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UPPER BOUND ON THE RATE OF ADAPTATION IN AN
ASEXUAL POPULATION

BY MICHAEL KELLY1

University of California, San Diego

We consider a model of asexually reproducing individuals. The birth and
death rates of the individuals are affected by a fitness parameter. The rate
of mutations that cause the fitnesses to change is proportional to the popu-
lation size, N . The mutations may be either beneficial or deleterious. In a
paper by Yu, Etheridge and Cuthbertson [Ann. Appl. Probab. 20 (2010) 978–
1004] it was shown that the average rate at which the mean fitness increases
in this model is bounded below by log1−δ N for any δ > 0. We achieve
an upper bound on the average rate at which the mean fitness increases of
O(logN/(log logN)2).

1. Introduction. In a finite, asexually reproducing population with mutations,
it is well known that competition among multiple individuals that get beneficial
mutations can slow the rate of adaptation. This phenomenon is known as the Hill–
Robertson effect, named for the authors of [7]. One may wish to consider the effect
on the rate of adaptation of a population when there are many beneficial mutations
present simultaneously. It is easily observed that when such a population is finite
and all mutations are either neutral or deleterious, the fitness of the population
will decrease over time. This scenario is known as Muller’s ratchet. The first rig-
orous results regarding Muller’s ratchet were due to Haigh [6]. In an asexually
reproducing population, beneficial mutations are necessary to overcome Muller’s
ratchet. Yu, Etheridge and Cuthbertson [11] proposed a model that gives insight
into both the Hill–Robertson effect and Muller’s ratchet in large populations with
fast mutation rates.

The model introduced in [11] is a Moran model with mutations and selection.
There are N individuals in this model, each with an integer valued fitness. The
dynamics of the model are determined by three parameters, μ, q and γ , which
are independent of N . The parameters must satisfy μ > 0, 0 < q ≤ 1 and γ > 0.
Let Xi

t be the fitness of individual i at time t . Then X = (X1,X2, . . . ,XN) is a
stochastic process with state space Z

N . The system has the following dynamics:

(1) Mutation: Each individual acquires mutations at rate μ. When individual
i gets a mutation, it is beneficial with probability q and Xi increases by 1. With
probability 1 − q the mutation is deleterious and Xi decreases by 1.
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(2) Selection: For each pair of individuals (i, j), at rate γ
N

(Xi − Xj)+, we set
Xj equal to Xi .

(3) Resampling: For each pair of individuals (i, j), at rate 1/N , we set Xj equal
to Xi .

Note that the upper bound we establish for the rate of adaptation still holds in the
absence of deleterious mutations, which corresponds to the case q = 1. Under the
selection mechanism the event that Xj is set to equal Xi represents the more fit in-
dividual i giving birth and the less fit individual j dying. Likewise, the resampling
event that causes Xj to equal Xi represents individual i giving birth and individual
j dying.

We give an equivalent description of the model involving Poisson processes
that may make the coupling arguments more clear. The Poisson processes that
determine the dynamics of X are as follows:

• There are N Poisson processes P i↑, 1 ≤ i ≤ N , on [0,∞) of rate qμ. If P i↑
gets a mark at t then the ith coordinate of X increases by 1 at time t .

• There are N Poisson processes P i↓, 1 ≤ i ≤ N , on [0,∞) of rate (1 − q)μ. If
P i↓ gets a mark at t then the ith coordinate of X decreases by 1 at time t .

• For each ordered pair of coordinates (i, j) with i �= j there is a Poisson process
on [0,∞), P i,j , of rate 1/N . If P i,j gets a mark at t then the j th coordinate
changes its value to agree with the ith coordinate at time t .

• For each ordered pair of coordinates (i, j) with i �= j there is a Poisson pro-
cesses on [0,∞) × [0,∞), P i,j↑, which has intensity γ

N
λ where λ is Lebesgue

measure on R
2. If P i,j↑ gets a mark in {t} × [0,Xi

t− − X
j
t−] then the j th coor-

dinate changes its value to agree with the ith coordinate at time t .

A heuristic argument in [11] shows that as N tends to infinity the mean rate of
increase of the average fitness of the individuals in X is O(logN/(log logN)2).
Due to a typo on page 989 they state that the rate is O(logN/ log logN). By equa-
tion (10) in [11],

K log(γK) = 2 logN.

This implies that

K ≈ 2 logN

log logN
.

Plugging 2 logN/ log logN into each side of the consistency condition that they
derive gives a rate of adaption of O(logN/(log logN)2).

The heuristic argument is difficult to extend to a rigorous argument. Let

X = 1

N

N∑
i=1

Xi

be the continuous-time process which represents the average fitness of the individ-
uals in X. The rigorous results established in [11] are as follows:
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• The centered process XC , in which individual i has fitness XC,i = Xi − X, is
ergodic and has a stationary distribution π .

• If

c2 = 1

N

N∑
i=1

(
XC,i)2

is the variance of the centered process under the stationary distribution, then

Eπ [Xt ] = (
μ(2q − 1) + γEπ [c2])t,

where Eπ means that the initial configuration of X is chosen according to the
stationary distribution π .

• For any δ > 0 there exists N0 large enough so that for all N ≥ N0 we have
Eπ[X1] ≥ log1−δ N .

It is difficult to say anything rigorous about Eπ [c2] so other methods are needed
to compute E[Xt ]. The third result of [11] shows that if there is a positive ratio
of beneficial mutations then a large enough population will increase in fitness over
time. A paper by Etheridge and Yu [5] provides further results pertaining to this
model.

Other similar models can be found in the biological literature. In these mod-
els the density of the particles is assumed to act as a traveling wave in time.
The bulk of the wave behaves approximately deterministically and the random
noise comes from the most fit classes of individuals. One tries to determine
how quickly the fittest classes advance and pull the wave forward. This travel-
ing wave approach is used in [10] and [11] to approximate the rate of evolution
as O(logN/(log logN)2). For other work in this direction see Rouzine, Brunet
and Wilke [9], Brunet, Rouzine and Wilke [1], Desai and Fisher [2] and Park, Si-
mon and Krug [8]. Using nonrigorous arguments, these authors get estimates of
O(logN), O(logN/ log logN) and O(logN/(log logN)2), where the differences
depend on the details of the models that they analyze. For more motivation and
details concerning this model, please see the Introduction in [11].

Motivated by applications to cancer development, Durrett and Mayberry have
established rigorous results for a similar model in [4]. They consider two models in
which all mutations are beneficial and the mutation rate tends to 0 as the population
size tends to infinity. In one of their models the population size is fixed and in
the other it is exponentially increasing. For the model with the fixed population
size they show that the rate at which the average fitness is expected to increase is
O(logN). By considering the expected number of individuals that have fitness k

at time t , they establish rigorously that the density of the particles in their model
will act as a traveling wave in time.

Our result is the following theorem.
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THEOREM 1. Let Xi
0 = 0 for 1 ≤ i ≤ N . There exists a positive constant C

which may depend on μ, q and γ such that for N large enough

E[X]
t

≤ C logN

(log logN)2

for all t ≥ log logN .

A difference between the result in [11] and our result is that in [11] the initial
state of the process is randomly chosen according to the stationary distribution π ,
while we make the assumption that all of the individuals initially have fitness 0.

The statements of the propositions needed to prove Theorem 1 and the proof
of Theorem 1 are included in Section 2. At the end of the paper there is a table
which includes the notation that is used throughout the paper and the Appendix
that includes some general results on branching processes.

2. Proof of Theorem 1. Before stating the propositions we use to prove the
theorem we need to establish some notation. Let X+

t = max{Xi
t : 1 ≤ i ≤ N} be

the maximum fitness of any individual at time t and X−
t = min{Xi

t : 1 ≤ i ≤ N} be
the minimum fitness of any individual at time t . Define the width of the process
to be Wt = X+

t − X−
t and define Dt = X+

t − X+
0 be the distance the front of the

process has traveled by time t . Theorem 1 states that all individuals initially have
fitness 0. Therefore, a bound on Dt immediately yields a bound on Xt . The bounds
we establish on Dt will depend on the width, Wt .

Let w = w(N) be any positive, increasing function that satisfies

lim
N→∞w(N) = ∞ and lim

N→∞
w(N)

log logN
= 0.

Let W = 
w logN/ log logN� and T = w−1/2 log logN . Heuristically, we conjec-
ture that Wt is typically of size O(logN/ log logN) so W is larger than the typical
width of X. With probability tending to 1, selection should cause any width larger
than W to shrink within T time units. Because the width is a stochastic process,
we are motivated to make the following definitions:

t1 = 0,

sn = inf{t ≥ tn :Wt ≥ 2W} for n ≥ 1,

tn = inf{t ≥ sn−1 :Wt < W} for n ≥ 2,

Yi = sup
si≤t≤ti+1

Dt − Dsi for i ≥ 1,

Nt = max{i : si ≤ t} for t ≥ 0.

