0), and where the map Y

is defined as follows:

for π ∈ Pn and (x1, . . . , xn) ∈ [0,1]n let Y(π, x1, . . . , xn) =
(y1, . . . , yn) with yj = xi for i = min{k :k ∼π j}.

Note that the duality relation (16) has the form of a generalized functional duality
in the context of interacting particle systems (see [23]), and should not be con-
fused with the notion of duality between coagulation and fragmentation processes
of [26].

We next verify that, for each t > 0,

(
ξ1(t), . . . , ξn(t)

) d= Y
(
�n(t),V ′

1, . . . , V
′
n

)
.(17)

This fact is an immediate consequence of our construction. Indeed, at time t two
levels i and j have the same type ξi(t) = ξj (t) if and only if they descend from
the same level at time 0 [since all the ξi(0) are almost surely distinct]. Hence
ξi(t) = ξj (t) if and only if i and j belong to the same block of Rt (0). Therefore

(
ξ1(t), . . . , ξn(t)

) = Y ′(Rt (0), ξ1(0), . . . , ξn(0)
)
,

where for π = (B1,B2, . . .) ∈ Pn and (x1, . . . , xn) ∈ [0,1]n we let

Y ′(π, x1, . . . , xn) = (y1, . . . , yn) with yj = xi for j ∈ Bi.

Clearly, as long as the random variables � ∈ Pn and (X1, . . . ,Xn) (i.i.d. uniform
on [0,1]) are independent one has

Y(�,X1, . . . ,Xn)
d= Y ′(�,X1, . . . ,Xn),

and since the ξi(0) are i.i.d. uniform on [0,1] and Rt (0)
d= �(t), this proves

the claim (17). Due to (16), one concludes that (F−1
t (V1), . . . ,F

−1
t (Vn))t≥0 and

(ξ1(t), . . . , ξn(t))t≥0 have the same one-dimensional marginals. This implies that

∀t ≥ 0 
n
t

d= 1

n

n∑
i=1

δ
F−1

t (Vi)
, n ≥ 1 and hence that 
t

d= ρt .

Our argument was carried out under the assumption that the initial state is the
uniform law on [0,1]. However, it would equally apply if the ξi(0) were drawn
independently from any other law on [0,1]. Since 
 and ρ are both càdlàg Markov
processes, they must be equal in distribution. �
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2.3. Lookdown process of a CSBP. Recall ψ from (2) and consider a CSBP
(Z(t), t ≥ 0) with branching mechanism ψ ; see, for example, [1] or [5], Chap-
ter 4.2, for an elementary introduction. In the sequel, we often refer to any such
process as ψ-CSBP. In this section assume that Z is started from Z(0) = 1. Follow-
ing Bertoin and Le Gall [7], recall existence of a two parameter branching family
(Zt (x), t ≥ 0, x ∈ [0,1]), such that for each fixed x ∈ [0,1], (Zt (x), t ≥ 0) is a ψ-
CSBP started from Z0(x) = x, independent from the ψ-CSBP (Zt (1)−Zt(x), t ≥
0). In particular (Zt (1), t ≥ 0)

d= (Z(t), t ≥ 0). The quantity Zt(x) can be inter-
preted as the population size at time t , descended from the initial fraction x of the
population at time 0. Furthermore, the branching property also implies that, for
any t > 0, (Zt (x), x ∈ [0,1]) is a subordinator.

We briefly recall the setting of [11]. For each fixed t ≥ 0, define Mt([x1, x2]) :=
Zt(x2)−Zt(x1), for all 0 ≤ x1 ≤ x2 ≤ 1. Then Mt extends to a random measure on
[0,1]. The process M = (Mt , t ≥ 0) is easily seen to be Markov, with a generator
given by (see (1.15) in [11] for the general case formula)

LF(μ) =
∫ 1

0
μ(da)

∫
[0,1]

ν(dh)
(
F(μ + hδa) − F(μ) − hF ′(μ;a)

)
,

where ν(dh) = �(dh)/h2, and F ′(μ;a) denotes the Fréchet derivative of F at μ

in the direction δa ; see, for example, (1.4) in [11]. The process M encodes the ge-
nealogy of the CSBP (Zt (1), t ≥ 0) (this is a continuous time/space analogue to the
relation between a Galton–Watson process and the associated tree). The composi-
tion of the population is then well described by the ratio process R = (Rt , t ≥ 0)

defined by Rt = 1
Zt (1)

Mt , taking values in the space of probability measures. Now
define

πZ = {(
�Z(t)/Z(t), t

)
: t ≥ 0

}
(18)

to be the point process of normalized jump sizes of Z. Here and below (with-
out further mention), we will account in πZ only the points (�Z(t)/Z(t), t) ∈
(0,∞) × [0,∞), which represent the true jumps of the process.

LEMMA 8. The condition (4) holds for πZ , and the associated lookdown pro-
cess (�t(·), t ≥ 0) is equal in law to the ratio process (R(t), t ≥ 0).

