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LARGE DEVIATIONS FOR THE DEGREE STRUCTURE IN
PREFERENTIAL ATTACHMENT SCHEMES1
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Syracuse University and University of Arizona

Preferential attachment schemes, where the selection mechanism is lin-
ear and possibly time-dependent, are considered, and an infinite-dimensional
large deviation principle for the sample path evolution of the empirical de-
gree distribution is found by Dupuis–Ellis-type methods. Interestingly, the
rate function, which can be evaluated, contains a term which accounts for the
cost of assigning a fraction of the total degree to an “infinite” degree compo-
nent, that is, when an atypical “condensation” effect occurs with respect to
the degree structure.

As a consequence of the large deviation results, a sample path a.s. law of
large numbers for the degree distribution is deduced in terms of a coupled
system of ODEs from which power law bounds for the limiting degree dis-
tribution are given. However, by analyzing the rate function, one can see that
the process can deviate to a variety of atypical nonpower law distributions
with finite cost, including distributions typically associated with sub and su-
perlinear selection models.

1. Introduction and results. Preferential attachment processes are graph net-
works which evolve in time by linking at each time step a new node to a vertex
in the existing graph with probability based on a selection function of the vertex’s
connectivity. Such schemes have a long history in various guises going back to
[50] and [51]; cf. surveys [40, 49]. More recently, Barabási and Albert (BA) in [4]
proposed that versions of these processes, where the selection function is an in-
creasing function of the connectivity, may serve as models for growing real-world
networks such as the world wide internet web, and types of social structures.

For instance, in a “friend network,” a newcomer may have a predilection to link
or become friends with an individual with high connectivity, or in other words,
one who already has many friends. An important property of such reinforcing net-
works is that when the selection function is in a linear form, asymptotically as time
grows, the proportions of nodes with degrees 1,2, . . . , k, . . . converge to a power-
law distribution 〈q(k) :k ≥ 1〉 where 0 < limk↑∞ q(k)kθ < ∞ for some θ > 0. We
will say that a network with such a law of large numbers (LLN) property is “scale
free.” Since it has been observed that the sampled empirical degree structure in
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many real-world networks has a “scale-free” form, such preferential attachment
processes have become quite popular in several ways; see [1, 3, 5, 12, 14, 16, 17,
26, 30, 40, 43–45] and references therein.

To illustrate more clearly the possible phenomena, consider the following basic
example.

EXAMPLE 1.1. Initially, at time n = 1, the network G1 is composed of two
vertices with a single (undirected) edge between them. At time n = 2, a new ver-
tex is attached to one of the two vertices in G1 with probability proportional to a
function of its degree to form the new network G2. This scheme continues: more
precisely, at time n+1, a new node is linked to vertex x ∈ Gn with probability pro-
portional to w(dx(n)), that is, chance w(dx(n))/

∑
y∈Gn

w(dy(n)), where dz(n) is
the degree at time n of vertex z, and w = w(d) : N → R+ is the selection function.

In this way, since the initial graph is a tree, all later networks Gn for n ≥ 1
are also trees. Let now Zk(n) be the number of vertices in Gn with k links,
Zk(n) = ∑

y∈Gn
1(dy(n) = k). We now describe a trichotomy of growth behav-

iors corresponding to the strength and type of the selection function w [36].
First, when w is linear, say w(d) = d + α for α > −1, the system is “scale-

free.” As is well understood in the literature (cf. [30], Chapter 4), the mean values
〈Mk(n) = E[Zk(n)] :k ≥ 1〉 satisfy rate equations in the time index n ≥ 1 which
can be solved to show limn↑∞ Mk(n)/n = q(k) for k ≥ 1 where q is in power-law
form with θ = 3 + α.

Later, in [10], when α = 0, a concentration inequality was used to show con-
vergence in probability, limn↑∞ Zk(n)/n = q(k) for k ≥ 1. We will call the α = 0
model the “classical BA process” as it was the model originally analyzed in [4].
Also, for all α > −1, Pólya urn/martingale ideas, and embeddings into branch-
ing processes have given alternative proofs which yield a.s. convergence; see
[2, 41, 48].

However, in the sublinear case, when w(d) = dr for 0 < r < 1, although it was
shown that a.s. limn↑∞ Zk(n)/n = q(k), this LLN limit q is not a power law, but
in stretched exponential form [36, 48]: for k ≥ 1,

q(k) = μ

kr

k∏
j=1

(
1 + μ

jr

)−1

and

(1.1)

μ is determined by 1 =
∞∑

k=1

k∏
j=1

(
1 + μ

jr

)−1

.

Asymptotically, logq(k) ∼ −(μ/(1 − r))k1−r as k ↑ ∞. On the other hand, when
r = 0, the case of uniform attachment when an old vertex is selected uniformly,
an a.s. LLN can also be similarly obtained where q is geometric. q(k) = 2−k for
k ≥ 1.



724 J. CHOI AND S. SETHURAMAN

In the superlinear case, when w(d) = dr for r > 1, “explosion” or a sort of
“condensation effect”’ happens in that in the limiting graph a random single vertex
dominates in accumulating connections. In particular, the limiting graph is a tree
where there is a single random vertex with an infinite number of children; all other
vertices have bounded degree, and of these only a finite number have degree strictly
larger than r/(r −1); cf., for a more precise description, [36, 46]. Moreover, a LLN
limit, limn↑∞ EZk(n)/n = q(k), is argued where q is degenerate in that q(1) = 1
but q(k) = 0 for k ≥ 2; cf. [36] and [30], Chapter 4. Such a limit implies, in the
superlinear selection process, that most of the nodes at step n are leaves.

Since the work of Barabási and Albert [4], much effort has been devoted to
understand the degree and other structures in generalized versions of these graphs.
A partial selection of this large literature includes: more on degree structure [23,
24, 31, 32, 34, 37, 38]; growth and location of the maximum degree [2, 21, 42];
spectral gap and cover time of a random walk on the graph [19, 39]; width and
diameter [9, 22, 35]; graph limits [6, 8, 11, 47].

Connection between urns and degree structure. If, however, one focuses only
on the degree structure of the growing network, then it may be helpful to view the
degree distribution evolution in terms of “balls-in-bins” or “Pólya urn” models.
For instance, in the previous example, every new connection that a vertex gains
can be represented by a new ball added to a corresponding urn in a collection of
urns. More precisely, at time n = 1, there are two urns, each possessing one ball,
in the initial collection U(0). At time j + 1, a new urn with one ball is included
in the collection, and also one ball is added to an existing urn x ∈ U(j) with
probability proportional to w(bx) where bx is the number of balls in urn x. Then,
Zk(n) translates to the number of urns in U(n) with k balls for k ≥ 1.

A comprehensive form of such an urn model was formulated by Chung, Hand-
jani and Jungreis (CHJ) in [15], motivated by the work in [27] and [36] on the
organization of web tree-graph models. See also [7] and [42] for other work con-
necting urns to degree structure.

The CHJ model is as follows. Given an initial finite collection of urns each
containing one ball, at subsequent times, with probability p, a new urn with one
ball is created and added to the collection or, with probability 1 − p, a new ball is
put in one of the existing urns x with probability proportional to (bx)

r where bx is
the number of balls in x. It was proved in [15], among other results, when r = 1
and p > 0, analogous to linear selection preferential attachment graphs, that the
empirical urn size distribution converges to a power law with θ = 1 + (1 − p)−1.

In this context, our purpose is to study a generalized preferential attachment pro-
cess of urns, where at each time step a new urn is created and a new ball is added to
it or an existing urn according to a time dependent linear selection function, which
includes the evolving degree structure of linear selection preferential attachment
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model discussed above, and also a version of the r = 1 CHJ urn model [15]. We
defer to Section 1.1 the exact description of our scheme.

As mentioned in [28], understanding preferential attachment or urn systems,
where the selection function depends on time, allows for more realistic models
given real world networks are time-dependent. However, it appears most of the
work on time-dependent schemes consists of rate equation formulations ([25], Sec-
tion E), [36] and related work, in models where at each step a random number of
links or balls may be added to the structure [2, 18].

Given this background, detailing the large deviation behavior of the degree dis-
tribution in time-dependent preferential attachment schemes is a natural problem
which gives much understanding of typical and, in particular, atypical evolutions.
We remark, even in the usual time-homogeneous models, large deviations of the
degree structure is an open question.

Previous large deviation work in preferential attachment models has focused
on one-dimensional objects, for instance, the number of leaves [13], or the degree
growth of a single vertex with respect to dynamics where any vertex may attach
to a newly added vertex with a small chance [21]. See references cited in [13] for
large deviations work with respect to other types of random trees and balls-in-bins
models.

Our main work in this article includes an infinite-dimensional sample path large
deviation principle (LDP) for an array of empirical urn ball size distributions
{〈Zn

k (j)/n :k ≥ 0〉 : 0 ≤ j ≤ n}n≥1, when the initial configuration, not necessarily
fixed, satisfies a limit condition (Theorem 1.4). Here, Zn

k (j) stands for the count
of urns with k balls at time j in the nth row of the array. Part of these results is a
finite-dimensional LDP with respect to the numbers of urns with less than d balls
for d < ∞ (Theorem 1.2).

As an application of the large deviations results, we obtain an a.s. sample path
LLN for the urn counts in terms of a system of coupled ODEs (Corollary 1.7),
which, for homogeneous schemes complements fixed time LLNs mentioned ear-
lier, and gives a different way to derive them aside from the rate equation method
mentioned in Example 1.1. Finally, the LLN limit trajectories are shown to have
power law-type behavior in terms of bounds (Corollary 1.9), although the general
behavior can interpolate between these bounds; see Figure 1.

Interestingly, the infinite-dimensional rate function I∞ can be calculated on
scaled urn ball size path distributions ξ = {〈ξk(t) :k ≥ 0〉 : 0 ≤ t ≤ 1}. Here, since
in our model, exactly one ball is added to the urn collection at each microscopic
time, ξk(t)/(t + c) is the fraction of urns with size k at macroscopic time t ≥ 0
where c = ∑

k≥0 ξk(0) is the initial mass, that is the scaled initial number of urns.
It is natural then to ask which trajectories ξ have finite cost, I∞(ξ) < ∞.

It turns out “no mass can be lost,” that is, all finite cost paths ξ are such that the
proportions {ξk(t)/(t + c)}k≥0 form a probability distribution,

∑
k≥0 ξk(t)/(t +

c) ≡ 1. Also, a variety of nonpower law distributions can be achieved with finite
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rate at any time 0 < t ≤ 1, including geometric and stretched exponential distribu-
tions discussed in Example 1.1.

Intriguingly, on the other hand, “some of the weight may be lost” in certain
finite rate trajectories, that is, the scaled mean urn ball size of the system may
satisfy a “weight loss” property at a time 0 < t ≤ 1,

∑
k≥0 kξk(t)/(t + c̃) < 1,

where c̃ = ∑
k≥0 kξk(0) is the scaled initial total urn ball size, even though the pre-

limit quantity equals 1 at all steps in the urn growth scheme. We dub a trajectory
ξ with this “weight loss” property at some time 0 < t ≤ 1 as being “condensed.”
For instance, a “condensed” path arises when c = c̃ = 0 and a finite number of
the urns take in eventually all the balls. In this case, almost all the urns created are
empty, and the associated path satisfies ξ0(t) = t for 0 ≤ t ≤ 1, ξk(t) ≡ 0 for k ≥ 1,
and

∑
k kξk(t) ≡ 0. It turns out this path, associated with superlinear selection

preferential attachment models (cf. Example 1.1), has finite cost.
Moreover, the rate function I∞ contains a term which measures the cost of

“condensation” when some of the flow of urn ball size in the scaling limit escapes
toward urns with “infinite” size. In addition, we point out, at any time 0 ≤ t ≤ 1,
LLN distributions arising from either sublinear or superlinear selection preferen-
tial attachment models may be achieved with finite cost. One might interpret that
although the linear selection process is typically “scale-free,” since it is between,
in a sense, sublinear and superlinear selection models, its atypical degree distribu-
tion structure may include the typical behavior of its sub and superlinear relatives.
See Remark 1.5 and Example 1.6 for more details and discussion.

We also remark that the large deviations and other work are, with respect to
the process, starting from either “small” or “large” initial configurations, that is,
when the initial urn collection has o(n) balls (e.g., finite), or when the size of the
collection is on order n, respectively. It appears these initial configurations, which
enter into all result statements, have not been considered before, in general.

The main idea for the results is to extend a variational control problem/weak
convergence approach of Dupuis and Ellis (cf. [29]) to establish finite-dimensional
LDPs in the time-dependent setting. Then, a projective limit approach, and some
analysis to identify the rate function, is used to obtain the infinite-dimensional
LDP. For the LLN and power-law corollaries, a coupled system of ODEs, which
governs the typical degree distribution evolution, is identified, and analyzed.

To be concrete, we have focused upon models where the network is incremented
by one urn and one ball each time, which include basic models. However, the meth-
ods here should be of use to analyze the large deviations of the degree structure
in other combinatorial models with different increment structure: for instance, the
evolving graph model discussed in [16], Chapter 3, where at each time with prob-
ability p a new vertex is preferentially attached to an old one, and with probability
1 − p, an edge is added between two old nodes selected preferentially, and the
BA graphs where, instead of only one vertex, m ≥ 2 vertices are introduced and
preferentially connected at each time; cf. [30], Chapter 4.
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1.1. Model. Let p(t) : [0,1] → [0,1] and β(t) : [0,1] → [0,∞) be given
functions. We define an urn configuration U as a finite collection of urns, each
urn x ∈ U containing a nonnegative number of balls bx . We now specify an evolv-
ing array {Un(j) : 0 ≤ j ≤ n}n≥1 of urn configurations by the following time-
dependent iterative scheme. In the nth row of the array:

• Start at step 0, with a given initial urn configuration Un(0).
• At step j + 1 ≤ n, to form a new urn configuration Un(j + 1), we first create

and include a new urn with no ball. Then:
– with probability p(j/n), we place a new ball in this urn;
– with probability 1 − p(j/n), we place a new ball in one of the other urns

x ∈ Un(j) with probability

bx + β(j/n)∑
y∈Un(j)(by + β(j/n))

.