Note that sn and tn exist for all n ≥ 1 with probability 1.
We define branching processes Zk,↑ for k ≥ 0 which have the following dynam-

ics:
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• Initially there are N particles of type k in Z
k,↑
0 .

• Each particle changes from type i to i + 1 at rate μ.
• A particle of type i branches at rate γ i +1 and, upon branching, the new particle

is also type i.

Let M
k,↑
t be the maximum type of any particle in Z

k,↑
t and let M

k,↑
t = M

k,↑
t − k,

so that M
k,↑
0 = 0. Note that we refer to individuals in branching processes as par-

ticles to distinguish them from the individuals in X. This will make the coupling
arguments in the next section more clear.

We define a stochastic process X′ that will be coupled with X as described in
the proof of Proposition 2 for reasons that will become clear shortly. Let {Z n}∞n=0
be an i.i.d. sequence of continuous-time stochastic processes which each have the
same distribution as ZW,↑. Let Mn

t be the maximum type of any particle in Z n
t

and let Mn
t = Mn

t − W so that Mn
0 = 0 for all n. Define

X′
t =

{
X+

0 + M0
t , if t ∈ [0, T ],

X′
iT + Mi

t−iT , if t ∈ (
iT , (i + 1)T

]
for any integer i ≥ 1,

and D′
t = X′

t − X+
0 . The idea is that D′

t is the maximum type of any particle in a
branching process X′ that has the same distribution as ZW,↑ except that at each
time iT we restart the branching process so that there are once again N particles
of type W . For each integer i ≥ 0 at time iT , the N particles initially have type
D′

t which is the maximum type achieved by any particle in X′
t up to time t .

Now we are able to state the four propositions used to prove Theorem 1. Propo-
sition 2 is a result of the coupling of X and X′.

PROPOSITION 2. Let Xi
0 = 0 for 1 ≤ i ≤ N . Then

Dt ≤ D′
t +

Nt∑
i=1

Yi

for all times t ≥ 0.

PROPOSITION 3. Let Xi
0 = 0 for 1 ≤ i ≤ N . For N large enough we have

sup
t∈[T ,∞)

E[D′
t ]

t
≤ 6W

T .

With the initial condition Xi
0 = 0 for 1 ≤ i ≤ N , we let F = {Ft }t≥0 be the

natural filtration associated with X.

PROPOSITION 4. Let Xi
0 = 0 for 1 ≤ i ≤ N . For N large enough we have

E[Yi |Fsi ] ≤ 5W for all i ≥ 1.



1382 M. KELLY

PROPOSITION 5. Let Xi
0 = 0 for 1 ≤ i ≤ N . For N large enough,

sup
s∈[0,∞)

1

s
E[Ns] ≤ 1

T .

PROOF OF THEOREM 1. Fix t ≥ log logN . It follows by definition of T that
t > T so that the hypotheses of the preceding four propositions are satisfied. There
exists N0 which does not depend on t such that for any N ≥ N0 we have

E

[
Dt

t

]
≤ E

[
D′

t + ∑Nt

i=1 Yi

t

]
by Proposition 2

= E

[
D′

t

t

]
+ E

[∑Nt

i=1 Yi

t

]

≤ 6W
T + 1

t
E

[
Nt∑
i=1

Yi

]
by Proposition 3

= 6W
T + 1

t

∞∑
i=1

E[Yi1{Nt≥i}]

= 6W
T + 1

t

∞∑
i=1

E
[
E[Yi1{Nt≥i}|Fsi ]

]

= 6W
T + 1

t

∞∑
i=1

E
[
1{Nt≥i}E[Yi |Fsi ]

]

≤ 6W
T + 5W

t

∞∑
i=1

E[1{Nt≥i}] by Proposition 4

= 6W
T + 5W

t
E[Nt ]

≤ 6W
T + 5W

T by Proposition 5

= 11w1/2 logN

(log logN)2 .

Since w may go to infinity arbitrarily slowly with N there must exist a constant C

such that

E[Dt ]
t

≤ C logN

(log logN)2

for all t ≥ log logN . This immediately gives a bound on E[Xt ]/t . �



BOUNDING THE RATE OF ADAPTATION 1383

3. Bounding the rate when the width is small. Through the use of branching
processes we establish a bound on Dt that depends on the width. We will make use
of the strong Markov property of X at the times sn and tn for n ≥ 1. For this reason,
many of the statements we prove below will include conditions for which W0 > 0
even though according to the conditions of Theorem 1 we have W0 = 0. In this
section we establish a small upper bound for Dt on the time intervals [tn, sn).

The following proofs will involve coupling X with various branching processes.
While the individuals in X each have an integer value that we refer to as the fitness
of the individual, the particles in a branching process will each be given an integer
value that we refer to as the type of the particle. Let ZC = {ZC

t }t≥0 be a multi-type
Yule process in which there are initially N particles of type 0. Particles increase
from type i to type i + 1 at rate μ and branch at rate C. When a particle of type
i branches, the new particle is also type i. Let MC

t be the maximum type of any
particle at time t .

The next proposition will give a lower bound on the fitness of any individual
up to time t given that we know the least fitness at time 0 is X−

0 . We do this by
establishing an upper bound on the amount that any individual will decrease in
fitness. Let

St = sup
0≤s≤t

(
X−

0 − X−
s

)
.

PROPOSITION 6. For any population size N , initial configuration X0, time
t ≥ 0 and natural number l,

P(St ≥ l) ≤ N(tμ)let

l! .

PROOF. By Lemma 16 in the Appendix we have

P
(
M1

t ≥ l
) ≤ N(tμ)let

l!
for any population size N , time t ≥ 0 and natural number l. Note that from our
notation above Z1 is a Yule process with branching rate 1. To complete the proof
we establish a coupling between X and Z1 such that for any population size N and
time t ≥ 0 we have M1

t ≥ St . See Figure 1 for an illustration of the coupling. At all
times every individual in X will be paired with one particle in Z1. The coupling is
as follows:

• We initially have a one-to-one pairing of each individual i in X0 with each
particle i in Z1

0.
• The particle in Z1 that is paired with individual i will increase in type by 1 only

when individual i gets a mutation.
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FIG. 1. Picture of the coupling of X with Z1 when N = 3.

• For each individual i in X and each j �= i, individual j is replaced by individual
i at rate 1/N due to resampling events. If individual i replaces individual j

due to resampling, then the particle labeled i in Z1 branches. If particle i has a
higher type than particle j , then the new particle is paired with individual j . The
particle that was paired with individual j before the branching event is no longer
paired with any individual in X. If particle i has a lower type than particle j then
the particle that was paired with individual j remains paired with individual j

and the new particle is not paired with any individual in X.
• The particle paired with individual i in Z1 branches at rate 1/N and these

branching events are independent of any of the events in X. When the parti-
cle paired with individual i branches due to these events, the new particle is not
paired with any individual in X.

• Any particles in Z1 that are not paired with an individual in X branch and ac-
quire mutations independently of X. The selection events in X are independent
of any events in Z1.
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Let Ri be the type of the particle in Z1 that is paired with individual i and let

Si
s = sup

0≤r≤s

(
X−

0 − Xi
r

)
.

To show M1
t ≥ St it is enough to show Ri

t ≥ Si
t for all i. Initially Si

0 ≤ Ri
0 = 0 for

all i. Note that both s �→ Si
s and s �→ Ri

s are increasing functions and that increases
in these functions correspond to decreases in Xi .

When individual i gets a mutation, Ri increases by 1. However, if individual i

gets a mutation at time s, then Si will only increase by 1 if Si
s− = X−

0 − Xi
s− and

the mutation is deleterious. Therefore, if individual i gets a mutation at time s and
Si

s− ≤ Ri
s−, then

Si
s ≤ Si

s− + 1 ≤ Ri
s− + 1 = Ri

s.

Suppose individual j is replaced by individual i due to a resampling event at
time s and that both S

j
s− ≤ R

j
s− and Si

s− ≤ Ri
s− hold. With probability 1 we have

Si
s = Si

s− and Ri
s = Ri

s−. If X−
0 − Xi

s ≤ S
j
s− then S

j
s− = S

j
s . From this it follows

that S
j
s ≤ R

j
s . If X−

0 −Xi
s > S

j
s− then S

j
s = X−

0 −Xi
s ≤ Si

s ≤ Ri
s . If Ri

s ≥ R
j
s−, then

by the definition of the coupling, R
j
s = Ri

s . If Ri
s < R

j
s−, then by definition of the

coupling, R
j
s = R

j
s−. Therefore, R

j
s ≥ Ri

s which gives us S
j
s ≤ R

j
s .