PROOF. A detailed proof is given in the “Proof of (2.4)” in [11], pages 313–
315, although the idea goes back at least to Theorem 3.2 in [14]. �

2.3.1. Evolution of the number of types. Let Z be a CSBP with branching
mechanism ψ started from Z0 = 1, and assume that Grey’s condition (3) is sat-
isfied. Denote by ζZ = inf{t ≥ 0 :Z(t) = 0} its (almost surely finite) extinction
time. Let πZ be the associated point process of rescaled jump sizes (18), and
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note that πZ has no points in [0,1] × (ζZ,∞). Recall definition (10), and define
NZ(t) = NπZ

(t), t < ζZ , and NZ(t) = 0, t ≥ ζZ .
Let us define v(t) := inf{z > 0 :

∫ ∞
z ψ(q)−1 dq < t} with the convention that

inf∅= ∞ or equivalently let v(t) be the solution of∫ ∞
v(t)

dq

ψ(q)
= t.(19)

Recall from Duquesne and Le Gall [15] that the function v describes the evolution
of the number of alive families at time t in a ψ-CSBP. More precisely, we have the
following:

PROPOSITION 9. If (3) is satisfied, then NZ(t) < ∞, for all t > 0, almost
surely, and moreover

(
NZ(t), t ≥ 0

) d= (
Q

(
v(t)

)
, t ≥ 0

)
,(20)

where t �→ Q(t) is a standard Poisson counting process, and where v(t) is defined
in (19). In particular,

lim
t→0

NZ(t)

v(t)
= 1 almost surely.(21)

If (3) is not satisfied, then both v and NZ are infinite for all t > 0 almost surely.

PROOF. This essentially follows from Theorem 12 in [3] and Corol-
lary 1.4.2(ii) in [15]; see also Corollary 4.1 in [5] for an elementary sketch of
proof. Indeed, when Grey’s condition is satisfied, we may use the construction
of [3] for the Donnelly–Kurtz lookdown process, where the labeling process
(θ1(t), θ2(t), . . .) is directly defined in terms of the excursions of a Continuous
Random Tree (CRT) with branching mechanism ψ ; see [15] or [3] for the basic
terminology and properties of these objects, to which we will refer in this proof.
Let (Hs,0 ≤ s ≤ T1) be the height process associated with (Zs, s ≥ 0), where
T1 := inf{u > 0 :L0

u > 1} and where (L0
u, u ≥ 0) is the local time process at level 0

of (Hs, s ≥ 0). It follows from the construction in [3] that one can embed the look-
down construction in the CRT so that for any t > 0, NZ(t) is exactly the number
of excursions of (Hs,0 ≤ s ≤ T1) that reach level t . It follows directly [by excur-
sion theory for (Hs,0 ≤ s ≤ T1)] that (NZ(t), t > 0) has the law of (Qṽ(t), t ≥ 0),
where by definition,

ṽ(t) = N
(
sup
s≥0

Hs > t
)
.

Here, N(·) denotes the excursion measure of H . By Corollary 1.4.2(ii) of [15],
ṽ(t) = v(t) < ∞, which proves the result. �
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REMARK 10. For each fixed t > 0, due to the exchangeability of the sequence
(ξi(t), i = 1,2, . . .), the number of types NZ(t) is almost surely equal to the num-
ber of atoms of the purely atomic measure 
t = limn→∞ n−1 ∑n

i=1 δξi(t).

REMARK 11. The property P(NZ(t) < ∞) = 1 may seem counter-intuitive
in view of the fact that types are not destroyed in any particular application of
the updating rule (7). However, an accumulation of many densely placed small
lookdown jumps “pushes off” to infinity all but finitely many types in any positive
amount of time, whenever Grey’s condition (3) is fulfilled.

3. The coupling.

3.1. Coupling construction. We can now explain the coupling between �-
coalescents and CSBP. The key idea is to use the following result due to Lamperti,
which expresses any CSBP as a time-change of a Lévy process.

Consider a Lévy process (Xt , t ≥ 0) with Laplace exponent ψ given in (2), and
assume X0 = x ∈ (0,1]. Define

U−1(t) := inf
{
s > 0 :

∫ s

0

du

Xu

> t

}
(22)

and

Zt = XU−1(t), t ≥ 0.(23)

THEOREM 12 (Lamperti [21, 22]). The process (Zt , t ≥ 0) is a ψ-CSBP
started from Z0 = x.

Construction. We now describe the coupling between the genealogies of a
CSBP and Fleming–Viot processes. Assume that the Lévy process X and its cor-
responding CSBP Z (Lamperti time-changed as above) satisfy X0 = Z0 = 1. As
before, denote by πZ the point process of the rescaled jump sizes of Z. Call
ξ = (ξi(t), t ≥ 0)i≥1 the label process of πZ obtained from the lookdown con-
struction applied to Z.

Consider simultaneously the point process πX = (�X(ti), ti) of (unscaled)
jump sizes of X, and its associated label process θ = (θi(t), t ≥ 0)i≥1, as well
as the lookdown measure � = (�t , t ≥ 0). Then � is a �-Fleming–Viot process,
and hence (due to Theorem 7) has a genealogy given by a �-coalescent. Indeed,
since X is a Lévy process, due to the Lévy–Itô decomposition, the point process
of jumps πX = (�X(ti), ti) is a Poisson point process with intensity ν(dx) ⊗ dt ,
where ν(dx) = x−2�(dx) is the Lévy measure of X.