We will call, for urn x ∈ Un(j), the term bx +β(j/n) as the “weight” of the urn at
time j in the nth row of the process. Let now |Un(j)| and Bn(j) = ∑

x∈Un(j) bx be
the total number of urns and balls in Un(j), respectively. Then, the number of urns
|Un(j)| = |Un(0)|+ j and the total number of balls Bn(j) = Bn(0)+ j . Also, the
total weight of the configuration at time j is

sn(j) := ∑
y∈Un(j)

(
by + β(j/n)

) = (
1 + β(j/n)

)
j + Bn(0) + β(j/n)|Un(0)|.

The above urn scheme, as discussed in the Introduction, may be viewed in terms
of the evolving degree structure in a preferential attachment random graph process
with time-dependent selection function w(d; j, n) = d + β(j/n). Here, the step
of including a new empty urn and incrementing the number of balls in an old
urn corresponds to an edge being placed between a new node, with degree 1, and
an old vertex in the existing graph whose degree is consequently incremented. In
particular, when p and β are in particular forms, we recover the following models:

(1) “Classical” BA process. When p(t) ≡ 0 and β(t) ≡ 1, the scheme is
time-homogeneous. When the initial urn configuration consists of two empty
urns, the probability of selecting an urn x with k ≥ 0 balls at time j ≥ 0 is
(k + 1)/(2(j + 1)), which matches the selection process in the evolution of the
degree structure in the BA preferential attachment graph scheme at times j +1 ≥ 1
with selection function w(d) = d , as discussed in Example 1.1, where urns with
k ≥ 0 balls correspond to vertices with degree d = k + 1 ≥ 1.

(2) “Offset” BA processes. When p(t) ≡ 0 and β(t) ≡ β ≥ 0, again the scheme
is time-homogeneous, and urns with k ≥ 0 balls correspond to vertices with degree
k +1 ≥ 1. However, now the weight of an urn with k balls is k +β , in a sense “off-
set” from the classical BA scheme. Correspondingly, the urn selection scheme is
the same as the growth process of the degree structure in the preferential attach-
ment model with selection function w(d) = d + α with α = β − 1 as specified in
Example 1.1.
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(3) CHJ model of Pólya urns. When p(t) ≡ p and β(t) ≡ β ≥ 0, the evolution
of the number of urns of size k ≥ 0 corresponds to a version of the r = 1 CHJ
model discussed in the Introduction. However, we note, in our model, an empty
urn is added at each step with probability 1 − p, and these empty urns are kept
track of in our scheme. When β = 0, the dynamics of urns of size k ≥ 1 is the
r = 1 CHJ model since the empty urns have no weight, and once created, they
cannot be selected to fill in later steps, and do not influence the structure of urns
with k ≥ 1 balls.

For n ≥ 1, let Zn
i (j) be the number of urns in the nth row of the urn array

process with i ≥ 0 balls at time 0 ≤ j ≤ n and, for d ≥ 0, let Z̄n
d+1(j) denote the

number of urns with more than d balls at time 0 ≤ j ≤ n. These quantities satisfy

d∑
i=0

Zn
i (j) + Z̄n

d+1(j) = |Un(0)| + j,

d∑
i=0

iZn
i (j) + (d + 1)Z̄n

d+1(j) ≤ Bn(0) + j.

Define now vectors in R
d+2,

fd0 := 〈0,1,0, . . . ,0〉, fdi := 〈1,0, . . . ,0,−1,1,0, . . . ,0〉
where −1 is at the (i + 1)th position for 1 ≤ i ≤ d,

fdd+1 := 〈1,0, . . . ,0〉.
For y = 〈y0, . . . , yd, yd+1〉 ∈ R

d+2 and 0 ≤ i ≤ d + 1, denote

[y]i :=
i∑

l=0

yl.

Note that

0 ≤ [fd ]i ≤ 1 for 0 ≤ i ≤ d,
(1.2)

[fd ]d+1 = 1 and 0 ≤
d+1∑
i=0

(1 − [fd ]i ) ≤ 1.

Consider now the “truncated” degree distribution

{Zn,d(j) := 〈Zn
0 (j), . . . ,Zn

d(j), Z̄n
d+1(j)〉|0 ≤ j ≤ n},

where Z̄n
d+1(j) = ∑

k≥d+1 Zn
k (j) = j + |Un(0)| − ∑d

k=0 Zn
k (j), which forms a

discrete time Markov chain with initial state Zn,d(0) corresponding to the initial
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urn configuration Un(0) and one-step transition property,

Zn,d(j + 1) − Zn,d(j)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fd0 , with prob. p(j/n) + (
1 − p(j/n)

)β(j/n)Zn
0 (j)

sn(j)

for i = 0,

fdi , with prob.
(
1 − p(j/n)

)(i + β(j/n))Zn
i (j)

sn(j)

for 1 ≤ i ≤ d,

fdd+1, with prob.
(
1 − p(j/n)

)(
1 −

∑d
i=0(i + β(j/n))Zn

i (j)

sn(j)

)
.

We also define the “full” degree distribution

{Zn,∞(j) := 〈Zn
0 (j), . . . ,Zn

d(j), . . .〉|0 ≤ j ≤ n},
which is also a Markov chain on R

∞ with increments

Zn,∞(j + 1) − Zn,∞(j)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

f∞0 , with prob. p(j/n) + (
1 − p(j/n)

)β(j/n)Zn
0 (j)

sn(j)

for i = 0,

f∞i , with prob.
(
1 − p(j/n)

)(i + β(j/n))Zn
i (j)

sn(j)

for i ≥ 1,

where f ∞
0 = 〈0,1,0, . . . ,0, . . .〉 and f ∞

i = 〈1,0, . . . ,0,−1,1,0, . . . ,0, . . .〉 with
the “−1” being in the (i + 1)th place.

We will assume throughout the following initial condition, which ensures a LLN
at time t = 0. With respect to constants cn

i , cn, c̃n ≥ 0, for i ≥ 0, define

cn
i := 1

n
Zn

i (0), cn := ∑
i≥0

cn
i

and

c̃n := ∑
i≥0

icn
i .

(LIM) For constants ci, c, c̃ ≥ 0, we have

ci := lim
n↑∞ cn

i and c̃ := lim
n↑∞ c̃n = ∑

i≥0

ici < ∞.

Consequently, c := limn↑∞ cn = ∑
i≥0 ci < ∞.
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In the previous sentence, the cn limit follows from the uniform bound,
∑

i≥A cn
i ≤

A−1 ∑
i≥0 icn

i → c̃/A. Define also

c̄d := ∑
i≥d+1

ci and cd := 〈c0, . . . , cd, c̄d〉.

We remark one can classify the initial configurations depending on when ci ≡ 0
or when ci > 0 for some i ≥ 0.

• (Small configuration) ci ≡ 0 for any i ≥ 0. Here, the initial urn configurations
are small in that their size is o(n). This is the case when the initial configurations
do not depend on n, for instance.

• (Large configuration) ci > 0 for some i ≥ 0. Here, the initial state is already a
partly-developed configuration whose size is of order n.

We also note, when the initial urn configurations correspond to initial tree con-
figurations in the corresponding preferential attachment process, some restrictions
in the values of ci arise. One may verify that a graph with n vertices with degrees
d1, . . . , dn is a tree exactly when

∑n
i=1 di = 2(n − 1). Hence, since in the initial

graph of the nth row, the number of vertices equals n
∑

k≥0 cn
k , and the sum of de-

grees equals n
∑

k≥0(k+1)cn
k (recall the correspondence between urn sizes and de-

grees discussed in the Introduction), we have n
∑

k≥0(k+1)cn
k = 2(n

∑
k≥0 cn

k −1).
By (LIM), we have then c̃ = c.

In addition, we note (LIM) specifies an initial limiting degree distribution which
has full “weight” or in other words is not “condensed,” that is, c̃ = limn↑∞ c̃n =∑

i≥0 ici . See Remark 1.8, however, for comments when the initial distribution is
“condensed,” that is, c̃ >

∑
i≥0 ici .

Our results will be on the family of processes Xn,d = {Xn,d(t) : 0 ≤ t ≤ 1} and
Xn,∞ = {Xn,∞(t) : 0 ≤ t ≤ 1} obtained by linear interpolation of the discrete-time
Markov chains 1

n
Zn,d(j) and 1

n
Zn,∞(j), respectively. For 0 ≤ t ≤ 1, let

Xn,d(t) := 1

n
Zn,d(�nt
) + nt − �nt


n

(
Zn,d(�nt
 + 1) − Zn,d(�nt
)),

Xn,∞(t) := 1

n
Zn,∞(�nt
) + nt − �nt


n

(
Zn,∞(�nt
 + 1) − Zn,∞(�nt
)).

The trajectories Xn,d lie in C([0,1];R
d+2), and are Lipschitz with constant at

most 1, satisfying Xn,d(0) = 1
n

Zn,d(0). On the other hand, the infinite distri-
bution Xn,∞ ∈ ∏∞

i=0 C([0,1];R), considered with the product topology, where
Xn,∞(0) = 1

n
Zn,∞(0). In both cases, although Xn,d(t) and Xn,∞(t) are not nec-

essarily probabilities because it is possible that we do not normalize by the total
mass; they are, however, finite distributions.

We now specify the assumptions on p(t) and β(t) used for the main results.

(ND) p and β are piecewise continuous and, for constants p0, β0 and β1,

0 ≤ p(·) ≤ p0 < 1 and 0 < β0 ≤ β(·) < β1 < ∞.
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We discuss (ND) more in the remark after Theorem 1.2.
We note, throughout the article, that we use conventions

0 log 0 = 0/0 = 0 · ±∞ = 1/∞ = 0,

±1/0 = ±∞ and(1.3)

E[X;A] =
∫

A

X dP.

1.2. Results. We now recall the statement of a large deviation principle (LDP).
A sequence {Xn} of random variables taking values in a complete separable metric
space V satisfies the LDP with rate n and good rate function J : V → [0,∞] if for
each M < ∞, the level set {x ∈ V|J (x) ≤ M} is a compact subset of V , that is,
J has compact level sets, and if the following two conditions hold:

(i) Large deviation upper bound. For each closed subset F of V ,

lim sup
n→∞

1

n
logP {Xn ∈ F } ≤ − inf

x∈F
J (x).

(ii) Large deviation lower bound. For each open subset G of V ,

lim inf
n→∞

1

n
logP {Xn ∈ G} ≥ − inf

x∈G
J(x).

For d ≥ 0, we now state the LDP for {Xn,d(t)|0 ≤ t ≤ 1}. Define the function
Id :C([0,1];R

d+2) → [0,∞] given by

Id(ϕ) =
∫ 1

0

(
1 − [ϕ̇(t)]0

)
log

1 − [ϕ̇(t)]0

p(t) + (1 − p(t))
β(t)ϕ0(t)

(1+β(t))t+c̃+cβ(t)

+
d∑

i=1

(
1 − [ϕ̇(t)]i) log

1 − [ϕ̇(t)]i
(1 − p(t))

(i+β(t))ϕi(t)
(1+β(t))t+c̃+cβ(t)

+
(

1 −
d∑

i=0

(
1 − [ϕ̇(t)]i)

)
log

1 − ∑d
i=0(1 − [ϕ̇(t)]i )

(1 − p(t))(1 −
∑d

i=0(i+β(t))ϕi(t)

(1+β(t))t+c̃+cβ(t)
)

dt,

where ϕ(0) = cd , ϕi ≥ 0 is Lipschitz with constant 1 such that 0 ≤ [ϕ̇(t)]i ≤ 1 for
0 ≤ i ≤ d ,

∑d+1
i=0 ϕ̇i(t) = 1,

∑d
i=0(1 − [ϕ̇(t)]i ) = ∑d+1

i=0 iϕ̇i(t) ≤ 1 for almost all t ,
and the integral converges; otherwise, Id(ϕ) = ∞. It will turn out that Id is convex
and is a good rate function.

To explain the last condition in the definition of Id , note that ϕd+1(t) represents
the fraction of urns with size at least d + 1, so that (d + 1)ϕd+1(t) is the trun-
cated fraction of balls in these urns. Since the process increments by one ball at
each step, it makes sense to specify

∑d
i=0(1 − [ϕ̇(t)]i ) = ∑d+1

i=0 iϕ̇i(t) ≤ 1 or that∑d+1
i=0 iϕi(t) ≤ t + c̃ if Id(ϕ) < ∞.
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The rate function can be understood as follows: in order for Xn,d to deviate to
ϕ, at time t , the process should behave as if the increment probabilities vi of fdi
are such that the mean

∑d
i=0 vifdi + vd+1fdd+1 = ϕ̇. In the proof of Theorem 1.2,

we show vi = 1 − [ϕ̇]i for 0 ≤ i ≤ d and vd+1 = 1 − ∑d
j=0(1 − [ϕ̇]j ). But, the

natural evolution increment probabilities ui , given the process is in state ϕ(t),
are u0 = p(t) + (1 − p(t))

β(t)ϕ0(t)
(1+β(t))t+c̃+cβ(t)

, ui = (1 − p(t))
(i+β(t))ϕi(t)

(1+β(t))t+c̃+cβ(t)
for

1 ≤ i ≤ d and ud+1 = (1 − p(t))(1 −
∑d

i=0(i+β(t))ϕi(t)

(1+β(t))t+c̃+cβ(t)
). Then Id is time integral

of the relative entropies of these two increment probability measures.
Recall, for probability measures μ and ν, that the relative entropy of μ with

respect to ν is defined as

R(μ‖ν) :=
⎧⎨
⎩

∫
log

(
dμ

dν

)
dμ, if μ � ν,

∞, otherwise.