Selection events will never increase Si and since Si and Ri are increasing in
time, a selection event at time s will preserve the inequality Si

s ≤ Ri
s . This shows

that any event that occurs at time s which may change the fitness of an individ-
ual i in X will preserve the inequality Si

s ≤ Ri
s . Since the result holds for each

individual i, we have St ≤ M1
t . �

We now wish to bound the distance the front of the wave moves as a function
of the initial width.

PROPOSITION 7. For any initial configuration X0, fixed time t ≥ 0 and any
integer l ≥ 0, we have

P
(

sup
0≤s≤t

Ds > l
)

≤ 2N(tμ)le(γ (W0+2l)+μ+1)t

(l − 1)! .

PROOF. Recall that W0 is the width of X at time 0. We first establish a cou-
pling between X and ZW0+k,↑ for each integer k ≥ 0. See Figure 2 for an illustra-
tion of the coupling. Let T k = inf{t :St > k} for k ≥ 1. Every individual in X will
be paired with one particle in ZW0+k,↑ until time T k . We couple ZW0+k,↑ with X

for all times t ∈ [0, T k) as follows:
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FIG. 2. Picture of the coupling of X with Zk,↑ when N = 3.

• We initially have a one-to-one pairing of each individual i in X0 with each
particle i in Z

W0+k,↑
0 . When a particle in Z

W0+k,↑
t is coupled with individual i,

we refer to the particle as particle i.
• Particle i increases in type by 1 only when individual i gets a mutation.
• For each individual i in X and each j �= i, individual j is replaced by individual

i at rate 1/N due to resampling events. If individual i replaces individual j

due to resampling, then particle i branches. If particle i has a higher type than
particle j , then the new particle is paired with individual j . The particle that was
paired with individual j before the branching event is no longer paired with any
individual in X. If particle i has a lower type than particle j , then the particle
that was paired with individual j remains paired with individual j and the new
particle is not paired with any individual in X.

• Additionally, particle i branches at rate 1/N and these branching events are
independent of any of the events in X. When particle i branches due to these
events the new particle is not paired with any individual in X.
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• In X there is a time dependent rate γUi
s at which individuals j �= i are replaced

by individual i due to selection events, namely,

Ui
s = 1

N

N∑
j=1

(
Xi

s − Xj
s

)+
.

If individual j is replaced by individual i in X due to a selection event, then
particle i branches. If particle i has a higher type than particle j , then the new
particle is paired with individual j . The particle that was paired with individual
j before the branching event is no longer paired with any individual in X. If
particle i has a lower type than particle j , then the particle that was paired with
individual j remains paired with individual j . The new particle is not paired
with any individual in X.

• Additionally, particle i branches at a time dependent rate γ (R
i,k
t − Ui

t ) where
R

i,k
t is the type of particle i. These branching events are independent of any of

the events in X. When such a branching event occurs, the new particle is not
paired with any individual in X.

• Any particles in ZW0+k,↑ that are not paired with an individual in X branch and
change type independently of X.

Fix k ≥ 1. For the above coupling between X and ZW0+k,↑ to be well defined until
time T k , we need R

i,k
t −Ui

t ≥ 0 for all i ∈ {1, . . . ,N} and for all times t ∈ [0, T k).
Let T k,i = inf{t :Ri,k

t − Ui
t < 0}. The coupling between X and ZW0+k,↑ is well

defined until time T k = min{T k,i : 1 ≤ i ≤ N}. We will show that T k ≤ T k .
Let

Si
t = sup

0≤s≤t

(
Xi

s − X+
0

)
and R

i,k
t = R

i,k
0 − W0 − k.

Initially Si
0 ≤ R

i,k
0 = 0 for all i. Note that both t �→ Si

t and t �→ R
i,k
t are increasing

functions, from which it follows that t �→ R
i,k
t is also an increasing function.

When individual i gets a mutation, Ri,k increases by 1. However, if individual
i gets a mutation at time s then Si will only increase by 1 if Si

s− = Xi
s− − X+

0 and
the mutation is beneficial. Therefore, if individual i gets a mutation at time s and
Si

s− ≤ R
i,k
s−, then

Si
s ≤ Si

s− + 1 ≤ R
i,k
s− + 1 = Ri,k

s .

Suppose individual j is replaced by individual i due to a resampling or selection
event at time s and that both S

j
s− ≤ R

j,k
s− and Si

s = Si
s− ≤ R

i,k
s− = Ri,k

s hold. If

Xi
s − X+

0 ≤ S
j
s−, then S

j
s− = S

j
s . It follows that S

j
s ≤ R

j,k
s . If Xi

s − X+
0 > S

j
s−

then S
j
s = X−

0 − Xi
s ≤ Si

s ≤ Ri,k
s . If Ri,k

s ≥ R
j,k
s− , then by the definition of the

coupling, R
j,k
s = Ri,k

s . If Ri,k
s < R

j,k
s− , then by definition of the coupling, R

j,k
s =

R
j,k
s− . Therefore, R

j,k
s ≥ Ri,k

s which gives us S
j
s ≤ R

j,k
s .
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For any time s < T k we have Ri,k
s ≥ Si

s + W0 + k ≥ Xi
s − X+

0 + W0 + k =
Xi

s −X−
0 +k. If there were N individuals with fitness X−

0 −k at time s ∈ [0, T k,i),
then the rate at which individual i replaces these N individuals due to selection is
γ (Xi

s −X−
0 +k). However, for any time s < T k , there are fewer than N individuals

being replaced by individual i due to selection and they will all have fitnesses at
least as large as X−

0 − k. This gives us a bound on the rate at which resampling
events occur on individual i before time T k , namely, Ui

s ≤ Xi
s − X−

0 + k ≤ Ri,k
s

for all s ∈ [0, T k). This shows that T k ≤ T k,i for all i. Hence, T k ≤ T k and the
coupling is well defined until time T k .

We have shown that any event that occurs at time s ∈ [0, T k) which may change
the fitness of an individual i in X will preserve the inequality Si

s ≤ Ri,k
s . Since the

result holds for each individual i, for any s ∈ [0, T k) we have

sup
0≤r≤s

Dr = sup
1≤i≤N

Si
s ≤ sup

1≤i≤N

Ri,k
s ≤ MW0+k,↑

s .

Note that if sup0≤s≤t (X
−
0 −X−

s ) ≤ k then t < T k . On the event {sup0≤s≤t (X
−
0 −

X−
s ) ≤ k} we have M

W0+k,↑
t ≥ sup0≤s≤t Ds . This allows us to do the following

computation:

P
(

sup
0≤s≤t

Ds > l
)

=
∞∑
i=0

P
({

sup
0≤s≤t

Ds > l
}

∩
{

sup
0≤s≤t

(
X−

0 − X−
s

) = i
})

≤
∞∑
i=0

P
({

M
W0+i,↑
t > l

} ∩
{

sup
0≤s≤t

(
X−

0 − X−
s

) = i
})

≤
∞∑
i=0

P
({

M
W0+i,↑
t > l

} ∩
{

sup
0≤s≤t

(
X−

0 − X−
s

) ≥ i
})

≤
∞∑
i=0

P
(
M

W0+i,↑
t > l

) ∧ P
(

sup
0≤s≤t

(
X−

0 − X−
s

) ≥ i
)

≤
∞∑
i=0

P
(
M

W0+i,↑
t > l

) ∧
(

N(tμ)iet

i!
)

by Proposition 6

≤
∞∑
i=0

(
N(tμ)le(γ (W0+i+l)+1)t

l!
)

∧
(

N(tμ)iet

i!
)

by Lemma 17 in the Appendix

≤ N(tμ)le(γ (W0+l)+1)t

l!
l−1∑
i=0

eiγ t + Net
∞∑
i=l

(tμ)i

i!

≤ N(tμ)le(γ (W0+l)+1)t

l! · lelγ t + Net
∞∑
i=l

(tμ)i

i!(1)



BOUNDING THE RATE OF ADAPTATION 1389

≤ N(tμ)le(γ (W0+2l)+1)t

(l − 1)! + N(tμ)le(μ+1)t

l!
by Lemma 15 in the Appendix

≤ 2N(tμ)le(γ (W0+2l)+μ+1)t

(l − 1)! . �

We now extend the bound we got on the least fit individuals in Proposition 6 to
a slightly stronger result.

DEFINITION 8. Let x ∈ Z and let S x
t ⊂ {1,2, . . . ,N} correspond to a collec-

tion of individuals at time t which is determined by the following dynamics:

• Initially, S x
0 consists of all individuals whose fitness lies in the interval (x,∞).