Heuristics. For a small t > 0, the two point processes πX and πZ , restricted to
[0, t], are “close to each other.” Indeed, each point (p, t) ∈ πX also corresponds
to a point (p̃, t̃) ∈ πZ , where t = U−1(t̃), and p̃ = p/Z(t̃). Now, since (Xt , t ≥
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0) is almost surely continuous at t = 0, the time-change U−1 is almost surely
differentiable at t = 0 with derivative close to 1. Therefore, U−1(t) ∼ t as t → 0,
and one deduces that for small t , t̃ ≈ t . Likewise, invoking the continuity of Z and
the fact Z0 = 1, we have Z(t̃) ≈ 1, hence (p̃, t̃) ≈ (p, t).

It is therefore reasonable to believe that for small t , NX(t) ≈ NZ(t), where
NX(t) [resp.,NZ(t)] is the number of types in the lookdown process associated
to πX (resp., πZ) at time t . At the same time, by Proposition 9 we also know
NZ(t) ∼ v(t) almost surely as t → 0, and all of the above strongly suggests that
the same is true for NX in place of NZ .

Finally, due to Theorem 7, we have

NX(t)
d= N�(t) for each fixed t ≥ 0,(24)

where N�(t) is (as usual) the number of blocks in the corresponding �-coalescent
at time t . The reader can easily check this property by restricting attention to the
first n levels, and using the updating rule (7), as well as the fact that (πX(t), t ∈
[0, T ]) and (πX(T − t), t ∈ [0, T ]) have the same distribution. Therefore, we ob-
tain N�(t) ∼ v(t) in probability, as t → 0.

We will now turn these heuristic observations into a rigorous argument for
Proposition 15, starting with a monotonicity lemma.

DEFINITION 13. Given two point processes π and π+ on [0,1] ×R+ on the
same probability space, and a random time T ≥ 0, measurable with respect to the
filtration generated by π and π+, we write π �|[0,T ] π+ (or π � π+ on [0, T ]) if
there exists an increasing càdlàg process r : [0, T ] �→ R+ such that, almost surely,
r(0) = 0 and

π = {
(pi, ti) : i ≥ 1

}
and π+ = {(

qi, r(ti)
)

: i ≥ 1
}
,

where pi ≤ qi , for each i ≥ 1 such that ti ≤ T .

In words, π � π+ on [0, T ], if the atoms of π+ are those of π , time-changed
by r and multiplied in size by a (possibly nonconstant and random) quantity not
smaller than 1. Observe that r preserves the order of the atoms, almost surely.
In our main applications, the form of r will be rather simple. Furthermore, the
processes π and π+ of interest will both have (countably) infinitely many atoms
in any interval of positive length, almost surely, ensuring that {r(T ) < ∞} = {T <

∞}, almost surely.
Consider now π and π+ such that π � π+ on [0, T ] for some finite random

time T , and both∑
i:ti≤t

p2
i < ∞,

∑
i:ti≤t

q2
i < ∞ ∀t ≥ 0, almost surely.

One can then construct a coupling of 
π [with its label processes ξ = (ξi(t), t ≥
0)i≥1] and 
π+

[with its label processes ξ+ = (ξ+
i (t), t ≥ 0)i≥1], by using the
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same collection {Ui,j }i,j∈N of i.i.d. uniform random variables to specify the levels
participating in the resampling events in Definition 2. Due to π � π+ on [0, T ],
the following result is obvious by construction:

LEMMA 14. If π � π+ on [0, T ], then

P
(
Nπ+(

r(s)
) ≤ Nπ(s) ∀s ∈ [0, T ]) = 1.

3.2. Proof of Theorem 1 and the asymptotics for the number of blocks. To
prove Theorem 1 it suffices to show that N�(t) is infinite for all t > 0 whenever
v(t) = ∞,∀t > 0 and is finite for all t > 0 in the converse case. This is now a
consequence of the above coupling, used to show the following proposition.

PROPOSITION 15. For each ε ∈ (0,1),

P

(
lim inf

t→0

NX(t)

v((1 + ε)/(1 − ε)t)
≥ 1

1 + ε
,

(25)

lim sup
t→0

NX(t)

v((1 − ε)/(1 + ε)t)
≤ 1

1 − ε

)
= 1,

and therefore

lim
t→0

P

[
1

(1 + ε)2 · v
(

1 + ε

1 − ε
t

)
≤ N�(t) ≤ 1

(1 − ε)2 · v
(

1 − ε

1 + ε
t

)]
= 1.(26)

REMARK 16. Observe that NX and N� have only the same one-dimensional
marginal distributions, but they are not equal in distribution as processes. For in-
stance while the first one only decreases by jumps of size 1 (this is known at least
in the stable case; see [20]), the second one can decrease by jumps of arbitrary
integral length. Thus one cannot obtain more than (26) from (25). This result is
clearly weaker than Theorem 1 in [2],

lim
t→0

N�(t)

v(t)
= 1 almost surely.(27)

As mentioned in the Introduction, it is the use of a sophisticated martingale tech-
nique which yields this stronger result there. However, it was the knowledge of the
coupling described below that initiated [2] and suggested the form of the asymp-
totics in the first place.