THEOREM 1.2 (Finite-dimensional LDP). The C([0,1];R
d+2)-valued se-

quence {Xn,d} satisfies an LDP with rate n and convex, good rate function Id .

REMARK 1.3. We now make comments on the underlying assumption (ND)
and obtain the rate function at the fixed time t = 1.

(A) The assumption (ND) specifies that the process considered is “nondegen-
erate” in some sense. (ND) does not cover some “boundary” cases, for instance,
when p(t) ≡ 1, the process is deterministic in that at each time, one places a new
ball in a new urn. Also, when β(t) ≡ 0, urns without a ball have no weight; and, if
in addition p(t) ≡ 0, then all new balls are placed into urns in the initial configura-
tion. Although an LDP should hold in these and other “less degenerate” cases, the
form of the rate function may differ in that some increments may not be possible.

On the other hand, assumption (ND) is natural with respect to the convergence
estimates needed for the proof of the lower bound in the LDP. However, we point
out the LDP upper bound holds without any of the boundedness assumptions on
p(·) and β(·) in (ND).

Formally, when β(t) ≡ ∞, this is the case of “uniform,” as opposed to prefer-
ential, selection of urns. The limit limβ↑∞ Id corresponds to the rate function for
this type of dynamic.

(B) One recovers the LDP at a fixed time, say t = 1, by the contraction princi-
ple with respect to continuous function F :C([0,1];R

d+2) → R
d+2 defined by

F(ϕ) = ϕ(1), so that F(Xn,d) = Xn,d(1) = 1
n

Zn,d(n). Then Theorem 1.2 im-
plies the LDP for 1

n
Zn,d(n) with rate function given by the variational expression

K(x) = inf{Id(ϕ)|ϕ(0) = cd, ϕ(1) = x} which might be evaluated numerically; cf.
[13] for calculations when d = 0.
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We now extend the finite-dimensional LDP results to the infinite-dimensional
case (d = ∞). Define for ξ ∈ ∏∞

i=0 C([0,1];R) the function

I∞(ξ) =
∫ 1

0
lim

d→∞

[(
1 − [ξ̇ (t)]0

)
log

1 − [ξ̇ (t)]0

p(t) + (1 − p(t))
β(t)ξ0(t)

(1+β(t))t+c̃+cβ(t)

+
d∑

i=1

(
1 − [ξ̇ (t)]i) log

1 − [ξ̇ (t)]i
(1 − p(t))

(i+β(t))ξi(t)
(1+β(t))t+c̃+cβ(t)

+
(

1 −
d∑

i=0

(
1 − [ξ̇ (t)]i)

)
log

1 − ∑d
i=0(1 − [ξ̇ (t)]i )

(1 − p(t))(1 −
∑d

i=0(i+β(t))ξi(t)

(1+β(t))t+c̃+cβ(t)
)

]
dt

where ξi(0) = ci , ξi(t) ≥ 0 is Lipschitz with constant 1, 0 ≤ [ξ̇ (t)]i ≤ 1 for
i ≥ 0, d

dt

∑∞
i=0 ξi(t) = 1 and limd [∑d

i=0 iξ̇i(t)+ (d +1)(1−[ξ̇ (t)]d)] = ∑∞
i=0(1−

[ξ̇ (t)]i ) ≤ 1 for almost all t , and the integral converges; otherwise I∞(ξ) = ∞. It
will turn out through a projective limit approach (cf. [20], Section 4.6) that I∞ is
well defined, convex and a good rate function, and that the integrand limit exists
because the term in square brackets is increasing in d .

THEOREM 1.4 (Infinite-dimensional LDP). The
∏∞

i=0 C([0,1];R)-valued se-
quence {Xn,∞} satisfies an LDP with rate n and convex, good rate function I∞.

REMARK 1.5. From the result, degree distributions, not fully supported on
the nonnegative integers, that is, when

∑
i≥0 ϕi(t) < t + c or, in other words,

when the distribution specifies a positive fraction of urns with an infinite num-
ber of balls, cannot be achieved with finite cost in the evolution process. This
stabilization of the “mass” is understood as follows. The fraction of urns with
size larger than A at time �nt
 is bounded in terms of the fraction of balls in
the system:

∑
k≥A Zn

k (�nt
)/n ≤ A−1 ∑
k≥0 kZn

k (�nt
)/n ≤ A−1(�nt
/n + c̃n) ≤
A−1(1 + 2c̃) for all large n. Hence, for all realizations of the process, the fraction
of infinite sized urns vanishes.

On the other hand, it seems some fraction of the total “weight” can indeed be
lost in the evolution process with finite rate, that is, it may be possible to achieve a
degree distribution at a time 0 < t ≤ 1 such that

∑d
i=0 iξi(t) < t + c̃ although pre-

limit
∑∞

i=0 iZn
i (�nt
)/n = �nt
/n + c̃n. The interpretation is that it is possible

to put a positive fraction of the balls into a few very large urns with finite cost,
a sort of “condensation” effect noticed in the limiting evolution when the selection
function is superlinear as mentioned in Example 1.1.

The last term in the integrand of the rate function, corresponding to the incre-
ment fdd+1, measures the cost of choosing urns with very large size. In the d ↑ ∞
limit, this last term may be viewed as the cost of “escape” of weight from urns
with bounded size, or, in other words, the cost of the increment “〈1,0, . . . ,0, . . .〉”
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which corresponds to a new empty urn being included and very large sized urns
being incremented. Some “condensed” finite rate evolutions are discussed in Ex-
ample 1.6.

However, on the other hand, this type of “weight” loss or “condensation” cannot
happen in the typical evolution—see Corollary 1.7.

EXAMPLE 1.6. Consider the “classical” BA model which follows the evolu-
tion of a random graph with preferential attachment selection function w(d) = d ,
noted in Example 1.1 and Section 1.1, which corresponds to the urn system when
β(t) ≡ 1 and p(t) ≡ 0. Suppose that the initial configurations satisfy ci = 0 for all
i ≥ 0.

We now compute the cost of distributions in form ξ(t) = tγ where γ = 〈γi : i ≥
0〉 where constants γi ≥ 0 are such that∑

i≥0

γi = 1 and
∑
i≥0

iγi = ∑
i≥0

(1 − [γ ]i ) ≤ 1.

Since, ξ(t) is linear in t , calculation of the rate I∞(ξ) simplifies considerably,
and one evaluates the limit of the last term in the integrand of I∞(ξ) as the time-
independent quantity,

lim
d↑∞

(
1 −

d∑
i=0

(
1 − [ξ̇ (t)]i)

)
log

1 − ∑d
i=0(1 − [ξ̇ (t)]i )

1 − (
∑d

i=0(i + 1)ξi(t))/(2t)

=
(

1 − ∑
i≥0

iγi

)
log 2,

which gives the cost of the “increment 〈1,0, . . . ,0, . . .〉” when the dynamics at-
taches new vertices to very large hubs or places balls into already very large urns.

This cost is positive if
∑

i≥0 iγi < 1, and, as discussed in the remark above,
corresponds to the cost of forming urns/nodes with very large size/degree in the
evolution process, a “condensation” effect. It follows then

I∞(ξ) = ∑
i≥0

(1 − [γ ]i ) log
1 − [γ ]i

(i + 1)γi/2
+

(
1 − ∑

i≥0

iγi

)
log 2.(1.4)

In the case γ0 = 1 and γi = 0 for i ≥ 1, one observes I∞(ξ) = log 2, and one
can associate a graph evolution to achieve this degree or size distribution. For
instance, one may grow a “star” tree configuration where all new vertices connect
to the same vertex, or all balls are put in the same urn. If initially, there are only
two vertices with degree 1 or two empty urns, then the “star” configuration at the
nth step has probability 2−n of occurring. As the degree/size structure at time n

consists of n leaves/empty urns and one vertex with degree n or one urn with size
n − 1, one observes the LLN limit for the degree/size sequence is ξ(t) = tγ , from
which the rate evaluation follows.
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As discussed in Example 1.1, this “condensed” configuration is the limit tree
with respect to superlinear selection function w(d) = dr for r > 2. Moreover, as
noted in the Introduction, all preferential attachment evolutions with respect to
superlinear selection function w(d) = dr for r > 1 lead to degree distribution γ ,
that is, EZi (n)/n → γi , where γ0 = 1 and γi = 0 for i ≥ 1.

From formula (1.4), when γ is supported only on a finite number of indices, one
sees that I∞(ξ) < ∞ exactly when there exists i∗ ≥ 0 such that γi > 0 for i ≤ i∗.
In particular, the “straight road” evolution, leading to trees where all nodes have
degree 2, except for two leaves, or urn configurations consisting of single ball urns
except for two empty urns, has infinite cost: start with two vertices with degree 1
or two empty urns. At step j + 1, connect a new vertex to one of the two leaves, or
add an empty urn and place a ball in one of the two empty urns in the configuration
formed at step j . This configuration at time n has probability 1/n! of occurring,
and in the LLN limit corresponds to ξ(t) = tγ , where γ0 = 0, γ1 = 1 and γi = 0
for i ≥ 2, for which I∞(ξ) = ∞.

Even when no weight escapes, that is,
∑

i≥0 iγi = 1, it may be noted that devi-
ations to nonpower law urn size paths ξ are possible with finite rate. For instance,
when γi = 2−(i+1) for i ≥ 0, I∞(ξ) = −∑

i≥0
1

2i+1 log i+1
2 . When γi = q(i + 1)

for i ≥ 0 and q in form of the stretched exponential in (1.1), the LLN limit for
the degree distribution with respect to sublinear selection preferential attachment,
a calculation verifies that

∑
i≥0 iγi = 1 and also I∞(ξ) < ∞.

We now turn to the LLN behavior which corresponds to the “zero-cost” trajec-
tory. Consider the system of ODEs for ϕd = ϕ, with initial condition ϕ(0) = cd :

ϕ̇0(t) = 1 − p(t) − (
1 − p(t)

) β(t)ϕ0(t)

(1 + β(t))t + c̃ + cβ(t)
,

ϕ̇1(t) = p(t) + (
1 − p(t)

) β(t)ϕ0(t)

(1 + β(t))t + c̃ + cβ(t)

− (
1 − p(t)

) (1 + β(t))ϕ1(t)

(1 + β(t))t + c̃ + cβ(t)
,

(1.5)

ϕ̇i(t) = (
1 − p(t)

) (i − 1 + β(t))ϕi−1(t)

(1 + β(t))t + c̃ + cβ(t)

− (
1 − p(t)

) (i + β(t))ϕi(t)

(1 + β(t))t + c̃ + cβ(t)
for 2 ≤ i ≤ d,

ϕ̇d+1(t) = 1 −
d∑

i=0

ϕ̇i(t).

Recall that a “Carathéodory” solution is an absolutely continuous function satisfy-
ing the ODEs a.a. t , and the initial condition, or equivalently a function satisfying
the integral equation associated to the ODEs. One can readily integrate ODEs (1.5),
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and find a Carathéodory solution ζ d(t) = 〈ζ0(t), . . . , ζd(t), ζ̄d+1(t)〉 [see formula
(4.1)], which is unique from the following theorem. One extends to “d = ∞” set-
ting by defining

ζ∞(t) := 〈ζ0(t), . . . , ζd(t), . . .〉.
We now state a LLN for Xn,d and Xn,∞ as a consequence of the LDP upper

bound. As remarked in the Introduction, this LLN may also be obtained by rate
equation formulations as in [36] and [30], Chapter 4.

COROLLARY 1.7 (LLN). For d ≥ 0, ζ d is the unique Carathéodory solution
to ODEs (1.5) with the initial condition ϕ(0) = cd , and also Id(ζ d) = 0. Then, in
the sup topology on C([0,1];R

d+2), Xn,d(·) → ζ d(·) a.s.
As a consequence, we have in the product topology on

∏∞
i=0 C([0,1];R) that

Xn,∞(·) → ζ∞(·). Moreover,
∑∞

i=0 ζi(t) = t + c and
∑∞

i=0 iζi(t) = t + c̃, and
hence no “weight” is lost in the LLN limit.

REMARK 1.8. The last equality,
∑

i≥0 iζi(t) = t + c̃, requires the condition
in (LIM) that the initial scaled degree distribution is not “condensed,” that is,
c̃ = limn↑∞ c̃n = ∑

i≥0 ici . When the initial distribution is “condensed,” that is,
a strict Fatou limit c̃ = limn↑∞ c̃n >

∑
i≥0 ici occurs, the large deviation results

Theorems 1.2, 1.4 and Corollary 1.7 (except for the last equality) still hold with
the same notation and proofs. However, one can show by similar arguments as
for the proof of the last equality in Corollary 1.7 that the LLN trajectory ζ∞ will
now be “condensed,” that is, s(t) = ∑

i≥0 iζi(t) < t + c̃ for t ≥ 0. Moreover, for a
constant C = C(c, c̃,p0, β1, β0) > 0, one can see for all large t that

C

(
c̃ − ∑

i≥0

ici

)
t (1−p0)/(1+β1) ≤ t + c̃ − s(t) ≤ C−1

(
c̃ − ∑

i≥0

ici

)
t1/(1+β0).

