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KINETICALLY CONSTRAINED SPIN MODELS ON TREES1

BY F. MARTINELLI AND C. TONINELLI2

University of Roma Tre and CNRS, University Paris VI–VII

We analyze kinetically constrained 0–1 spin models (KCSM) on rooted
and unrooted trees of finite connectivity. We focus in particular on the class
of Friedrickson–Andersen models FA-jf and on an oriented version of them.
These tree models are particularly relevant in physics literature since some of
them undergo an ergodicity breaking transition with the mixed first-second
order character of the glass transition. Here we first identify the ergodicity
regime and prove that the critical density for FA-jf and OFA-jf models coin-
cide with that of a suitable bootstrap percolation model. Next we prove for
the first time positivity of the spectral gap in the whole ergodic regime via a
novel argument based on martingales ideas. Finally, we discuss how this new
technique can be generalized to analyze KCSM on the regular lattice Z

d .

1. Introduction. Facilitated or kinetically constrained spin models (KCSM)
are interacting particle systems which have been introduced in physics literature
[10, 11] to model liquid/glass transition and more generally “glassy dynamics”
[12, 20]. They are defined on a locally finite, bounded degree, connected graph
G = (V ,E) with vertex set V and edge set E. Here we will focus on models for
which the graph is an infinite, rooted or unrooted tree of finite connectivity k + 1,
which we will denote by T̄

k and T
k , respectively. A configuration is given by as-

signing to each site x ∈ V its occupation variable ηx ∈ {0,1} which corresponds
to an empty or filled site, respectively. The evolution is given by a Markovian
stochastic dynamics of Glauber type. Each site waits an independent, mean one,
exponential time and then, provided the current configuration around it satisfies an
a priori specified constraint, its occupation variable is refreshed to an occupied or
to an empty state with probability p or 1 −p, respectively. For each site x the cor-
responding constraint does not involve ηx , thus detailed balance w.r.t. Bernoulli(p)
product measure μ can be easily verified and the latter is an invariant reversible
measure for the process.

Among the most studied KCSM we recall FA-jf models [10] for which the
constraint requires at least j (which is sometimes called “facilitating parameter”)
empty sites among the nearest neighbors. FA-jf models display a feature which is
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common to all KCSM introduced in physics literature: for each vertex x the con-
straint imposes a maximal number of occupied sites in a proper neighborhood of
x in order to allow the moves. As a consequence the dynamics becomes slower
at higher density and an ergodicity breaking transition may occur at a finite crit-
ical density pc < 1. This threshold corresponds to the lowest density at which a
site belongs with positive probability to an infinite cluster of particles which are
mutually and forever blocked due to the constraints; see Section 3.

The FA-jf models on Z
d do not display an ergodicity breaking transition at a

nontrivial critical density, that is, pc = 0 for j > d and pc = 1 otherwise [3]. On
the other hand they do display such a transition on nonrooted trees when 1 < j < k

[7, 24, 25]. Furthermore if j �= k − 1, this transition is expected to display a mixed
first/second character and to share similar features to the mode coupling transition,
a property which makes them particularly interesting from the point of view of the
glass transition [25].

Another key feature of KCSM is the existence of blocked configurations,
namely configurations with all creation/destruction rates identically equal to zero.
This implies the existence of several invariant measures and the occurrence of un-
usually long mixing times compared to high-temperature Ising models (see Sec-
tion 7.1 of [3]). Furthermore the constrained dynamics is usually not attractive
so that monotonicity arguments valid, for example, ferromagnetic stochastic Ising
models cannot be applied.

Due to the above properties the basic issues concerning the large time behavior
of the process are nontrivial. The first rigorous results were derived in [1] for the
East model which is defined on Z with the constraint requiring the nearest neigh-
bor site to the right to be empty. In [1] it was proven that the spectral gap of East is
positive for all p < 1 and also that it shrinks faster than any polynomial in (1 − p)

as p ↑ 1. In [3] positivity of the spectral gap of KCSM inside the ergodicity re-
gion (i.e., for p < pc) has been proved in much greater generality and (sometimes
sharp) bounds for p ↗ pc were established. These results include FA-jf models
on any Z

d for any choice of the facilitating parameter j and of the spatial dimen-
sion d .

The technique developed in [3] cannot be applied to models on trees because
of the exponential growth of the number of vertices and, so far, very few rigorous
results have been established. Indeed the only models for which results on the
spectral gap are available are: (i) the FA-1f model on T

k and T̄
k (actually on a

generic connected graph) and (ii) the so-called East model on T̄
k for which the root

is unconstrained while, for any other vertex x, the constraint requires the ancestor
of x to be empty. For these specific models pc = 1 and the positivity of the spectral
gap has been proven in [4] in the whole ergodicity region and for any choice of the
graph connectivity.

Here we will study FA-jf models on T
k and T̄

k for 1 < j ≤ k together with a
new class of models that we call oriented FA-jf models (OFA-jf). In the OFA-jf
model the constraint at x requires at least j empty sites among the children of x.
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We first prove that the ergodicity threshold pc for the FA-jf and OFA-jf mod-
els, with the same choice for the parameter j and the same graph connectivity
k + 1, coincide and it is nontrivial (see Theorem 1). Then we prove positivity of
the spectral gap in the whole ergodicity regime for the oriented OFA-jf models.
Finally, by combining the above results together with an appropriate comparison
technique, we establish positivity of the spectral gap in the whole ergodicity regime
for the FA-jf models. The results concerning the spectral gap can be found in The-
orem 2 and a simple application to the mixing time of finite system in Corollary 1.
Finally, in the nonergodic regime, we prove that, for the oriented or nonoriented
FA-jf models, the spectral gap shrinks to zero exponentially fast in the system size;
see Theorem 3.