PROOF OF PROPOSITION 15. We start by showing (25) for ε sufficiently
small. The conclusion (26) will then readily follow. Let us assume for the mo-
ment that supp(�) ⊂ [0, η] where η < 1, and fix some ε ∈ (0,1/η − 1). Consider
again the Lévy process X with Laplace exponent ψ such that X0 = 1, and let

π = πX = {
(�Xt, t) : t > 0

}
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be the corresponding Poisson point process. Let π−
ε (resp., π+

ε ) be the image of
π under the map (p, t) �→ (p(1 − ε), t) [resp., (p, t) �→ (p(1 + ε), t)]. Due to our
assumptions on supp(�) and the choice of ε, we have that for each atom (p, t)

of π , p(1 + ε) < 1 almost surely. Therefore, both π+
ε and π−

ε are Poisson point
processes on (0,1) × R+. Let ν+

ε ⊗ dt (resp., ν−
ε ⊗ dt) be the intensity measure

corresponding to π+
ε (resp., π−

ε ). If f is a Borel function on [0,1], then ν+
ε is

obtained by the formula∫
[0,1]

f (x)ν+
ε (dx) =

∫
[0,1]

f
(
x(1 + ε)

)
ν(dx),

and ν−
ε is obtained by an analogous formula with 1−ε in place of 1+ε. For λ > 0,

let

ψ±
ε (λ) :=

∫
(0,1)

(
e−λx − 1 + λx

)
ν±
ε (dx).

By the above observation we see that, for each λ > 0,

ψ+
ε (λ) = ψ

(
λ(1 + ε)

)
, ψ−

ε (λ) = ψ
(
λ(1 − ε)

)
.(28)

Therefore, if we let u±
ε (t) := ∫ ∞

t dλ/ψ±
ε (λ) and v±

ε (t) = (u±
ε )−1(t) the cédlég

inverse of u±
ε , we have

u+
ε (s) = 1

1 + ε
u
(
s(1 + ε)

)
and u−

ε (s) = 1

1 − ε
u
(
s(1 − ε)

)
,

hence

v+
ε (t) = 1

1 + ε
v
(
t (1 + ε)

)
and v−

ε (t) = 1

1 − ε
v
(
t (1 − ε)

)
.(29)

Recall that X0 = 1, and define

X+
t = (1 + ε)Xt − ε and X−

t = (1 − ε)Xt + ε t > 0.

Then it is easy to see that both (X+
t , t ≥ 0) and (X−

t , t ≥ 0) are Lévy processes
such that X+

0 = X−
0 = 1. Moreover, the Laplace exponent of X+ (resp., X−) is ψ+

ε

(resp., ψ−
ε ).

Define T +
ε = inf{s : |X+(s) − 1| > ε} and T −

ε = inf{s : |X−(s) − 1| > ε}. Then,
almost surely we have, for all t ≥ 0

�X−(t)

X−(t)
≤ �X−(t)

1 − ε
= �X(t) = �X+(t)

1 + ε
≤ �X+(t)

X+(t)
(30)

on
{
t ≤ T +

ε ∧ T −
ε

}
.

Using the Lamperti transform, now define two continuous-state branching pro-
cesses with branching mechanism ψ+

ε and ψ−
ε , respectively, by setting U±(t) :=∫ t

0
1

X±
u

du,

U−1± (t) := inf
{
s ≥ 0 :U±(s) > t

}
and Z+

t := X+
U−1+ (t)

, Z−
t := X−

U−1− (t)
,

t ≥ 0.
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Finally define πZ+ := {(�Z+
s /Z+

s , s) : s ≥ 0} and πZ− := {(�Z−
s /Z−

s , s) : s ≥ 0}.
Due to (30), we have that almost surely

πZ− �|[0,U−(T +
ε ∧T −

ε )] π
(
with r = U−1−

)
and

π �|[0,T +
ε ∧T −

ε ] πZ+
(with r = U+),

where � is as in Definition 13. Both T +
ε ∧ T −

ε and U−(T +
ε ∧ T −

ε ) are clearly
strictly positive and finite, almost surely. Hence, Lemma 14 gives that almost
surely, for all t ≥ 0,

Nπ(t) ≤ NπZ− (
U−(t)

)
and Nπ(t) ≥ NπZ+ (

U+(t)
)

on
{
t ≤ T +

ε ∧ T −
ε

}
.

Observe that this is already enough to prove Theorem 1 since v±
ε is finite if and

only if v is finite, and thus NπZ+
(U+(t)) = ∞ for all t > 0 if v(t) = ∞ for all

t > 0 and likewise NπZ−
(U−(t)) < ∞ for all t > 0 if v(t) < ∞ for all t > 0.

Proposition 9 implies that

lim
t→0

NπZ−
(t)

v−
ε (t)

= lim
t→0

NπZ+
(t)

v+
ε (t)

= 1 almost surely.

