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ALPHA-DIVERSITY PROCESSES AND NORMALIZED
INVERSE-GAUSSIAN DIFFUSIONS

BY MATTEO RUGGIERO1, STEPHEN G. WALKER AND STEFANO FAVARO1

University of Torino, University of Kent and University of Torino

The infinitely-many-neutral-alleles model has recently been extended
to a class of diffusion processes associated with Gibbs partitions of two-
parameter Poisson–Dirichlet type. This paper introduces a family of infinite-
dimensional diffusions associated with a different subclass of Gibbs parti-
tions, induced by normalized inverse-Gaussian random probability measures.
Such diffusions describe the evolution of the frequencies of infinitely-many
types together with the dynamics of the time-varying mutation rate, which is
driven by an α-diversity diffusion. Constructed as a dynamic version, rela-
tive to this framework, of the corresponding notion for Gibbs partitions, the
latter is explicitly derived from an underlying population model and shown
to coincide, in a special case, with the diffusion approximation of a criti-
cal Galton–Watson branching process. The class of infinite-dimensional pro-
cesses is characterized in terms of its infinitesimal generator on an appropri-
ate domain, and shown to be the limit in distribution of a certain sequence
of Feller diffusions with finitely-many types. Moreover, a discrete represen-
tation is provided by means of appropriately transformed Moran-type par-
ticle processes, where the particles are samples from a normalized inverse-
Gaussian random probability measure. The relationship between the limit
diffusion and the two-parameter model is also discussed.

1. Introduction. Considerable attention has been devoted recently to a class
of diffusion processes which extends the infinitely-many-neutral-alleles model to
the case of two parameters. This family takes values in the space

∇∞ =
{
z = (z1, z2, . . .) : z1 ≥ z2 ≥ · · · ≥ 0,

∞∑
i=1

zi ≤ 1

}
,(1.1)

namely, the closure in [0,1]∞ of the infinite-dimensional ordered simplex, and is
characterized, for constants 0 ≤ α < 1 and θ > −α, by the second order differen-
tial operator

Lθ,α = 1

2

∞∑
i,j=1

zi(δij − zj )
∂2

∂zi ∂zj

− 1

2

∞∑
i=1

(θzi + α)
∂

∂zi

(1.2)
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acting on a certain dense sub-algebra of the space C(∇∞) of continuous functions
on ∇∞ (throughout the paper δij denotes Kronecker delta). The diffusion with op-
erator (1.2) describes the evolution of the allelic frequencies at a particular locus in
a large population subject to random genetic drift and mutation, where mutation is
jointly driven by the parameters (θ,α). Ethier and Kurtz (1981) characterized the
corresponding process when α = 0, whereas the two-parameter family was intro-
duced by Petrov (2009) and further investigated by Ruggiero and Walker (2009)
and Feng and Sun (2010). The latter is known to be stationary, reversible and er-
godic with respect to the Poisson–Dirichlet distribution with parameters (θ,α).
This was introduced by Pitman (1995) [see also Pitman (1996) and Pitman and
Yor (1997)] and extends the Poisson–Dirichlet distribution of Kingman (1975) as
follows. Consider a random sequence (V1,V2, . . .) obtained by means of the so-
called stick-breaking scheme

V1 = W1, Vn = Wn

n−1∏
i=1

(1 − Wi), Wi
ind∼ Beta(1 − α, θ + iα),(1.3)

where 0 ≤ α < 1 and θ > −α. The vector (V1,V2, . . .) is said to have the GEM
distribution with parameters (θ,α), while the vector of descending order statistics
(V(1), V(2), . . .) is said to have the Poisson–Dirichlet distribution with parameters
(θ,α). The latter is also the law of the ranked frequencies of an infinite partition
induced by a two-parameter Poisson–Dirichlet random probability measure, which
generalizes the Dirichlet process introduced by Ferguson (1973). Two-parameter
Poisson–Dirichlet models have found applications in several fields. See, for ex-
ample, the monographs by Bertoin (2006) for fragmentation and coalescent the-
ory, Pitman (2006) for excursion theory and combinatorics, Teh and Jordan (2010)
for machine learning, Lijoi and Prünster (2010) for Bayesian inference and Feng
(2010) for population genetics. See also Bertoin (2008), Handa (2009) and Favaro
et al. (2009).

The Poisson–Dirichlet distribution and its two parameter extension in turn be-
long to a larger class of random discrete distributions induced by infinite partitions
of Gibbs type. These were introduced by Gnedin and Pitman (2005), and applica-
tions include fragmentation and coalescent theory [Bertoin (2006), McCullagh,
Pitman and Winkel (2008), Goldschmidt, Martin and Spanò (2008)], excur-
sion theory [Pitman (2003)], statistical physics [Berestycki and Pitman (2007)]
and Bayesian nonparametric inference [Lijoi, Mena and Prünster (2005, 2007a,
2007b), Lijoi, Prünster and Walker (2008a)]. See Pitman (2006) for a compre-
hensive account. See also Griffiths and Spanò (2007), Lijoi, Prünster and Walker
(2008b) and Ho, James and Lau (2007).

This paper introduces a class of infinite-dimensional diffusions associated with
a different subclass of Gibbs-type partitions, induced by normalized inverse-
Gaussian random probability measures. Such discrete distributions, recently in-
vestigated by Lijoi, Mena and Prünster (2005), are special cases of generalized
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gamma processes [Pitman (2003), Lijoi, Mena and Prünster (2007b)], and their in-
tersection with two-parameter Poisson–Dirichlet models is given by the sole case
(θ,α) = (0,1/2), which corresponds to a normalized stable process with parame-
ter 1/2 [Kingman (1975)]. The class of diffusions studied in this paper is charac-
terized in terms of the second order differential operator

A = β

s

∂

∂s
+ 1

2
s

∂2

∂s2 + 1

2

∞∑
i,j=1

zi(δij − zj )
∂2

∂zi ∂zj

(1.4)

− 1

2

∞∑
i=1

(
β

s
zi + α

)
∂

∂zi

acting on a dense sub-algebra of C0([0,∞) × ∇∞), the space of continuous func-
tions on [0,∞)×∇∞ vanishing at infinity, for parameters (β,α), with β = aτα/α,
a > 0, τ > 0 and α = 1/2. By comparison with (1.2), it can be seen that the last
two terms of (1.4) describe the time evolution of the frequencies of infinitely-many
types. Common features between (1.2) and (1.4) are the variance–covariance terms
zi(δij − zj ) and the structure of the drift or mutation terms −[(β/s)zi + α]. The
distinctive feature with respect to (1.2) is given by the fact that the positive coef-
ficient θt = β/St varies in time, and is driven by what is termed here α-diversity
diffusion, whose operator is given by the first two terms of (1.4). Equivalently, St

follows the stochastic differential equation

dSt = β

St

dt + √
St dBt, St ∈ [0,∞),(1.5)

where Bt is a standard Brownian motion. This can be seen as a particular instance
of a continuous-time analog of the notion of α-diversity, introduced by Pitman
(2003) for Poisson–Kingman models, which include Gibbs-type partitions. An ex-
changeable random partition of N is said to have α-diversity S if and only if there
exists a random variable S, with 0 < S < ∞ almost surely, such that, as n → ∞,

Kn/nα → S a.s.,(1.6)

where Kn is the number of classes of the partition of {1, . . . , n}. The connection
between (1.5) and (1.6) will become clear in Section 4, where the α-diversity dif-
fusion will be explicitly derived.