The new technique devised to study constrained models on trees can be general-
ized to deal also with KCSM on other graphs. In Section 5 we discuss how one can
recover the result of positivity of the spectral gap in the ergodic regime for models
on Z

d . We detail in particular the case of the north–east model on Z
2 (Theorem 4),

a result which was already derived in [3] but with a completely different (and more
lengthy) technique.

2. Models and main results.

2.1. Setting and notation.

The graphs. The models we consider are either defined on the infinite regular
tree of connectivity k + 1, in the sequel denoted by T

k or on the infinite, rooted
k-ary tree T̄

k . In the unrooted case each vertex x has k + 1 neighbors, while in the
rooted case each vertex different from the root has k children and one ancestor, and
the root r has only k children. In the sequel we will denote by V the set of vertices
of either T

k or of T̄
k whenever no confusion arises, by Nx the set of neighbors of

a given vertex x and, in the rooted case, by Kx the set of its children. In the rooted
case we denote by dx the depth of the vertex x, that is, the graph distance between
x and the root r .

The configuration spaces. For both oriented and nonoriented models we
choose as configuration space the set � = {0,1}V whose elements will usually
be assigned Greek letters. We will often write ηx for the value at x of the element
η ∈ �. We will also write �A for the set {0,1}A, A ⊆ V . With a slight abuse of
notation, for any A ⊆ V and any η,ω ∈ �, we let ηA to be the restriction of η to
the set A and ηA ·ωAc to be the configuration which equals η on A and ω on V \A.

Probability measures. For any A ⊆ V we denote by μA the product measure⊗
x∈A μx where each factor μx is the Bernoulli measure on {0,1} with μx(1) = p

and μx(0) = q with q = 1 − p. If A = V we abbreviate μV to μ.
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Conditional expectations and conditional variances. Given a function f :� →
R depending on finitely many variables, in the sequel referred to as local function,
and a set A ⊂ V we define the function η 
→ μA(f )(η) by the formula

μA(f )(η) := ∑
σ∈�A

μA(σ)f (σA · ηAc).

Clearly μA(f ) coincides with the conditional expectation of f given the configu-
ration outside A. Similarly we write VarA(f ) = μA(f 2) − μA(f )2 for the condi-
tional variance of f given ηAc . Note that VarA(f ) = 0 if and only if f does not
depend on the configuration inside A. In case A = V we abbreviate VarV (f ) to
Var(f ).

2.2. Facilitated models.

DEFINITION 2.1. Fix k ∈ Z+ and a facilitating parameter j ∈ [1, . . . , k].
The FA-jf and OFA-jf models at density p are continuous time Glauber-type
Markov processes on �, reversible w.r.t. μ, with Markov semigroups Pt = et L and

P̄t = et L̄, respectively, whose infinitesimal generators L, L̄ act on local functions
f :� 
→ R as follows:

Lf (ω) = ∑
x∈Tk

cx(ω)
[
μx(f )(ω) − f (ω)

]
,(2.1)

L̄f (ω) = ∑
x∈T̄k

c̄x(ω)
[
μx(f )(ω) − f (ω)

]
.(2.2)

The function cx (or c̄x ), in the sequel referred to as the constraint at x, is defined
by

cx(ω) =
⎧⎨
⎩

1, if
∑

y∈Nx

(1 − ωy) ≥ j ,

0, otherwise,
(2.3)

c̄x(ω) =
⎧⎨
⎩

1, if
∑

y∈Kx

(1 − ωy) ≥ j ,

0, otherwise.
(2.4)

It is easy to check by standard methods (see, e.g., [16]) that the processes are
well defined and that their generators can be extended to nonpositive self-adjoint
operators on L2(Tk,μ) and L2(T̄k,μ), respectively.

Both processes can of course be defined also on finite regular trees, rooted or
unrooted. In this case and in order to ensure irreducibility of the Markov chain the
constraints must be suitably modified.
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DEFINITION 2.2. Let T be a finite subtree of either T
k or of T̄

k and let, for
any η ∈ �T, η0 ∈ � denote the extension of η in � given by

η0
x =

{
ηx, if x ∈ T,
0, if x ∈ T

k \ T.

For any x ∈ T define the finite constraints cT,x, c̄T,x by

cT,x(η) = cx

(
η0)

, c̄T,x(η) = c̄x

(
η0) ∀η ∈ �T.

We will then refer to the OFA-jk model or the FA-jk model on T as the irreducible,
continuous time Markov chains on �T with generators

LTf (η) = ∑
x∈T

cT,x

[
μx(f ) − f

]
η ∈ �T,(2.5)

L̄Tf (η) = ∑
x∈T

c̄T,x

[
μx(f ) − f

]
η ∈ �T,(2.6)

respectively.

2.3. Ergodicity. Given k, j ∈ Z+ with j ≤ k, it is natural to define (see [3]) a
critical density for each model as follows:

pc = sup
{
p ∈ [0,1] : 0 is simple eigenvalue of L

}
,(2.7)

p̄c = sup
{
p ∈ [0,1] : 0 is simple eigenvalue of L̄

}
.(2.8)

The regime p < pc or p < p̄c is called the ergodic region and we say that an
ergodicity breaking transition occurs at the critical density. We will first establish
the coincidence of the critical threshold for oriented and unoriented models.

THEOREM 1. Given k, j ∈ Z+ with j ≤ k, let gp(λ) := p
∑k

i=k−j+1
(k
i

)
λi(1−

λ)k−i and define

p̃ := sup
{
p ∈ [0,1] :λ = 0 is the unique fixed point of gp(λ)

}
.(2.9)

Then pc = p̄c = p̃ and for any p < p̃ the value 0 is a simple eigenvalue of the
generators L and L̄. Moreover p̃ ∈ (0,1) if and only if 2 ≤ j ≤ k.