• If a resampling or selection event occurs at time t and an individual not in S x
t−

is replaced by a individual in S x
t−, then it is added to S x

t .
• If a beneficial mutation occurs at time t on an individual not in S x

t− that causes
its fitness to increase from x to x + 1, it is added to S x

t .
• If a resampling event occurs at time t to an individual in S x

t− and it is replaced
by a individual not in S x

t−, then it is removed from S x
t .

Mutation and selection events do not cause individuals to be lost from S x . We
now prove the following corollary to Proposition 7.

COROLLARY 9. Let A
x,l
t be the event that an individual in S x

s has fitness in
(−∞, x − l] for some time s ∈ [0, t]. For any initial configuration X0, time t ≥ 0
and any integer l,

P
(
A

x,l
t

) ≤ 2N(tμ)le(γ (W0+2l)+μ+1)t

(l − 1)! .

Note that we cannot use the bound found in Proposition 6 because individuals
not in S x

t may move to S x
t due to selection events. In the proof of Proposition 6 the

number of individuals with the least fitness cannot increase due to selection events.
However, the number of individuals with the least fitness in S x

t may increase due
to selection events involving individuals not in S x

t .

PROOF OF COROLLARY 9. For k ≥ 1 let X be coupled with ZW0+k,↑ as in the
proof of Proposition 7. Let T k , R

i,k
t and R

i,k
t be defined as they were in the proof

of Proposition 7. Define T i
s = {r ∈ [0, s] : i ∈ S x

r } and let

Si
s =

⎧⎪⎨
⎪⎩

sup
r∈T i

s

(
x − Xi

r

)
, if T i

s �= ∅,

−∞, if T i
s = ∅.
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The goal is to show that for all s ∈ [0, T k) we have

sup
1≤i≤N

Si
s ≤ sup

1≤i≤N

Ri,k
s ≤ MW0+k,↑

s .

Note that we can only consider the coupling of X with ZW0+k,↑ until time T k

because after this time the coupling is not well defined.
Initially all of the individuals in S x

0 have fitness in (x,∞). Therefore, if i ∈ S x
0

then Si
0 ≤ 0 = R

i,k
0 . If i /∈ S x

0 then Si
0 = −∞ < R

i,k
0 .

Suppose individual i gets a mutation at time s and that for any time s′ ∈ [0, s−)

we have Si
s′ ≤ R

i,k
s′ . Then Ri,k increases by 1. If i ∈ Sx

s− then Si
s will only increase

by 1 if Si
s− = x − Xi

s and the mutation is deleterious. If i /∈ S x
s− and the mutation

does not cause the fitness of individual i to change from x to x + 1, then Si
s = Si

s−.
If i /∈ S x

s− and the mutation does cause the fitness of individual i to change from x

to x + 1, then Si
s = Si

s− ∨ 0. In any of these three cases, Si
s ≤ Ri,k

s .
Suppose individual j is replaced by individual i due to a resampling or selection

event at time s and that S
j
s− ≤ R

j,k
s− and Si

s− ≤ R
i,k
s−. If i /∈ Sx

s− then S
j
s− = S

j
s ≤

R
j,k
s− . Suppose i ∈ S x

s−. If x − Xi
s ≤ S

j
s− then S

j
s− = S

j
s . From this it follows that

S
j
s ≤ R

j
s . If x − Xi

s > S
j
s−, then S

j
s = x − Xi

s ≤ Si
s ≤ Ri

s . If Ri
s ≥ R

j
s−, then by

the definition of the coupling, R
j
s = Ri

s . If Ri
s < R

j
s−, then by definition of the

coupling, R
j
s = R

j
s−. Therefore, R

j
s ≥ Ri

s which gives us S
j
s ≤ R

j
s .

Note that if sup0≤s≤t (X
−
0 − X−

s ) ≤ k then t < T k . Therefore, on the event

{sup0≤s≤t (X
−
0 − X−

s ) ≤ k} we have M
W0+k,↑
t ≥ sup1≤i≤N Si

s . This allows us to
do the following computation:

P
(

sup
0≤s≤t

sup
1≤i≤N

Si
s > l

)

=
∞∑
i=0

P
({

sup
0≤s≤t

sup
1≤i≤N

Si
s > l

}
∩

{
sup

0≤s≤t

(
X−

0 − X−
s

) = i
})

≤
∞∑
i=0

P
({

M
W0+i,↑
t > l

} ∩
{

sup
0≤s≤t

(
X−

0 − X−
s

) = i
})

.

This is the same bound as equation (1) in the proof of Proposition 7. Therefore, we
have established the same bound. �

PROOF OF PROPOSITION 3. By definition D′
T has the same distribution as

M
W,↑

T so by Lemma 17 in the Appendix we have

P
(
D′

T > l
) ≤ N(T μ)le(γ (W+l)+1)T

l! .
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Then

E[D′
T ]

2W = 1

2W

∞∑
l=0

P
(
D′

T > l
)

(2)

≤ 1

2W

[
2W +

∞∑
l=2W

N(T μ)le(γ (W+l)+1)T

l!
]
.

By Lemma 15 in the Appendix we have

∞∑
l=2W

N(T μ)le(γ (W+l)+1)T

l! ≤ Ne(γ W+1)T (T μeγ T )2W eT μeγ T

(2W)! .(3)

Note that for any k ≥ 2 both D′
kT −D′

(k−1)T and D′
T have the same distribution,

namely, that of MW
T . Choose t ∈ [kT , (k + 1)T ) for some k ≥ 1. Because D′

t is
increasing in t we have

D′
t

t
≤ 1

kT
(
D′

(k+1)T − D′
kT + D′

kT − · · · + D′
2T − D′

T + D′
T

)
.

Therefore,

E[D′
t ]

t
≤ (k + 1)E[D′

T ]
kT ≤ 2E[D′

T ]
T .

Let t > T . Dividing both sides by 2W /T and using the bounds found in equa-
tions (2) and (3) gives us

T E[D′
t ]

2t W ≤ 2E[D′
T ]

2W ≤ 2 + Ne(γ W+1)T (T μeγ T )2W eT μeγ T

2W(2W)! .

By Stirling’s formula we have

Ne(γ W+1)T (T μeγ T )2W eT μeγ T

2W(2W)! ∼ Ne(γ W+1)T (T μeγ T )2W eT μeγ T +2W

(2W)2W+1
√

4π W
= ex,

where

x = logN + T
(
γ W + 1 + μeγ T ) + 2W

(
log

(
T μeγ T ) + 1

)
− (2W + 1) log(2W ) − log(4π W)/2.

As N → ∞ we have x ∼ −(2W + 1) log(2W) ∼ −2w logN . Therefore,

T E[D′
t ]

2t W ≤ 3

for N large enough. �
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PROOF OF PROPOSITION 2. We now couple X with X′ by coupling X with
the sequence of processes {Z m}∞m=0. Let

Im = (
mT , (m+1)T

]∩ ∞⋃
n=1

[tn, sn) and Jm = (0, T ]∩
∞⋃

n=1

[tn −mT , sn −mT ).

For any m ≥ 0 we couple X and Z m as follows:

• The particles in Z m
0 are labeled 1,2, . . . ,N .

• For any time in IC
m the process X behaves independently of Z m. For any time

in JC
m the process Z m behaves independently of the process X. During the

time JC
m , if a particle labeled i in Z m branches, the particle remains labeled

i and the new particle is unlabeled.
• The particle in Z m that is paired with individual i will increase in type by 1 at

time t ∈ Jm only when individual i gets a mutation at time t + mT ∈ Im.
• For each individual i in X and each j �= i, individual j is replaced by individual

i at rate 1/N due to resampling events. If individual i replaces individual j due
to resampling at time t ∈ Im, then the particle labeled i in Z m branches at time
t −mT ∈ Jm. If particle i has a higher type than particle j , then the new particle
is paired with individual j . The particle that was paired with individual j before
the branching event is no longer paired with any individual in X. If particle i

has a lower type than particle j , then the particle that was paired with individual
j remains paired with individual j and the new particle is not paired with any
individual in X.

• The particle paired with individual i in Z m branches at rate 1/N for all times
t ∈ Jm and these branching events are independent of any of the events in X.
When the particle paired with individual i branches due to these events the new
particle is not paired with any individual in X.

• In X there is a time dependent rate γUi
s at which individuals j �= i are replaced

by individual i due to selection events. If individual j is replaced by individual
i in X due to a selection event at time t ∈ Im, then the particle labeled i in Z m

splits at time t − mT ∈ Jm. If particle i has a higher type than particle j , then
the new particle is paired with individual j . The particle that was paired with
individual j before the branching event is no longer paired with any individual
in X. If particle i has a lower type than particle j , then the particle that was
paired with individual j remains paired with individual j . The new particle is
not paired with any individual in X.