It is to be noted that (1.2) is not a special case of (1.4). Indeed, the only way
of making θt = β/St constant is to impose null drift and volatility in (1.5), which
implies θt ≡ 0. Hence, consistently with the above recalled relation between nor-
malized inverse-Gaussian and Poisson–Dirichlet random measures, (1.2) and (1.4)
share only the case (θt , α) ≡ (0,1/2). Nonetheless, an interesting connection be-
tween these classes of diffusions can be stated. In particular, it will be shown that
performing the same conditioning operation in a pre-limit particle construction
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of normalized inverse-Gaussian diffusions yields a particular instance of the two-
parameter model.

The paper is organized as follows. Section 2 recalls all relevant definitions,
among which are Gibbs-type partitions, the associated generalized Pólya-urn
scheme and random probability measures of generalized gamma and normalized
inverse-Gaussian types. Section 3 derives some new results on generalized gamma
processes which are crucial for the construction. These are concerned with the
convergence of the number of species represented only once in the observed sam-
ple and with the second order approximation of the weights of the generalized
Pólya-urn scheme associated with normalized inverse-Gaussian processes. In Sec-
tion 4, by postulating simple population dynamics underlying the time change of
the species frequencies, we derive the α-diversity diffusion for the normalized
inverse-Gaussian case, by means of a time-varying analog of (1.6) with the limit
intended in distribution, and highlight its main properties. In Section 5 normalized
inverse-Gaussian diffusions are characterized in terms of the operator (1.4), whose
closure is shown to generate a Feller semigroup on C0([0,∞)×∇∞), and the asso-
ciated family of processes is shown to be the limit in distribution of certain Feller
diffusions with finitely-many types. Section 6 provides a discrete representation
of normalized inverse-Gaussian diffusions, which are obtained as limits in distri-
bution of certain appropriately transformed Moran-type particle processes which
model individuals explicitly, jointly with the varying population heterogeneity. Fi-
nally, Section 7 shows that conditioning on the α-diversity process to be constant,
that is, St ≡ s, in a pre-limit version of the particle construction yields, in the limit,
the two-parameter model (1.2) with (θ,α) = (s2/4,1/2).

2. Preliminaries. The Poisson–Dirichlet distribution and its two parameter
extension belong to the class of random discrete distributions induced by infinite
partitions of Gibbs type, introduced by Gnedin and Pitman (2005). An exchange-
able random partition of the set of natural numbers is said to have Gibbs form if
for any 1 ≤ k ≤ n and any (n1, . . . , nk) such that nj ∈ {1, . . . , n}, for j = 1, . . . , k,

and
∑k

j=1 nj = n, the law �
(n)
k of the partition (n1, . . . , nk) can be written as the

product

�
(n)
k (n1, . . . , nk) = Vn,k

k∏
j=1

(1 − α)nj−1.(2.1)

Here 0 ≤ α < 1,

(a)0 = 1, (a)m = a(a + 1) · · · (a + m − 1), m > 1,(2.2)

is the Pochhammer symbol and the coefficients {Vn,k :k = 1, . . . , n;n ≥ 1} satisfy
the recursive equation

Vn,k = (n − αk)Vn+1,k + Vn+1,k+1.(2.3)
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The law of an exchangeable partition is uniquely determined by the function
�

(n)
k (n1, . . . , nk), called the exchangeable partition probability function, which

satisfies certain consistency conditions, which imply invariance under permuta-
tions of {1, . . . , n} and coherent marginalization over the (n + 1)th item. Hence,
the law of a Gibbs partition is uniquely determined by the family {Vn,k :k =
1, . . . , n;n ≥ 1}. Furthermore, a random discrete probability measure governing
a sequence of exchangeable observations is said to be of a Gibbs type if it in-
duces a partition which can be expressed as in (2.1). These have associated predic-
tive distributions which generalize the Blackwell and MacQueen (1973) Pólya-urn
scheme to

P{Xn+1 ∈ ·|X1, . . . ,Xn}
(2.4)

= g0(n,Kn)ν0(·) + g1(n,Kn)

Kn∑
j=1

(nj − α)δX∗
j
(·),

where ν0 is a nonatomic probability measure, X∗
1, . . . ,X∗

Kn
are the Kn distinct

values observed in X1, . . . ,Xn with absolute frequencies n1, . . . , nKn , and the co-
efficients g0 and g1 are given by

g0(n, k) = Vn+1,k+1

Vn,k

, g1(n, k) = Vn+1,k

Vn,k

(2.5)

with {Vn,k :k = 1, . . . , n;n ≥ 1} as above. It will be of later use to note that inte-
grating both sides of (2.4) yields

g0(n,Kn) + (n − αKn)g1(n,Kn) = 1,(2.6)

also obtained from (2.3) and (2.5). Examples of Gibbs-type random probability
measures are the Dirichlet process [Ferguson (1973)], obtained, for example, from
(2.4) by setting θ > 0 and α = 0 in

g0(n, k) = θ + αk

θ + n
, g1(n, k) = 1

θ + n
,(2.7)

the two-parameter Poisson–Dirichlet process [Pitman (1995, 1996)], obtained
from (2.7) with 0 < α < 1 and θ > −α, the normalized stable process [Kingman
(1975)], obtained from (2.7) with 0 < α < 1 and θ = 0, the normalized inverse-
Gaussian process [Lijoi, Mena and Prünster (2005)] and the normalized general-
ized gamma process [Pitman (2003), Lijoi, Mena and Prünster (2007b)]. See also
Gnedin (2010) for a Gibbs-type model with finitely-many types.