We now consider the “scale-freeness” of ζ∞. Although it seems difficult to
control each ζi , nevertheless ζ∞ has “power law” behavior, in terms of bounds on
[ζ∞]i . In general, it appears ζ∞ can interpolate between the bounds (cf. Figure 1;
as a curiosity, we note a figure with a similar “bend” is found in [33] with respect
to Facebook social network data).

COROLLARY 1.9 (Power law). Assume 0 ≤ pmin ≤ p(·) ≤ p0 =: pmax < 1,
and 0 < β0 =: βmin ≤ β(·) ≤ βmax := β1. Then, ζ∞ is bounded between two power
laws:

For small configurations, for example, ck ≡ 0, we have, for i ≥ 0 and t ≥ 0,

[η′]i t ≤ [ζ∞(t)]i ≤ [η]i t .
For large configurations, for example, ck > 0 for some k ≥ 0, we have, for i ≥ 0,

[η′]i(t + o(1)
) ≤ [ζ∞(t)]i ≤ [η]i(t + o(1)

)
as t ↑ ∞.



LDP FOR PREFERENTIAL ATTACHMENT SCHEMES 737

FIG. 1. The thick curves are the (numerical) LLN ODE paths at times t = 0.01,0.1,1 with
p(t) ≡ 0, β(t) = 8 for t < 0.01, 1 for t ≥ 0.01 and ck ≡ 0. Dashed lines are straight lines with
slope −3 and −10. The plots use log–log scales.

Here, with respect to positive constants C,C′ depending on p and β ,

η′
i := C′

i1+(1+βmin)/(1−pmin)

(
1 + o(1)

)
and

ηi := C

i1+(1+βmax)/(1−pmax)

(
1 + o(1)

)
.

The outline of the paper is that in Sections 2 and 3, we prove the finite and
infinite-dimensional LDPs, Theorems 1.2 and 1.4. In Section 4, we prove the law
of large numbers (Corollary 1.7). Finally, in Section 5, we discuss power-law be-
havior (Corollary 1.9).

2. Proof of Theorem 1.2. We follow the method and notation of Dupuis and
Ellis in [29]; see also [52]. Some steps are similar to those in [13] where the
“leaves” in a more simplified graph scheme are considered. However, as many
things differ in our model, in the upper bound, and especially the lower bound
proof, we present the full argument.

We now fix 0 ≤ d < ∞ and equip Rd+2 with the L1-norm denoted by | · |.
Recall, from assumption (LIM),

cn,d = (cn
0 , . . . , cn

d, c̄n,d) := 1

n
Zn,d(0) → cd,

where c̄n,d = ∑
i≥d+1 cn

i . Denote

�ξ(n, t) := (pn(t), βn(t), σn(t)),
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where

pn(t) := p(�nt
/n), βn(t) := β(�nt
/n),

σn(t) := 1

n
sn(�nt
) = (

1 + βn(t)
)�nt


n
+ c̃n + cnβn(t).

Let

σ(t) := (
1 + β(t)

)
t + c̃ + cβ(t),

�ξ(t) := (p(t), β(t), σ (t)).

We note that, as n → ∞, and p(t) and β(t) are piecewise continuous,

�ξ(n, t) → �ξ(t) for almost all t ∈ [0,1].
In the remainder of the section, when the context is clear, we often drop the

superscript d to save on notation. Recall

Xn(j) := 1

n
Zn,d(j),

Xn(0) = cn,d and Xn(j + 1) = Xn(j) + 1
n
yn

Xn(j)(j), where

yn
x (j) has distribution ρ�ξ(n,j/n),x.

Here, for x = 〈x0, . . . , xd, xd+1〉 ∈ R
d+2 such that xi ≥ 0 for 0 ≤ i ≤ d + 1, num-

bers p′ ∈ [0,1] and β ′, σ ′ ≥ 0 such that
∑d+1

i=0 (i + β ′)xi ≤ σ ′, and A ⊂ R
d+2,

ρ(p′,β ′,σ ′),x(A) :=
(
p′ + (1 − p′)β

′x0

σ ′
)
δf0(A)

+
d∑

i=1

(1 − p′)(i + β ′)xi

σ ′ δfi (A)

+ (1 − p′)
(

1 −
∑d

i=0(i + β ′)xi

σ ′
)
δfd+1(A).

We note when σ ′ = 0 and x = 〈0, . . . ,0〉, by convention 0/0 = 0 and

ρ(p′,β ′,0),x(A) := p′δf0(A) + (1 − p′)δfd+1(A).

From (1.2) and (LIM), for A > 0, the paths Xn(t) = Xn,d(t), for all large n,
belong to

�d,A :=
{
ϕ ∈ C([0,1];R

d+2)||ϕ(0) − cd | ≤ A,ϕi is Lipschitz

with bound 1,0 ≤ [ϕ̇(t)]i ≤ 1 for 0 ≤ i ≤ d + 1, and(2.1)

d+1∑
i=0

ϕ̇i(t) = 1,

d+1∑
i=0

iϕ̇i(t) =
d∑

i=0

(
1 − [ϕ̇(t)]i) ≤ 1 for a.a. t

}
.
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Here, we equip C([0,1];R
d+2) with the supremum norm.

Let h :C([0,1];R
d+2) → R be a bounded continuous function. Let also

Wn := −1

n
logE{exp[−nh(Xn)]}.

To prove Theorem 1.2, we need to establish Laplace principle upper and lower
bounds (cf. [29], Section 1.2), namely upper bound

lim inf
n→∞ Wn ≥ inf

ϕ∈C([0,1];Rd+2)
{Id(ϕ) + h(ϕ)}

for a good rate function Id , and lower bound

lim sup
n→∞

Wn ≤ inf
ϕ∈C([0,1];Rd+2)

{Id(ϕ) + h(ϕ)}.

Given Xn(0) = cn,d , define, for 1 ≤ j ≤ n, that

Wn(j, {x1, . . . ,xj })

:= −1

n
logE{exp[−nh(Xn)]|Xn(1) = x1, . . . ,Xn(j) = xj }

and

Wn := Wn(0,∅) = −1

n
logE{exp[−nh(Xn)]}.

The Dupuis–Ellis method stems from the following discussion. From the Markov
property, for 1 ≤ j ≤ n − 1,

e−nWn(j,{x1,...,xj })

= E
{
e−nh(Xn)|Xn(1) = x1, . . . ,Xn(j) = xj

}
= E

{
E

{
e−nh(Xn)|Xn(1), . . . ,Xn(j + 1)

}|Xn(1) = x1, . . . ,Xn(j) = xj

}
= E

{
e−nWn(j+1,{Xn(1),...,Xn(j),Xn(j+1)})|Xn(1) = x1, . . . ,Xn(j) = xj

}
=

∫
Rd+2

e−nWn(j+1,{x1,...,xj ,xj+y/n})ρ�ξ(n,j/n),xj
(dy).

Recall the definition of relative entropy near Theorem 1.2. Then, by the variational
formula for relative entropy (cf. [29], Proposition 1.4.2), for 1 ≤ j ≤ n − 1,

Wn(j, {x1, . . . ,xj })

= −1

n
log

∫
Rd+2

e−nWn(j+1,{x1,...,xj ,xj+y/n})ρ�ξ(n,j/n),xj
(dy)

= inf
μ

{
1

n
R

(
μ‖ρ�ξ(n,j/n),xj

)

+
∫

Rd+2
Wn

(
j + 1,

{
x1, . . . ,xj ,xj + 1

n
y
})

μ(dy)

}
.
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We also have a terminal condition Wn(n, {x1, . . . ,xn}) = h(x(·)), where x(·) is the
linear interpolated path connecting {(j/n,xj )}0≤j≤n.

We may understand these dynamic programming equations and terminal condi-
tions in terms of a particular stochastic control problem. Define:

(i) Lj = (Rd+2)j , the state space on which Wn(j, ·) is defined;
(ii) U = P(Rd+2), where P(B) is the space of probabilities on B , is the control

space on which the infimum is taken;
(iii) for j = 0, . . . , n − 1, “control” vn

j (dy) = vn
j (dy|x0, . . . ,xj ) which is a

stochastic kernel on R
d+2 given (Rd+2)j ;

(iv) {X̄n(j);0 ≤ j ≤ n}, the “controlled” process which is the adapted path
satisfying X̄n(0) = cn,d and X̄n(j + 1) = X̄n(j) + 1

n
Ȳn(j) for 0 ≤ j ≤ n − 1,

where Ȳn(j), given (X̄n(0), . . . , X̄n(j)), has distribution vn
j (·) [i.e., P̄ {Ȳn(j) ∈

dy|X̄n(0), . . . , X̄n(j)} := vn
j (dy|X̄n(0), . . . , X̄n(j))] and X̄n(·) is the piecewise

linear interpolation of (j/n, X̄n(j));
(v) “running costs” Cj(v) = 1

n
R(v‖ρ) for v ∈ P(Rd+2); and

(vi) “terminal cost” equals to the function h.

Also, define, for 0 ≤ j ≤ n − 1, the minimal cost function

V n(j, {x1, . . . ,xj })

= inf
{vn

i }
Ēj,x1,...,xj

{
1

n

n−1∑
i=j

R
(
vn
i (·)‖ρ�ξ(n,i/n),X̄n(i)

) + h(X̄n(·))
}
,

where vn
i (·) = vn

i (·|X̄n(0), . . . , X̄n(i)), and the infimum is taken over all control
sequences {vn

i }. Here, Ēj,x1,...,xj
denotes expectation, with respect to the adapted

process X̄n(·) associated to {vn
i }, conditioned on X̄n(1) = x1, . . . , X̄n(j) = xj . The

boundary conditions are V n(n, {x1, . . . ,xn}) = h(x(·)) and

V n := V n(0,∅) = inf
{vn

j }
Ē

{
1

n

n−1∑
j=0

R
(
vn
j (·)‖ρ�ξ(n,j/n),X̄n(j)

) + h(X̄n(·))
}
.(2.2)

It turns out that {V n(j, {x1, . . . ,xj }) : 0 ≤ j ≤ n} also satisfies the dynamic pro-
gramming equations and terminal condition, and since these equations have unique
solutions (cf. [29], Section 3.2), we may conclude by [29], Corollary 5.2.1, that

Wn = −1

n
logE{exp[−nh(X̄n(·))]} = V n.

2.1. Upper bound. To prove the upper bound, it will be helpful to put the con-
trols {vn

j } into continuous-time paths. Let vn(dy|t) := vn
j (dy) for t ∈ [j/n, (j +

1)/n), j = 0, . . . , n − 1, and vn(dy|1) := vn
n−1. Define

vn(A × B) :=
∫
B

vn(A|t) dt
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for Borel A ⊂ R
d+2 and B ⊂ [0,1]. Also define the piecewise constant path

X̃n(t) := X̄n(j) for t ∈ [j/n, (j + 1)/n), 0 ≤ j ≤ n − 1, and X̃n(1) := X̄n(n − 1).
Then

Wn = V n = inf
{vn

j }
Ē

{∫ 1

0
R

(
vn(·|t)‖ρ�ξ(n,t),X̃n(t)

)
dt + h(X̄n)

}
.

Given ρ�ξ,x is supported on K := {f0, f1, . . . , fd+1}, if {vn
j } is not supported on K ,

then R(vn‖ρ�ξ,x) = ∞. Since |V n| ≤ ‖h‖∞ < ∞ and K ⊂ R
d+2 is compact, for

each n, there is {vn
j } supported on K and corresponding vn(dy ×dt) = vn(dy|t)×

dt such that, for ε > 0,

Wn + ε = V n + ε ≥ Ē

{∫ 1

0
R

(
vn(·|t)‖ρ�ξ(n,t),X̃n(t)

)
dt + h(X̄n)

}
.(2.3)

Recall that X̄n(·) takes values in �d,A. Since �d,A is compact, by applications of
the Ascoli–Arzelá theorem, and {vn

j } is tight, by Prokhorov’s theorem, given any

subsequence of {vn, X̄n}, there is a further subsubsequence, a probability space
(�̄, F̄ , P̄ ), a stochastic kernel v on K × [0,1] given �̄ and a random variable X̄
mapping �̄ into �d,A such that the subsubsequence converges in distribution to
(v, X̄). In particular, since X̄n(0) = cn,d → cd as n → ∞, we have X̄ [cf. (2.1)]
belongs to

�d := �d,0 those functions such that ϕ(0) = cd .

Then, [29], Lemma 3.3.1, shows that v is a subsequential weak limit of vn, and
there exists a stochastic kernel v(dy|t,ω) on K given [0,1] × �̄ such that P̄ -a.s.
for ω ∈ �̄,

v(A × B|ω) =
∫
B

v(A|t,ω) dt.

Now, the same proof given for [29], Lemma 5.3.5, shows that (vn, X̄n, X̃n) has
a subsequential weak limit (v, X̄, X̄), where the last coordinate is with respect to
Skorokhod space D([0,1];R

d+2), and P̄ -a.s. for t ∈ [0,1]
X̄(t) =

∫
Rd+2×[0,t]

yv(dy × ds) =
∫ t

0

(∫
K

yv(dy|s)
)

ds,

˙̄X(t) =
∫
K

yv(dy|t).
By Skorokhod’s representation theorem, we may take that (vn, X̄n, X̃n) converges
to (v, X̄, X̄) a.s. In particular, X̄n → X̄ uniformly a.s., and as X̄ is continuous, it
follows that also X̃n → X̄ uniformly a.s.; cf. [29], Theorem A.6.5.