• A particle labeled i in Z m splits at a time-dependent rate γ (R
i,k
t − Ui

t ) for all
times t ∈ Jm where R

i,k
t is the type of particle i. These branching events are

independent of any of the events in X. When such a branching event occurs, the
new particle is not paired with any individual in X.

• Any particles in Z m that are not paired with an individual in X branch and
acquire mutations independently of X.
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Observe the following bound for Dt :

Dt ≤
Nt−1∑
i=1

(Dti+1 − Dsi ) +
Nt∑
i=1

(Dsi − Dti ) + sup
sNt ≤s≤tNt+1

(Ds − DsNt
)

+ sup
tNt+1≤s≤t

(Ds − DtNt+1),

where we consider the supremum over the empty set to be 0. By definition we have

Nt−1∑
i=1

(Dti+1 − Dsi ) + sup
sNt ≤s≤tNt+1

(Ds − DsNt
) ≤

Nt∑
i=1

Yi.

To finish the proof we will show

Nt∑
i=1

sup
ti≤s≤si

(Ds − Dti ) + sup
tNt+1≤s≤t

(Ds − DtNt +1) ≤ D′
t .

To do this we define

Mt =
Nt∑
i=1

sup
ti≤s≤si

(Ds − Dti ) + sup
tNt +1≤s≤t

(Ds − DtNt+1)

for all times t ≥ 0. Suppose Ms ≤ D′
s for all s ∈ [0, t) and a mutation, resam-

pling or selection event occurs in X at time t . If t ∈ (si, ti+1) for some i ≥ 0,
then Mt− = Mt because the process M does not change on these time intervals.
It is possible that D′

t changes, but D′
t can only increase. Therefore, D′

t ≥ Mt . If
t ∈ [ti , si]∩(mT , (m+1)T ] for some i ≥ 0 and m ≥ 0, then at time t the processes
X and X′ are coupled. More precisely, X and Z m are coupled and the coupling
has the same dynamics as the coupling in Proposition 7 except the time shift. The
same argument used in Proposition 7 shows that D′

t ≥ Mt whether the individual
changed fitness due to mutation, resampling or selection. Since this inequality is
preserved on any event that may change Mt , it is true for all times t . �

4. Bounding the rate when the width is large. We consider what happens
when the width is large in this section. By large width we mean Wt ≥ W . The
statements in this section are easier to make when we consider an initial configu-
ration of X such that W0 ≥ W . Although the conditions of Theorem 1 state that
W0 = 0, we can wait for a random time τ so that Wτ ≥ W and apply the strong
Markov property.

We begin this section by showing that when the width is large enough the se-
lection mechanism will cause the width to decrease quickly. We give a labeling to
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the individuals that will help us in this regard. Define the following subsets of R:

I1 = (−∞,X+
0 − 3

16W0
]
,

I2 = (
X+

0 − 3
16W0,X

+
0 − 2

16W0
]
,

I3 = (
X+

0 − 2
16W0,X

+
0 − 1

16W0
]
,

I4 = (
X+

0 − 1
16W0,∞)

.

We will label each individual in X0 with two labels. For the first labeling, we
use a to label the individuals in I1 ∪ I2, we use b to label the individuals in I3 and
we use c to label the individuals in I4. For the second labeling we use a′ to label
the individuals in I1, we use b′ to label the individuals in I2 and we use c′ to label
the individuals in I3 ∪ I4.

Let At , Bt and Ct denote the number of individuals labeled a, b and c at time t ,
respectively. Let A′

t , B′
t and C′

t denote the number of individuals labeled a′, b′ and
c′ at time t , respectively.

The individuals change labels over time according to the following dynamics:

• Mutations: If the fitness of an individual labeled a increases so that it is in I3,
then the individual is relabeled b. If the fitness of a individual labeled a′ in-
creases so that it is in I2, then the individual is relabeled b′. Likewise, if the
fitness of a individual labeled b increases so that it is in I4, then it is relabeled c

and if the fitness of a individual labeled b′ increases so that it is in I3, then it is
relabeled c′. Deleterious mutations do not cause individuals to be relabeled.

• Resampling: Any resampling event in which individual i is replaced by individ-
ual j causes individual i to inherit the labels of individual j .

• Selection: If an individual labeled a is replaced due to a selection event, it in-
herits the corresponding label of the individual that replaced it. If an individual
labeled a′ is replaced due to a selection event, it inherits the corresponding label
of the individual that replaced it. If an individual labeled b is replaced by an indi-
vidual labeled c due to a selection event, then the individual that was labeled b is
relabeled c. If an individual labeled b′ is replaced by an individual labeled c′ due
to a selection event, then the individual that was labeled b′ is relabeled c′. Any
other selection events do not cause the labels of the individuals to be changed.

Let A1 be the event that there is an individual labeled b with fitness in
(−∞,X+

0 − 5
32W0) for some time t ∈ [0, T ]. Let A2 be the event that there

is an individual labeled c with fitness in (−∞,X+
0 − 3

32W0) for some time
t ∈ [0, T ]. Let A′

1 be the event that there is an individual labeled b′ with fitness
in (−∞,X+

0 − 7
32W0) for some time t ∈ [0, T ]. Let A′

2 be the event that there is an
individual labeled c′ with fitness in (−∞,X+

0 − 5
32W0) for some time t ∈ [0, T ].

LEMMA 10. Suppose W0 ≥ W for all N . Then

P
(
A1 ∪ A2 ∪ A′

1 ∪ A′
2
) → 0 as N → ∞.
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PROOF. First we show the result for A1. We apply Corollary 9 with x = X+
0 −

2W0/16, t = t0 and l = W0/32. Recall that we had defined S x
t in Definition 8.

Because x = X+
0 −2W0/16, we have that S x

0 consists of all the individuals labeled

b or c. Setting t = T and l = W0/32 will make A
x,l
t the event that an individual

labeled b or c has fitness less than X+
0 − 5

32W0 by time T . Note that according to
the relabeling dynamics, individual i being labeled b or c is equivalent to i ∈ S x .
Therefore, A1 ⊂ A

x,l
t and we get

P(A1) ≤ P
(
Al

t

) ≤ 2N(tμ)le(γ (W0+2l)+μ+1)t


l − 1�! .

Applying Stirling’s formula we have

2N(tμ)le(γ (W0+2l)+μ+1)t


l − 1�! ∼ 2N(tμ)le(γ (W0+2l)+μ+1)t+
l−1�


l − 1�
l−1�√2π
l − 1� = ex,

where

x = log(2N) + l log(tμ) + (
γ (W0 + 2l) + μ + 1

)
t + 
l − 1�

− 
l − 1� log
(
l − 1�) − log

(
2π
l − 1�)/2.

As N → ∞ we have x ∼ −
l − 1� log(
l − 1�) ∼ −w logN/32. Therefore,

P(A1) → 0 as N → ∞.

We can apply Corollary 9 with x = X+
0 − W0/16, t = T and l = W0/32 to get

the same bound for P(A2). By choosing x, t and l in this way, the event A
x,l
t is the

event that an individual labeled c has fitness less than X+(0) − 3
32W0 by time T .

This shows that P(A2) also tends to 0 as N tends to infinity.
Likewise, to show P(A′

1) tends to 0 as N goes to infinity we can apply Corol-
lary 9 with x = X+

0 − 3
16W0, t = T and l = W0/32, and to show P(A′

2) tends to 0
as N goes to infinity we can apply Corollary 9 with x = X+

0 − 2
16W0, t = T and

l = W0/32. �

LEMMA 11. Suppose W0 ≥ W for all N . Let T be a stopping time whose
definition may depend on N such that C′

T ≥ N/4 for all N . Let BT = inf{t ≥
T :X−

t > X+
0 − W0/4}. Then

P
(
BT 1{T <T /2} > 1

2 T
) → 0 as N → ∞.

PROOF. Let A′
3 be the event that C′

t ≥ N/5 for all times t ∈ [T ,T + 1
2 T ). The

only way for an individual labeled c′ to change its label is for it to be replaced by
an individual labeled a′ or b′ via a resampling event. The rate at which individuals
marked c′ undergo resampling events with individuals marked a′ or b′ at time t is

C′
t (N − C′

t )

N
≤ N

4
.
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Let {Un}∞n=0 be a simple random walk with U0 = N/4 ≤ C′
T . Let T ≤ t1 < t2 <

· · · be the times at which individuals labeled c′ are involved in resampling events
with individuals that are not labeled c′ after time T . We couple {Un}∞n=0 with X

so that if at time tn an individual is labeled c′ due to a resampling event, then
Un = Un−1 + 1. If at time tn an individual loses the label c′ due to a resampling
event, then Un = Un−1 − 1. To have Um < N/5 for some m satisfying 0 ≤ m ≤ n

we will need max0≤m≤n|Um −U0| ≥ N/20. It follows from the reflection principle
that there exists a constant C such that E[max0≤m≤n|Um − U0|] ≤ C

√
n for all

n ≥ 0. By Markov’s inequality,

P
(

max
0≤m≤n

|Um − U0| ≥ N/20
)

≤ C
√

n/N

for some constant C.
Let R be the number of resampling events that occur in the time interval [T ,T +

1
2 T ) that involve pairs of individuals such that one is labeled c′ and the other is not.
Using Lemma 15 in the Appendix and the fact that the rate at which resampling
events occur is bounded above by N/4, we have

P(R > k) ≤
∞∑

i=k+1

(N T )ie−N T /8

8i i! ≤ (N T )k

8kk! .