We then turn to the study of the relaxation to equilibrium in L2(μ). A key object
here is the spectral gap (or inverse of the relaxation time) of the generator L (or L̄),
defined as

gap(L) := inf
f ∈Dom(L)

f �=const

D(f )

Var(f )
,(2.10)

where the Dirichlet form D(f ) is the quadratic form D(f ) = μ(f,−Lf ) associ-
ated to −L. Indeed a positive spectral gap implies that the reversible measure μ is
mixing for the semigroup Pt with exponentially decaying correlations,(∫

dμ(η)
[
Ptf (η) − μ(f )

]2
)1/2

≤ e−gap(L)t Var(f ) ∀f ∈ L2(μ).



1972 F. MARTINELLI AND C. TONINELLI

2.4. Main results on relaxation to equilibrium. For the reader’s convenience
we split the presentation of our results into three sub-sections according to whether
p is below, above or equal to the critical value pc.

2.4.1. The sub-critical case p < pc.

THEOREM 2. Given k, j ∈ Z+ with j ≤ k, fix p < pc = p̄c. Then gap(L) > 0
and gap(L̄) > 0.

REMARK 2.3. Exactly as in [3] (see Proposition 2.13 there), in order to prove
positivity of the spectral gap for the infinite trees T

k or T̄
k , it is enough to prove a

lower bound on the spectral gap of the corresponding models on finite balls which
is uniform in the size of the ball.

It is important to observe that in the oriented case the above result completes the
proof of the exponential decay to equilibrium when p < pc and the initial distri-
bution is either a Bernoulli product measure with density p′ �= p,p′ < pc, or it is
a δ-measure on a deterministic configuration which does not contain blocked clus-
ters. These results were indeed proven in [6] (see Theorems 4.2 and 4.3) modulo
the hypothesis of positivity of the spectral gap in the ergodic region.

We finally observe that the above result says nothing about the behavior of the
spectral gap as a function of pc − p when p ↑ pc. See, however, Section 2.4.3
below for some work in progress in this direction.

Our second result, a natural corollary of the spectral gap bounds of Theorem 2,
concerns mixing times of the oriented model on finite sub-trees of T̄

k . In order to
state it we need few extra notation.

Let T be the finite rooted tree consisting of the first n levels of T̄
k . For any

η ∈ �T we denote by ν
η
t the law at time t of the Markov chain with generator L̄T

and by h
η
t the relative density w.r.t. μT of ν

η
t , namely

h
η
t (σ ) := ν

η
t (σ )/μT(σ ).

Following [21], we define the family of mixing times {Ta}a≥1 by

Ta := inf
{
t ≥ 0 : max

η
μT

(∣∣hη
t − 1

∣∣a)1/a ≤ 1/4
}
.

Notice that T1 coincides with the usual mixing time Tmix of the chain (see, e.g.,
[2]) and that, for any a ≥ 1, T1 ≤ Ta .

COROLLARY 1. Given k, j ∈ Z+ with j ≤ k, fix p < pc. Then there exists a
constant c such that

c−1n ≤ T1 ≤ T2 ≤ cn.
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REMARK 2.4. A key ingredient for the proof of the above Corollary will be
the fact that the marginal of the law ν

η
t over �T\r is given by the product of the

marginals over the individual subtrees rooted at the children of the root. Such a
property is no longer true in the unoriented case. In this more complicate setting a
possible route to get a (poorer) bound on the mixing time is the following.

Use a comparison between the Dirichlet forms of the FA-jk and OFA-jk models
to get that the logarithmic Sobolev constant (see, e.g., [21]) of the FA-jk model on
a finite regular tree T ⊂ T

k , with n levels and centered at a vertex r , is bounded
from below by constant × the logarithmic Sobolev constant of the OFA-jk model
on the finite trees T \ r . Then use the left part of the well-known bound (see Corol-
lary 2.2.7 in [21])

(log-Sobolev constant)−1

≤ T2 ≤ const × (log-Sobolev constant)−1 log
(∣∣log

(
μ∗

T

)∣∣),
where μ∗

T
:= minη μT(η) to infer that the logarithmic Sobolev constant of the

OFA-jk model is bounded from below by const × T −1
2 . Hence the logarithmic

Sobolev constants of both the OFA-jk and the FA-jk models on T are bounded
from below by const × n−1. Finally use the right part of the above bound to con-
clude that the mixing time T2 for the FA-jk model on T is O(n2).

2.4.2. The super-critical phase p > pc. Our first result roughly says that,
when p > pc, the occupation number for the process defined on the infinite tree
does not equilibrate in L2(μ).

Denote by r either the root (in the oriented case) or an arbitrary vertex of T
k (in

the unoriented case).

PROPOSITION 1. Given k, j ∈ N with j ≤ k, fix p > pc. Then

lim
t→∞ Var(P̄tηr) > 0,

and the same inequality holds with Pt instead of P̄t .

The second result concerns the spectral gap on finite balls. Given n ∈ Z+ and
r ∈ T

k , denote by T either the ball in T
k of radius n and center r (in the unoriented

case) or the rooted tree consisting of the first n levels of T̄
k (in the oriented case).

THEOREM 3. Given k, j ∈ N with j ≤ k, fix p > pc. Then there exists c > 0
such that

e−cn ≤ gap(LT) ≤ e−n/c,

e−cn ≤ gap(L̄T) ≤ e−n/c.



1974 F. MARTINELLI AND C. TONINELLI

2.4.3. The critical phase p = pc. The critical case p = pc is much more del-
icate and a detailed analysis is postponed to future work [5]. We anticipate here
that it is possible to show that the spectral gap on a ball of radius n shrinks at least
polynomially fast in n−1. In the rooted case with j = k one can also prove a con-
verse poly(1/n) lower bound (a much harder task). These two results then imply
that in the rooted case and for j = k, there exist three positive constants β ≥ 2,
c1, c2 such that, for pc − p � 1,

c1(pc − p)β ≤ gap(L̄) ≤ c2(pc − p)2.

