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DISTRIBUTIONAL CONVERGENCE FOR THE NUMBER OF
SYMBOL COMPARISONS USED BY QUICKSORT1

BY JAMES ALLEN FILL

Johns Hopkins University

Most previous studies of the sorting algorithm QuickSort have used
the number of key comparisons as a measure of the cost of executing the al-
gorithm. Here we suppose that the n independent and identically distributed
(i.i.d.) keys are each represented as a sequence of symbols from a proba-
bilistic source and that QuickSort operates on individual symbols, and we
measure the execution cost as the number of symbol comparisons. Assum-
ing only a mild “tameness” condition on the source, we show that there is a
limiting distribution for the number of symbol comparisons after normaliza-
tion: first centering by the mean and then dividing by n. Additionally, under
a condition that grows more restrictive as p increases, we have convergence
of moments of orders p and smaller. In particular, we have convergence in
distribution and convergence of moments of every order whenever the source
is memoryless, that is, whenever each key is generated as an infinite string of
i.i.d. symbols. This is somewhat surprising; even for the classical model that
each key is an i.i.d. string of unbiased (“fair”) bits, the mean exhibits periodic
fluctuations of order n.

1. Introduction, review of related literature and summary.

1.1. Introduction. We consider Hoare’s [13] QuickSort algorithm applied
to n distinct random items (called keys) X1, . . . ,Xn, each represented as a word
(i.e., infinite string of symbols such as bits) from some specified finite or countably
infinite alphabet. We will consider various probabilistic mechanisms [called (prob-
abilistic) sources] for generating the symbols within a key, but we will always as-
sume that the keys themselves are i.i.d. (independent and identically distributed),
and we will later place conditions on the source that rule out the generation of
equal keys.
QuickSort (X1, . . . ,Xn) chooses one of the n keys X1, . . . ,Xn (called the

“pivot”) uniformly at random, compares each of the other keys to it and then pro-
ceeds recursively to sort both the keys smaller than the pivot and those larger than
it.
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Key observation (coupling). Because of the assumption that the keys are i.i.d.,
we may take the pivot to be the first key in the sequence, X1. Thus if X1,X2, . . .

is an infinite sequence of keys and Cn is any measure of the cost of sorting n

random keys using any cost function c (e.g., the number of key comparisons or the
number of symbol comparisons), then we can place all the random variables Cn

on a common probability space by using Cn = c(X1, . . . ,Xn). Notice then that
Cn is nondecreasing in n. We will assume throughout that this natural coupling of
the random variables Cn has been used. The coupling opens up the possibility of
establishing stronger forms of convergence than convergence in distribution, such
as almost sure convergence and convergence in Lp , for suitably normalized Cn.

Many authors (Knuth [16], Régnier [19], Rösler [21], Knessl and Szpankowski
[15], Fill and Janson [4, 6], Neininger and Ruschendorff [18] and others) have
studied Kn, the (random) number of key comparisons performed by the algorithm.
This is an appropriate measure of the cost of the algorithm if each key compar-
ison has the same cost. On the other hand, if keys are represented as words and
comparisons are done by scanning the words from left to right, comparing the
symbols of matching index one by one, then the cost of comparing two keys is
determined by the number of symbols compared until a difference is found. We
call this number the number of symbol comparisons for the key comparison, and
let Sn denote the total number of symbol comparisons when n keys are sorted by
QuickSort. Symbol-complexity analysis allows us to compare key-based algo-
rithms such as QuickSort with digital algorithms such as those utilizing digital
search trees.

The goal of the present work is to establish a limiting distribution for the nor-
malized sequence of random variables (Sn − ESn)/n. Both exact and limiting dis-
tributions of Sn will depend on the source, unlike for Kn.

1.2. Review of closely related literature (QuickSort and QuickSelect).
Until now, study of asymptotics for QuickSort’s Sn has been limited mainly
to the expected value ESn. Fill and Janson [7] were the pioneers in that regard,
obtaining, inter alia, exact and asymptotic expressions for ESn [consult their The-
orem 1.1, and note that the asymptotic expansion extends through terms of order n

with a O(logn) remainder] when the keys are infinite binary strings and the bits
within a key result from i.i.d. fair coin tosses. (We will refer to this model for
key-generation as “the standard binary source.” Equivalently, a key is generated
by sampling uniformly from the unit interval, representing the result in binary
notation, and dropping the leading “binary point.”) They found that the expected
number of bit comparisons required by QuickSort to sort n keys is asymptoti-
cally equivalent to 1

ln 2n ln2 n, whereas the lead-order term of the expected number
of key comparisons is 2n lnn, smaller by a factor of order logn. Now suppose that
N = (N(t) : 0 ≤ t < ∞) is a Poisson process with rate 1 and is independent of the
generation of the keys, and let S(t) := SN(t). The authors also found for each fixed
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1 ≤ p < ∞ an upper bound independent of t ≥ 1 on the Lp-norm of

Y(t) := S(t) − ES(t)

t
,(1.1)

(see [7], Remark 5.1(a), and the corresponding [8], Proposition 5.7), leading them
to speculate that Y(t) might have a limiting distribution as t → ∞. We will see that
a limiting distribution does indeed exist, not only for the standard binary source but
for a wide range of sources, as well.