Let λ denote Lebesgue measure on [0,1] and ρ × λ product measure on K ×
[0,1]. Then [29], Lemma 1.4.3(f), yields∫ 1

0
R

(
vn(·|t)‖ρ�ξ(n,t),X̃n(t)

)
dt = R

(
vn(·|t) × λ(dt)‖ρ�ξ(n,t),X̃n(t)

× λ(dt)
)
.
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We now evaluate the limit inferior of Wn using formula (2.3), along a subse-
quence as above:

lim inf
n→∞ V n + ε ≥ lim inf

n→∞ Ē

{∫ 1

0
R

(
vn(·|t)‖ρ�ξ(n,t),X̃n(t)

)
dt + h(X̄n)

}

= lim inf
n→∞ Ē

{
R

(
vn(·|t) × λ(dt)‖ρ�ξ(n,t),X̃n(t)

× λ(dt)
) + h(X̄n)

}
≥ Ē

{
R

(
v(·|t) × λ(dt)‖ρ�ξ(t),X̄(t) × λ(dt)

) + h(X̄)
}

= Ē

{∫ 1

0
R

(
v(·|t)‖ρ�ξ(t),X̄(t)

)
dt + h(X̄)

}
.

Note that we used Fatou’s lemma in the second inequality, observing (i)–(iv).

(i) vn(dy|dt) × λ(dt) → v(dy|dt) × λ(dt) a.s. as vn ⇒ v a.s.;
(ii) ρ�ξ(n,t),X̃n(t)

⇒ ρ�ξ(t),X̄(t) as �ξ(n, t) → �ξ(t) a.a. t ∈ [0,1], and X̃n(t) → X̄(t)

uniformly on [0,1] a.s.;
(iii) lim infn→∞ R(vn(dy|dt) × λ(dt)‖ρ�ξ(n,t),X̃n(t)

× λ(dt)) ≥ R(v(dy|dt) ×
λ(dt)‖ρ�ξ(t),X̄(t) × λ(dt)) a.s. as R is lower semi-continuous;

(iv) h(X̄n) → h(X̄) a.s. as h is continuous and X̄n → X̄ uniformly on [0,1] a.s.

By [29], Lemma 3.3.3(c),

R
(
v(·|t)‖ρ�ξ(t),X̄(t)

) ≥ L

(
�ξ(t), X̄(t),

∫
K

zv(dz|t)
)
,

where

L(�ξ(t),x,y) := sup
{
〈θ ,y〉 − log

∫
K

exp〈θ , z〉ρ�ξ(t),x(dz)
∣∣∣θ ∈ R

d+2
}

= inf
{
R

(
ν(·|t)‖ρ�ξ(t),x

)|ν(·|t) ∈ P(K),

∫
K

zν(dz|t) = y
}
.

We note, in this definition, the infimum is attained at some ν0 ∈ P(K) as the rela-
tive entropy is convex and lower semicontinuous; cf. [29], Lemma 1.4.3(b). Since∫

zv(dz|t) = ˙̄X(t), we have

lim inf
n→∞ V n ≥ Ē

{∫ 1

0
L(�ξ(t), X̄(t), ˙̄X(t)) dt + h(X̄)

}
.

As X̄ ∈ �d , we have

lim inf
n→∞ V n ≥ inf

ϕ∈�d

{∫ 1

0
L(�ξ(t), ϕ(t), ϕ̇(t)) dt + h(ϕ)

}
.

For ϕ ∈ �d , we can evaluate a unique minimizer ν0(·|t) in the definition of
L(�ξ(t), ϕ(t), ϕ̇(t)): recall that [ϕ̇(t)]i := ∑i

l=0 ϕ̇l(t). Then, as
∑d+1

i=0 fiν0(fi |t) =
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〈ϕ̇0(t), . . . , ϕ̇d+1(t)〉, a calculation gives

ν0(ϕ̇(t)|t) =
d∑

i=0

(
1 − [ϕ̇(t)]i)δfi +

(
d∑

i=0

[ϕ̇(t)]i − d

)
δfd+1 .(2.4)

Hence,

L(�ξ(t), ϕ(t), ϕ̇(t))

= R
(
ν0(ϕ̇(t)|t)‖ρ�ξ(t),ϕ(t)

)
= (

1 − [ϕ̇(t)]0
)

log
1 − [ϕ̇(t)]0

p(t) + (1 − p(t))
β(t)ϕ0(t)

(1+β(t))t+c̃+cβ(t)

(2.5)

+
d∑

i=1

(
1 − [ϕ̇(t)]i) log

1 − [ϕ̇(t)]i
(1 − p(t))

(i+β(t))ϕi(t)
(1+β(t))t+c̃+cβ(t)

+
(

1 −
d∑

i=0

(
1 − [ϕ̇(t)]i)

)
log

1 − ∑d
i=0(1 − [ϕ̇(t)]i )

(1 − p(t))(1 −
∑d

i=0(i+β(t))ϕi(t)

(1+β(t))t+c̃+cβ(t)
)

,

interpreted under our conventions (1.3).
Finally, define

Id(ϕ) :=
∫ 1

0
L(�ξ(t), ϕ(t), ϕ̇(t)) dt,

when ϕ ∈ �d , and Id(ϕ) = ∞ otherwise. Since L is convex, Id is convex. Also Id

has compact level sets by the proof of [29], Proposition 6.2.4, and so is a good rate
function. Hence, the Laplace principle upper bound holds with respect to Id .

We will need the following result for the proof of the lower bound in the next
section.

LEMMA 2.1. Let �(t) = et + cd be a linear function, where e = (e0, e1, . . . ,

ed+1) is such that ei > 0 for i ≥ 0,
∑d+1

i=0 ei = 1, and
∑d+1

i=0 iei ≤ 1. Then,
Id(�(t)) < ∞.

PROOF. Noting
∑d

i=0(1 − [e]i ) = ∑d+1
i=0 iei ≤ 1, explicitly

Id(�(t)) =
∫ 1

0
(1 − [e]0) log

1 − [e]0

p(t) + (1 − p(t))
β(t)(e0t+c0)

(1+β(t))t+c̃+cβ(t)

+
d∑

i=1

(1 − [e]i ) log
1 − [e]i

(1 − p(t))
(i+β(t))(ei t+ci)

(1+β(t))t+c̃+cβ(t)

+
(

1 −
d∑

i=0

(1 − [e]i)
)

log
1 − ∑d

i=0(1 − [e]i)
(1 − p(t))(1 −

∑d
i=0(i+β(t))(ei t+ci)

(1+β(t))t+c̃+cβ(t)
)

dt
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is bounded under the bounds on p,β in assumption (ND). �

2.2. Lower bound. Fix h :C([0,1];R
d+2) → R, a bounded, continuous func-

tion, and ϕ∗ ∈ �d such that Id(ϕ∗) < ∞. To show the lower bound, it suffices to
prove, for each ε > 0, that

lim sup
n→∞

V n ≤ Id(ϕ∗) + h(ϕ∗) + 8ε.(2.6)

The main idea of the argument is to construct from ϕ∗ a sequence of control mea-
sures suitable to evaluate formulas for V n.

Note only in this “lower bound” subsection, to make several expressions sim-
pler, we often take cd+1 := c̄d .

2.2.1. Step 1: Convex combination and regularization. Rather than work di-
rectly with ϕ∗, we consider a convex combination of paths with better regularity:
for 0 ≤ θ ≤ 1, let

ϕθ(t) = (1 − θ)ϕ∗(t) + θ�(t),

where �(t) = et + cd is a linear function such that e satisfies the assumptions of
Lemma 2.1, say e = (1

2 , 1
22 , . . . , 1

2d+1 , 1
2d+1 ).

LEMMA 2.2. As θ ↓ 0, we have

|Id(ϕθ ) − Id(ϕ∗)| → 0 and |h(ϕθ ) − h(ϕ∗)| → 0.

PROOF. By convexity of Id , and finiteness of Id(�(t)) from Lemma 2.1,

Id(ϕθ ) ≤ (1 − θ)Id(ϕ∗) + θId(�).

On the other hand, since |ϕθ(t) − ϕ∗(t)| = | ∫ t
0 (ϕ̇θ − ϕ̇∗)(s) ds| ≤ 2tθ(d + 2), we

have ‖ϕθ − ϕ∗‖∞ < 2θ(d + 2) ↓ 0, by lower semi-continuity of Id , we have

lim inf
θ↓0

Id(ϕθ ) ≥ Id(ϕ∗).

Also, as h is continuous, we have that |h(ϕθ ) − h(ϕ∗)| → 0. �

Now, fix θ > 0 such that

Id(ϕθ ) ≤ Id(ϕ∗) + ε and h(ϕθ ) ≤ h(ϕ∗) + ε.

Next, for κ ∈ N and t ∈ [0,1], define

ψκ(t) =
∫ t

0
γκ(s) ds + cd,(2.7)

where

γκ(t) = κ

∫ (i+1)/κ

i/κ
ϕ̇θ (s) ds
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for t ∈ [i/κ, (i + 1)/κ), 0 ≤ i ≤ κ − 1, and γκ(1) = γκ(1 − 1/κ). Note that ψκ ∈
�d , and on [i/κ, (i + 1)/κ) for 0 ≤ i ≤ κ − 1, ψ̇κ(t) equals the constant vector
γκ(i/κ). In particular, ψ̇κ is a step function.

LEMMA 2.3. For 0 ≤ i ≤ d + 1 and 0 ≤ t ≤ 1,

ψκ,i(t) ≥ θ(ei t + ci),(2.8)

d+1∑
i=0

iψ̇κ,i(t) =
d∑

i=0

(
1 − [ψ̇κ(t)]i) ≤ 1 − θed+1.(2.9)

PROOF. These are properties of ϕθ inherited from properties of ϕ∗, � ∈ �d ,
which are preserved with respect to (2.7). Indeed, for each 0 ≤ i ≤ d + 1,

ψκ,i(t) = ϕθ,i(�tκ
/κ) + (tκ − �tκ
)(ϕθ,i

(
(�tκ
 + 1)/κ

) − ϕθ,i(�tκ
/κ)
)

≥ θ(eit + ci).

Last, (2.9) follows: noting that
∑d

i=0(1 − [e]i ) = ∑d+1
i=0 iei = 1 − ed+1,

d∑
i=0

(
1 − [ψ̇κ(t)]i)

= κ

∫ (l+1)/κ

l/κ

[
(1 − θ)

d∑
i=0

(
1 − [ϕ̇∗(s)]i) + θ

d∑
i=0

(
1 − [�̇(s)]i)

]
ds

≤ 1 − θ + θ

d∑
i=0

(1 − [e]i ) = 1 − θed+1. �

LEMMA 2.4. For large enough κ , we have

h(ψκ) ≤ h(ϕ∗) + 2ε and Id(ψκ) ≤ Id(ϕ∗) + 2ε.(2.10)

PROOF. Since

lim
κ→∞ sup

t∈[0,1]
|ϕθ(t) − ψκ(t)| = 0,

the inequality with respect to h follows from continuity of h and choosing κ in
terms of θ . We also note, by absolute continuity of ϕθ , that a.s. in t ,

ψ̇κ(t) = γκ(t) = κ

∫ (�tκ
+1)/κ

�tκ
/κ
ϕ̇θ (s) ds → ϕ̇θ (t) as κ ↑ ∞.
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Then, by the form of L [cf. (2.5)], bounds in Lemma 2.3 and piecewise
continuity and bounds on p,β in assumption (ND), we have, as κ ↑ ∞, that
L(�ξ(t),ψκ(t), ψ̇κ(t)) → L(�ξ(t), ϕθ (t), ϕ̇θ (t)) for almost all t ∈ [0,1].

Also, we can bound L(�ξ(t),ψκ(t), ψ̇κ(t)) as follows: first, using x logx ≤ 0 for
0 ≤ x ≤ 1, bound that

L(�ξ(t),ψκ(t), ψ̇κ(t))

≤ −(
1 − [ψ̇κ(t)]0

)
log

(
p(t) + (

1 − p(t)
) β(t)ψκ,0(t)

(1 + β(t))t + c̃ + cβ(t)

)

−
d∑

i=1

(
1 − [ψ̇κ(t)]i) log

((
1 − p(t)

) (i + β(t))ψκ,i(t)

(1 + β(t))t + c̃ + cβ(t)

)

−
(

1 −
d∑

i=0

(
1 − [ψ̇κ(t)]i)

)

× log
((

1 − p(t)
)(

1 −
∑d

i=0(i + β(t))ψκ,i(t)

(1 + β(t))t + c̃ + cβ(t)

))
.

Now, as 0 ≤ [ψ̇κ ]i ≤ 1 and 0 ≤ ∑d
i=0(1 − [ψ̇κ ]i) ≤ 1, we have the further upper-

bound, using Lemma 2.3,

− log
(
p(t) + (

1 − p(t)
) β(t)θ(e0t + c0)

(1 + β(t))t + c̃ + cβ(t)

)

−
d∑

i=1

log
((

1 − p(t)
) (i + β(t))θ(ei t + ci)

(1 + β(t))t + c̃ + cβ(t)

)

− log
((

1 − p(t)
)(d + 1 + β(t))θ(ed+1t + c̄d )

(1 + β(t))t + c̃ + cβ(t)

)
,

which is integrable on [0,1] given the bounds on p,β in assumption (ND).
By dominated convergence, we obtain limκ Id(ψκ) = Id(ϕθ ), and therefore the

other inequality with respect to Id . �

Let now κ be such that (2.10) holds. Finally, we modify ψκ on the interval [0, δ],
for a small enough δ > 0 to be chosen later.