If 2 ≤ j < k, the analysis of the lower bound on the spectral gap becomes much
more difficult because of the discontinuous character of the bootstrap percolation
transition. More precisely, and contrary to what happens for j = k, for p = pc the
root r belongs to an infinite blocked cluster with positive probability. In this case
it is still unclear whether a poly(1/n) lower bound on the spectral gap still holds.

3. Ergodicity threshold and blocked clusters: Proof of Theorem 1.

DEFINITION 3.1. Given k, j ∈ Z+ with j ≤ k, the bootstrap map B : {0,

1}T
k → {0,1}T

k
associated to the FA-jf model is defined by

B(η)x = 0 if either ηx = 0 or cx(η) = 1(3.1)

with cx defined in (2.3). Analogously we define the bootstrap map B̄ for the OFA-
jf model by replacing cx with c̄x of (2.3).

Having defined the bootstrap map B it is natural to denote by μ(n) the proba-
bility measure obtained by iterating n-times the map B starting from μ. In other
words, for any A ⊂ � μ(n)(A) = μ(η :Bn(η) ∈ A). As n tends to infinity μ(n)

converge to a limiting measure μ(∞) [23], and it is natural to define the bootstrap
percolation threshold pbp as the supremum of the density p of μ such that μ(∞)

is concentrated on the empty configuration. Analogously we can define μ̄(n), μ̄(∞)

and p̄bp in the oriented case.
It is quite clear that the two thresholds pbp and p̄bp must coincide. Choose in

fact an arbitrary vertex r ∈ T
k and write the unrooted tree T

k as T
k = {r}⋃

y∈Nr
T̄

k
y

where each T̄
k
y is a copy of T̄

k with root at y. If p < p̄bp, then a.s. each y ∈ Nr

becomes eventually empty under the bootstrap map B̄ applied to T̄
k
y and therefore

also under the less-restrictive bootstrap map B . Thus p ≤ pbp. On the other hand,
when p > p̄bp the set

G = {
η ∈ � :ηr = 1 and (B̄)∞(η

T̄k
y
)r = 1 ∀y ∈ Nr

}
has positive probability and moreover B∞(η)r = 1 for any η ∈ G . Hence p ≥ pbp.
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That pbp coincide with the third threshold p̃ given in (2.9) has been established
in Proposition 1.2 of [2] (see also [9, 25] and [22] for an extension to hyperbolic
lattices). For completeness we shortly reprove this result by showing that p̄bp = p̃.

We first observe that μ̄(∞)(ηr = 1) = 0 if and only if limn→∞ p̄n = 0 where
p̄n := μ̄(n)(ηr = 1). Second one easily checks that the nonincreasing sequence
{p̄n}n≥0 obeys the recursive equation p̄n = gp(p̄n−1) with initial condition
p̄0 = p. Here gp(·) has the expression

gp(λ) := p

k∑
i=k−j+1

(
k

i

)
λi(1 − λ)k−i .

We now claim that limn→∞ p̄n = 0 if and only if p < p̃. In order to prove the
claim we first observe that limn→∞ p̄n is a fixed point of the map gp and that it is
a nondecreasing function of p. Hence p < p̃ ⇒ limn→∞ p̄n = 0.

To prove the converse we compute

d

dλ
gp(λ) = p

k∑
i=k−j+1

(
k

i

)[
iλi−1(1 − λ)k−i − (k − i)λi(1 − λ)k−i−1]

= p

[
k−1∑

i=k−j

k

(
k − 1

i

)
λi(1 − λ)k−1−i

−
k−1∑

i=k−j+1

k

(
k − 1

i

)
λi(1 − λ)k−1−i

]

= pkP(Nλ,k = k − j) > 0,

where Nλ,k ∼ Binom(k − 1, λ).
Therefore gp is strictly increasing in (0,1), and if it has a fixed point λ∗ ∈ (0,p),

then necessarily limn→∞ p̄n ≥ λ∗. Hence limn→∞ p̄n = 0 ⇒ p < p̃.
We finally check that p̃ ∈ (0,1) if and only if 2 ≤ j ≤ k. The Markov inequality

implies that

gp(λ) ≤ p
k

k − j + 1
λ.

Hence gp(λ) < λ if j = 1 and p < 1. When j ∈ [2, k] it is also clear that
p̃ ∈ [p̃2, p̃k], where p̃2, p̃k correspond to the extreme cases j = 2 and j = k, re-
spectively. When j = k the threshold p̃k coincides with the usual site percolation
threshold 1/k (see [13]). When j = 2 and k ≥ 3 an exact computation [2] gives

p̃2 = (k − 1)2k−3

kk−1(k − 2)k−2 < 1.

REMARK 3.2. It is not difficult to check that, for k ≥ 2, the limit as n → ∞
of both sequences {μ(n)(ηx = 1)}n≥0 and {μ̄(n)(ηx = 1)}n≥0 is:
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• zero and attained at least exponentially fast if p < p̃;
• zero and attained polynomially fast (in 1/n) for j = k and p = p̃;
• strictly positive for j ∈ [2, k) and p = p̃.

The proof of Theorem 1 now follows from the above discussion together with
the following proposition which can be proved following exactly the same lines as
Proposition 2.5 of [3].

PROPOSITION 2. pc = pbp and p̄c = p̄bp.

4. Relaxation to equilibrium: Proofs.

4.1. The sub-critical phase p < pc. In what follows we fix once and for all
j, k ∈ Z+ with j ≤ k, together with a density p ∈ [0,pc).

PROOF OF THEOREM 2: THE ORIENTED CASE. We begin by proving posi-
tivity of the spectral gap in the oriented case OFA-jf at density p.