The normalized generalized gamma process is a random probability measure
with representation

μ =
∞∑
i=1

PiδXi
,(2.8)
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whose weights {Pi, i ∈ N} are obtained by means of the normalization

Pi = Ji∑∞
k=1 Jk

,(2.9)

where {Ji, i ∈ N} are the points of a generalized gamma process, introduced by
Brix (1999). This is obtained from a Poisson random process on [0,∞) with mean
intensity

λ(ds) = 1

�(1 − α)
exp(−τs)s−(1+α) ds, s ≥ 0,

with 0 < α < 1 and τ ≥ 0, so that if N(A) is the number of Ji ’s which fall in
A ∈ B([0,∞)), then N(A) is Poisson distributed with mean λ(A). Lijoi, Mena
and Prünster (2007b) showed that a generalized gamma random measure defined
via (2.8) and (2.9), denoted by GG(β,α), where β = aτα/α with a > 0 and τ > 0,
induces a random partition of Gibbs type with coefficients g0(n,Kn) and g1(n,Kn)

in (2.4) given by

g0(n, k) = α
∑n

i=0
(n
i

)
(−1)iβi/α�(k + 1 − i/α;β)

n
∑n−1

i=0

(n−1
i

)
(−1)iβi/α�(k − i/α;β)

,

(2.10)

g1(n, k) =
∑n

i=0
(n
i

)
(−1)iβi/α�(k − i/α;β)

n
∑n−1

i=0

(n−1
i

)
(−1)iβi/α�(k − i/α;β)

,

where �(c;x) denotes the upper incomplete gamma function

�(c;x) =
∫ ∞
x

sc−1 exp(−s)ds.(2.11)

Special cases of a generalized gamma process with parameters (β,α) are the
Dirichlet process, obtained by letting τ = 1 and α → 0, the normalized stable
process, obtained by setting β = 0, and the normalized inverse-Gaussian process,
obtained by setting α = 1/2.

We conclude the section with a brief discussion of the interpretation of α in
the context of species sampling with Gibbs-type partitions. Suppose Kn different
species have been observed in the first n samples from (2.4). The probability that a
further sample is an already observed species is g1(n,Kn)(n−αKn), but this mass
is not allocated proportionally to the current frequencies. The ratio of probabilities
assigned to any pair of species (i, j) is

ri,j = ni − α

nj − α
.

When α → 0, the probability of sampling species i is proportional to the absolute
frequency ni . However, since for ni > nj , (ni − α)/(nj − α) is increasing in α,
a value of α > 0 reallocates some probability mass from type j to type i, so that,
for example, for ni = 2 and nj = 1 we have ri,j = 2,3,5 for α = 0,0.5,0.75,
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respectively. Thus, α has a reinforcement effect on those species that have higher
frequency. See Lijoi, Mena and Prünster (2007b) for a more detailed treatment of
this aspect.

3. Some results on generalized gamma random measures. In this section
we investigate some properties of generalized gamma random measures which will
be used in the subsequent constructions. In particular, these regard the convergence
of the number of species represented only once in the observed sample, and the
second order approximation of the weights of the generalized Pólya-urn scheme
associated with normalized inverse-Gaussian processes.

Let X1, . . . ,Xn be an n-sized sample drawn from a generalized gamma process
with parameters (β,α), let Kn denote the number of distinct species observed in
the sample, and let Nn := (N1, . . . ,NKn) denote the vector of absolute frequencies
associated with each observed species. The probability distribution of the random
variable (Kn,Nn), for any n ≥ 1, k = 1, . . . , n and frequencies (n1, . . . , nk) such
that

∑k
i=1 ni = n, is provided by Lijoi, Mena and Prünster (2007b) and coincides

with

P
(
Kn = k,Nn = (n1, . . . , nKn)

)
(3.1)

= αk−1eβ ∏k
j=1(1 − α)(nj−1)

�(n)

n−1∑
s=0

(
n − 1

s

)
(−1)sβs/α�

(
k − s

α
;β

)
,

where (1 − α)(nj−1) and �(k − s/α;β) are as in (2.2) and (2.11), respectively.
Denote now by Mj,n the number of species represented j times in the sample.
Then from equation 1.52 in Pitman (2006) it follows that the distribution of Mn :=
(M1,n, . . . ,Mn,n) is given by

P
(
Mn = (m1,n, . . . ,mn,n)

)
= n!α

k−1eβ

�(n)

n∏
j=1

(
(1 − α)(j−1)

j !
)mj,n

(3.2)

× 1

mj,n!
n−1∑
s=0

(
n − 1

s

)
(−1)sβs/α�

(
k − s

α
;β

)

for any n ≥ 1, k = 1, . . . , n and vector (m1,n, . . . ,mn,n) ∈ Mn,k , where

Mn,k =
{
(m1,n, . . . ,mn,n) :mi,n ≥ 1,

n∑
i=1

mi,n = k,

n∑
i=1

imi,n = n

}
.

The following proposition identifies the speed of convergence of the number of
species represented once in the sample. Denote by C (n, k,α) the generalized fac-
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torial coefficient

C (n, k,α) = 1

k!
k∑

j=0

(−1)j
(

k

j

)
(−jα)n,(3.3)

where C (0,0, α) = 1 and C (n,0, α) = 0. See Charalambides [(2005), Chapter 2]
for a complete account.

PROPOSITION 3.1. Under the normalized generalized gamma process with
parameters (β,α), one has

P(M1,n = m1,n)

= αm1,n−1eβ

�(n)m1,n!
n−1∑
s=0

(
n − 1

s

)
(−1)sβs/α

×
n−m1,n∑

j=0

(−α)j
(n − m1,n − j + 1)(m1,n+j)

j !(3.4)

×
n−m1,n−j∑

k=0

C (n − m1,n − j, k,α)

× �

(
k + m1,n + j − s

α
;β

)
.

Moreover,

M1,n

nα
→ αSα a.s.,(3.5)

where Sα is a strictly positive and almost surely finite random variable with density
function

gSα(s;α,β) = eβ−(β/s)1/α f (s−1/α;α)

αs1+1/α

with f (·;α) being the density of a positive stable random variable with parame-
ter α.

PROOF. Denote (x)[m] = x(x − 1) · · · (x − m + 1). From (3.2), for any r ≥ 1
one has

E
[
(M1,n)[r]

]
=

n∑
k=1

∑
Mn,k

n!α
k−1eβ

�(n)

n∏
j=1

(
(1 − α)(j−1)

j !
)mj,n 1

mj,n!(m1,n)[r]

×
n−1∑
s=0

(
n − 1

s

)
(−1)sβs/α�

(
k − s

α
;β

)
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=
n∑

k=1

∑
Mn,k

n! αk−1eβ

�(n)(m1,n − r)!
n∏

j=2

(
(1 − α)(j−1)

j !
)mj,n 1

mj,n!