Define

ti := δ −
d∑

l=i

(
δ + [cd ]l − [ψκ(δ)]l)(2.11)

for 0 ≤ i ≤ d , and td+1 := δ; set also t−1 := 0 and td+2 = td+1. Let also

ψ∗(t) =
∫ t

0
γ ∗(s) ds + cd,(2.12)
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where

γ ∗(t) =
⎧⎨
⎩

fd+1, when 0 ≤ t < t0,
fi , when ti ≤ t < ti+1,0 ≤ i ≤ d,
γκ(t), when t ≥ δ.

Note γ ∗ may not be defined at some endpoints as possibly ti = ti+1 for some i.
By inspection, ψ∗ ∈ �d . Also, ψ̇∗(t) = fd+1 when 0 ≤ t < t0 and ψ̇∗(t) = fi

when ti ≤ t < ti+1 for 0 ≤ i ≤ d . Moreover, we have the following properties.

LEMMA 2.5. We have ψ∗(δ) = ψκ(δ) and t0 ≥ θed+1δ. Also,

ψ∗
0 (t) = t + c0, ψ∗

j (t) = cj for 1 ≤ j ≤ d + 1,

when 0 ≤ t < t0, and

ψ∗
0 (t) ≥ θed+1δ + c0 when t0 < t < t1,

ψ∗
i (t) ≥ θ(eiδ + ci) when ti < t < ti+1 and 1 ≤ i ≤ d.

PROOF. The lower bound for t0 follows from the integration of both sides
in (2.9) and the definition of t0. Now, we note that ψ̇∗

0 (t) = 0 if t0 ≤ t ≤ t1, and 1
otherwise. Also, note that for 1 ≤ i ≤ d +1, ψ̇∗

i (t) = 1 if ti−1 < t < ti , ψ̇∗
i (t) = −1

if ti < t < ti+1 and ψ̇∗
i (t) = 0 otherwise. Thus, noting (2.11),

ψ∗
0 (δ) =

∫ δ

0
γ ∗

0 (s) ds + c0 = δ − (t1 − t0) + c0 = ψκ,0(δ)

and, for 1 ≤ i ≤ d + 1,

ψ∗
i (δ) =

∫ δ

0
γ ∗
i (s) ds + ci = (ti − ti−1) − (ti+1 − ti) + ci = ψκ,i(δ),

which proves that ψ∗(δ) = ψκ(δ). Since ψ∗
0 (t) is nondecreasing, for t ≥ t0,

ψ∗
0 (t) ≥ ψ∗

0 (t0) = t0 + c0 ≥ θed+1δ + c0. For 1 ≤ i ≤ d , for ti < t < ti+1, ψ∗
i (t)

decreases to its final value ψκ,i(δ) ≥ θ(eiδ + ci) by (2.8). �

2.2.2. Step 2: More properties of ψ∗. We now show the rate of ψ∗ up to time
δ does not contribute too much.

LEMMA 2.6. For small enough δ > 0,∫ δ

0
L(�ξ(t),ψ∗(t), ψ̇∗(t)) dt ≤ ε and ‖ψ∗ − ψκ‖∞ < ε.

In particular, h(ψ∗) ≤ h(ϕ∗) + 3ε and Id(ψ∗) ≤ Id(ϕ∗) + 3ε.
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PROOF. Write, for 0 ≤ t ≤ δ, as L(�ξ(t),ψ∗(t),ψ̇∗(t)) = R(δfd+1‖ρ�ξ(t),ψ∗(t))×
1(0 < t < t0) + ∑d

i=0 R(δfi‖ρ�ξ(t),ψ∗(t))1(ti < t < ti+1),

L(�ξ(t),ψ∗(t), ψ̇∗(t))

= − log
((

1 − p(t)
)(

1 −
∑d

l=0(l + β(t))ψ∗
l (t)

(1 + β(t))t + c̃ + cβ(t)

))
1(0 < t < t0)

− log
(
p(t) + (

1 − p(t)
) β(t)ψ∗

0 (t)

(1 + β(t))t + c̃ + cβ(t)

)
1(t0 < t < t1)

−
d∑

i=1

log
((

1 − p(t)
) (i + β(t))ψ∗

i (t)

(1 + β(t))t + c̃ + cβ(t)

)
1(ti < t < ti+1).

By Lemma 2.5 and the bounds on p,β in assumption (ND), this expression is in-
tegrable for 0 ≤ t ≤ δ. (It would be bounded unless c̄d = 0 and c �= 0, in which
case the first term in the expression involves − log t .) Hence, the first statement
follows for small δ > 0. Also, the second statement holds as ‖ψ∗ − ψκ‖∞ =
sup0≤t<δ |ψ∗ − ψκ | ≤ 2δ(d + 2). The last statement is a consequence now of
(2.10). �

We will take δ > 0 small enough so that the bounds in the above lemma hold.

LEMMA 2.7. We have

lim
n→∞ sup

0≤j≤n

∣∣∣∣∣ψ∗(j/n) − 1

n

j−1∑
l=0

ψ̇∗(l/n) − cd

∣∣∣∣∣ = 0.(2.13)

Also, for j ≥ �δn
 and 0 ≤ i ≤ d + 1,

1

n

j−1∑
l=0

ψ̇∗
i (l/n) + ci ≥ θ

2

(
eij

n
+ ci

)
.(2.14)

PROOF. Since ψ̇∗ is piecewise constant, when l/n ≤ s ≤ (l + 1)/n, |ψ̇∗(s) −
ψ̇∗(l/n)| �= 0 for at most κ subintervals [cf. (2.7) and (2.12)], and is also bounded
by 2(d + 2). Hence,∣∣∣∣∣ψ∗(j/n) − 1

n

j−1∑
l=0

ψ̇∗(l/n) − cd

∣∣∣∣∣ =
∣∣∣∣∣
j−1∑
l=0

∫ (l+1)/n

l/n

(
ψ̇∗(s) − ψ̇∗(l/n)

)
ds

∣∣∣∣∣
≤ 2(d + 2)

n
κ.

The last statement follows from (2.8). �



LDP FOR PREFERENTIAL ATTACHMENT SCHEMES 749

2.2.3. Step 3: Admissible control measures and convergence. We now build a
sequence of controls based on ψ∗. Define ν0 = ν0(ψ̇

∗(j/n)|j/n) using (2.4), and

vn
j (dy;x0, . . . ,xj )

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν0
(
ψ̇∗(j/n)|j/n

)
, when 0 ≤ j ≤ �δn


or when j ≥ �δn�
and xj,i ≥ θ

4
(eiδ + ci)

for 0 ≤ i ≤ d + 1,
ρ�ξ(j/n),xj

, otherwise.

The reasoning behind this choice of controls is as follows: to bound the limit of the
quantity in (2.2), using formula (2.5), by Id(ψ∗)+h(ψ∗), we would like to specify
the controls in form ν0(ψ̇

∗(j/n)|j/n). Such a choice, as we will see, also ensures
that the adapted sequence X̄n(j) is close to ψ∗(j/n). However, the adapted pro-
cess, as it is random, may get too close to a boundary. When this happens, not
often it turns out, to bound errors, we specify that the controls take the cost-free
form of the natural evolution sequence. Also, to get past this boundary layer ini-
tially, ψ∗ has been built as a step function so that the adapted process must follow
a deterministic trajectory up to time �δn
.

Define X̄n(0) = cd , and X̄n(j + 1) = X̄n(j) + 1
n

Ȳn(j) for j ≥ 0 where

P̄
(
Ȳn(j) ∈ dy|X̄n(0), . . . , X̄n(j)

) = vn
j (dy; X̄n(0), . . . , X̄n(j)).

Thus, for j ≥ 0, X̄n(j) = 1
n

∑j−1
l=0 Ȳn(l)+cd . It will be useful later to note the total

weight
∑d+1

i=0 (i +β(j/n))X̄n
i (j) ≤ (j/n+ c̃)+β(j/n)(j/n+ c) and, for 0 ≤ j ≤

�δn
, as mentioned X̄n(j) is deterministic and X̄n(j) = 1
n

∑j−1
l=0 ψ̇∗(l/n) + cd .

Define now, for each n ≥ 1, the martingale sequence for 0 ≤ j ≤ n

Mn(j) := 1

n

j−1∑
l=0

(
Ȳn(l) − Ē(Ȳn(l)|X̄n(l))

)

= X̄n(j) − 1

n

j−1∑
l=0

Ē(Ȳn(l)|X̄n(l)) − cd .

Let

τn := n ∧ min
{
�δn� ≤ l ≤ n : X̄n

i (l) <
θ

4
(eiδ + ci)

for some 0 ≤ i ≤ d + 1
}
.
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Then, τn ≥ �δn� is a stopping time, and the corresponding stopped process
{Mn(j ∧ τn)} is also a martingale for 0 ≤ j ≤ n. Let now

An :=
{

sup
0≤j≤n

|Mn(j ∧ τn)| > θed+1

4n1/8

}
.

LEMMA 2.8. For n ≥ δ−8, on the set A
c
n, we have τn = n.

PROOF. From the definition of {vn
j } and τn, we have Ē(Ȳn(l)|X̄n(l)) =

ψ̇∗(l/n) for 0 ≤ l ≤ j ∧ τn − 1 and j ≥ �δn�. Then, on A
c
n, by (2.14), we have

X̄n
i (j ∧ τn) ≥ ci + 1

n

j∧τn−1∑
l=0

Ē(Ȳn
i (l)|X̄n(l)) − θed+1

4n1/8

= ci + 1

n

j∧τn−1∑
l=0

ψ̇∗
i (l/n) − θed+1

4n1/8

≥ θ

2

(
ei(j ∧ τn)

n
+ ci

)
− θed+1

4n1/8

≥ θ

4
(eiδ + ci).

Hence, τn = n. �

We now observe, by Doob’s martingale inequality and bounds, in terms of con-
stants C = Cd , that

P̄ [An] ≤ Cn1/2Ē|Mn(j ∧ τn)|4

= Cn−7/2Ē

∣∣∣∣∣
j∧τn−1∑

l=0

(
Ȳn(l) − Ē(Ȳn(l)|X̄n(l))

)∣∣∣∣∣
4

(2.15)

≤ Cn−7/2n2 = Cn−3/2.

We now state the following almost sure convergence.

LEMMA 2.9. We have

lim
n↑∞ sup

0≤j≤n

∣∣∣∣∣X̄n(j) − 1

n

j−1∑
l=0

ψ̇∗(l/n) − cd

∣∣∣∣∣ = 0 a.s.(2.16)

PROOF. First, by (2.15) and the Borel–Cantelli lemma, P̄ (lim sup An) = 0.
On the other hand, on the full measure set

⋃
m≥1

⋂
k≥m A

c
k , since τn = n and

Ē(Ȳn(l)|X̄n(l)) = ψ̇∗(l/n) for 0 ≤ l ≤ n − 1 on A
c
n by Lemma 2.8, the desired

convergence holds. �
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2.2.4. Step 4. We now argue the lower bound through representation (2.2).
Recall the definition of �ξ(·) in the beginning of Section 2. The sum in (2.2) equals

Ē

[
1

n

n−1∑
j=0

R
(
vn
j ‖ρ�ξ(j/n),X̄n(j)

)]

= Ē

[
1

n

�δn
∑
j=0

R
(
vn
j ‖ρ�ξ(j/n),X̄n(j)

)]

+ Ē

[
1

n

n−1∑
j=�δn�

R
(
vn
j ‖ρ�ξ(j/n),X̄n(j)

);An

]
(2.17)

+ Ē

[
1

n

n−1∑
j=�δn�

R
(
vn
j ‖ρ�ξ(j/n),X̄n(j)

);A
c
n

]

= A1 + A2 + A3.

Step 4.1. We treat the term A2 in (2.17). Recall σ(j/n) = (1 +β(j/n))(j/n)+
c̃ + cβ(j/n) and the “weight” bound on X̄n(j) in beginning of Step 3. For �δn� ≤
j ≤ n − 1,

R
(
vn
j ‖ρ�ξ(j/n),X̄n(j)

)
= R

(
ν0

(
ψ̇∗(j/n)

)‖ρ�ξ(j/n),X̄n(j)

)
× 1

(
X̄n

i (j) ≥ (θ/4)(eiδ + ci) for 0 ≤ i ≤ d + 1
)
.