We first fix some additional notation. We denote by T the finite k-ary tree con-
sisting of the first n levels (counting the root r) of T̄

k , where n should be thought
of as arbitrarily large compared to all other constants. For x ∈ T, Tx will denote
the k-ary sub-tree of T rooted at x and with n − dx + 1 levels, where dx ∈ [1, n] is
the level label of x. We also set T̂x := Tx \ {x}. In the sequel we shall refer to the
number of levels n − dx + 1 as the depth of the tree Tx .

The key idea for the proof is to introduce long-range constraints.

DEFINITION 4.1. For any η ∈ �
T̂x

, let η1 ∈ �T be equal to η in T̂x and equal

to 1 in T \ T̂x . Then, for any integer 
 we define

c̄(
)
x (η) =

{
1, if the depth of Tx is not larger than 
 or if (B̄)


(
η1)

x = 0,
0, otherwise.

In what follows we will first consider an auxiliary long-range, kinetically con-
strained model on T whose infinitesimal generator is as in (2.5) but with c̄T,x sub-
stituted by c̄

(
)
x . We will show that this auxiliary model has a spectral gap which

is bounded away from zero uniformly in the depth n of T, provided 
 is large
enough depending on p, j, k. Then we will apply standard comparison arguments
between the Dirichlet forms with constraints c̄T,x and c̄

(
)
x to show that also the

original model has a spectral gap which is uniformly positive in n. By appealing
to Remark 2.3 that completes the proof.

Let D(
)
T

(f ) denote the new Dirichlet form corresponding to the generator

L(
)
T

f (ω) = ∑
x∈T

c̄(
)
x (ω)

[
μx(f ) − f (ω)

]
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with the auxiliary constraints c̄
(
)
x , that is,

D(
)
T

(f ) = 1

2

∑
x∈T

μT

(
c̄(
)
x Varx(f )

)
.

Our aim is to establish the so-called Poincaré inequality

VarT(f ) ≤ λD(
)
T

(f ) ∀f :�T 
→ R(4.1)

for some constant λ independent of the depth n of the tree T.

REMARK 4.2. Notice that (4.1) is the natural analog of the renormalized
Poincaré inequality in [3]; see formula (5.1) there.

For the reader’s convenience we begin by recalling some elementary proper-
ties of the variance which will be applied in the sequel. Consider two proba-
bility spaces (�i, Fi , νi), i = 1,2, together with their product probability space
(�, F , ν). Then, for any f ∈ L2(�, ν),

Var(f ) ≤ ν
(
Var(f | F1)+ Var(f | F2)

)
and Var

(
ν(f | F2)

) ≤ ν1
(
Var(f | F1)

)
so that

Var(f ) ≤ ν
(
Var(f | F1) + Var(f | F2)

)
.(4.2)

Clearly Var(f | F1) = ν2(f
2) − ν2(f )2, ν(f | F2) = ν1(f ) and so forth. More-

over,

Var(f ) = ν
(
Var(f | F2)

) + Var
(
ν(f | F2)

)
.(4.3)

Back to the proof and motivated by [18] we first claim that

VarT(f ) ≤ ∑
x∈T

μT

(
Varx

(
μ

T̂x
(f )

))
.(4.4)

To prove the claim we proceed recursively on the depth n of T. The claim is triv-
ially true for n = 0. We now assume (4.4) when T has depth n − 1, and using the
formula for the conditional variance we write

VarT(f ) = μT

(
VarT(f | ηr)

) + VarT
(
μT(f | ηr)

)
.(4.5)

Notice that, given the spin ηr at the root, VarT(f | ηr) is nothing but the variance
of f w.r.t. the product measure μT\{r} = ∏

y∈Kx
μTy

. Thus

VarT(f | ηr) ≤ ∑
y∈Kx

μT

(
VarTy

(f ) | ηr

)

and

μT

(
VarT(f | ηr)

) ≤ ∑
y∈Kx

μT

(
VarTy

(f )
)
.
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Each one of the sub-trees Ty has depth n − 1, and therefore the inductive assump-
tion implies that∑

y∈Kx

μT

(
VarTy

(f )
) ≤ ∑

y∈Kx

∑
z∈Ty

μT

(
Varz

(
μ

T̂z
(f )

))
(4.6)

= ∑
x∈T

x �=r

μT

(
Varx

(
μ

T̂x
(f )

))
.

By putting together the right-hand side of (4.6) with the last term in (4.5), we get
the claim for depth n.

We now examine a generic term μT(Varx(μT̂x
(f ))) in the right-hand side of

(4.4). We write

μ
T̂x

(f ) = μ
T̂x

(
c̄(
)
x f

) + μ
T̂x

([
1 − c̄(
)

x

]
f

)
so that

Varx
(
μ

T̂x
(f )

) ≤ 2 Varx
(
μ

T̂x

(
c̄(
)
x f

)) + 2 Varx
(
μ

T̂x

((
1 − c̄(
)

x

)
f

))
.(4.7)

The Cauchy–Schwarz inequality shows that

Varx
(
μ

T̂x

(
c̄(
)
x f

)) ≤ μ
T̂x

(
Varx

(
c̄(
)
x f

)) = μ
T̂x

(
c̄(
)
x Varx(f )

)
,(4.8)

because c̄
(
)
x does not depend on the spin at x. Notice that the right-hand side in

(4.8) is just the contribution of the root to the Dirichlet form D(
)
T

(f ).
We now turn to the analysis of the more complicated second term Varx(μT̂x

((1−
c̄
(
)
x )f )), in the nontrivial case n − dx + 1 > 
. We write

Varx
(
μ

T̂x

((
1 − c̄(
)

x

)
f

)) = Varx
(
μ

T̂x

((
1 − c̄(
)

x

)(
f − μTx

(f ) + μTx
(f )

)))
(4.9)

= Varx
(
μ

T̂x

((
1 − c̄(
)

x

)
g
))