Vallée et al. [23] greatly extended the scope of [7] by establishing for much more
general sources both an exact expression for ESn [consult their Proposition 3 and
display (8)] and an asymptotic expansion (see their Theorem 1) through terms of
order n with a o(n) remainder. For the broad class of sources S considered, the
expected number of symbol comparisons is of lead order 1

h(S)
n ln2 n, where h(S)

is the entropy of the source (see their Figure 1 for a definition).
Building on work of Fill and Nakama [9], who had in turn followed closely

along the lines of [7], Vallée et al. [23] also studied the expected number of sym-
bol comparisons required by the algorithm QuickSelect(n,m). This algorithm
[aka Find(n,m)], a close cousin of QuickSort also devised by Hoare [12],
finds a key of specified rank m from a list of n keys. The authors of [23] consid-
ered the case where m = αn+o(n) for general α ∈ [0,1] [note: we will sometimes
refer to QuickQuant(n,α), rather than QuickSelect(n,m), in this case] and
a broad class of sources S . They found that the expected number of symbol com-
parisons asymptotically has lead term ρS (α)n, where ρS (α) is described in their
Figure 1. Unlike in the case of QuickSort, this is only a constant times larger
than the expected number of key comparisons, which is well known to be asymp-
totically κ(α)n with

κ(α) := 2[1 − α lnα − (1 − α) ln(1 − α)].
For either QuickSelect or QuickSort, a deeper probabilistic analysis of

the numbers of key comparisons and symbol comparisons is obtained by treating
entire distributions and not just expectations, in particular, by finding limiting dis-
tributions for suitable normalizations of these counts and, if possible, establishing
corresponding convergence of moments. Consider QuickQuant(n,α) first. For
both key comparisons and symbol comparisons a suitable normalization is to di-
vide by n, with no need to center first. For a literature review on the number of
key comparisons, we refer the reader to [10], Section 2.2; the number of symbol
comparisons is discussed next.

Fill and Nakama [10] (see also [17]) were the first to establish a limiting distri-
bution for the number of symbol comparisons for any sorting or searching algo-
rithm. They considered QuickQuant(n,α) for a broad class of sources and found
a limiting distribution (depending on α, and, of course, also on the source) for the
number Sn(α) of symbol comparisons (after division by n). It would take us a bit
too far afield to describe the limiting random variable S(α), so we refer the reader
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to [10], Section 3.1, see (3.7), for an explicit description. In their paper they use
the natural coupling discussed in Section 1.1 and prove, for each α, that Sn(α)/n

converges to S(α) both (i) almost surely and, under ever stronger conditions on the
source as p increases, (ii) in Lp . Either conclusion implies convergence in distri-
bution, and (ii) implies convergence of moments of order ≤ p. The approach taken
in [10] is sufficiently general that the authors were able to unify treatment of key
comparisons and symbol comparisons and to consider various other cost functions
(see their Example 2.1).

Now we turn our attention back to QuickSort, the focus of this paper. Let Kn

(resp., Sn) denote the random number of key (resp., symbol) comparisons required
by QuickSort to sort a list of n keys. We first consider Kn, for which we know
the following convergence in law, for some random variable T (where the imma-
terial choice of scaling by n + 1, rather than n, matches with [19]):

Kn − EKn

n + 1
L→ T .(1.2)

This was proved (i) by Régnier [19], who used the natural coupling and martin-
gale techniques to establish convergence both almost surely and in Lp for every
finite p; and (ii) by Rösler [21], who used the contraction method (see Rösler and
Rüschendorf [22] for a general discussion) to prove convergence in the so-called
minimal Lp metric for every finite p [from which (1.2), with convergence of all
moments, again follows]. An advantage of Rösler’s approach was identification of
the distribution of the limiting T as the unique distribution of a zero-mean random
variable with finite variance satisfying the distributional fixed-point equation

T
L= UT + (1 − U)T ∗ + g(U),(1.3)

with g(u) := 1 + 2u lnu + 2(1 − u) ln(1 − u) and where, on the right-hand side,
T , T ∗ and U are independent random variables, T ∗ has the same distribution as T

and U is distributed uniformly over (0,1). Later, Fill and Janson [5] showed that
uniqueness of the zero-mean solution L(T ) to (1.3) continues to hold without the
assumption of finite variance, or indeed any other assumption.

1.3. Summary. This paper establishes, for a broad class of sources, a limiting
distribution for the number Sn of symbol comparisons for QuickSort. We tried
without success to mimic the approach used in [10] for QuickQuant. The ap-
proach used in this paper, very broadly put, is to relate the count Sn of symbol
comparisons to various counts of key comparisons and then rely (heavily) on the
result of Régnier [19]. Like Fill and Janson [7, 8], we will find it much more con-
venient to work mainly in continuous time than in discrete time, but we will also
“de-Poissonize” our result. In the continuous-time setting and notation established
at (1.1) (but without limiting attention to the standard binary source), we will prove



DISTRIBUTIONAL CONVERGENCE FOR QUICKSORT SYMBOLS 1133

in this paper, assuming that the source is suitably “tame” (in a sense to be made
precise), that

Y(t) = S(t) − ES(t)

t

L→ Y(1.4)

for some random variable Y . Following the lead of [19] and [10], we will use the
natural coupling discussed in Section 1.1. Under a mild tameness condition that
becomes more stringent as p ∈ [2,∞) increases, we will, in fact, establish con-
vergence in Lp (see our main Theorem 3.1 for a precise statement). In particular,
for any g-tamed source as defined in Remark 2.3(a) [e.g., for any (nondegenerate)
memoryless source] we have convergence in Lp for every finite p. Nondegeneracy
of the distribution of Y is proved by Bindjeme and Fill [1]; thus the denominator t

used in (1.4) is not too large to get an interesting limiting distribution.
Outline of the paper. After carefully describing in Section 2.1 the probabilistic

models used to govern the generation of keys, reviewing in Section 2.2 four known
results about the number of key comparisons we will need in our analysis of sym-
bol comparisons and listing in Section 2.3 the other basic probability tools we will
need, in Section 3 we state and prove our main continuous-time result about con-
vergence in distribution for the number of symbol comparisons. We extend the
result by de-Poissonization to discrete time in Section 4.

2. Background and preliminaries.

2.1. Probabilistic source models for the keys. In this subsection, extracted
with only small modifications from [10], we describe what is meant by a prob-
abilistic source (our model for how the i.i.d. keys are generated) using the termi-
nology and notation of Vallée et al. [23].