This together with P(T +
ε ∧ T −

ε > 0) = 1 and the discussion above yields

lim sup
t→0

Nπ(t)

v−
ε (U−(t))

≤ 1 and lim inf
t→0

Nπ(t)

v+
ε (U+(t))

≥ 1,(31)

almost surely. Moreover, it is easy to check that almost surely, for all t ≥ 0,

t/(1 + ε) ≤ U±(t) ≤ t/(1 − ε) on
{
t ≤ T +

ε ∧ T −
ε

}
.(32)

Due to monotonicity of v±
ε and (32), we have that again almost surely, for all t ≥ 0,

Nπ(t)

v−
ε (U−(t))

≥ Nπ(t)

v−
ε (t/(1 + ε))

and
Nπ(t)

v+
ε (U+(t))

≤ Nπ(t)

v+
ε (t/(1 − ε))

(33)
on

{
t ≤ T +

ε ∧ T −
ε

}
.

Combining (29), (31) and (33), and recalling P(T +
ε ∧ T −

ε > 0) = 1, we can now
conclude that

lim sup
t→0

Nπ(t)

v(t(1 − ε)/(1 + ε))
≤ 1

1 − ε
and

(34)

lim inf
t→0

Nπ(t)

v(t(1 + ε)/(1 − ε))
≥ 1

1 + ε
almost surely.

Since NX = Nπ by definition, this gives (25), under the hypothesis that � does
not give positive mass to a neighborhood of 1. Otherwise, we modify the above
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argument in the following way. For a fixed η ∈ (0,1), since x−2�(dx) assigns a
finite mass to (1 − η,1], the first time Tη when X makes a jump of size strictly
greater than η has an exponential random variable law (with finite rate), hence it
is strictly positive with probability one. The analysis (30)–(34) clearly works if
T +

ε ∧ T −
ε is everywhere replaced by T +

ε ∧ T −
ε ∧ Tη, yielding (25).

In particular, almost surely, for all t sufficiently small,

1

(1 + ε)2 · v
(
t
1 + ε

1 − ε

)
≤ NX(t) ≤ 1

(1 − ε)2 · v
(
t
1 − ε

1 + ε

)
.

The limit (26) is easily deduced from (24) and this final estimate. �

The asymptotics (27) in the sense of convergence in probability can be obtained
from Proposition 15 under additional assumptions on v (i.e., on �) as the following
result shows.

PROPOSITION 17. Assume �({0}) = 0. Then the convergence

N�(t)/v(t) → 1 in probability

holds at least if

lim
ε→0

lim sup
t→0

v(t (1 − ε))

v(t)
= 1, lim

ε→0
lim inf

t→0

v(t (1 + ε))

v(t)
= 1,(35)

and, in particular, if

ψ
(
v(t)

) = O
(
v(t)/t

)
as t → 0.(36)

PROOF. The first claim follows by simple calculus manipulations from (26).
To see why (36) implies (35), we note that ψ : [0,∞) → R+ of (2) is a (strictly)
increasing and convex function on [0,∞). Furthermore, v′

ψ(s) = −ψ(vψ(s)), so
that vψ is decreasing with its derivative decreasing in absolute value. Therefore,
for ε > 0 small enough,

∣∣v(
t (1 + ε)

) − v(t)
∣∣ =

∫ t (1+ε)

t

∣∣v′(s)
∣∣ds ≤ ∣∣v′(t)

∣∣εt = ψ
(
v(t)

)
tε.

Similarly,

∣∣v(
t (1 − ε)

) − v(t)
∣∣ =

∫ t

t (1−ε)

∣∣v′(s
)∣∣ds ≤ ∣∣v′(t (1 − ε)

)∣∣tε
= ψ

(
v
(
t (1 − ε)

))
t (1 − ε)

ε

1 − ε
.

Hence (35) will hold provided ψ(v(t))t = O(v(t)). �
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4. Regularity indices and consequences. In this section we use the quanti-
tative estimates obtained above (Proposition 15) to get concrete information on
the small-time behavior of N�(t). We are particularly concerned with power-law
behavior, which as we show below turns out to be intimately related to the no-
tion of upper and lower indices, which arose in seminal papers by Blumenthal and
Getoor [12] and Pruitt [27] on pathwise properties of Lévy process.

Let X = (Xt , t ≥ 0) be a Lévy process with Laplace exponent ψ given by (2).
We call ν(dx) = x−2�(dx) and recall that we assume that �({0}) = 0 to avoid
a Kingman component. As discussed above, we may also assume that supp(�) ⊂
[0,1/2). The following definitions and properties of the upper-index β and of the
lower-index δ of X can be found in [12] and [27].

DEFINITION 18. The upper index is defined by

β := inf
{
α > 0 :

∫
|x|≤1

|x|αν(dx) < ∞
}

∈ [0,2].(37)

To define the lower-index, following Pruitt [27], we introduce the function
h(x) = G(x)+K(x)+M(x), where [since in our setting supp(ν) ⊂R+ and more-
over the drift is 0]

G(x) = ν(y :y > x), K(x) = x−2
∫
y≤x

y2ν(dy)

and

M(x) = x−1
∣∣∣∣
∫
y≤x

y3

1 + y2 ν(dy) −
∫
y>x

y

1 + y2 ν(dy)

∣∣∣∣.
DEFINITION 19. The lower index is defined by

δ := inf
{
α : lim inf

x→0
xαh(x) = 0

}
.(38)

Note that the upper index β of (37) is similarly given by

β = inf
{
α : lim sup

x→0
xαh(x) = 0

}
.