Noting (2.5), this is bounded above, using x logx ≤ 0 for 0 ≤ x ≤ 1, by

[
−

(
1 −

[
ψ̇∗

(
j

n

)]
0

)
log

(
p(j/n) + (

1 − p(j/n)
)β(j/n)X̄n

0(j)

σ (j/n)

)

−
d∑

i=1

(
1 −

[
ψ̇∗

(
j

n

)]
i

)
log

((
1 − p(j/n)

)(i + β(j/n))X̄n
i (j)

σ (j/n)

)

−
(

d∑
i=0

[
ψ̇∗

(
j

n

)]
i

− d

)

× log
((

1 − p(j/n)
)(

1 −
∑d

i=0(i + β(j/n))X̄n
i (j)

σ (j/n)

))]

× 1
(
X̄n

i (j) ≥ (θ/4)(eiδ + ci) for 0 ≤ i ≤ d + 1
)
.
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Given bounds on p,β in (ND), as 0 ≤ [ψ̇∗]i ≤ 1, we have d ≤ ∑d
i=1[ψ̇∗]i ≤ d + 1

and
d∑

i=0

(
i + β(j/n)

)
X̄n

i (j) ≤ σ(j/n) − (
d + 1 + β(j/n)

)
X̄n

d+1(j)

≤ σ(j/n) − (
d + 1 + β(j/n)

) · (θ/4)(ed+1δ + cd+1),

the relative entropy is further bounded by a constant Cd . Thus, for large n,

A2 ≤ Cd · P̄
[

sup
0≤j≤n

|Mn(j ∧ τn)| > θed+1

4n1/8

]
≤ ε.(2.18)

Step 4.2. Now, for the term A1 in (2.17), we recall for j ≤ �δn
 that X̄n(j) =
1
n

∑j−1
l=0 ψ̇∗(l/n)+ cd is deterministic. Also note, for 0 ≤ i ≤ d , that ψ̇∗(t) = fi on

ti < t < ti+1, and ψ̇∗(t) = fd+1 on 0 = t−1 ≤ t ≤ t0 (cf. near Lemma 2.5). Thus,
for 0 ≤ j ≤ �δn
, denoting f−1 = fd+1, we may write

R
(
vn
j ‖ρ�ξ(j/n),X̄n(j)

)

= L

(
�ξ
(

j

n

)
,

1

n

j−1∑
l=0

ψ̇∗
(

l

n

)
+ cd, ψ̇∗

(
j

n

))

=
d∑

i=−1

L

(
�ξ
(

j

n

)
,

i−1∑
l=−1

�tl+1n
 − �tln

n

fl + j − �tin

n

fi + cd, fi

)

× 1(�tin
 ≤ j < �ti+1n
),
where, for i = −1, the empty sum in the argument for L vanishes. Com-
paring with the proof of Lemma 2.6, this expression, given bounds on p,β

in (ND), is bounded, for 0 ≤ j ≤ �δn
, except when c̄d = 0 and c �= 0,
in which case a “− log(j/n)” term appears in the i = −1 term. But, since
−(1/n)

∑�δn

j=1 log(j/n) ≤ − ∫ δ

0 log(t) dt , its contribution is still small. Hence,

A1 ≤ ε(δ) where ε(δ) → 0 as δ → 0.(2.19)

Step 4.3. We now estimate the last term A3 in (2.17). For n ≥ δ−8, by Lem-
ma 2.8 and definition of L (2.5),

A3 ≤ Ē

[
1

n

n−1∑
j=�δn�

L

(
�ξ
(

j

n

)
, X̄n(j), ψ̇∗

(
j

n

))
;A

c
n ∩ {τn = n}

]

≤ Ē

[∫ 1

δ
L

(
�ξ
(�nt


n

)
, X̄n(�nt
), ψ̇∗

(�nt

n

))
dt;A

c
n ∩ Bn

]
,

where Bn = {X̄n
i (j) ≥ (θ/4)(eiδ + ci) for 0 ≤ i ≤ d + 1, j ≥ �δn�}. On the

event A
c
n ∩ Bn, Ē(Ȳn(l)|X̄n(l)) = ψ̇∗(l/n) for l ≥ 0, and so |X̄n(�nt
) −

ψ∗(�nt
/n)|1(Ac
n ∩ Bn) → 0 for each realization from (2.13) and (2.16).
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Also, from the form of L (2.5), as ψ̇∗ is a step function, (2.8), and bounds and
piecewise continuity of p,β in (ND), we may bound as in Step 4.1 and observe

2Cd ≥
∣∣∣∣L

(
�ξ
(�nt


n

)
, X̄n(�nt
), ψ̇∗

(�nt

n

))

− L(�ξ(t),ψ∗(t), ψ̇∗(t))
∣∣∣∣1(Ac

n ∩ Bn)

→ 0

for almost all t and each realization. Hence, by bounded convergence theorem,
with respect to dP̄ × 1([δ, t]) dt ,

lim sup
n→∞

A3 ≤
∫ 1

δ
L(�ξ(t),ψ∗(t), ψ̇∗(t)) dt.(2.20)

2.2.5. Step 5. Finally, by (2.13) and (2.16), limn→∞ h(X̄n(·)) = h(ψ∗(·))
a.s. in the sup topology, and by bounded convergence limn→∞ Ē[h(X̄n(·))] =
h(ψ∗(·)).

We now combine all bounds to conclude the proof of (2.6). By (2.2), bounds
(2.18), (2.19), (2.20) and nonnegativity of L, we have

lim sup
n→∞

V n ≤ lim sup
n→∞

Ē

[
1

n

n−1∑
j=0

R
(
vn
j ‖ρ�ξ(j/n),X̄n(j)

) + h(X̄n(·))
]

≤ 2ε +
∫ 1

0
L(�ξ(t),ψ∗(t), ψ̇∗(t)) dt + h(ψ∗).

Then, by Lemma 2.6, we obtain (2.6).

3. Proof of Theorem 1.4. The proof of Theorem 1.4 follows from the fol-
lowing two propositions, and is given below. We first recall the projective limit
approach, following notation in [20], Section 4.6. Define, for 0 ≤ i ≤ j , Yj =
C([0,1];R

j+2) and pij : Yj → Yi by 〈ϕ0, . . . , ϕj+1〉 �→ 〈ϕ0, . . . , ϕi,
∑j+1

l=i+1 ϕl〉.
Also define lim←−Yj ⊂ ∏

i≥0 Yi as the subset of elements x = 〈x0, x1, . . .〉 such that

pijx
j = xi , equipped with the product topology. Let also pj : lim←−Yj → Yj be the

canonical projection, pjx = xj .
Since Id are convex, good rate functions on C([0,1],R

d+2), by the LDPs The-
orem 1.2 and [20], Theorem 4.6.1, we obtain the following proposition. Recall the
notation in Theorem 1.2. For n ≥ 1, let X n,∞ = 〈Xn,0,Xn,1, . . .〉.

PROPOSITION 3.1. The sequence {X n,∞} ⊂ lim←−Yj satisfies an LDP with rate

n and convex, good rate function

J∞(ϕ) =
{

sup
d

{Id(pd(ϕ))}, when ϕ ∈ lim←−Yj ,

∞, otherwise.
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To establish Theorem 1.4, it remains to further identify J∞. Recall �d ⊂
C([0,1];R

d+2) are those elements ϕ = 〈ϕ0, . . . , ϕd, ϕd+1〉 such that:

ϕ(0) = cd , each ϕi ≥ 0 is Lipschitz with constant 1 such that 0 ≤ [ϕ̇(t)]i ≤ 1
for 0 ≤ i ≤ d ,

∑d+1
i=0 ϕ̇i(t) = 1, and

∑d+1
i=0 iϕ̇i(t) = ∑d

i=0(1 − [ϕ̇(t)]i ) ≤ 1 for
almost all t .

Let also �∗ ⊂ lim←−Yj be those elements ϕ = 〈ϕ0, ϕ1, . . .〉 such that ϕd ∈ �d for

d ≥ 0. Since {�d}d≥0 are compact sets, it is a straightforward exercise to see that
�∗ is compact. Define Ld(pd(ϕ(t))) equal to

(
1 − [ϕ̇d(t)]0

)
log

1 − [ϕ̇d(t)]0

p(t) + (1 − p(t))
β(t)ϕd

0 (t)

(1+β(t))t+c̃+cβ(t)

+
d∑

i=1

(
1 − [ϕ̇d(t)]i) log

1 − [ϕ̇d(t)]i
(1 − p(t))

(i+β(t))ϕd
i (t)

(1+β(t))t+c̃+cβ(t)

+
(

1 −
d∑

i=0

(
1 − [ϕ̇d(t)]i)

)
log

1 − ∑d
i=0(1 − [ϕ̇d(t)]i )

(1 − p(t))(1 −
∑d

i=0(i+β(t))ϕd
i (t)

(1+β(t))t+c̃+cβ(t)
)

dt.

PROPOSITION 3.2. The rate function J∞(ϕ) diverges when ϕ /∈ �∗. However,
for ϕ ∈ �∗, limd↑∞ Ld(pd(ϕ(t))) exists for almost all t , and we can evaluate

J∞(ϕ) =
∫ 1

0
lim
d↑∞Ld(pd(ϕ(t))) dt.

PROOF. First, from the definition, J∞(ϕ) diverges unless ϕ ∈ �∗. Next, for
ϕ ∈ �∗ and almost all t , we argue

Lr(pr(ϕ(t))) ≤ Ls(ps(ϕ(t))) when r < s.(3.1)

It will be enough to show from the form of the rates the following:(
1 −

r∑
i=0

(
1 − [ϕ̇s(t)]i)

)
log

1 − ∑r
i=0(1 − [ϕ̇s(t)]i )

(1 − p(t))(1 −
∑r

i=0(i+β(t))ϕs
i (t)

(1+β(t))t+c̃+cβ(t)
)

≤
s∑

i=r+1

(
1 − [ϕ̇s(t)]i) log

1 − [ϕ̇s(t)]i
(1 − p(t))

(i+β(t))ϕs
i (t)

(1+β(t))t+c̃+cβ(t)

+
(

1 −
s∑

i=0

(1 − [ϕ̇s(t)]i )
)

log
1 − ∑s

i=0(1 − [ϕ̇s(t)]i )
(1 − p(t))(1 −

∑s
i=0(i+β(t))ϕs

i (t)

(1+β(t))t+c̃+cβ(t)
)
.
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Consider now h(x) = x logx which is convex for x ≥ 0. Under conventions
(1.3), for nonnegative numbers, ai and bi , we have

∑q
i=p ai∑q
i=p bi

log

∑q
i=p ai∑q
i=p bi

= h

(∑q
i=p ai∑q
i=p bi

)
= h

( q∑
i=p

bi∑q
i=p bi

ai

bi

)

≤
q∑

i=p

bi∑q
i=p bi

h

(
ai

bi

)
=

∑q
i=p ai log(ai/bi)∑q

i=p bi

.

We now finish the proof of (3.1) by applying the last sequence, with p = r + 1 and
q = s + 1, to

aj =

⎧⎪⎪⎨
⎪⎪⎩

1 − [ϕ̇s(t)]j , for r + 1 ≤ j ≤ s,

1 −
s∑

i=0

(
1 − [ϕ̇s(t)]i), for j = s + 1,

and

bj =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1 − p(t)

) (j + β(t))ϕs
j (t)

(1 + β(t))t + c̃ + cβ(t)
, for r + 1 ≤ j ≤ s,

(
1 − p(t)

)(
1 −

∑s
i=0(i + β(t))ϕs

i (t)

(1 + β(t))t + c̃ + cβ(t)

)
, for j = s + 1.

Finally, given Ld(pd(ϕ(t))) ≥ 0 is increasing in d , the identification of J∞ in
the display of the proposition follows from monotone convergence. �

PROOF OF THEOREM 1.4. Let �∞ ⊂ ∏
i≥0 C([0,1];R), endowed with the

product topology, be those elements ξ = 〈ξ0, ξ1, . . .〉 such that:

ξi(0) = ci , ξi(t) ≥ 0 is Lipschitz with constant 1, 0 ≤ [ξ̇ (t)]i ≤ 1 for i ≥ 0, and
d
dt

∑
i≥0 ξi(t) = 1 and limd [∑d

i=0 iξ̇i(t) + (d + 1)(1 − [ξ̇ (t)]d)] = ∑
i≥0(1 −

[ξ̇ (t)]i ) ≤ 1 for almost all t .

We now show that �∞ and �∗ are homeomorphic. Hence, as �∗ is compact,
�∞ would also be compact. (We note, one can see directly that �∞ is compact.)

Define the map F :�∞ → �∗ by

F(ξ) = 〈ξ0, . . . , ξd, . . .〉 where ξd = 〈ξ0, . . . , ξd, t + c − [ξ ]d〉 ∈ �d.

In verifying the last inclusion, note
∑d

i=0 iξ̇i(t)+ (d +1)(1−[ξ̇ (t)]d) = ∑d
i=0(1−

[ξ̇ (t)]i ) ≤ ∑
i≥0(1 − [ξ̇ (t)]i ) ≤ 1. We now argue that F is a bi-continuous bijec-

tion.
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Indeed, we first note that F−1 :�∗ → �∞ is given by

F−1(ϕ) = 〈ϕ0
0, . . . , ϕd

d , . . .〉.
In checking F−1(ϕ) ∈ �∞, note for ϕ ∈ �∗ that limd

∑d
i=0(1 − ∑i

l=0 ϕ̇l
l (t)) =

limd

∑d
i=0(1 − [ϕ̇d(t)]i ) ≤ 1. Then, by bounded convergence with respect to

the last term in the previous series, limd(t + ∑d
i=0 ci − ∑d

i=0 ϕi
i (t)) = limd(t +∑d

i=0 ci − [ϕd(t)]d) = 0, and so
∑

i≥0 ϕi
i (t) = t + c. Finally, it is not difficult to

see that F and F−1 are both continuous in the product topology.
Now, X n,∞ ∈ �∗, Xn,∞ ∈ �∞, and F(Xn,∞) = X n,∞ for n ≥ 1. Hence,

through the action of F , the LDP for X n,∞ translates to the LDP for Xn,∞. We now
identify the rate function. Given Propositions 3.1 and 3.2, for a degree distribution
ξ ∈ �∞, we identify its rate as I∞(ξ) = J∞(F (ξ)). Since �∞ is closed, and there-
fore distributions ξ /∈ �∞ can never be attained by Xn,∞, we set I∞(ξ) = ∞ in
this case. Last, by properties of F , as J∞ is a convex, good rate function, one
obtains readily I∞ is also a convex, good rate function. �

4. Proof of Corollary 1.7. We verify some properties of ζ d in the next lem-
mas and conclude the proof of Corollary 1.7 at the end of the section.

LEMMA 4.1. The ODE (1.5) has a unique Carathéodory solution ζ d .