Let � denote a finite totally ordered alphabet (set of symbols), therefore iso-
morphic to {0, . . . , r − 1}, with the natural order, for some finite r ; a word is then
an element of �∞, that is, an infinite sequence (or “string”) of symbols. We will
follow the customary practice of denoting a word w = (w1,w2, . . .) more simply
by w1w2 · · ·.

We will use the word “prefix” in two closely related ways. First, the symbol
strings belonging to �k are called prefixes of length k, and so �∗ := ⋃

0≤k<∞ �k

denotes the set of all prefixes of any nonnegative finite length. Second, if w =
w1w2 · · · is a word, then we will call

w(k) := w1w2 · · ·wk ∈ �k(2.1)

its prefix of length k.
Lexicographic order is the linear order (to be denoted in the strict sense by ≺)

on the set of words specified by declaring that w ≺ w′ if (and only if) for some
0 ≤ k < ∞ the prefixes of w and w′ of length k are equal but wk+1 < w′

k+1. Then
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the symbol-comparisons cost of determining w ≺ w′ for such words is just k + 1,
the number of symbol comparisons.

A probabilistic source is simply a stochastic process W = W1W2 · · · with state
space � (endowed with its total σ -field) or, equivalently, a random variable W tak-
ing values in �∞ (with the product σ -field). According to Kolmogorov’s consis-
tency criterion (e.g., [2], Theorem 3.3.6), the distributions μ of such processes are
in one-to-one correspondence with consistent specifications of finite-dimensional
marginals, that is, of the probabilities

pw := μ({w1 · · ·wk} × �∞), w = w1w2 · · ·wk ∈ �∗.
Here the fundamental probability pw is the probability that a word drawn from μ

has w1 · · ·wk as its length-k prefix.
Because the analysis of QuickSort is significantly more complicated when

its input keys are not all distinct, we will restrict attention to probabilistic sources
with continuous distributions μ. Expressed equivalently in terms of fundamental
probabilities, our continuity assumption is that for any w = w1w2 · · · ∈ �∞ we
have pw(k) → 0 as k → ∞, recalling the prefix notation (2.1).

EXAMPLE 2.1. We present a few classical examples of sources. For more
examples, and for further discussion, see [23], Section 3.

(a) In computer science jargon, a memoryless source is one with W1,W2, . . .

i.i.d. Then the fundamental probabilities pw have the product form

pw = pw1pw2 · · ·pwk
, w = w1w2 · · ·wk ∈ �∗.

(b) A Markov source is one for which W1W2 · · · is a Markov chain.
(c) An intermittent source (a model for long-range dependence) over the finite

alphabet � = {0, . . . , r − 1} is defined by specifying the conditional distributions
L(Wj |W1, . . . ,Wj−1) (j ≥ 2) in a way that pays special attention to a particular
symbol σ . The source is said to be intermittent of exponent γ > 0 with respect to σ

if L(Wj |W1, . . . ,Wj−1) depends only on the maximum value k such that the last k

symbols in the prefix W1 · · ·Wj−1 are all σ and (i) is the uniform distribution on �,
if k = 0; and (ii) if 1 ≤ k ≤ j − 1, assigns mass [k/(k + 1)]γ to σ and distributes
the remaining mass uniformly over the remaining elements of �.

For our results, the quantity

πk := max{pw :w ∈ �k}(2.2)

will play an important role, as it did in [23], equation (7), in connection with the
generalized Dirichlet series 	(s) := ∑

k≥0 π−s
k . In particular, it will be sufficient

to obtain Lp convergence in our main result (Theorem 3.1) that

	(−1/p) = ∑
k≥0

π
1/p
k < ∞;(2.3)
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a sufficient condition for this, in turn, is of course that the source is 	-tamed with
γ > p in the sense of the following definition.

DEFINITION 2.2. Let 0 < γ < ∞ and 0 < A < ∞. We say that the source is
	-tamed (with parameters γ and A) if the sequence (πk) at (2.2) satisfies

πk ≤ A(k + 1)−γ for every k ≥ 0.

Observe that a 	-tamed source is always continuous.

REMARK 2.3. (a) Many common sources have geometric decrease in πk (call
these “g-tamed”) and so for any γ are 	-tamed with parameters γ and A for
suitably chosen A ≡ Aγ .

For example, a memoryless source satisfies πk = pk
max, where

pmax := sup
w∈�1

pw

satisfies pmax < 1 except in the highly degenerate case of an essentially single-
symbol alphabet. We also have πk ≤ pk

max for any Markov source, where now
pmax is the supremum of all one-step transition probabilities, and so such a source
is g-tamed provided pmax < 1. Expanding dynamical sources (cf. [3]) are also g-
tamed.

(b) For an intermittent source as in Example 2.1, for all large k the maximum
probability πk is attained by the prefix σk and equals

πk = r−1k−γ .

Intermittent sources are therefore examples of 	-tamed sources for which πk de-
cays at a truly inverse-polynomial rate, not an exponential rate as in the case of
g-tamed sources.

2.2. Known results for the numbers of key comparisons for QuickSort. In
this subsection we review four known QuickSort key-comparison results (the
first two formulated in discrete time and the next two in continuous time) that will
be useful in proving our main Theorem 3.1. The first gives exact and asymptotic
formulas for the expected number of key comparisons in discrete time and is ex-
tremely basic and well known. [See, e.g., [8], (2.1)–(2.2).]

LEMMA 2.4. Let Kn denote the number of key comparisons required to sort
a list of n distinct keys. Then

EKn = 2(n + 1)Hn − 4n
(2.4)

= 2n lnn − (4 − 2γ )n + 2 lnn + (2γ + 1) + O(1/n).
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The second result [mentioned previously at (1.2)] is due to Régnier [19], who
also proved convergence in Lp for every finite p. Recall the natural coupling dis-
cussed in Section 1.1.