Therefore, it must be

0 ≤ δ ≤ β ≤ 2.

The constants β and δ characterize the asymptotic behavior of X near 0; see (3.4)
in Pruitt [27] and Figure 3. More precisely, if Mt := sup0≤s≤t |Xs |, then

lim sup
t→0

Mt/tκ =
{

0, if κ < 1/β,
∞, if κ > 1/β,

lim inf
t→0

Mt/tκ =
{

0, if κ < 1/δ,
∞, if κ > 1/δ.

In this section we show the following result:
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PROPOSITION 20. If the lower-index δ is strictly greater than 1, then for any
ε > 0,

N�(t)

t−1/(β+ε−1)
→ ∞ in probability,

and, for any ε ∈ (0, δ − 1),

N�(t)

t−1/(δ−ε−1)
→ 0 in probability.

REMARK 21. When Grey’s condition for extinction holds, we know
(Lemma 22) that β ≥ 1. However, by modifying the construction in the Appendix,
it is possible to find examples such that β > 1 and yet Grey’s condition does not
hold (i.e., the corresponding coalescent does not come down from infinity). See
the second to last paragraph of the Appendix.

Informally speaking, the following lemma states that as t → 0 the function q �→
ψ(q) is of order at most qβ and at least qδ .

LEMMA 22. For each ε > 0 small enough, there exist finite constants cε,β and
cε,δ such that for all v large enough cε,δv

δ−ε ≤ ψ(v) ≤ cε,βvβ+ε . Hence if � is
such that the �-coalescent comes down from infinity, then β ≥ 1.

PROOF. Observe that for large q ,

ψ(q) � q2
∫
[0,1/q]

x2ν(dx) + q

∫
[1/q,1]

xν(dx), q → ∞,(39)

where f (q) � g(q) means that both f = O(g) and g = O(f ). Indeed, for x ≤ 1/q

one can use Taylor’s approximation to get e−qx −1+qx ∈ [q2x2/6, q2x2/2] while
for x ≥ 1/q an easy computation shows e−qx − 1 + qx ∈ [qx/e, qx].

By definition (37), we have that
∫
[0,1] xβ+εν(dx) < ∞. Therefore

∞∑
n=0

e−(n+1)(β+ε)ν
([

e−n−1, e−n]) ≤
∞∑

n=0

∫ e−n

e−n−1
xβ+εν(dx)

=
∫
[0,1]

xβ+εν(dx) < ∞.

In particular, there exists a constant c > 0 such that for all n ≥ 1,

ν
([

e−n−1, e−n]) ≤ ce(n+1)(β+ε).(40)

As a consequence, for ε < 2 − β∫ 1/q

0
x2ν(dx) ≤

∞∑
n=�logq�

∫ e−n

e−n−1
x2ν(dx)

≤ c

∞∑
n=�logq�

e(n+1)(β+ε)e−2n ≤ cqβ−2+ε,
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where the finite positive constant c may change from one inequality to the next
one. Similarly, one estimates

∫ 1

1/q
xν(dx) ≤ cqβ−1+ε.

Together with (39), this yields the upper bound ψ(q) = O(qβ+ε).
For the lower bound, recall definition (38) and related notation. Observe that∫

y>x

y

1 + y2 ν(dy) �
∫
y>x

yν(dy), x ∈ (0,1).

The first integral in the definition of M(x) is of order
∫
y≤x y�(dy) = O(x), so it

is negligible, in comparison. Also, note that as x → 0,

G(x) =
∫
y>x

ν(dy) ≤ x−1
∫
y>x

yν(dy) � M(x).

Combining this with the definition of K(x) and (39) one gets

h(x) � ψ(1/x) as x → 0.(41)

Due to (38), we have h(x) ≥ Cx−δ+ε for all x sufficiently small and for some
C > 0, and the lower bound for ψ now easily follows.

Finally, assume that a given �-coalescent comes down from infinity. Then by
Theorem 1, Grey’s condition (3) is satisfied for the corresponding measure �.
Since for each ε > 0, ψ(q) ≤ cqβ+ε , we deduce that β ≥ 1. �

REMARK 23. Note that (41) also implies the stated upper bound on ψ(v).

The asymptotic behavior of ψ(q) as q → ∞ induces the asymptotic behavior
of v(t) as t → 0:

COROLLARY 24. Assume that the �-coalescent comes down from infinity.

(i) If β ≥ 1, we have lim inft→0 t1/(β−1+ε)v(t) = +∞ for any ε > 0.
(ii) If δ > 1, then lim supt→0 t1/(δ−ε−1)v(t) = 0 for any ε ∈ (0, δ − 1).