×
n−1∑
s=0

(
n − 1

s

)
(−1)sβs/α�

(
k − s

α
;β

)

=
n∑

k=1

∑
Mn−r,k−r

n!α
k−1eβ

�(n)

n∏
j=1

(
(1 − α)(j−1)

j !
)mj,n 1

mj,n!

×
n−1∑
s=0

(
n − 1

s

)
(−1)sβs/α�

(
k − s

α
;β

)
.

In particular, by using the definition of generalized factorial coefficient in terms
of sum over the set of partitions Mn,k [see Charalambides (2005), equation 2.62],
we have

∑
Mn−r,k−r

n∏
j=1

(
(1 − α)(j−1)

j !
)mj,n 1

mj,n!

= (n)[r]
n!αk−r

C (n − r, k − r, α).

Therefore, we obtain

E
[
(M1,n)[r]

]
=

n∑
k=1

αr−1(n)[r]eβ

�(n)
C (n − r, k − r, α)(3.6)

×
n−1∑
s=0

(
n − 1

s

)
(−1)sβs/α�

(
k − s

α
;β

)
.

In order to obtain the distribution of the random variable M1,n, we can make use
of the probability generating function of M1,n, denoted G(M1,n)(t). From (3.6) we
have

G(M1,n)(t) =
∞∑

r=0

αr−1eβ(n)[r]
�(n)

×
n−1∑
s=0

(
n − 1

s

)
(−1)sβs/α

×
n∑

k=0

C (n − r, k,α)�

(
k + r − s

α
;β

)
(t − 1)r

r! .
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Therefore, the distribution of M1,n is given by

P(M1,n = m1,n)

= 1

m1,n!
∞∑

j=0

αm1,n+j−1eβ(n)[m1,n+j ]
�(n)

×
n−1∑
s=0

(
n − 1

s

)
(−1)sβs/α

×
n∑

k=0

C (n − m1,n − j, k,α)

× �

(
k + m1,n + j − s

α
;β

)
dm1,n

dtm1,n

(t − 1)m1,n+j

(m1,n + j)!
∣∣∣∣
t=0

= 1

m1,n!
∞∑

j=0

αm1,n+j−1eβ(n)[m1,n+j ]
�(n)

×
n−1∑
s=0

(
n − 1

s

)
(−1)sβs/α

×
n−m1,n−j∑

k=1

C (n − m1,n − j, k,α)

× �

(
k + m1,n + j − s

α
;β

)
(−1)j

j !

= αm1,n−1eβ

�(n)m1,n!
n−1∑
s=0

(
n − 1

s

)
(−1)sβs/α

×
n−m1,n∑

j=0

(−α)j
(n − m1,n − j + 1)(m1,n+j)

j !

×
n−m1,n−j∑

k=0

C (n − m1,n − j, k,α)

× �

(
k + m1,n + j − s

α
;β

)
,

where the last identity is due to the fact that C (n, k,α) = 0 for any k > n. Propo-
sition 3 in Lijoi, Mena and Prünster (2007b) shows that

Kn/nα → Sα(3.7)
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almost surely, where Sα is an almost surely positive and finite random variable
with density function

gSα(s;α,β) = eβ−(β/s)1/α f (s−1/α;α)

αs1+1/α

with f (·;α) being the density function of a positive stable random variable with
parameter α. In other terms, according to Definition 3.10 in Pitman (2006), an
exchangeable partition of N having EPPF (3.1) has α-diversity Sα . A simple ap-
plication of Lemma 3.11 in Pitman (2006) leads to (3.5). �

A second aspect of generalized gamma random measures we need to address for
later use is the approximate behavior of the coefficients in the generalized Pólya
urn (2.4). It is well known that the first order behavior of (2.10) is that of a nor-
malized stable process, that is,

g0(n, k) ≈ αk/n, g1(n, k) ≈ 1/n,(3.8)

also implied by the next result. However, it turns out that for the definition of the
diffusion processes which are the object of the next two sections, it is crucial to
know the second order approximation. The following proposition, whose proof
is deferred to the Appendix, identifies such behavior for the normalized inverse-
Gaussian case α = 1/2.

PROPOSITION 3.2. Let g0(n, k) and g1(n, k) be as in (2.10). When α = 1/2,

g0(n, k) = αk

n
+ β/sn

n
+ o(n−1)

and

g1(n, k) = 1

n
− β/sn

n2 + o(n−2),(3.9)

where sn = k/nα and β = aτα/α.

4. Alpha-diversity processes. Making use of the results of the previous sec-
tion, here we construct a one-dimensional diffusion process which can be seen
as a dynamic version of the notion of α-diversity, recalled in (1.6), relative to the
case of normalized inverse-Gaussian random probability measures. Such diffusion,
which will be crucial for the construction of Section 5, is obtained as weak limit
of an appropriately rescaled random walk on the integers, whose dynamics are
driven by an underlying population process. This is briefly outlined here and will
be formalized in Section 6. Consider n particles, denoted x(n) = (x1, . . . , xn) with
xi ∈ X for each i, where X is a Polish space, and denote by Kn = Kn(x

(n)) the
number of distinct values observed in (x1, . . . , xn). Let the vector (x1, . . . , xn) be
updated at discrete times by replacing a uniformly chosen coordinate. Condition-
ally on Kn(x

(n)) = k, the incoming particle will be a copy of one still in the vector,
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after the removal, with probability g1(n − 1, kr), and will be a new value with
probability g0(n − 1, kr), where g1(n − 1, k) and g0(n − 1, k) are as in (2.10) and
kr is the value of k after the removal. Denote by {Kn(m),m ∈ N0} the chain which
keeps track of the number of distinct types in (x1, . . . , xn). Then, letting m1,n be
the number of clusters of size one in (x1, . . . , xn), which, by means of (3.5) and
(3.7) is approximately αk for large n, the transition probabilities for Kn(m),

p(k, k′) = P{Kn(m + 1) = k′|Kn(m) = k}
are asymptotically equivalent to

p(k, k′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 − αk

n

)
g0(n − 1, k), if 1 ≤ k < n, k′ = k + 1,

αk

n
g1(n − 1, k − 1)

(
n − 1 − α(k − 1)

)
,

if 1 < k ≤ n, k′ = k − 1,

1 − p(k, k + 1) − p(k, k − 1), if k′ = k,

0, else

(4.1)

for 1 ≤ k ≤ n. That is, with probability m1,n/n ≈ αk/n a cluster of size one is
selected and removed, with probability g0(n − 1, k) a new species appears and
with probability g1(n − 1, k)(n − 1 − α(k − 1)) a survivor has an offspring. Note
that k = 1 and k = n are set to be barriers, to render the fact that m1,n equals 0
and n when k equals 1 and n, respectively.