LEMMA 2.5 [19]. Under the natural coupling, there exists a random vari-
able T satisfying

Kn − EKn

n + 1
→ T almost surely.(2.5)

We now shift to continuous time by assuming that the successive keys are gen-
erated at the arrival times of a Poisson process with unit rate. The number of key
comparisons through epoch t is then KN(t), which we will abbreviate as K(t);
while the sequence (Kn) is thereby naturally embedded in the continuous-time
process, the random variables K(n) and Kn are not to be confused. We will use
such abbreviations throughout this paper; for example, we will also write SN(t)

as S(t).
The third result we review is the continuous-time analog of Lemma 2.4. Note

the difference in constant terms and the much smaller error term in continuous
time.

LEMMA 2.6 ([8], Lemma 5.1). In the continuous-time setting, the expected
number of key comparisons is given by

EK(t) = 2
∫ t

0
(t − y)(e−y − 1 + y)y−2 dy.

Asymptotically, as t → ∞ we have

EK(t) = 2t ln t − (4 − 2γ )t + 2 ln t + (2γ + 2) + O(e−t t−2).(2.6)

The fourth result gives bounds on the moments of K(t). For real p ∈ [1,∞),
we let ‖W‖p := (E|W |p)1/p denote Lp-norm.

LEMMA 2.7 ([8], Lemma 5.3). For every real p ∈ [1,∞), there exists a con-
stant cp < ∞ such that

‖K(t) − EK(t)‖p ≤ cpt for t ≥ 1,

‖K(t)‖p ≤ cpt2/p for t ≤ 1.

In the special case p = 2, it follows immediately from Lemma 2.7 that

VarK(t) ≤ c2
2t

2 for 0 ≤ t < ∞.(2.7)
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2.3. Basic probability tools. The following elementary lemma is the basic tool
we will use for Lp-convergence. For completeness and the reader’s convenience,
we supply a proof.

LEMMA 2.8. Let Yk(t) be random variables, all defined on a common proba-
bility space, for k = 0,1,2, . . . and 0 ≤ t ≤ ∞. Fix t0 ∈ [0,∞) and 1 ≤ p < p′ <
∞ and suppose for some sequences (bk) and (b′

k) that:

(i) for each k we have Yk(t) → Yk(∞) almost surely as t → ∞,
(ii) for each k we have ‖Yk(t)‖p ≤ bk for all t0 ≤ t < ∞,

(ii′) for each k we have ‖Yk(t)‖p′ ≤ b′
k < ∞ for all t0 ≤ t < ∞ and

(iii)
∑∞

k=0 bk < ∞.

Then:

(a) for each t0 ≤ t ≤ ∞ the series
∑∞

k=0 Yk(t) converges in Lp to some random
variable Y(t), and moreover,

(b) Y(t) → Y(∞) in Lp as t → ∞.

PROOF. We assume without loss of generality that t0 = 0. Note that hypothe-
ses (ii) and (ii′) extend to t = ∞ by Fatou’s lemma.

(a) From (ii) and (iii) it follows for each 0 ≤ t ≤ ∞ that the sequence of partial
sums

∑K
k=0 Yk(t), K = 0,1, . . . , is a Cauchy sequence in the Banach space Lp

and so converges to some random variable Y(t).
(b) We first claim for each k that Yk(t) → Yk(∞) in Lp , that is, |Yk(t) −

Yk(∞)|p → 0 in L1 as t → ∞. To see this, from (ii′) it follows using [2], Ex-
ercise 4.5.8, that |Yk(t)|p is uniformly integrable in t , as, therefore, is |Yk(t) −
Yk(∞)|p . Our claim then follows from (i), since almost-sure convergence to 0 im-
plies convergence in probability to 0, and that together with uniform integrability
implies convergence in L1 (e.g., [2], Theorem 4.5.4).

Using the triangle inequality for Lp-norm, the claim proved in the preceding
paragraph, and the extended condition (ii), we find for any K that

lim sup
t→∞

‖Y(t) − Y(∞)‖p ≤ lim sup
t→∞

∞∑
k=K+1

‖Yk(t) − Yk(∞)‖p ≤ 2
∞∑

k=K+1

bk.

Now let K → ∞, using (iii), to complete the proof. �

Later (Lemma 3.3) we will transfer Lemma 2.5 to continuous time. When we
do so, the following result will prove useful. This law of the iterated logarithm
(LIL) is well known, and, for example, can be found for general renewal processes
in [14], Theorem 12.13.
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LEMMA 2.9 (LIL for a Poisson process). For a Poisson process N with unit
rate,

P
(

lim sup
t→∞

N(t) − t√
2t ln ln t

= 1, lim inf
t→∞

N(t) − t√
2t ln ln t

= −1
)

= 1.(2.8)

3. Main results (in continuous time): Convergence in Lp (and therefore
in distribution). The following theorem, which adopts the natural coupling dis-
cussed in Section 1.1 and utilizes the terminology and notation of Section 2.1 for
probabilistic sources, is our main result (for continuous time).

THEOREM 3.1. Consider the continuous-time setting in which independent
and identically distributed keys are generated from a probabilistic source at the
arrival times of an independent Poisson process N with unit rate. Let S(t) = SN(t)

denote the number of symbol comparisons required by QuickSort to sort the
keys generated through epoch t , and let

Y(t) := S(t) − ES(t)

t
, 0 < t < ∞.(3.1)

Let p ∈ [2,∞) and assume that
∞∑

k=0

( ∑
w∈�k

p2
w

)1/p

< ∞.(3.2)

Then there exists a random variable Y such that Y(t) → Y in Lp . Thus Y(t)
L→ Y ,

with convergence of moments of orders ≤ p; in particular, EY = 0.

REMARK 3.2. (a) Observe that
∑

w∈�k pw = 1 for each k. Thus
∑

w∈�k p2
w ≤

1, and condition (3.2) grows increasingly stronger as p increases.
(b) Under the weakest instance p = 2 of the assumption (3.2) we have Y(t) →

Y in L2, and so Y(t) → Y in law with convergence of means and variances. The
random variable Y in Theorem 3.1 of course does not (more precisely, can be taken
not to) depend on the value of p considered (because a limit in Lp for any p is
also a limit in probability, and limits in probability are almost surely unique).