PROOF. Recall (19) and let cε,β and cε,δ be as in Lemma 22. It follows imme-
diately that

v−(β+ε)+1

cε,β(β + ε − 1)
≤

∫ ∞
v

dq

ψ(q)
≤ v−(δ−ε)+1

cε,δ(δ − ε − 1)
.
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Note that since β ≥ 1 we are able to integrate the lower bound for 1/ψ , but we
use the additional constraint δ > 1 in order to be able to integrate the upper bound
for 1/ψ , and thus derive the right-hand side of the above inequality. Setting the
middle term to t , after rearranging, we obtain

(
cε,β

β + ε − 1

)1/(β−1+ε)

· t−1/(β−1+ε) ≤ v(t) ≤
(

cε,δ

δ − ε − 1

)1/(δ−1−ε)

· t−1/(δ−1−ε),

implying both statements. �

Proposition 15 and Corollary 24 together yield Proposition 20 (using Theorem 1
in [2] instead of Proposition 15 yields the same result in the stronger almost sure
sense).

APPENDIX: AN INSTRUCTIVE EXAMPLE

In this appendix we discuss a class of examples that illustrate potential diffi-
culties in analyzing functions ψ and v directly. In particular, we show that for
some β 
= δ, one can choose the measure � in such a way that ψ(q) oscillates
between qδ and qβ , resulting in analogous oscillations for v(t) between t−1/(β−1)

and t−1/(δ−1). This shows that the upper and lower bounds of Proposition 20 are
sharp in general. As a bonus we provide examples of �-coalescents with δ = 1
that come down from infinity. Let β ∈ (1,2) be fixed. Set an = e−n, n ≥ 0 and for
each n ≥ 0 define the interval Jn as

Jn = (an+1, an].
For a subsequence (ank

)k≥0 of (an)n≥0 define the measure

ν
(
dx; (ank

)k≥0
) ≡ ν(dx) = ∑

k

1Jnk
(x)

1

xβ+1 dx.

Then it is easy to check that for any choice of such a subsequence, the correspond-
ing measure ν has the upper index β . It is moreover easily seen that if nk = k,
then [recalling (2) and (19)] ψ(q) � qβ , u(t) := ∫ ∞

t dq/ψ(q) � (1/t)β−1, as
t → ∞, and as a result v(t) � t−1/(β−1), as t → 0. The remaining calculations
however confirm that if one chooses the intervals Jnk

sparse enough as k → ∞,
the asymptotic behavior of the functions ψ , u and v can become quite irregu-
lar.

By (39), estimating u(t) as t → ∞ (up to constants) amounts to estimating∫ ∞
t

1

q2
∫
[0,1/q] x2ν(dx) + q

∫
(1/q,1] xν(dx)

dq.
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Define k∗ = k∗(q) = max{k :ank
≥ 1/q} and set β1 := β − 1 and β2 := 2 − β so

that β1, β2 > 0. First compute∫
[0,1/q]

x2ν(dx) = ∑
k

∫
Jnk

∩[0,1/q]
x1−β dx

= 1

β2

∑
k:ank

<1/q

(
a2−β
nk

− a
2−β
nk+1

) + ∑
k:ank

≥1/q>ank+1

∫ 1/q

ank+1

x1−β dx

(42)

= 1

β2

∞∑
k=k∗+1

e−nk(2−β)(1 − e−(2−β)) +
∫ 1/q

exp(−nk∗−1)∧1/q
x1−β dx

= 1

β2

((
1 − e−β2

) ∞∑
k=k∗+1

e−nkβ2 + 1

qβ2
− 1

(enk∗+1 ∨ q)β2

)
,

and similarly

∫
(1/q,1]

xν(dx) = 1

β1

(
k∗−1∑
l=1

enlβ1
(
eβ1 − 1

) + [(
q ∧ enk∗+1)β1 − enk∗β1

])
.(43)

From now on assume q ≥ 1, and let k∗ = k∗(q) be as defined above. Note that if
1/q ∈ Jnk∗ [meaning nk∗ ≤ log(q) < nk∗ + 1], then

q2 ·
[

1

qβ2
− 1

e(nk∗+1)β2

]
+ q · [

qβ1 − enk∗β1
]

= q2 ·
[

1

q2−β
− 1

e(nk∗+1)(2−β)

]
+ q · [

qβ−1 − enk∗ (β−1)] � qβ,

where for the last estimate it is best to consider separately the two cases log(q) ∈
[nk∗, nk∗ + 1/2) and log(q) ∈ [nk∗ + 1/2, nk∗ + 1). One can check similarly that
(still assuming 1/q ∈ Jnk∗ ) the initial terms, corresponding to the nonnegative se-
ries from (42) and (43), are of the order at most qβ−2 and qβ−1, respectively.
Hence,

ψ(q) � qβ,
1

q
∈ ⋃

k

Jnk
,(44)

which agrees well with the “regular” setting where nk = k. If on the contrary,
1/q /∈ ⋃

k Jnk
, then nl−1 + 1 ≤ log(q) < nl for l = k∗(q) + 1, so that computa-

tions (42) and (43) imply

ψ(q) � c1(β)q2
∞∑
k=l

e−nk(2−β) + c2(β)q

l−1∑
k=1

enk(β−1),
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where ci(β) ∈ (0,∞), i = 1,2 are constants depending on β only. Due to the
properties of the exponential function we then have

ψ(q) � q2e−nl(2−β) + qenl−1(β−1),
1

q
∈ (anl

, anl−1+1].(45)

Therefore, we need to estimate up to constants, for large t ,

∑
k

∫
[t,∞)∩[enk ,enk+1)

1

qβ
dq

(46)

+ ∑
l

∫
[t,∞)∩[enl−1+1,enl )

1

q2e−nl(2−β) + qenl−1(β−1)
dq.