Then

P
((

A′
3
)C) ≤ P

({
max

0≤m≤R
|Um − U0| ≥ N/20

}
∩ {

R ≤ N3/2})

+ P
({

max
0≤m≤R

|Um − U0| ≥ N/20
}

∩ {
R > N3/2})

≤ P
({

max
0≤m≤N3/2

|Um − U0| ≥ N/20
})

+ P
(
R > N3/2)

≤ C

N1/4 + (N T )N
3/2

8N3/2�N3/2�!
→ 0 as N → ∞.

Let A′
4 be the event that A′

t = 0 for some time t ∈ [T ,T + 1
2 T ). Notice that

if A′
t = 0, then A′

s = 0 for s ≥ t . Therefore, A′
4 is the event that the label a′ is

eliminated by time T + 1
2 T . By the given dynamics, A′

t can only increase when
individuals marked a′ replace individuals marked b′ or c′ via resampling events.
At time t the rate at which this happens is

1

2
· A′

t (N − A′
t )

N
≤ A′

t .(4)

We define the event E as

E = (
A′

1
)C ∩ (

A′
2
)C ∩ A′

3 ∩ {
T < 1

2 T
}
.
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Selection will cause A′ to decrease. On the event (A′
2)

C all of the individuals
marked c′ will have fitness at least 1

32W0 greater than any individual marked a

until time t0. Thus, on the event (A′
2)

C ∩ {T < 1
2 t0}, all of the individuals marked

c′ will have fitness at least 1
32W0 greater than any individual marked a for all times

t ∈ [T ,T + 1
2 T ). On the event A′

3 there are at least N/5 individuals marked c

for all times t ∈ [T ,T + 1
2 T ). Hence, on the event E individuals marked a′ will

become individuals marked c′ by a rate of at least

γA′
tC

′
tW0

32N
≥ γ

160
W0A

′
t(5)

for all times t ∈ [T ,T + 1
2 T ).

Let {U ′
n} be a biased random walk which goes up with probability

p′ = 160

160 + γW0

and down with probability 1 − p′. Let N be large enough so that p′ < 1/2. Be-
cause the random walk is biased downward, the probability that the random walk
visits a state j < U ′

0 is 1. Once the random walk is in state j , it goes up 1 with
probability p′ and will eventually return to j with probability 1. The random walk
will go down 1 with probability 1 − p′ and, from basic martingale arguments, the
probability that it never returns to j again is (1 − 2p′)/(1 − p′). Therefore, once
U ′ is in state j , the probability it never returns to state j is

(1 − 2p′)
1 − p′ · (

1 − p′) = 1 − 2p′.

Hence, the number of times U ′ visits a state j < U ′
0 has the geometric distribution

with mean 1/(1 − 2p′). For more details see [3], pages 194–196.
By equations (4) and (5) we see that on the event E , if A′ changes during the time

interval [T ,T + 1
2 T ), it decreases with probability higher than p′. The expected

number of times that A′ will visit state j is therefore less than or equal to 1/(1 −
2p′) for any j ∈ {1,2, . . . ,N − 1}. Also, the rate at which A′

t changes state is at
least

γ

160
W0A

′
t

for all times t ∈ [T ,T + 1
2 T ) by equation (5). Let A = {t ≥ T :A′

t > 0} and let λ

be Lebesgue measure. Then

E
[
λ(A)1E

] ≤ 160

(1 − 2p′)γW0

N∑
j=1

1

j
∼ 160 logN

γW0

as N → ∞.
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Observe that

P
(

E ∩ (
A′

4
)C) = P

(
E ∩

{
λ(A) ≥ 1

2
T

})

= P

(
λ(A)1E ≥ 1

2
T

)

≤ 2E[λ(A)1E ]
T by Markov’s inequality

→ 0 as N → ∞.

Therefore,

P
(

E ∩ A′
4
) − P

(
T < 1

2 T
) → 0 as N → ∞.

This allows us to do the following computation:

1 = lim
N→∞

(
P

(
T <

1

2
T

)
+ P

(
T ≥ 1

2
T

))

= lim
N→∞

(
P

(
E ∩ A′

4
) + P

(
T ≥ 1

2
T

))

= lim
N→∞

(
P

((
A′

1
)C ∩ (

A′
2
)C ∩ A′

3 ∩ A′
4 ∩

{
T <

1

2
T

})
+ P

(
T ≥ 1

2
T

))

≤ lim
N→∞

(
P

({
BT ≤ 1

2
T

}
∩

{
T <

1

2
T

})
+ P

(
T ≥ 1

2
T

))

= lim
N→∞P

(
BT 1{T <T /2} ≤ 1

2
T

)
. �

Let B = inf{t :X−
t > X+

0 − W0/4}.

PROPOSITION 12. Suppose W0 ≥ W for all N . As N tends to infinity,

P(B > T ) → 0.

PROOF. First note that if B0 + C0 ≥ N/4 then, because all of the individuals
labeled b or c at time 0 are also labeled c′, we have that C′

0 ≥ N/4. The result then
follows by Lemma 11 with T = 0. On the other hand, if B0 + C0 < N/4 then
A0 ≥ 3N/4.

Let T = (inf{t :At < N/4})∧ (inf{t :Ct ≥ N/4}). Let A5 be the event that At ≥
N/4 for all times t ∈ [0, 1

2 T ). Let A6 be the event that Ct < N/4 for all times
t ∈ [0, 1

2 T ). Define ζ to be the infimum over all times such that an individual
labeled b has fitness in (−∞,X+

0 − 5
32W0), an individual labeled c has fitness in

(−∞,X+
0 − 3

32W0) or At < N/4. Note that AC
1 ∩ AC

2 ∩ A5 ⊂ {ζ ≥ 1
2 T }.
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On the event {ζ ≥ 1
2 T }, the rate of increase of Ct due to selection is at least

γAtCtW0

32N
≥ 1

128
γCtW0(6)

for all t ∈ [0, 1
2 T ). On the other hand, because Ct can only decrease due to resam-

pling, Ct will decrease no faster than

1

2
· Ct (N − Ct )

N
≤ Ct .(7)

Let {Un}∞n=0 be a biased random walk with U0 = 1 which goes up with proba-
bility

p = γW0

128 + γW0

and down with probability 1 − p. Let N be large enough so that p > 1/2. By
similar reasoning as was used in the proof of Lemma 11, the number of times Un

visits a state j ≥ 1 has the geometric distribution with mean 1/(2p − 1). Also, by
basic martingale arguments, the probability that Un ever reaches state 0 is

1 − p

p
= 128

γW0
.

Note that C0 ≥ U0 since the individual with the highest fitness is initially la-
beled c. On the event {ζ ≥ 1

2 T }, we see from equations (6) and (7) that if C changes
during time [0, 1

2 T ), then it increases with a probability of at least p. Therefore, the
expected number of times that C visits state j is less than or equal to 1/(2p − 1)

and the probability the Ct reaches state 0 for some time t ∈ [0, 1
2 T ) is less than

128/(γW0). Let A7 be the event that Ct reaches state 0 for some time t ∈ [0, 1
2 T ).

By equation (6), the rate at which C changes is at least

1
128γCtW0

for all times t ∈ [0, 1
2 T ) on the event {ζ > 1

2 T }. Let C = {t ∈ [0, 1
2 T ) :C < 1

4N}
and let λ be Lebesgue measure. Then

E
[
λ(C)1{ζ≥T /2}

] = E
[
λ(C)1{ζ≥T /2}1A7

] + E
[
λ(C)1{ζ≥T /2}1AC

7

]

≤ 1

2
T P(A7) + 128

(2p − 1)γW0


N/4�∑
j=1

1

j

∼ 128 log(N/4)

γW0
.
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By Markov’s inequality

P
(
AC

1 ∩ AC
2 ∩ A5 ∩ A6

) ≤ P

(
AC

1 ∩ AC
2 ∩ A5 ∩

{
λ(C) ≥ 1

2
T

})

≤ P

({
ζ ≥ 1

2
T

}
∩

{
λ(C) ≥ 1

2
T

})

= P

(
λ(C)1{ζ≥T /2} ≥ 1

2
T

)

≤ 2E[λ(C)1{ζ≥T /2}]
T

≤ 256w1/4 log(N/4)

T γW0
for N large enough

→ 0 as N → ∞.