(c) The expected number of symbol comparisons in comparing two indepen-
dent keys generated by the given source is

∑
w∈�∗ p2

w = ∑∞
k=0

∑
w∈�k p2

w . So (3.2)
is certainly sufficient to imply that ES(t) < ∞ for every t [in fact, it follows
from calculations to be performed in the proof of Theorem 3.1 for p = 2 that
ES2(t) < ∞ for every t] and that with probability one S(t) < ∞ for all t .

(d) The sum on w in (3.2) is bounded above by the max-prefix probability πk

defined at (2.2), and so (2.3) (namely,
∑

k π
1/p
k < ∞) is sufficient for (3.2). Thus

from the discussion in Section 2.1 we see that Theorem 3.1 gives Lp-convergence
for Y(t) for all 	-tamed sources with parameter γ > p. In particular, for any g-
tamed source, such as any (nondegenerate) memoryless source, we have Y(t) → Y

in Lp for every p < ∞.
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(e) The standard binary source is a classical example of a periodic memory-
less source; cf. [23]—specifically, Definition 3(d), Theorem 1(ii) and the discus-
sion (ii) in Section 3. Fill and Janson [8], Proposition 5.4, show explicitly for the
standard binary source that

ES(t) = 1

ln 2
t ln2 t − c1t ln t + c2t + πt t + O(log t) as t → ∞,

where c1, c2 are explicitly given constants and πt is a certain periodic function of
log t . Given the periodic term of order t in the mean for this periodic source, we
find it surprising that Theorem 3.1 nevertheless applies.

(f) We wonder (but have not yet considered): Under what conditions do
we have almost sure convergence in Theorem 3.1 (or in the discrete-time Theo-
rem 4.1)?

To prepare for the proof of Theorem 3.1, we “Poissonize” Lemma 2.5.

LEMMA 3.3. In the continuous-time setting of Theorem 3.1, let K(t) = KN(t)

denote the number of key comparisons required by QuickSort. Then for the
same random variable T as in the discrete-time Lemma 2.5 we have

K(t) − EK(t)

t
→ T almost surely as t → ∞.

PROOF. This is routine. According to Lemmas 2.5 and 2.4,

Kn − [2n lnn − (4 − 2γ )n]
n + 1

→ T almost surely as n → ∞.

Since N(t) → ∞ almost surely as t → ∞, it follows that

K(t) − [2N(t) lnN(t) − (4 − 2γ )N(t)]
N(t) + 1

→ T almost surely as t → ∞.

Using the strong law of large numbers (SLLN) for N [namely, N(t)/t → 1 almost
surely, for which Lemma 2.9 is plenty sufficient], we deduce

K(t) − [2N(t) lnN(t) − (4 − 2γ )t]
t

→ T almost surely as t → ∞.

From the mean value theorem it follows that |y lny − x lnx| ≤ |y − x|(1 + lnx +
lny) for x, y ≥ 1. Applying this with x = t and y = N(t) and invoking the SLLN
and the LIL (Lemma 2.9), we find almost surely that for large t we have

|N(t) lnN(t) − t ln t | ≤ |N(t) − t |[1 + lnN(t) + ln t]
≤ √

3t ln ln t[2 ln t + 1 + o(1)]
= O

(√
t ln ln t × ln t

) = o(t),
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and so
K(t) − [2t ln t − (4 − 2γ )t]

t
→ T almost surely as t → ∞.

The desired result now follows from (2.6) in Lemma 2.6. �

We are now ready for the proof.

PROOF OF THEOREM 3.1. We use an idea of Fill and Janson [8], Section 5,
and decompose S(t) as

∑∞
k=0 Sk(t), and each Sk(t) further as

∑
w∈�k Sw(t), where

for an integer k and a prefix w ∈ �k we define (with little possibility of notational
confusion)

Sk(t) := number of comparisons of (k + 1)st symbols,

Sw(t) := number of comparisons of (k + 1)st symbols between keys

with prefix w.

A major advantage of working in continuous time is that,

for each fixed k and t , the variables Sw(t) with w ∈ �k are independent.(3.3)

A further key observation, clear after a moment’s thought, is this: For each w ∈ �∗,
as stochastic processes,(

Sw(t) : t ∈ [0,∞)
)

is a probabilistic replica of
(
K(pwt) : t ∈ [0,∞)

)
.(3.4)

We define corresponding normalized variables as follows:

Yk(t) := Sk(t) − ESk(t)

t
, Yw(t) := Sw(t) − ESw(t)

t
,

with the normalized variable Y(t) corresponding to S(t) defined at (3.1). Then

Y(t) =
∞∑

k=0

Yk(t), Yk(t) = ∑
w∈�k

Yw(t) (k = 0,1, . . .).

To complete the proof of Lp-convergence of Y(t) we then need only to find ran-
dom variables Yk(∞) such that the hypotheses of Lemma 2.8 are satisfied for
some p′ ∈ (p,∞). [Once we have the main conclusion of the theorem that Y(t)

converges to Y in Lp , convergence in law with convergence of moments of orders
≤ p follows immediately; in particular, since EY(t) ≡ 0 and EY(t) → EY , we
have EY = 0.]

But, for each w ∈ �∗, the existence of an almost-sure limit, call it Yw(∞), for
Yw(t) as t → ∞ follows from (3.4) and Lemma 3.3; indeed, we see that Yw(∞)

has the same distribution as pwT , with T as in Lemma 3.3. Taking the finite sum
over w ∈ �k , we see that Yk(∞) can be defined as

∑
w∈�k Yw(∞) to meet hypoth-

esis (i) of Lemma 2.8.
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To verify the remaining hypotheses we choose t0 = 1 and need to bound the
Lq -norm of Yk(t) for k a nonnegative integer, t ∈ [1,∞) and q ∈ {p,p′}. Accord-
ing to Lemma 3.4 to follow, for any real q ∈ [2,∞) there exists a constant c′

q such
that

‖Yk(t)‖q ≤ c′
q

( ∑
w∈�k

p2
w

)1/q

for such k and t . Thus hypotheses (ii) and [for any p′ ∈ (p,∞)] (ii′) of Lemma 2.8
hold, and the assumption (3.2) implies that (iii) does as well. �

LEMMA 3.4. Adopt the notation in the above proof of Theorem 3.1. Then for
every real q ∈ [2,∞), there exists a constant c′

q < ∞ such that

‖Yk(t)‖q ≤ c′
q

( ∑
w∈�k

p2
w

)1/q

for every nonnegative integer k and every t ∈ [1,∞).