The first series of integrals above can easily be evaluated as being of order∑
nk≥log t

e−nk(β−1) � e−nk∗(t)(β−1).(47)

Using the formula ∫ b

a

dx

Bx + Cx2 =
[

1

B
log

∣∣∣∣ Cx

Cx + B

∣∣∣∣
]b

a

for each l such that log t ≤ nl−1 + 1, the lth summand in the second series in (46)
equals

1

enl−1(β−1)
log

∣∣∣∣e
nl−nl−1−1(enl(β−2)enl−1+1 + enl−1(β−1))

enl(β−1) + enl−1(β−1)

∣∣∣∣
(48)

� (2 − β)(nl − nl−1)

enl−1(β−1)
,

since β < 2 and nl−1 ≤ nl .
Consider the following class of examples: for some ε ≥ 0, define inductively

m0 := 1, mr+1 := mr + eεmr , for r ≥ 0, and let

nj+1 := nj + 1 whenever nj ∈ [m2r ,m2r+1) for some r ∈ N,

and otherwise (here it must be nj = m2r+1 for some r ∈ N) define nj+1 = m2r+2 =
nj +eεnj . In words, the strictly increasing sequence (nk)k≥1 looks like the simplest
arithmetic progression over a long interval, then it makes a jump (if ε > 0, its size
is huge in comparison to the current value of the sequence), and immediately after
the sequence continues, its slow increase by 1 unit at a time, until the next even
larger jump, etc.

Now fix some ε ∈ (0, β − 1). Due to (46)–(48), the corresponding �-coalescent
comes down from infinity, since∑

l≥1

nl − nl−1

enl−1(β−1)
< ∞.(49)
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Consider first the case 1/t ∈ ⋃
k Jnk

, and more precisely let 1/t = e−nj = e−m2r

for some r ∈ N (or equivalently, log t is just at the beginning of the r th long interval
where n increases by increments of 1). Then k∗(t) = j and so the expressions
in (46) is of order

e−nj (β−1) + ∑
l≥j+1

(2 − β)(nl − nl−1)

enl−1(β−1)
�

(
1

t

)β−1

+ (2 − β)(m2r+2 − m2r+1)

em2r+1(β−1)

�
(

1

t

)β−1

.

The middle asymptotic was obtained by splitting the sum in l into two sums,
one over the indices l satisfying nl−1 ∈ ⋃

s[m2s,m2s+1) and the other over the
indices l satisfying nl−1 ∈ {m2s+1 : s ∈ N}. The first sum is easily seen to con-
tribute another term of order (1/t)β−1, while for the second sum the domi-
nant term is given by the l for which nl−1 = m2r+1. The final asymptotic re-
sult is obtained by noting that due to the definition of the sequence (ms)s≥1, we
have (m2r+2 − m2r+1)/e

m2r+1(β−1) = 1/em2r+1(β−1−ε) = 1/e(m2r+eεm2r )(β−1−ε),
and rewriting this last expression in terms of t as ( 1

tetε )β−1−ε = o(1
t
)β−1, we con-

clude that for t of the form t = em2r we have

u(t) =
∫ ∞
t

1

ψ(q)
dq �

(
1

t

)β−1

as would be true for all t in the regularly varying case ε = 0.
We now focus on the opposite case 1/t /∈ ⋃

k Jnk
, and in particular let us con-

sider t = em2r+1+1 for some r ∈ N. Suppose that nj is such that nj = m2r+1 and
nj+1 = m2r+1 + eεm2r+1 . Then we have k∗(t) = j , and so it can be easily checked
that the contribution of (47) to u(t) is again of order (1/t)β−1. However, the con-
tribution of (48) to u(t) is of order

∑
l≥j+1

(2 − β)(nl − nl−1)

enl−1(β−1)
� (2 − β)(m2r+2 − m2r+1)

em2r+1(β−1)
= (2 − β)

em2r+1(β−1−ε)

�
(

1

t

)β−1−ε

�
(

1

t

)β−1

.

So for t of the form t = em2r+1+1we have u(t) � (1/t)β−1+ε .
The above class of examples can be generalized in the following way: instead of

a fixed ε ∈ (0, β − 1), one can introduce a nonnegative sequence (εr)r≥1, redefine
m0 := 1, mr+1 := mr + eεrmr , for r ≥ 0, and keep the old definition of (nj )j≥1 in
terms of (mr)r≥1.

Now if εr = β − 1 identically for all r , the corresponding coalescent does not
come down from infinity, while we noted at the beginning of the section that the
corresponding upper index is β > 1.
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Similarly, if lim supr εr = β − 1 (and εr < β − 1, ∀r) where the terms close
to β − 1 in the sequence (εr)r are sufficiently sparse so that (49) holds, then the
corresponding coalescent comes down from infinity. However, (38), (41) and (44)–
(45) imply that the lower index δ equals to 1, while the upper index is still β > 1.
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