PROOF. Any Carathéodory solution to ODE (1.5), given the assumption p,β

are piecewise continuous, is piecewise continuously differentiable. Since the defin-
ing ODEs are linear, one can solve them, and so the solution is unique and given
by ζ d = 〈ζ0(t), ζ1(t), . . . , ζ̄d+1(t)〉 where, for t ∈ [0,1],

ζ0(t) := c0M0(0, t) +
∫ t

0

(
1 − p(s)

)
M0(s, t) ds,

ζ1(t) := c1M1(0, t)

+
∫ t

0

(
p(s) + (

1 − p(s)
) β(s)ζ0(s)

(1 + β(s))s + c̃ + cβ(s)

)
M1(s, t) ds,(4.1)

ζi(t) := ciMi(0, t)

+
∫ t

0

(
1 − p(s)

) (i − 1 + β(s))ζi−1(s)

(1 + β(s))s + c̃ + cβ(s)
Mi(s, t) ds

for 2 ≤ i ≤ d and

ζ̄d+1(t) := t + c −
d∑

i=0

ζi(t) = c̄d +
∫ t

0

(
1 − p(s)

) (d + β(s))ζd(s)

(1 + β(s))s + c̃ + cβ(s)
ds.
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Here, for 0 ≤ i ≤ d ,

Mi(s, t) := exp
[
−

∫ t

s

(
1 − p(u)

) i + β(u)

(1 + β(u))u + c̃ + cβ(u)
du

]
. �

LEMMA 4.2. We have ζ d ∈ �d , and moreover

∞∑
i=0

ζi(t) = t + c and
∞∑
i=0

iζi(t) = t + c̃.

PROOF. First, from properties of the ODE system and the piecewise conti-
nuity assumption on p,β in (ND), ζi ≥ 0, ζi is Lipschitz with constant 1 and
moreover piecewise continuously differentiable, and 0 ≤ [ζ̇ (t)]i ≤ 1 for i ≥ 0, and∑d

i=0 ζi(t) + ζ̄d+1(t) = t + c for d ≥ 0 and almost all t . We postpone proving∑d
i=0(1 −[ζ̇ (t)]i ) ≤ 1 for d ≥ 0 and a.a. t , which would complete the argument to

show ζ d ∈ �d , until the end.
We now show

∑
i≥0 ζi(t) = t + c. From the defining ODEs (1.5), for N ≥ 1, we

have 1 − ∑N
i=0 ζ̇i (t) = (1 − p(t))

(N+β(t))ζN (t)
(1+β(t))t+c̃+cβ(t)

, and hence

t +
N∑

i=0

ζi(0) −
N∑

i=0

ζi(t) =
∫ t

0

(
1 − p(s)

) (N + β(s))ζN(s)

(1 + β(s))s + c̃ + cβ(s)
ds.(4.2)

We obtain, as the integrand on the right-hand side is nonnegative, that
∑N

i=0 ζi(t) ≤
t + ∑N

i=0 ci ≤ t + c for all t ≥ 0 and N ≥ 1 where we recall from (LIM)
c = ∑∞

i=0 ci . In particular,
∑

i≥0
∫ t

0
ζi (s)
s+c

ds ≤ t . Also, the right-hand side of (4.2),

after a calculation, is bounded above by N+1
min{β0,1}

∫ t
0

ζN (s)
s+c

ds. Hence, since by non-
negativity and (LIM) the right-side of (4.2) has a limit, this limit must vanish and∑

i≥0 ζi(t) = t + c.
Next, to establish

∑
i≥0 iζi(t) = t + c̃, again from the ODEs, for N ≥ 1,

N∑
i=0

iζ̇i(t) = p(t) + (
1 − p(t)

) ∑N
i=0(i + β(t))ζi(t)

(1 + β(t))t + c̃ + cβ(t)

(4.3)

− (
1 − p(t)

)(N + 1)(N + β(t))ζN(t)

(1 + β(t))t + c̃ + cβ(t)
.

From nonnegativity of ζi and
∑∞

i=0 ζi = t + c, we bound the right-hand side of

(4.3) by p(t) + (1 − p(t))
∑N

i=0 iζi (t)+β(t)(t+c)

(1+β(t))t+c̃+cβ(t)
. Let sN(t) := ∑N

i=0 iζi(t). Then,

ṡN (t) ≤ p(t)+ (1 −p(t))
sN (t)+β(t)(t+c)

(1+β(t))t+c̃+cβ(t)
. Since, sN(t) is piecewise continuously

differentiable, we have, by Lemma 4.3, that sN(t) ≤ t + c̃ for t ≥ 0 and N ≥ 1.
Hence,

∑∞
i=0

∫ t
0

iζi (s)
s+c

ds ≤ At since c̃ ≤ Ac for some A > 0 where c̃ = ∑
i≥0 ici <

∞.
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Now, integrating both sides of ODE (4.3), we have

N∑
i=0

iζi(t) −
N∑

i=0

ici

=
∫ t

0
p(s) ds +

∫ t

0

(
1 − p(s)

) ∑N
i=0(i + β(s))ζi(s)

(1 + β(s))s + c̃ + cβ(s)
ds(4.4)

−
∫ t

0

(
1 − p(s)

)(N + 1)(N + β(s))ζN(s)

(1 + β(s))s + c̃ + cβ(s)
ds.

From nonnegativity, our estimates and (LIM), the last integral above has a limit.

This last integral in (4.4) is bounded above by (N+1)2

N min{β0,1}
∫ t

0
NζN(s)

s+c
ds, and hence

its limit must vanish. Then, using
∑∞

i=0 ζi(t) = t + c, we see s(t) = ∑
i≥0 iζi(t)

satisfies the ODE in Lemma 4.3, and therefore s(t) = t + c̃.
Finally, to finish the postponed verification, noting (4.2), we have

d∑
i=0

(
1 − [ζ̇ (t)]i) = (

1 − p(t)
) sd(t) + β(t)

∑d
i=0 ζi

(1 + β(t))t + c̃ + cβ(t)

≤ t + c̃ + β(t)(t + c)

(1 + β(t))t + c̃ + cβ(t)
= 1. �

LEMMA 4.3. The ODE

ḟ (t) = G(t, f (t)) with G(t, x) = p(t) + (
1 − p(t)

) x + β(t)(t + c)

(1 + β(t))t + c̃ + cβ(t)

and initial condition f (0) = c̃ has unique Carathéodory solution t + c̃ for t ≥ 0.
In addition, if u(t) is piecewise continuously differentiable, u(0) = u0 ≤ c̃, and

u̇(t) ≤ G(t,u(t)), then u(t) ≤ t + c̃ for t ≥ 0.

PROOF. Since the ODE is linear and, from the piecewise continuity assump-
tion on p,β in (ND), f is piecewise continuously differentiable, we can solve
uniquely

f (t) = c̃ exp{B(0, t)} +
∫ t

0

[
p(s) + (1 − p(s))β(s)(s + c)

(1 + β(s))s + c̃ + cβ(s)

]
exp{B(s, t)}ds,

where B(q, r) = ∫ r
q

1−p(v)
(1+β(v))v+c̃+cβ(v)

dv. Recall the convention 0 ·∞ = 0, so when

c = 0 the first term c̃eB(0,t) = 0 vanishes. However, t + c̃ is a solution, and therefore
f (t) may be identified as desired.

The second statement is obtained similarly. �

PROOF OF COROLLARY 1.7. Any root of Id must be a Carathéodory solu-
tion to ODE (1.5). Hence, by Lemmas 4.1 and 4.2, ζ d ∈ �d is the unique mini-
mizer of Id . The LLNs now follow from the LDP upper bound in Theorem 1.2 and
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Borel–Cantelli lemma. Statements about “mass” and “weight” of ζ∞ are proved
in Lemma 4.2. �

5. Proof of Corollary 1.9. Since [ζ∞]i = [ζ d ]i for i ≤ d , the proof follows
from the next lemma. Define, for o1, o2, o3, o4, o5 ≥ 0, the ODEs, O(o1, o2, o3, o4,
o5): with initial condition ϕ(0) = cd

ϕ̇0(t) = 1 − o1 − (1 − o2)
o3

1 + o4
· ϕ0(t)

t + o5
,

[ϕ̇(t)]i = 1 − (1 − o2)
i + o3

1 + o4
· ϕi(t)

t + o5
for 1 ≤ i ≤ d.

One can check that χ(t) is the solution to O(o1, o2, o3, o4, o5) above for 0 ≤
o2 ≤ 1, where

χi(t) = bi(t + o5) +
i∑

�=0

ai,�

(
o5

t + o5

)(1−o2)(�+o3)/(1+o4)

for 0 ≤ i ≤ d.(5.1)

Here, the sequence bi = bi(o1, o2, o3, o4, o5) is defined by b0 = 1−o1
1+(1−o2)o3/(1+o4)

,

b1 = o1+(1−o2)o3b0/(1+o4)
1+(1−o2)(1+o3)/(1+o4)

, and, for i ≥ 2,

bi = b1

i∏
�=2

(1 − o2)(� − 1 + o3)/(1 + o4)

1 + (1 − o2)(� + o3)/(1 + o4)

= b1
�(2 + o3 + (1 + o4)/(1 − o2))

�(1 + o3)

�(i + o3)

�(i + 1 + o3 + (1 + o4)/(1 − o2))

∼ 1

i1+(1+o4)/(1−o2)
.

The sequence ai,� = ai,�(o1, o2, o3, o4, o5) is given by a0,0 = c0 − b0o5, and, for
i ≥ 1,

ai,� = i − 1 + o3

i − �
ai−1,� where 0 ≤ � < i

and

ai,i = ci − bio5 −
i−1∑
�=0

ai,�.

Recall now the assumption in Corollary 1.9: 0 ≤ pmin ≤ p(·) ≤ pmax < 1 and
0 < βmin ≤ β(·) ≤ βmax < ∞.

LEMMA 5.1. The systems O(pmin,pmax, βmin, βmax,max{c̃, c}) and O(pmax,
pmin, βmax, βmin,min{c̃, c}) have respective unique solutions ζ̃ and ζ̂ . Then, for



760 J. CHOI AND S. SETHURAMAN

0 ≤ i ≤ d and t ∈ [0,1], with respect to the zero-cost trajectory ζ d(t) in Corol-
lary 1.7 with initial condition ζ d(0) = cd , we have

[ζ̂ (t)]i ≤ [ζ d(t)]i ≤ [ζ̃ (t)]i .

PROOF. The proof that ζ̃ and ζ̂ are the unique solutions uses a similar argu-
ment to that in the proof of Lemma 4.1. We now establish the inequality in the
display with respect to ζ̃ as an analogous proof works for ζ̂ . We use induction to
see that [ζ̃ ]i ≥ [ζ ]i for 0 ≤ i ≤ d .

Since ζ̃ (0) = ζ(0) = cd , from ODEs, O(pmin,pmax, βmin, βmax,max{c̃, c}) and
(1.5), we have

˙̃
ζ 0(t) − ζ̇0(t) ≥ p(t) − pmin + (1 − pmax)

βmin(ζ0(t) − ζ̃0(t))

(1 + βmax)(t + max{c̃, c}) ,(5.2)

[ ˙̃ζ (t)]i − [ζ̇ (t)]i ≥ (1 − pmax)
(i + βmin)(ζi(t) − ζ̃i (t))

(1 + βmax)(t + max{c̃, c}) .(5.3)

For i = 0, suppose ζ̃0(t) < ζ0(t) for some t . Then, by continuity, we may assume
that ζ̃0(t) < ζ0(t) for all t ∈ (t0, t1] for some 0 ≤ t0 < t1 ≤ 1, and ζ̃0(t0) = ζ0(t0).
We may further arrange t0, t1, from the piecewise continuity assumptions in (ND),
that p,β are continuous on (t0, t1). From the mean value theorem, we find a

t ′ ∈ (t0, t1) such that ˙̃
ζ 0(t

′) < ζ̇0(t
′), which contradicts the ODE (5.2) as it gives

˙̃
ζ 0(t

′) − ζ̇0(t
′) > 0. Therefore, ζ̃0 ≥ ζ0.

Now, for 1 ≤ i ≤ d , suppose [ζ̃ (t)]i < [ζ(t)]i for some t . By induction hy-
pothesis ([ζ̃ (·)]i−1 ≥ [ζ(·)]i−1), we must have ζ̃i (t) < ζi(t). Since [ζ̃ (·)]i , [ζ(·)]i ,
ζ̃i(·) and ζi(·) are continuous functions, as for the case i = 0, we may assume
[ζ̃ (t)]i < [ζ(t)]i and ζ̃i(t) < ζi(t), and p,β are continuous for all t ∈ (t0, t1) for
some 0 ≤ t0 < t1 ≤ 1, and also ζ̃i (t0) = ζi(t0). By the mean value theorem for

[ζ̃ (t)]i − [ζ(t)]i , there is t ′ ∈ (t0, t1) such that [ ˙̃ζ (t ′)]i < [ζ̇ (t ′)]i . But (5.3) gives

[ ˙̃ζ (t ′)]i − [ζ̇ (t ′)]i > 0, a contradiction. Therefore [ζ̃ ]i ≥ [ζ ]i . �

PROOF OF COROLLARY 1.9. Given Lemma 5.1, we need only detail the so-
lutions ζ̃ and ζ̂ when the initial configuration is “small” and “large,” respectively.
To this end, when the initial configuration is “small” (ci ≡ 0), ζ̃ , ζ̂ are linear,
namely ζ̃i (t) = b̃i t , and ζ̂i(t) = b̂i t , where b̃i := bi(pmin,pmax, βmin, βmax,0) and
b̂i := bi(pmax,pmin, βmax, βmin,0) [cf. (5.1)].

On the other hand, when the initial configuration is “large” (ci > 0 for some
0 ≤ i ≤ d + 1), as t ↑ ∞, ζ̃i (t) = (b̃i + o(1))t and ζ̂i(t) = (b̂i + o(1))t . �
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