PROOF. Fix q ∈ [2,∞). The first step is to use (as did Fill and Janson [8],
proof of Proposition 5.7) Rosenthal’s inequality, relying on the fact [recall (3.3)]
that Sk(t) is the independent sum of Sw(t) with w ∈ �k . According to Rosenthal’s
inequality [20], Theorem 3 (see also, e.g., [11], Theorem 3.9.1), there exists a
constant bq (depending only on q) such that

tq‖Yk(t)‖q
q = ‖Sk(t) − ESk(t)‖q

q

≤ bq max
{ ∑

w∈�k

‖Sw(t) − ESw(t)‖q
q,

[ ∑
w∈�k

‖Sw(t) − ESw(t)‖2
2

]q/2}
.

Utilizing (3.4) and Lemma 2.7 together with the assumptions t ≥ 1 and q ≥ 2 we
therefore find

‖Yk(t)‖q
q ≤ bq max

{ ∑
w∈Ak(t)

cq
qpq

w + ∑
w∈Bk(t)

(2cq)qp2
w,

( ∑
w∈�k

c2
2p

2
w

)q/2}

≤ bq max
{
(2cq)q

∑
w∈�k

p2
w, c

q
2

( ∑
w∈�k

p2
w

)q/2}

≤ (c′
q)q

∑
w∈�k

p2
w,

where Ak(t) and Bk(t) are the intersections of those �k with {w :pwt ≥ 1} and
{w :pwt < 1}, respectively, and

c′
q := b1/q

q max{2cq, c2}.
The proof is complete. �
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4. Discrete time. In this final section we de-Poissonize Theorem 3.1 in order
to obtain an analogous result in discrete time, for which we need to strengthen the
hypothesis slightly.

THEOREM 4.1. Let Sn denote the number of symbol comparisons required by
QuickSort to sort the first n keys generated. Let p ∈ [2,∞) and assume that for
some p′ > p we have

∞∑
k=0

( ∑
w∈�k

p2
w

)1/p′
< ∞.(4.1)

If Y is the continuous-time limit from Theorem 3.1, then

Sn − ESn

n

Lp−→ Y as n → ∞.(4.2)

In particular, we have convergence in distribution, with convergence of moments
of orders ≤ p.

We will derive Theorem 4.1 from Theorem 3.1, and our proof will need the
following moderate deviation estimate for N(t).

LEMMA 4.2. For any 0 < ε < 1/6, we have

P
(|N(t) − t | ≥ t (1/2)+ε) ∼

√
2

π
t−ε exp

(
−1

2
t2ε

)
as t → ∞.

PROOF. It is well known that the normal approximation gives correct lead-
order asymptotics for right-tail deviations from the mean starting from a point that
is, as here, o(t2/3). Thus if Z is distributed standard normal, then

P
(|N(t) − t | ≥ t (1/2)+ε) ∼ P(|Z| ≥ tε) ∼

√
2

π
t−ε exp

(
−1

2
t2ε

)

as claimed. �

In the following proof, given a sequence of events (Bn), we say that Bn occurs
“wvlp” (for “with very low probability”) if P(Bn) is at most an amount exponen-
tially small in a power of n; we say that Bn occurs “wvhp” (for “with very high
probability”) if the complement Bc

n occurs wvlp.

PROOF OF THEOREM 4.1. To prove (4.2) from the integer-time consequence

S(n) − ES(n)

n

Lp−→ Y
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of Theorem 3.1, it is, of course, sufficient to prove

S(n) − Sn

n

Lp−→ 0(4.3)

and
ES(n) − ESn

n
→ 0.(4.4)

Further, since (4.4) follows immediately from (4.3), it is sufficient to prove (4.3).
To prove (4.3), the key is to recall that S(t) = SN(t) where N is a unit-

rate Poisson process independent of (S0, S1, . . .) and to note that Sn increases
with n. Let 0 < ε < 1/3. Applying Lemma 4.2 with (t, ε), there taken to be
(n + n(1/2)+ε, ε/2), wvhp we have

N
(
n + n(1/2)+ε) ≥ (

n + n(1/2)+ε) − (
n + n(1/2)+ε)1/2+1/2ε ≥ n,(4.5)

where the second inequality holds for large enough n. Similarly, wvhp we have

N
(
n − n(1/2)+ε) ≤ (

n − n(1/2)+ε) − (
n − n(1/2)+ε)1/2+1/2ε ≤ n.(4.6)

Because S· ↑, it follows from (4.5)–(4.6) that

S
(
n − n(1/2)+ε) ≤ Sn ≤ S

(
n + n(1/2)+ε) wvhp,

and hence, wvhp

|S(n) − Sn| ≤ max
{
S(n) − S

(
n − n(1/2)+ε), S(

n + n(1/2)+ε) − S(n)
}

≤ [
S(n) − S

(
n − n(1/2)+ε)] + [

S
(
n + n(1/2)+ε) − S(n)

]
= S

(
n + n(1/2)+ε) − S

(
n − n(1/2)+ε).

So to complete the proof of Theorem 4.1 by proving (4.3), it is sufficient to show
that

S(n + n(1/2)+ε) − S(n − n(1/2)+ε)

n

Lp−→ 0(4.7)

and
S(n) − Sn

n
1(An)

Lp−→ 0,(4.8)

where An is any event wvlp and 1(An) is its indicator. We prove (a) (4.8) and then
(b) (4.7).