The following theorem finds the conditions under which the rescaled chain
Kn(m)/nα converges to a diffusion process on [0,∞). Here we provide a sketch
of the proof with the aim of favoring the intuition. The formalization of the result
is contained in the proof of Theorem 6.1, while that of the fact that the limiting
diffusion is well defined, that is, the corresponding operator generates a Feller
semigroup on an appropriate subspace of C([0,∞)), is provided in Corollary 4.1
below.

Throughout the paper CB(A) denotes the space of continuous functions from A

to B , while Xn ⇒ X denotes convergence in distribution.

THEOREM 4.1. Let {Kn(m),m ∈ N0} be a Markov chain with transition prob-
abilities as in (4.1) determined by a generalized gamma process with β ≥ 0 and
α = 1/2, and define {K̃n(t), t ≥ 0} to be such that K̃n(t) = Kn(�n3/2t�)/nα . Let
also {St , t ≥ 0} be a diffusion process driven by the stochastic differential equation

dSt = β

St

dt + √
St dBt, St ≥ 0,(4.2)

where Bt is a standard Brownian motion. If K̃n(0) ⇒ S0, then

{K̃n(t), t ≥ 0} ⇒ {St , t ≥ 0} in C[0,∞)([0,∞)) as n → ∞.(4.3)
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PROOF. Let α = 1/2. From Proposition 3.2 we can write (4.1) as follows (for
ease of presentation we use n and k in place of n − 1 and k − 1 since it is asymp-
totically equivalent):

p(k, k′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
1 − αk

n

)(
αk

n
+ β/sn

n

)
+ o(n−1), if 1 ≤ k < n, k′ = k + 1,

αk

n

(
1

n
− β/sn

n2

)
(n − αk) + o(n−3/2), if 1 < k ≤ n, k′ = k − 1,

1 − p(k, k + 1) − p(k, k − 1) + o(n−1), if k′ = k,
0, else.

The conditional expected increment of the process {Kn(m)/nα,m ∈ N0} is

E

(
k′

nα
− k

nα

∣∣∣k)

= 1

nα

[(
1 − αk

n

)(
αk

n
+ β/sn

n

)
− αk

n

(
1

n
− β/sn

n2

)
(n − αk)

]
(4.4)

+ o

(
1

n1+α

)

= β/sn

n1+α
+ o

(
1

n1+α

)
.

Similarly, the conditional second moment of the increment is

E

[(
k′

nα
− k

nα

)2∣∣∣k]

= 1

n2α

[(
1 − αk

n

)(
αk

n
+ β/sn

n

)
+ αk

n

(
1

n
− β/sn

n2

)
(n − αk)

]
(4.5)

+ o

(
1

n1+2α

)

= 2αk

n1+2α
+ o

(
1

n1+2α

)
.

Since k ≈ snα , and recalling that sn → s almost surely, we have

n1+α
E

(
k′

nα
− k

nα

∣∣∣k)
→ β/s

and

n1+α
E

[(
k′

nα
− k

nα

)2∣∣∣k]
→ 2αs.

It is easy to check that all conditional mth moments of �k/nα converge to zero for
m ≥ 3, whence it follows by standard theory [cf., e.g., Karlin and Taylor (1981)]
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that, as n → ∞, the process K̃n(t) = Kn(�n3/2t�)/nα converges in distribution to
a diffusion process St on [0,∞) with drift β/St and diffusion coefficient

√
2αSt .

�

As anticipated, the second order approximation of g0(n, k) is crucial for estab-
lishing the drift of the limiting diffusion, as the first order terms cancel. It is inter-
esting to note that when β = 0, which yields the normalized stable case, the lim-
iting diffusion reduces to the diffusion approximation of a critical Galton–Watson
branching process, also known as the zero-drift Feller diffusion. See, for example,
Ethier and Kurtz (1986), Theorem 9.1.3. This also holds approximately for high
values of St , in which case the drift becomes negligible.

In order to have some heuristics on the behavior of the α-diversity process, Fig-
ure 1 shows 3×105 steps of the random walk {Kn(m)/nα,m ∈ N0} with dynamics
as in Theorem 4.1, starting from 1/

√
n with n = 200. The three paths correspond

to β being equal to 0, 100 and 1000. It is apparent how β influences the dynamic
clustering structure in the population.

It is well known that when β = 0, the point 0 is an absorbing boundary for St .
The next result provides the boundary classification, using Feller’s terminology,
for the case β > 0.

PROPOSITION 4.1. Let St be as in Theorem 4.1 with β > 0. Then the points 0
and ∞ are, respectively, an entrance and a natural boundary.

PROOF. The scale function for the process, defined as

S(x) =
∫ x

x0

s(y)dy, 0 < x < ∞,(4.6)

where

s(y) = exp
{
−

∫ y

y0

2μ(t)

σ 2(t)
dt

}

and μ(x) and σ 2(x) denote drift and diffusion, equals

S(x) =
∫ x

x0

exp
{
−2β

(
1

y0
− 1

y

)}
dy

= e−2β/y0[xe2β/x − x0e
2β/x0 − 2β Ei(2β/x) + Ei(2β/x0)],

where Ei(z) is the exponential integral

Ei(z) = −
∫ ∞
−z

t−1e−t dt.

Letting S[a, b] = S(b) − S(a), for 0 < a < b < ∞, we have

S(0, b] = lim
a↓0

S[a, b] = ∞,

(4.7)
S[a,∞) = lim

b↑∞S[a, b] = ∞.
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(a)

(b)

(c)

FIG. 1. Three sample paths of the random walk {Kn(m)/nα,m ∈ N0}, with dynamics as in
Theorem 4.1, starting from 1/

√
n with n = 200, for parameter values: (a) β = 0, (b) β = 100,

(c) β = 1000. The figures show how β influences the dynamic clustering structure in the popula-
tion.
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Moreover, the speed measure is given by

M[c, d] =
∫ d

c
[σ 2(t)s(t)]−1 dt

= e2β/y0[Ei(−2β/c) − Ei(−2β/d)]
from which M(0, d] = limc↓0 M[c, d] < ∞ and

M[c,∞) = lim
d↑∞M[c, d] = ∞.(4.8)

Now (4.7) implies that

�(0) = lim
l↓0

∫ x

l
S(l, y]dM(y) = ∞,

�(∞) = lim
l↑∞

∫ r

x
S[y, r)dM(y) = ∞

and (4.8) implies

N(∞) = lim
r↑∞

∫ r

x
S[x, y]dM(y) = ∞,

while

N(0) = lim
l↓0

∫ x

l
S[y, x]dM(y)

= lim
l↓0

∫ x

l

e−2β/y

y

[
xe2β/x − ye2β/y + 2β

(
Ei

(
2β

y

)
− Ei

(
2β

x

))]
dy < ∞

since

lim
y↓0

e−2β/y

y
Ei

(
2β

y

)
< ∞.