,

where g := f − μTx
(f ) and we use the fact that μ

T̂x
((1 − c̄

(
)
x )μTx

(f )) does not

depend on ηx . Recall that the constraint c̄
(
)
x depends only on the spin configuration

in the first 
 levels below x, in the sequel denoted by �x . Then

Varx
(
μ

T̂x

((
1 − c̄(
)

x

)
g
)) ≤ μx

((
μ

T̂x

((
1 − c̄(
)

x

)
μ

T̂x\�x
g
))2)

≤ μx

(
μ

T̂x

(
1 − c̄(
)

x

)
μ

T̂x

(
(μ

T̂x\�x
g)2))

(4.10)

= δ(
)μx

(
μ

T̂x

(
(μ

T̂x\�x
g)2))

,

where δ(
) := μ
T̂x

(1 − c̄
(
)
x ). Above we used Cauchy–Schwarz to obtain the sec-

ond inequality. The last equality holds because μ
T̂x

(1 − c̄
(
)
x ) does not depend

on ηx . Notice that δ(
) coincides with p̄
/p where p̄
 was defined at the begin-
ning of the proof of Theorem 1.
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Next we note that

μx

(
μ

T̂x

(
(μ

T̂x\�x
g)2)) = μx∪�x

(
(μ

T̂x\�x
g)2) = Varx∪�x (μT̂x\�x

g),(4.11)

where we use the fact that μx∪�x (μT̂x\�x
g) = μTx

(g) = 0 by the definition of g.
Then by using (4.4), (4.10) and (4.11) we get

Varx
(
μ

T̂x

((
1 − c̄(
)

x

)
g
)) ≤ δ(
)

∑
z∈x∪�x

μx∪�x

(
Varz(μT̂z

μ
T̂x\�x

g)
)

(4.12)
≤ δ(
)

∑
z∈x∪�x

μx∪�x

(
Varz(μT̂z

g)
)
,

where we use the convexity of the variance to obtain the second inequality. In
conclusion,∑

x∈T

μT

(
Varx

(
μ

T̂x
(f )

))

≤ 2
∑
x∈T

μT

(
c̄(
)
x Varx(f )

) + 2δ(
)
∑
x∈T

∑
z∈x∪�x

μT

(
Varz

(
μ

T̂z
(f )

))
(4.13)

≤ 4D(
)
T

(f ) + 2(
 + 1)δ(
)
∑
x∈T

μT

(
Varx

(
μ

T̂x
(f )

))
,

where the factor 
 + 1 accounts for the number of vertices x such that a given
vertex z falls inside �x .

We now appeal to Remark 3.2 and conclude that for any p < pc there exists 
0
(which depends on p and it diverges as p ↑ pc) such that (
 + 1)δ(
) ≤ 1/4 for
any 
 ≥ 
0. With this choice and recalling (4.4), the Poincaré inequality (4.1) with
λ = 8 follows uniformly in the depth n of T. In other words the auxiliary long
range model has a positive spectral gap greater than 1/8 if 
 ≥ 
0.

We are now in a position to conclude the proof in the oriented case. Starting
from (4.1) and using path arguments exactly as in Section 5 of [3], we conclude
that, for any 
 ≥ 
0 we can find a constant λ(
, k, j) ≥ 1 independent of n such
that

VarT(f ) ≤ λ(
, k, j)
∑
x∈T

μT

(
c̄T,x Varx(f )

)
.

Thus, thanks to Remark 2.3, we can conclude that the spectral gap of the oriented
model on the infinite tree T̄

k is bounded from below by λ(
, k, j)−1.

REMARK 4.3. The dependence on p of λ(
, k, j) comes from the fact that

 > 
0(p, j, k). Clearly the critical scale 
0 diverges as p ↑ pc.

PROOF OF THEOREM 2: THE UNORIENTED CASE. For an arbitrary vertex
r ∈ T

k we introduce an auxiliary block dynamics, reversible w.r.t. the measure μ,
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as follows. With rate one the block chain resamples the current configuration in
T

k \ r from the equilibrium measure, and, always with rate one, it resamples the
variable ηr if and only if the constraint at the root is satisfied [i.e., cr(η) = 1].

For such auxiliary block chain it is easy to prove a Poincaré inequality of the
form (compare to Proposition 4.4 in [3])

Var(f ) ≤ γμ
(
cr Varr (f ) + VarTk\r (f )

)
(4.14)

for some constant γ = γ (j, k) ≥ 1.
Observe now that T

k \ r is the union of k + 1 copies of the rooted tree T̄
k so

that

VarTk\r (f ) ≤ ∑
y∈Nr

μTk\r
(
VarTk

y
(f )

)
.

Thanks to the result in the oriented case and using c̄x ≤ cx , we get

VarTk
y
(f ) ≤ λ

∑
x∈Tk

y

μTk
y

(
c̄x Varx(f )

) ≤ λ
∑

x∈Tk
y

μTk
y

(
cx Varx(f )

)
,(4.15)

where λ = λ(
, k, j). Thus

μ
(
VarTk\r (f )

) ≤ λ
∑
x∈Tk

x �=r

μ
(
cx Varx(f )

)
.(4.16)

Inserting (4.16) into (4.14) we conclude that the spectral gap of the FA-jf model is
bounded below by (γ λ)−1. �

PROOF OF COROLLARY 1. We closely follow the proof of a similar result
given in [19]. Recall that T is the finite sub-tree consisting of the first n levels of
T̄

k and that h
η
t (σ ) denotes the relative density w.r.t. μT of the law at time t of the

oriented chain started at η. We can then write

h
η
t+s(·) = et LT

(
hη

s

)
(·)

together with

hη
s (σ ) = ν

η
s (σr | ⋂

y∈Kr
{σTy

})
μT(σr)

∏
y∈Kr

hη
s (σTy

) ≤ 1

min(p, q)

∏
y∈Kr

hη
s (σTy

).