(a) To bound the Lp-norm of the random variable on the left-hand side in (4.8),
we use Hölder’s inequality ‖Z1Z2‖1 ≤ ‖Z1‖q‖Z2‖q ′ with

Z1 =
∣∣∣∣S(n) − Sn

n

∣∣∣∣
p

, Z2 = 1(An)
p = 1(An),

q = p′

p
> 1, q ′ = p′

p′ − p
> 1;
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note that (1/q) + (1/q ′) = 1, as required. Thus∥∥∥∥S(n) − Sn

n
1(An)

∥∥∥∥
p

p

= E
[∣∣∣∣S(n) − Sn

n

∣∣∣∣1(An)

]p

≤
∥∥∥∥S(n) − Sn

n

∥∥∥∥
p

p′
× P(An)

1−(p/p′).

Because An occurs wvlp, it suffices to show that ‖S(n)‖p′ and ‖Sn‖p′ each grow
at most polynomially in n.

The first of these two is very easy to handle. Using the hypothesis (4.1), we
know from Theorem 3.1 that

S(t) − ES(t)

t

Lp′
−→ Y,

and it follows that ‖S(t)−ES(t)‖p′ grows at most linearly in t as t → ∞. But from
the first sentence of Remark 3.2 we see that ES(t) grows at most quadratically in t ,
so by the triangle inequality ‖S(t)‖p′ grows at most quadratically in t .

Now we turn our attention to ‖Sn‖p′ . Just as we observed in the preceding para-
graph that ES(t) grows at most quadratically in t , we observe here that

0 ≤ Sn ≤ ∑
1≤i<j≤n

Cij ,

where Cij is the cost of comparing the ith and j th keys, and hence (with C := C12)

‖Sn‖p′ ≤ ∑
1≤i<j≤n

‖Cij‖p′ =
(

n

2

)
‖C‖p′ .

So, to conclude that ‖Sn‖p′ grows at most quadratically in n, we need only show
that ‖C‖p′ is finite. Indeed, for any t < ∞ we have

∞ > ES(t)p
′ ≥ E

[
S(t)p

′
1
(
N(t) ≥ 2

)]
≥ E

[
Cp′

1
(
N(t) ≥ 2

)] = (ECp′
)P

(
N(t) ≥ 2

)
and P(N(t) ≥ 2) > 0, so ECp′

< ∞.
(b) It remains to establish (4.7). From two applications of Theorem 3.1 it follows

quickly that

S(n + n(1/2)+ε) − ES(n + n(1/2)+ε)

n

Lp−→ Y and

S(n − n(1/2)+ε) − ES(n − n(1/2)+ε)

n

Lp−→ Y ;
thus it suffices to prove

ES(n + n(1/2)+ε) − ES(n − n(1/2)+ε)

n
→ 0.(4.9)
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Recall from the proof of Theorem 3.1 that

ES(t) =
∞∑

k=0

∑
w∈�k

EK(pwt)

and from Lemma 2.6 that we know an explicit formula for EK(t), namely,

EK(t) = 2
∫ t

0
(t − y)(e−y − 1 + y)y−2 dy.

This function and its increasing derivative, call it d(t), are both easily studied. In
particular, d(t) ∼ t as t ↓ 0 and d(t) ∼ 2 ln t as t → ∞. Hence, for any 0 < δ ≤ 1
there exists a finite constant aδ such that

d(t) ≤ aδt
δ for all t ∈ (0,∞).

Then, for any 0 < t < u < ∞, we have

0 < ES(u) − ES(t) =
∞∑

k=0

∑
w∈�k

[EK(pwu) − EK(pwt)]

≤ (u − t)

∞∑
k=0

∑
w∈�k

pwd(pwu) ≤ aδbδ(u − t)uδ

with

bδ :=
∞∑

k=0

∑
w∈�k

p1+δ
w .

Therefore,

ES
(
n + n(1/2)+ε) − ES

(
n − n(1/2)+ε) ≤ 2aδbδn

(1/2)+ε(n + n(1/2)+ε)δ = o(n)

as desired for (4.9), provided 1
2 + ε + δ < 1 and bδ < ∞. Our proof thus far has

been valid for any 0 < ε < 1/3, but we now restrict it to 0 < ε < 1/4 and choose
δ = 1

2 −2ε ∈ (0, 1
2). The proof of Theorem 4.1 will be complete once we see that ε

and δ can be chosen so that bδ is finite.
Fix k and recall that

∑
w∈�k pw = 1. Let V be a random variable with probabil-

ity mass function (pw,w ∈ �k), and let Z := pδ
V . Then

∑
w∈�k

p1+δ
w = EZ = ‖Z‖1 ≤ ‖Z‖1/δ = (EZ1/δ)δ = (EpV )δ =

( ∑
w∈�k

p2
w

)δ

.

We can arrange for δ ≥ 1
p′ by choosing 0 < ε ≤ 1

4 − 1
2p′ , which is possible because

p′ > p ≥ 2. Then

bδ ≤
∞∑

k=0

( ∑
w∈�k

p2
w

)1/p′
< ∞

by assumption (4.1). �



1146 J. A. FILL

Acknowledgment. We thank Svante Janson for excellent suggestions that led
to improvements to Theorem 3.1.

REFERENCES

[1] BINDJEME, P. and FILL, J. A. (2012). The limiting distribution for the number of sym-
bol comparisons used by QuickSort is nondegenerate. Available at http://www.ams.jhu.
edu/~fill/.