Because P(AC
1 ∩ AC

2 ) → 1 we have P(AC
5 ∪ AC

6 ) → 1 as N → ∞.
Note that AC

5 ∪ AC
6 ⊂ {T < 1

2 T }. Therefore, P(T < 1
2 T ) → 1 as N → ∞.

Let E2 = (A′
1)

C ∩ (A′
2)

C ∩ {T < 1
2 T }. Then P(E2) → 1 as N → ∞. To show

P(B ≤ T ) → 1 we can show P({B ≤ T } ∩ E2) → 1. At time T , at least 1
4N

individuals will be labeled either b or c. According to the labeling, all of these
individuals are labeled c′ so that at time T we have CT ≥ 1

4N . By Lemma 11 we
have

P
(
BT 1{T <T /2} ≤ 1

2 T
) → 1 as N → ∞.

Note that {
BT 1{T <T /2} ≤ 1

2 T
} = {

BT ≤ 1
2 T

} ∪ {
T ≥ 1

2 T
}
.

Because E2 ⊂ {T < 1
2 T } we have{

BT 1{T <T /2} ≤ 1
2 T

} ∩ E2 = {
BT ≤ 1

2 T
} ∩ E2.

It then follows that

P
({

BT ≤ 1
2 T

} ∩ E2
) → 1 as N → ∞.

However, {
BT ≤ 1

2 T
} ∩ E2 ⊂ {

BT ≤ 1
2 T

} ∩ {
T < 1

2 T
} ⊂ {B ≤ T },

which gives the conclusion. �

Let V 1
t = {i :Xi

t > X+
0 + W0/4} and V 2

t = {i :Xi
t < X−

0 − W0/4}. Let F =
inf{t :V 1

t ∪ V 2
t �= ∅}. We now want to bound the time it takes for the width to

increase.



BOUNDING THE RATE OF ADAPTATION 1401

PROPOSITION 13. Suppose W0 ≥ W for all N . Then

lim
N→∞P(F > T ) = 1.

PROOF. By Proposition 7 with l = W0/4 and t = T we have

P
(
inf

{
s :V 1

s �= ∅
}
< t

) = P
(

sup
0≤s≤t

Ds ≥ l
)

≤ 2N(tμ)le(γ (W0+2l)+μ+1)t

(l − 1)!
→ 0 as N → ∞.

By Proposition 6 with l = W0/4 and t = T we have

P
(
inf

{
s :V 2

s �= ∅
}
< t

) = P
(

sup
0≤s≤t

(
X−

0 − X−
s

) ≥ l
)

≤ N(tμ)let

l!
→ 0 as N → ∞. �

Recall that Yi = supsi≤s≤ti+1
Ds − Dsi and that {Ft }t≥0 is the natural filtration

associated with X. Note that if W0 < 2W , then for all n ≥ 1 the width satisfies
Wsn = �2W�.

PROOF OF PROPOSITION 4. We consider a sequence of initial configurations
X0 depending on N such that W0 = �2W � for all N . Because W0 ≥ 2W we
have s1 = 0 and Y1 = sup0≤s≤t2

Ds − D0. We will show that for N large enough,
E[Y1] < 5W . The result then follows because X is a strong Markov process.

We make the following definitions:

V 1
t (s) = {

i :Xi
t > X+

s + Ws/4
}

for t ≥ s ≥ 0,

V 2
t (s) = {

i :Xi
t < X−

s − Ws/4
}

for t ≥ s ≥ 0,

F0 = B0 = r0 = 0,

Fn = inf
{
t ≥ rn−1 :V 1

t (rn−1) ∪ V 2
t (rn−1) �= ∅

}
for n ≥ 1,

Bn = inf
{
t ≥ rn−1 :X−

t > X+
rn−1

− Wrn−1/4
}

for n ≥ 1,

rn = Fn ∧ Bn for n ≥ 1,

n∗ = inf{n ≥ 1 :Wrn < W}.
Note that r1 is the first time that the event F ∪ B occurs and that, conceptually,
rn acts like the first time that F ∪B occurs when the process is started at time rn−1
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for n ≥ 2. The random variables Fn and Bn play the roles of the events F and B

when the processes are started at time rn−1.
On the event n − 1 < n∗, by Proposition 12 and the strong Markov property

of X, we have P(Bn ≤ rn−1 + T |Frn−1) → 1 uniformly on a set of probability 1
as N → ∞. Likewise, on the event n − 1 < n∗, by Proposition 13 and the strong
Markov property, we have P(Fn > rn−1 + T |Frn−1) → 1 uniformly on a set of
probability 1 as N → ∞. Therefore, on the event n − 1 < n∗, we have P(Bn <

Fn|Frn−1) → 1 uniformly on a set of probability 1.
Because the bounds in Propositions 12 and 13 do not depend on n we can choose

a sequence p = pN such that p → 1 as N → ∞ and almost surely

p1{n−1<n∗} ≤ P(Bn < Fn|Frn−1)1{n−1<n∗}

for all n ≥ 0. Let {Sn}∞n=0 be a random walk starting at 1 which goes down 1 with
probability p and up 1 with probability 1 − p until it reaches 0. Once S reaches 0
it is fixed. For n < n∗ we couple S with X so that 2Sn−1W0 ≥ Wrn . The coupling
is defined as follows:

• Each step of the process S corresponds to a time rn.
• On the event {Fn < Bn} we have Sn − Sn−1 = 1.
• On the event {Bn ≤ Fn} we have Sn − Sn−1 = −1 with probability p/P (Bn ≤

Fn) and we have Sn − Sn−1 = 1 with probability 1 − p/P (Bn ≤ Fn).

We will show that this coupling is well defined and gives the necessary
bound. Initially, S0 = 1 and 2S0−1W0 = W0. On the event that Bn ≤ Fn, we
have Wrn < 1

2Wrn−1 and suprn−1≤t≤rn
Dt − Drn−1 ≤ 1

4Wrn−1 . On the event that

Fn < Bn, we have Wrn < 2Wrn−1 and suprn−1≤t≤rn
Dt − Drn−1 ≤ 1

4Wrn−1 + 1.

Therefore, if 2Sn−1−1W0 ≥ Wrn−1 , then 2Sn−1W0 ≥ Wrn by the coupling. It follows
that 2Sn−1W0 ≥ suprn−1≤t≤rn

Dt − Drn−1 as well. By induction, 2Sn−1W0 ≥ Wrn

for all n < n∗ ∧ inf{m :Sm = 0}. If n = inf{m :Sm = 0}, then Wrn ≤ W . Therefore,
n∗ ≤ inf{m :Sm = 0} and the induction holds for all n < n∗.

We define a function d on ({0} ∪ N)∞ such that if x = (x0, x1, . . .) then

d(x) =
∞∑
i=0

1{xi>0}2xi−1W0.

Consider S = (S0, S1, . . .) as a random element in ({0} ∪ N)∞. Then

d
(
(S0, S1, . . . , Sn,0,0, . . .)

) ≥
n∑

i=1

(
sup

ri−1≤t≤ri

Dt − Dri−1

)
≥ sup

0≤t≤rn

Dt

for all n such that n − 1 < n∗. By definition, n∗ is the first n such that Wrn < W .
Hence, d(S) ≥ Y1.
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For any n ≥ 0 we have

P(S2n+1 = 0) =
(

2n + 1
n

)
(1 − p)npn+1 ≤ 4n(1 − p)npn+1.

If S2n+1 = 0 then

d(S) ≤
(

2 + 2
n∑

i=1

2i−1

)
W0 = 2n+1W0,

which is obtained by taking n steps up followed by n + 1 steps down.
Therefore,

E[Y1] ≤ E
[
d(S)

] ≤
∞∑

n=0

[
4(1 − p)

]n
pn+12n+1W0 = 2pW0

1 − 8(1 − p)p
∼ 4W,

because W0 = �2W � and p → 1 as N → ∞. This shows that for N large enough
we have E[Y1] < 5W , which gives the conclusion. �

Let l = 
W/2�. We make the following definitions for the rest of the section:

K1 = 2N(T μ)le(γ (W0+2l)+μ+1)T

(l − 1)! ,

K2 = N(T μ)leT

l! ,

p = 1 − K1 − K2.

LEMMA 14. Suppose W0 ≤ W for all N . Then

P
(

sup
0≤s≤T

Ws ≤ 2W
)

≥ 1 − K1 − K2.