The statement now follows from, for example, Karlin and Taylor (1981), Sec-
tion 15.6. �

Hence, when β > 0 neither boundary point is attainable from the interior of the
state space, from which the actual state space is [0,∞) for {St , t ≥ 0} and (0,∞)

for {St , t > 0}. The process can be made to start at 0, in which case it instantly
moves toward the interior of the state space and never comes back. Consequently,
we will use (0,∞) or [0,∞) as state space at convenience, with the agreement
that (0,∞) is referred to {St , t > 0}.

As a corollary, we formalize the well-definedness of the α-diversity diffusion.
Denote by C0(K) the space of continuous functions vanishing at infinity on a
locally compact set K , and let ‖ ·‖ be a norm which makes C0(K) a Banach space.
Recall that a Feller semigroup on C0(K) is a one-parameter family of bounded
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linear operators {T (t), t ≥ 0} on C0(K) such that T (t) has the semigroup property
T (s + t) = T (s)T (t) for all s, t ≥ 0, is strongly continuous, that is,

‖T (t)f − f ‖ → 0 as t → 0, f ∈ C0(K),

and, for all t ≥ 0, T (t) is a contraction, that is, ‖T (t)‖ ≤ 1, is conservative in
the sense that T (t)1 = 1, and is positive in the sense that it preserves the cone of
nonnegative functions.

COROLLARY 4.1. For β ≥ 0, let A0 be the second order differential operator

A0 = β

s

d

ds
+ 1

2
s

d2

ds2(4.9)

and define

D(A0) = {f ∈ C0([0,∞)) ∩ C2((0,∞)) : A0f ∈ C0([0,∞))}.(4.10)

Then {(f, A0f ) :f ∈ D(A0)} generates a Feller semigroup on C0([0,∞)).

PROOF. The result follows from Proposition 4.1 together with Corollary 8.1.2
in Ethier and Kurtz (1986). �

An immediate question that arises is whether the α-diversity diffusion is station-
ary. The following proposition, which concludes the section, provides a negative
answer.

PROPOSITION 4.2. Let {St , t ≥ 0} be as in Theorem 4.1. Then there exists no
stationary density for the process.

PROOF. A stationary density, if it exists, is given by

ψ(x) = m(x)[C1S(x) + C2], x ≥ 0,

where m(x) = [s(x)σ 2(x)]−1, s(x) and S(x) are as in (4.6), and C1,C2 are con-
stants determined in order to guarantee the nonnegativity and integrability to one
of ψ . Here s(x) = e−2β/x and

S(x) = xe2β/x − 2β Ei(2β/x)

so that

ψ(x) = C1 − 2βC1x
−1e−2β/x Ei(2β/x) + C2x

−1e−2β/x.

The second term is not integrable in a neighborhood of infinity, since there exists
an x0 > 0 such that

−x−1e−2β/x Ei(2β/x) > x−1 for all x > x0,

hence C1 must be zero. Since neither the third term is integrable, this gives the
result. �
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5. Normalized inverse-Gaussian diffusions. The α-diversity process con-
structed in the previous section is a key component in the definition of the class
of normalized inverse-Gaussian diffusions. In this section we characterize such
infinite-dimensional processes in terms of their infinitesimal generator, and show
that they can be obtained as the limit in distribution of a certain sequence of Feller
diffusions with finitely-many types. The association of the limit family with the
class of normalized inverse-Gaussian random probability measures will instead be
shown in Section 6.

Consider the (n − 1)-dimensional simplex

�n =
{
z ∈ [0,1]n : zi ≥ 0,

n∑
i=1

zi = 1

}

and the closed subspace of �n given by

�̃n =
{
z ∈ [0,1]n : zi ≥ εn,

n∑
i=1

zi = 1

}
,

so that εn ≤ zi ≤ 1 − (n − 1)εn for zi ∈ �̃n, where {εn} ⊂ R+ is a nonincreasing
sequence such that

0 < εn <
1

n
∀n ≥ 2, nεn ↓ 0.(5.1)

Define, for (z0, z1, . . . , zn) ∈ (0,∞) × �̃n, the differential operator

An = 1

2

n∑
i,j=0

a
(n)
ij (z)

∂2

∂zi ∂zj

+ 1

2

n∑
i=0

b
(n)
i (z)

∂

∂zi

,

where the covariance components (a
(n)
ij (z))i,j=0,...,n are set to be

a
(n)
ij (z) =

⎧⎨
⎩

z0, i = j = 0,
(zi − εn)

(
δij (1 − nεn) − (zj − εn)

)
, 1 ≤ i, j ≤ n,

0, else,
and, for β > 0, the drift components are

b
(n)
0 (z) = β

z0
,

b
(n)
i (z) = β

z0(n − 1)
(1 − zi) − β

z0
zi

− α
(
1 − exp{−(zi − εn)e

1/εn}), i = 1, . . . , n.

Observe that a
(n)
ij (z), for 1 ≤ i, j ≤ n, can be seen as a Wright–Fisher type covari-

ance restricted to [εn,1 − (n − 1)εn]n, since for such indices i, j

a
(n)
ij (z) =

{
(zi − εn)

(
1 − (n − 1)εn − zi

)
, i = j ,

−(zi − εn)(zj − εn), i �= j ,
(5.2)
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and that the first two terms in b
(n)
i (z), i = 1, . . . , n, equal

β

z0(n − 1)

(
1 − (n − 1)εn − zi

) − β

z0
(zi − εn)

from which the behavior at the boundary is clear. For ease of exposition and in
analogy with the previous section, whenever convenient we will denote z0 by s, so
that for instance An can be written more explicitly,

An = β

s

∂

∂s
+ 1

2
s

∂2

∂s2 + 1

2

n∑
i,j=1

a
(n)
ij (z)

∂2

∂zi ∂zj

+ 1

2

n∑
i=1

b
(n)
i (z)

∂

∂zi

(5.3)

with a
(n)
ij (z) and b

(n)
i (z) as above. The domain of An is taken to be

D(An) = {f :f = f0 × f1, f0 ∈ D(A0), f1 ∈ C2(�̃n)},(5.4)

where (f0 × f1)(s, z) = f0(s)f1(z), D(A0) is (4.10), and

C2(�̃n) = {f ∈ C(�̃n) :∃f̃ ∈ C2(Rn), f̃ |�̃n
= f }.