[2] CHUNG, K. L. (2001). A Course in Probability Theory, 3rd ed. Academic Press, San Diego,
CA. MR1796326

[3] CLÉMENT, J., FLAJOLET, P. and VALLÉE, B. (2001). Dynamical sources in information the-
ory: A general analysis of trie structures. Algorithmica 29 307–369. MR1887308

[4] FILL, J. A. and JANSON, S. (2000). Smoothness and decay properties of the limiting Quick-
sort density function. In Mathematics and Computer Science (Versailles, 2000) 53–64.
Birkhäuser, Basel. MR1798287

[5] FILL, J. A. and JANSON, S. (2000). A characterization of the set of fixed points of the Quick-
sort transformation. Electron. Commun. Probab. 5 77–84 (electronic). MR1781841

[6] FILL, J. A. and JANSON, S. (2002). Quicksort asymptotics. J. Algorithms 44 4–28.
MR1932675

[7] FILL, J. A. and JANSON, S. (2004). The number of bit comparisons used by Quicksort: An
average-case analysis. In Proceedings of the Fifteenth Annual ACM-SIAM Symposium on
Discrete Algorithms 300–307 (electronic). ACM, New York. MR2291065

[8] FILL, J. A. and JANSON, S. (2012). The number of bit comparisons used by Quicksort: An
average-case analysis. Available at http://www.ams.jhu.edu/~fill/.

[9] FILL, J. A. and NAKAMA, T. (2010). Analysis of the expected number of bit comparisons
required by Quickselect. Algorithmica 58 730–769. MR2672478

[10] FILL, J. A. and NAKAMA, T. (2012). Distributional convergence for the number of symbol
comparisons used by QuickSelect. Available at http://www.ams.jhu.edu/~fill/.

[11] GUT, A. (2005). Probability: A Graduate Course. Springer, New York. MR2125120
[12] HOARE, C. A. R. (1961). Find (algorithm 65). Communications of the ACM 4 321–322.
[13] HOARE, C. A. R. (1962). Quicksort. Comput. J. 5 10–15. MR0142216
[14] KALLENBERG, O. (1997). Foundations of Modern Probability. Springer, New York.

MR1464694
[15] KNESSL, C. and SZPANKOWSKI, W. (1999). Quicksort algorithm again revisited. Discrete

Math. Theor. Comput. Sci. 3 43–64 (electronic). MR1695194
[16] KNUTH, D. E. (1998). The Art of Computer Programming. Volume 3: Sorting and Searching.

Addison-Wesley, Reading, MA.
[17] NAKAMA, T. (2009). Analysis of execution costs for QuickSelect. Ph.D. thesis, Dept. Ap-

plied Mathematics and Statistics, Johns Hopkins Univ. Available at http://www.ams.jhu.
edu/~fill/papers/NakamaDissertation.pdf.

[18] NEININGER, R. and RÜSCHENDORF, L. (2002). Rates of convergence for Quicksort. J. Algo-
rithms 44 51–62. MR1932677

[19] RÉGNIER, M. (1989). A limiting distribution for quicksort. RAIRO Inform. Théor. Appl. 23
335–343. MR1020478

[20] ROSENTHAL, H. P. (1970). On the subspaces of Lp (p > 2) spanned by sequences of inde-
pendent random variables. Israel J. Math. 8 273–303. MR0271721

[21] RÖSLER, U. (1991). A limit theorem for “Quicksort”. RAIRO Inform. Théor. Appl. 25 85–100.
MR1104413

[22] RÖSLER, U. and RÜSCHENDORF, L. (2001). The contraction method for recursive algorithms.
Algorithmica 29 3–33. MR1887296

http://www.ams.jhu.edu/~fill/
http://www.ams.org/mathscinet-getitem?mr=1796326
http://www.ams.org/mathscinet-getitem?mr=1887308
http://www.ams.org/mathscinet-getitem?mr=1798287
http://www.ams.org/mathscinet-getitem?mr=1781841
http://www.ams.org/mathscinet-getitem?mr=1932675
http://www.ams.org/mathscinet-getitem?mr=2291065
http://www.ams.jhu.edu/~fill/
http://www.ams.org/mathscinet-getitem?mr=2672478
http://www.ams.jhu.edu/~fill/
http://www.ams.org/mathscinet-getitem?mr=2125120
http://www.ams.org/mathscinet-getitem?mr=0142216
http://www.ams.org/mathscinet-getitem?mr=1464694
http://www.ams.org/mathscinet-getitem?mr=1695194
http://www.ams.jhu.edu/~fill/papers/NakamaDissertation.pdf
http://www.ams.org/mathscinet-getitem?mr=1932677
http://www.ams.org/mathscinet-getitem?mr=1020478
http://www.ams.org/mathscinet-getitem?mr=0271721
http://www.ams.org/mathscinet-getitem?mr=1104413
http://www.ams.org/mathscinet-getitem?mr=1887296
http://www.ams.jhu.edu/~fill/
http://www.ams.jhu.edu/~fill/papers/NakamaDissertation.pdf


DISTRIBUTIONAL CONVERGENCE FOR QUICKSORT SYMBOLS 1147

[23] VALLÉE, B., CLÉMENT, J., FILL, J. A. and FLAJOLET, P. (2009). The number of symbol
comparisons in QuickSort and QuickSelect. In Automata, Languages and Programming.
Part I (S. Albers, A. Marchetti-Spaccamela, Y. Matias, S. Nikoletseas and W. Thomas,
eds.). Lecture Notes in Computer Science 5555 750–763. Springer, Berlin. MR2544890

DEPARTMENT OF APPLIED MATHEMATICS AND STATISTICS

JOHNS HOPKINS UNIVERSITY

34TH AND CHARLES STREETS

BALTIMORE, MARYLAND 21218-2682
USA
E-MAIL: jimfill@jhu.edu

http://www.ams.org/mathscinet-getitem?mr=2544890
mailto:jimfill@jhu.edu

	Introduction, review of related literature and summary
	Introduction
	Review of closely related literature (QuickSort and QuickSelect)
	Summary

	Background and preliminaries
	Probabilistic source models for the keys
	Known results for the numbers of key comparisons for QuickSort
	Basic probability tools

	Main results (in continuous time): Convergence in Lp (and therefore in distribution)
	Discrete time
	Acknowledgment
	References
	Author's Addresses