Above Ty denotes the sub-tree of T rooted at y and we used the fact that, because
of the orientation of the model, the marginal of ν

η
t on �T\r is the product over

y ∈ Kr of its marginals on �Ty
. Therefore

VarT
(
h

η
t+s

) = VarT
(
et L̄Thη

s

) ≤ e−gap(L̄T)t VarT
(
hη

s

)
≤ e−gap(L̄T)t 1

min(p, q)2

∏
y∈Kr

μTy

([
hη

s

]2)
(4.17)

= e−gap(L̄T)t 1

min(p, q)2

∏
y∈Kr

(
VarTy

(
hη

s

) + 1
)
.
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Let now tn := inf{t ≥ 0 : maxη Varη
T
(h

η
t ) ≤ 1/4} so that, by definition, tn = T2. If in

(4.17) we choose s = tn−1 we get

VarT
(
h

η
t+tn−1

) ≤ e−gap(L̄T)t 5k

4kmin(p, q)2 ,

because each sub-tree Ty has n − 1 levels.

Thus, if t∗ is so large that 5k

4kmin(p,q)2 e−gap(L̄T)t∗ ≤ 1/4, then

max
η

VarT
(
h

η
t∗+tn−1

) ≤ 1/4,

that is, T2 = tn ≤ t∗ + tn−1 ≤ · · · ≤ t∗n. That completes the proof of the upper
bound.

The linear lower bound, T1 ≥ cn for some constant c > 0, follows immediately
from the fact that, starting from the configuration η with ηx = 1 ∀x ∈ T, routine
bounds show that the influence from the leaves cannot propagate faster than linear
in time; see, for example, [17]. �

4.2. The super-critical phase p > pc.

PROOF OF PROPOSITION 1. If p > pc, then with positive probability the root
r belongs to an infinite cluster of occupied vertices which is stable upon iterations
of the bootstrap map B̄ . Clearly any vertex belonging to such a cluster can never
change its occupation variable during the dynamics of OFA-jf. Hence the result.
The result for the nonoriented model can be established via the same lines by
replacing the root r with any arbitrary vertex of T

k . �

PROOF OF THEOREM 3. Fix n and consider for simplicity only the rooted
case, the unrooted one being treated along the same lines. As before we denote by
T the k-ary rooted tree of depth n and root r . We begin by proving the stated upper
bound.

Choose as test function f to be used in the Poincaré inequality

gap(LT) ≤ DT(f )/VarT(f ) ∀f ∈ L2(T)

the indicator of the event A that the root is occupied after n − 1 iterations of the
bootstrap map B̄ . If p > pc, then VarT(f ) > 0 uniformly in n.

Next we compute the Dirichlet form DT(f ). We first observe that if x ∈ T is not
a leaf of T, then the corresponding contribution μT(c̄T,x Varx(f )) to the Dirichlet
form vanishes. Otherwise one could connect A to �T \ A by means of a legal flip,
that is, one with c̄T,x = 1. But that is clearly impossible by the definition of A. If
instead x is a leaf of T, so that c̄T,x ≡ 1 by definition, then

μT

(
Varx(f )

) = 2μT

(
η ∈ A;ηx /∈ A

)
.
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The latter probability can be computed explicitly and it is equal to
∏

y�x py where
y � x means that y is an ancestor of x, and py is the probability that y is occupied
and that exactly j − 1 out of the k − 1 children of y which are not ancestors of
x are not occupied after n − dy − 1 iteration of the bootstrap map B̄ . Since the
probability p(n) that the root is occupied after n-iterations of the bootstrap map
converges exponentially fast to the largest fixed point p∞ of the map gp(·) defined
in Theorem 2, we get that

∏
y�x

py ≤ C

(
p

(
k − 1
j − 1

)
(1 − p∞)j−1pk−j∞

)n

for some positive constant C. In conclusion

DT(f ) ≤ C

(
kp

(
k − 1
j − 1

)
pk−j∞ (1 − p∞)j−1

)n

.

The proof of the upper bound is complete once we observe that

kp

(
k − 1
j − 1

)
pk−j∞ (1 − p∞)j−1 = d

dλ
gp(λ)

∣∣∣∣
λ=p∞

< 1.

We now turn to the lower bound. The proof is based on the same argument used in
Theorem 2 to treat the unoriented case which we now shortly detail.

By monotonicity of the rates as functions of j we may assume j = k. As before,
consider the auxiliary block dynamics in which:

• each sub-tree rooted at one of the children of the root with rate one updates
at the same time all its vertices by choosing the new configuration from the
equilibrium distribution;

• the root r , with rate one and if and only if all its children are empty, refreshes
its occupation variable by sampling a new value from the equilibrium measure.

It is easy to check that, for any p ∈ (0,1), the spectral gap of the block dynamics
is positive uniformly in n so that a uniform Poincaré inequality holds

VarT(f ) ≤ CμT

(
cr Varr (f ) + ∑

x∈Nr

Var
T̄x

(f )

)
∀f

for some C > 0 independent of n.
For notational convenience let γ (n) := gap(L̄T)−1. By definition, for each

x ∈ Nr , Var
T̄x

(f ) ≤ γ (n − 1)D
T̄x

(f ). Therefore

VarT(f ) ≤ C max
(
1, γ (n − 1)

)
DT(f ),

that is,

γ (n) ≤ C max
(
1, γ (n − 1)

) ≤ · · · ≤ Cn. �
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5. Extensions to KCSM on Z
d . In this section we discuss some applications

of the technique that we have devised to prove Theorem 2. We show in partic-
ular that this technique allows us to recover the positivity of the spectral gap in
the whole ergodicity region for the KCSM on Z

d which were studied in [3] via
completely different methods. We start by treating explicitly the case of the north–
east model, and then we will describe how to extend the analysis to more general
models [14].