The operator An drives n+1 components: those labeled from 1 to n can be seen as
the frequencies associated to n species in a large population, bounded from below
by εn; the z0 or s component is a positive real variable which evolves indepen-
dently according to the α-diversity diffusion (4.2) and contributes to drive the drift
of the other n components.

Denote by C0([0,∞) × �̃n) the Banach space of continuous functions on
[0,∞) × �̃n which vanish at infinity, equipped with the supremum norm ‖f ‖ =
supx∈[0,∞)×�̃n

f (x), and by P(B) the set of Borel probability measures on B .
Recall that a Markov process {X(t), t ≥ 0}, taking values in a metric space E, is
said to correspond to a semigroup {T (t)}, acting on a closed subspace L of the
space of bounded functions on E, if

E
[
f

(
X(t + s)

)|FX
t

] = T (s)f (X(t)), s, t ≥ 0,

for every f ∈ L, where FX
t = σ(X(u),u ≤ t).

PROPOSITION 5.1. Let An be the operator defined in (5.3) and (5.4). The
closure in C0([0,∞) × �̃n) of An generates a strongly continuous, positive, con-
servative, contraction semigroup {Sn(t)} on C0([0,∞) × �̃n). For every νn ∈
P([0,∞) × �̃n) there exists a strong Markov process Z(n)(·) = {Z(n)(t), t ≥
0} corresponding to {Sn(t)} with initial distribution νn and sample paths in
C[0,∞)×�̃n

([0,∞)) with probability one.

PROOF. We proceed by verifying the hypothesis of the Hille–Yosida the-
orem. Note first that An satisfies the positive maximum principle, that is, for
f ∈ D(An) and (s∗, z∗) ∈ (0,∞) × �̃n such that ‖f ‖ = f (s∗, z∗) ≥ 0 we have
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Anf (s∗, z∗) ≤ 0. Indeed, writing An = A0 + An,1 to indicate the first two and last
two terms in (5.3), it is immediate to check that A0 and An,1 satisfy the positive
maximum principle on [0,∞) and �̃n, respectively. If f0(s∗) ≥ 0, f1(z∗) ≥ 0, then
A0f0(s) ≤ 0 and An,1f1(z) ≤ 0, while if f0(s∗) ≤ 0, f1(z∗) ≤ 0, then A0f0(s∗) ≥
0 and An,1f1(z∗) ≥ 0. In both cases

Anf (s∗, z∗) = f1(z∗)A0f0(s∗) + f0(s∗)An,1f1(z∗) ≤ 0.

Let now L ⊂ D(An) be the algebra generated by functions f = f0 × f1, with
f0 ∈ D(A0), D(A0) as in (4.10) and f1 = zc = z

c1
1 · · · zcn

n ∈ C2(�̃n), ci ∈ N0,
so that L is dense in C0([0,∞) × �̃n), and so is D(An). Denoting c + d(i) =
(c0, . . . , ci + d, . . . , cn), for f ∈ L we have

An

(
f0(s) × zc)
= f1(z)A0f (s)

+ f0(z0)

2

{
n∑

i=1

[
ci(ci − 1)

(−zc + (
1 − (n − 2)εn

)
εnz

c−1(i)

− εn

(
1 − (n − 1)εn

)
zc−2(i)

)
(5.5)

+
n∑

j �=i

cicj

(−zc + εn

(
zc−1(j) + zc−1(i)

− εnz
c−1(i)−1(j)

))]

+
n∑

i=1

ci

[
β

z0(n − 1)

(
zc−1(i) − nzc)

− αzc−1(i) + αeεn exp{1/εn}e− exp{1/εn}zi zc−δi

]}
,

so that the image of An contains functions of type f0 × zc and f0 × e−b0zi zc, with
b0 fixed. For every g(x) ∈ C(K), with K compact, and f (x) = eb0xg(x) ∈ C(K),
there exists a sequence {p(k)} of polynomials on K such that ‖f − p(k)‖ → 0, so
that ‖e−b0zp(k) − g‖ → 0. It follows that the image of An is dense in C0([0,∞)×
�̃n), and so is that of λ − An for all but at most countably many λ > 0. The
first assertion now follows from Theorem 4.2.2 of Ethier and Kurtz (1986) and
by noting that 1 ∈ D(An) and An1 = 0, that is, An is conservative. The second
assertion with D[0,∞)×�̃n

([0,∞)), the space of right-continuous functions with
left limits, in place of C[0,∞)×�̃n

([0,∞)), follows from Theorem 4.2.7 of Ethier
and Kurtz (1986). To prove the almost sure continuity of sample paths, it is enough
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to show that for every z∗ ∈ (0,∞) × �̃n and ε > 0 there exists a function f ∈
D(An) such that

f (z∗) = ‖f ‖, sup
z∈B(z∗,ε)c

f (z) < f (z∗), Anf (z∗) = 0,

where B(z∗, ε)c is the complement of an ε-neighborhood of z∗ in the topology
of coordinatewise convergence [cf. Ethier and Kurtz (1986), Remark 4.2.10]. This
can be done by means of a function f ∈ D(An) which is flat in z∗ and rapidly
decreasing away from z∗, for example, of type f (z) = c1 − c2

∑n
i=0(zi − z∗

i )
4 for

appropriate constants c1, c2. �

For Z(n)(·) as in Proposition 5.1, consider now the mapping ρn(Z
(n)(·)), where

ρn : [0,∞) × �̃n → [0,∞) × ∇∞ is defined as

ρn(z) = (
z0, z(1), z(2), . . . , z(n),0,0, . . .

)
,(5.6)

(z(1), . . . , z(n)) is the vector of decreasingly ordered statistics of (z1, . . . , zn) ∈ �̃n,
and ∇∞ is the closure of the infinite-dimensional ordered simplex, defined in (1.1).
The following proposition states that ρn(Z

(n)(·)) is still a well-defined Markov
process. Define

∇̃n =
{
z ∈ ∇∞ : zn ≥ εn > zn+1 = 0,

n∑
i=1

zi = 1

}

and observe that z ∈ ∇∞ satisfies zi ≤ 1/i for all i, so that ∇̃n is nonempty by
(5.1).