PROOF. By Proposition 7 we have

P
(

sup
0≤s≤T

Ds ≥ l
)

≤ K1.

By Proposition 6 we have

P
(

sup
0≤s≤T

(
X−

0 − X−
s

) ≥ l
)

≤ K2.

On the event that sup0≤s≤t Ds ≤ W/2 and sup0≤s≤t X
−
0 − X−

s ≤ W/2, we have
sup0≤s≤t Wt ≤ 2W . This gives the result. �

PROOF OF PROPOSITION 5. Notice that

{Ns ≥ i} = {si ≤ s} ⊂
{

i∑
j=1

(sj − tj ) ≤ s

}
.
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Therefore,

P(Ns ≥ i) ≤ P

(
i∑

j=1

(sj − tj ) ≤ s

)
.

Applying Lemma 14 and the strong Markov property of X we have

1 − K1 − K2 ≤ P(sj − tj ≥ T |Ftj )

for all j . Taking expectations of both sides yields

1 − K1 − K2 ≤ P(sj − tj ≥ T )

for all j , so

1 − K1 − K2 ≤ inf
j

P (sj − tj ≥ T ).

Note that p → 1 as N → ∞. Define an i.i.d. sequence {Vi}∞i=1 of random vari-
ables with distribution P(Vi = 0) = 1 − p and P(Vi = T ) = p. Then

P

(
i∑

j=1

(sj − tj ) ≤ s

)
≤ P

(
i∑

j=1

Vi ≤ s

)
.

This will allow us to define a new process N ′
s such that N ′

s = i if

i∑
j=1

Vi ≤ s <

i+1∑
j=1

Vi.

Note that P(N ′
s = 0) = p for s ∈ [0, T ) and that P(N ′

s ≥ k) ≥ P(Ns ≥ k) for all k.
Therefore, it is enough to bound E[N ′

s]/s.
Let V0 = 0. Jumps of the process N ′

s only occur at points kT where k is a
positive integer. On the time interval [0, T ) the process N ′

s is constant and has
value max{i ≥ 0 :Vi = 0}. Therefore, N ′

s has the shifted geometric distribution for
s ∈ [0, T ) with mean (1 − p)/p. We can now make use of the fact that N ′

s is a
Markov process. If we consider values at kT for k ≥ 0, we have for s ∈ [(k −
1)T , kT ) that E[N ′

s] = k(1 − p)/p. For k ≥ 2 we then have

1

s
E

[
N ′

s

] = k(1 − p)

sp
≤ k(1 − p)

(k − 1)pT .

This gives us

T
s

E
[
N ′

s

] ≤ k(1 − p)

(k − 1)p
→ 0 as N → ∞.

On the time interval [0, T ) we have

T
s

E
[
N ′

s

] ≤ (1 − p)

p
→ 0 as N → ∞. �



BOUNDING THE RATE OF ADAPTATION 1405

NOTATION

N The size of the population
μ The rate at which individuals accumulate mutations
q The probability that a mutation is beneficial
γ The selection coefficient
Xi The stochastic process in Z that represents the fitness of the ith indi-

vidual
X The stochastic process in Z

N that represents the fitnesses of the
individuals

X = 1
N

∑N
i=1 Xi

X+
t = max{Xi

t : 1 ≤ i ≤ N}
X−

t = min{Xi
t : 1 ≤ i ≤ N}

Wt = X+
t − X−

t

Dt = X+
t − X+

0

w is any positive, increasing function satisfying limN→∞ w(N) = ∞
and limN→∞ w(N)/ log logN = 0

W = 
w logN/ log logN�
T = w−1/2 log logN

t1 = 0

sn = inf{t ≥ tn :Wt ≥ 2W} for n ≥ 1

tn = inf{t ≥ sn−1 :Wt < W} for n ≥ 2

Yi = supsi≤t≤ti+1
Dt − Dsi for i ≥ 1

Nt = max{i : si ≤ t} for t ≥ 0

Z
k,↑
t A multi-type Yule process in which there are initially N particles of

type k. Particles increase from type i to type i + 1 at rate μ and parti-
cles of type i branch at rate γ i + 1

M
k,↑
t The maximum type of any particle in Z

k,↑
t

M
k,↑
t M

k,↑
t − k

X′
t X+

0 + M0
t if t ∈ [0, T ] and X′

iT + Mi
t−iT if t ∈ (iT , (i + 1)T ] for

any
{Z n

t }∞n=0 An i.i.d. sequence of stochastic processes each having the same distri-
bution as ZW,↑

Mn
t The maximum type of any particle in ZW,↑

Mn
t = Mn

t − W
integer i ≥ 1

D′
t X′

t − X+
0
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F = {Ft }t≥0 is the natural filtration associated with X under the initial
condition Xi

0 = 0 for 1 ≤ i ≤ N

ZC
t A multi-type Yule process in which there are initially N particles of

type 0. Particles increase from type i to type i +1 at rate μ and branch
at rate C

MC
t The maximum type of any particle in ZC

t

St = sup0≤s≤t (X
−
0 − X−

s )

A
x,l
t The event that an individual in Sx

s has fitness in (−∞, x − l] for some
time s ∈ [0, t]

A1 The event that there is an individual labeled b with fitness in
(−∞,X+

0 − 5
32W0) for some time t ∈ [0, T ]

A2 The event that there is an individual labeled c with fitness in
(−∞,X+

0 − 3
32W0) for some time t ∈ [0, T ]

A′
1 The event that there is an individual labeled b′ with fitness in

(−∞,X+
0 − 7

32W0) for some time t ∈ [0, T ]
A′

2 The event that there is an individual labeled c′ with fitness in
(−∞,X+

0 − 5
32W0) for some time t ∈ [0, T ]

B = inf{t :X−
t > X+

0 − W0/4}
V 1

t = {i :Xi
t > X+

0 + W0/4}
V 2

t = {i :Xi
t < X−

0 − W0/4}
F = inf{t :V 1

t ∪ V 2
t �= ∅}

APPENDIX

LEMMA 15. Let x ≥ 0. The tail of the exponential series satisfies
∞∑
i=k

xi

i! ≤ xkex

k! .

PROOF. By Taylor’s remainder theorem we know that there exists a ξ ∈ [0, x]
such that

ex =
k−1∑
i=1

xi

i! + xkeξ

k! .

Using the series expansion of ex we have
∞∑
i=k

xi

i! = xkeξ

k! ≤ xkex

k! .
�

Recall that MC
t is the maximum type of any particle in the branching pro-

cess ZC
t .
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LEMMA 16. For any population size N , time t ≥ 0 and natural number l,

P
(
MC

t ≥ l
) ≤ N(tμ)leCt

l! .

PROOF. Consider a Yule process Z which is the same as ZC except there is
only one particle at time 0. It is well known that the number of particles in Zt has
mean eCt . Let M ′

t be the maximum type of any particle at time t . When there are
k particles in the population, we let B1, . . . ,Bk denote the types of the particles,
where the numbering is independent of the mutations. For any l ≥ 0,

P
(
M ′

t ≥ l
) =

∞∑
k=1

P
(
M ′

t ≥ l|Zt = k
)
P(Zt = k)

=
∞∑

k=1

P
({B1 ≥ l} ∪ · · · ∪ {Bk ≥ l}|Zt = k

)
P(Zt = k)

≤
∞∑

k=1

kP (B1 ≥ l)P (Zt = k)

= E[Zt ]P(B1 ≥ l)

= eCt
∞∑
i=l

(tμ)i

i! e−μt .

By Lemma 15 it follows that

P
(
M ′

t ≥ l
) ≤ (tμ)leCt

l! .

Now consider ZC . At time 0 label the particles 1,2, . . . ,N and let M ′
i,t be the

maximum type of any particle among the progeny of particle i at time t . Then

P
(
MC

t ≥ l
) = P

({
M ′

1,t ≥ l
} ∪ · · · ∪ {

M ′
N,t ≥ l

})
≤ NP

(
M ′

1,t ≥ l
)

≤ N(tμ)leCt

l! . �

Recall that Mk,↑
t = M

k,↑
t −k where M

k,↑
t is the maximum type of any individual

in the branching process Z
k,↑
t .

LEMMA 17. For any time t ≥ 0 and any integers k ≥ 0 and l ≥ 0 we have

P
(
M

k,↑
t > l

) ≤ N(tμ)le(γ (k+l)+1)t

l! .
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PROOF. While all of the particles in Z
k,↑
t have type less than k+ l, they branch

at a rate which is less than or equal to γ (k + l) + 1. Because of this, P(M
k,↑
t >

l) ≤ P(M
γ(k+l)+1
t > l). By Lemma 16 we have

P
(
M

γ(k+l)+1
t > l

) ≤ N(tμ)le(γ (k+l)+1)t

l! . �
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