DEFINITION 5.1. The North–East (N–E) model is a KCSM on Z
2 for which

the constraint at x ∈ Z
2 requires the northern and eastern neighbor of x to be

empty. More precisely it is a continuous time Markov process on � = {0,1}Z
2

with generator L defined as in Definition 2.1 but with the sum in the generator
now running on the sites of Z

2 and with constraints

cx(η) =
{

1, if ηx+�e1 = ηx+�e2 = 0,
0, otherwise,

(5.1)

with �e1 and �e2 the Euclidean unit vectors on Z
2.

Let us recall some well-known properties of the North–East model [3, 15] (in
particular we refer the reader to Section 6.4 of [3] where these results have been
derived by using the analog of our Proposition 2 and via the results on oriented
percolation of [23] and [8]).

Let pc be the critical density defined as in (2.7), and let the associated bootstrap
map B be defined exactly as in (3.1). Let μ(n) be the measure obtained by iterating
B n-times starting from μ, and call pn be the probability that a vertex is occupied
under μ(n).

PROPOSITION 3. pc coincides with the critical threshold for oriented perco-
lation in Z

2. In particular [8] pc ∈ (0,1). Moreover, for any p < pc,

lim
n→∞n2pn = 0.

We will now prove via the technique described in Section 4.1 the following
result.

THEOREM 4. Assume p < pc. Then gap(L) > 0.

PROOF. As for the models on trees, we prove a lower bound on the spectral
gap on an arbitrarily large finite region  of Z

2 with proper boundary conditions
which is uniform in the size of the region. Then the result on infinite volume fol-
lows by a standard limiting procedure.

The finite region  ⊂ Z
2 that we consider consists of all the points of Z

2 inside
the right triangle  ⊂ R

2 with a vertex in the origin, a vertex in n�e1 and a vertex in
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n�e2 where n is a large integer. We will consider the North–East model in  with
empty boundary conditions, namely with -dependent constraints c,x given by
c,x(η) = cx(η

0) for any η ∈ �, where η0 is as in Definition 2.2 with the obvious
modifications.

For any x ∈  let

Cx := {z ∈  : z · �e1 ≥ x · �e1 and z · �e2 ≥ x · �e2}
be the right cone with vertex at x, and let Ĉx := Cx \ x.

Our first claim is the analog of inequality (4.4) proved in the tree case. More
precisely,

CLAIM 5.2.

Var(f ) ≤ ∑
x

μ

(
Varx

(
μ

Ĉx
(f )

)) ∀f.(5.2)

PROOF. For j = 0,1, . . . , n let j be the set of vertices in  with 
1 distance
from the origin at least L − j . Then

Var(f ) = μ

(
Var0(f )

) + Var
(
μ0(f )

)
= μ

(
Var0(f )

) + μ

(
Var1

[
μ0(f )

]) + Var
(
μ1

[
μ0(f )

])
...

= μ

(
Var0[f ]) +

n−1∑
j=0

μ

(
Varj+1

[
μj

(f )
])

.

Thanks to (4.3),

Varj+1

[
μj

(f )
] = Varj+1\j

[
μj

(f )
] ≤ ∑

x∈j+1\n

μj+1\j

(
Varx

(
μj

(f )
))

≤ ∑
x∈j+1\j

μj+1\j

(
Varx

(
μ

Ĉx
(f )

))
,

where in the last inequality we used the fact that Ĉx ⊂ j for all x ∈ j+1 together
with the standard convexity property of the variance. Analogously,

μ

(
Var0[f ]) ≤ ∑

x∈0

μ

(
Varx(f )

)
.

The proof of the claim is complete if we observe that, for any f ,

μ

(
μj+1\j

(f )
) = μ(f ). �

Back to the proof of Theorem 4, for any integer 
 � n let c

x(η) be defined

exactly as the long-range constraints c̄
(
)
x given in Definition 4.1 with the tree T
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replaced by the region  and T̂x replaced by Ĉx . Then, by using the key inequality
(5.2) and by following exactly the same route of the proof of Theorem 2, we obtain

Var(f ) ≤ ∑
x

μ

(
Varx

(
μ

Ĉx
(f )

))
(5.3)

≤ 4
∑
x∈

μ

(
c(
)
x Varx(f )

) + 2

p
(
 + 1)2p


∑
x

μ

(
Varx

(
μ

T̂x
(f )

))
,(5.4)

where the factor (
 + 1)2 [instead of (
 + 1) of (4.13)] accounts for the number of
vertices x such that their 
1-distance from a given vertex z is at most 
. Proposi-
tion 3 implies that there exists 
0 = 
0(p) such that

2

p
(
 + 1)2p
 < 1/2 ∀
 ≥ 
0.

Therefore, if 
 ≥ 
0,

Var(f ) ≤ 8
∑
x∈

μ

(
c(
)
x Varx(f )

)
.

Elementary path arguments (see also [3]) show now that∑
x∈

μ

(
c(
)
x Varx(f )

) ≤ C(
)
∑
x∈

μ

(
c,x Varx(f )

)

for some finite constant C independent of n. The proof is complete. �

REMARK 5.3. Via a proper generalization of our technique we can establish
the positivity of the spectral gap for all the KCSM covered by Theorem 3.3 of [3].
These include, besides N–E model, some of the KCSM which have been most stud-
ied in physics literature, namely the East model on Z, the Friedrickson–Andersen
model on Z

d and the modified basic model on Z
d ; see Section 2.3 of [3] for the

definitions. More precisely our technique allows us to prove Theorem 4.1 of [3]
(in a completely different way), namely to establish the positivity of the spectral
gap in a proper regime for the so-called *-general model [3]. Then the proof of
positivity of the spectral gap for each specific KCSM can be completed via the
renormalization technique detailed in Section 5 of [3]. Along the same lines we
can also recover the positivity of the spectral gap for the spiral model, a result
which was previously established in [4].
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