PROPOSITION 5.2. Let Ãn be defined by the right-hand side of (5.3), with
domain

D(Ãn) = {f :f = f0 × f1, f0 ∈ D(A0), f1 ∈ C2
ρn

(∇̃n)},
where D(A0) is as in (4.10) and

C2
ρn

(∇̃n) = {f ∈ C(∇̃n) :f ◦ ρn ∈ C2(�̃n)}.
Then the closure of Ãn in C0([0,∞) × ∇̃n) generates a strongly continuous, pos-
itive, conservative, contraction semigroup {Tn(t)} on C0([0,∞) × ∇̃n). For every
νn ∈ P([0,∞) × �̃n), let Z(n) be as in Proposition 5.1. Then ρn(Z

(n)(·)) is a
strong Markov process corresponding to {Tn(t)} with initial distribution νn ◦ ρ−1

n

and sample paths in C[0,∞)×∇̃n
([0,∞)) with probability one.

PROOF. The result follows from Proposition 2.4 in Ethier and Kurtz (1981),
with �n, ∇n and ρn there substituted by [0,∞) × �̃n, [0,∞) × ∇̃n and (5.6),
respectively. �
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We now turn the attention to the limit of ρn(Z
(n)(·)) when the number of types

goes to infinity. To this end, consider that ∇∞ is a compact and metrizable space
in the topology of coordinatewise convergence, and let C0([0,∞) × ∇∞) be the
Banach space of continuous functions on [0,∞) × ∇∞ which vanish at infinity,
with the supremum norm ‖f ‖ = supz∈[0,∞)×∇∞ |f (z)|. The key issue for showing
that the closure of the differential operator A, defined in (1.4), generates a Feller
diffusion on C0([0,∞) × ∇∞) is the choice of the domain of A. Here we adapt to
the present framework a technique indicated by Ethier and Kurtz (1981). Consider
polynomials ϕm :∇∞ → [0,1] defined as

ϕ1(z) = 1, ϕm(z) =
∞∑
i=1

zm
i , m ≥ 2.(5.7)

Since z ∈ ∇∞ implies zi ≤ i−1, functions ϕm with m ≥ 2 are uniformly conver-
gent, and sums in (1.4) are assumed to be computed on

∇∞ =
{
z = (z1, z2, . . .) : z1 ≥ z2 ≥ · · · ≥ 0,

∞∑
i=1

zi = 1

}
(5.8)

and extended to ∇∞ by continuity, so that, for example,

∞∑
i=1

(1 + zi)
∂

∂zi

ϕ2(z) = 2 + 2ϕ2(z)

instead of 2
∑∞

i=1 zi + 2ϕ2(z). Write

A = A0 + A1(5.9)

to indicate the first two and last two terms in (1.4), and denote

D(A1) = {sub-algebra of C(∇∞) generated by ϕm as in (5.7)}.(5.10)

The domain D(A) of the operator (1.4) is then taken to be

D(A) = {
sub-algebra of C0

([0,∞) × ∇∞
)

generated by
(5.11)

f = f0 × f1 :f0 ∈ D(A0), f1 ∈ D(A1)
}

with D(A0) as in (4.10) and D(A1) as above.

LEMMA 5.1. The sub-algebra D(A1) ⊂ C(∇∞) is dense in C(∇∞).

PROOF. See the proof of Theorem 2.5 in Ethier and Kurtz (1981). �

We also need the following lemma, which shows that the operator A1 is trian-
gulizable.
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LEMMA 5.2. Let A1 be as in (5.9) and, for any m ≥ 2, let Lm be the alge-
bra generated by polynomials as in (5.7), with degree not greater than m. Then
A1 :Lm → Lm.

PROOF. The assertion follows from equation (2.4) in Feng and Sun (2010),
with θ replaced by β/s. �

Then we have the following result.

THEOREM 5.1. Let A be the operator defined by (1.4) and (5.11). The clo-
sure in C0([0,∞) × ∇∞) of A generates a strongly continuous, positive, con-
servative, contraction semigroup {T (t)} on C0([0,∞) × ∇∞). For every ν ∈
P([0,∞) × ∇∞), there exists a strong Markov process Z(·) corresponding to
{T (t)} with initial distribution ν and sample paths in C[0,∞)×∇∞([0,∞)) with
probability one.

PROOF. For every g ∈ C0([0,∞) × ∇∞), define rn :C0([0,∞) × ∇∞) →
C0([0,∞) × ∇̃n) to be the bounded linear map

rng = g|[0,∞)×∇̃n

given by the restriction of g to [0,∞) × ∇̃n. Note that rn :D(A) → D(Ãn), with
Ãn as in Proposition 5.2, and that

‖rng − g‖ −→ 0, g ∈ C0
([0,∞) × ∇∞

)
.(5.12)

Then, for g ∈ D(A) and z ∈ (0,∞) × ∇̃n, we have

|Ãnrng(z) − rnAg(z)|

= 1

2

∣∣∣∣∣
n∑

i,j=1

(
a

(n)
ij (z) − zi(δij − zj )

) ∂2g(z)

∂zi ∂zj

+
n∑

i=1

(
β

z0(n − 1)
(1 − zi) − α

(
exp{−(zi − εn)e

1/εn}))
∂g(z)

∂zi

∣∣∣∣∣
with a

(n)
ij (z) as in (5.2). In particular,

∣∣a(n)
ij (z) − zi(δij − zj )

∣∣
=

{
εn[(zi − εn)(n − 1) + 1 − zi], i = j ,
εn[zi + zj − εn], i �= j ,
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which is bounded above by nεn, from which

|Ãnrng(z) − rnAg(z)|

≤ nεn

n∑
i,j=1

∣∣∣∣ ∂2g(z)

∂zi ∂zj

∣∣∣∣ + β

z0(n − 1)

n∑
i=1

∣∣∣∣∂g(z)

∂zi

∣∣∣∣(5.13)

+
n∑

i=1

exp{−(zi − εn)e
1/εn}

∣∣∣∣∂g(z)

∂zi

∣∣∣∣.
For g ∈ D(A) of type g = f0 × f1, with f0 ∈ D(A0) and f1 = ϕm1 · · ·ϕmk

, we
have

n∑
i=1

∣∣∣∣∂g(z)

∂zi

∣∣∣∣ = |f0(z0)|
n∑

i=1

k∑
j=1

mjz
mj−1
i

∏
h �=j

ϕmh

(5.14)

≤ |f0(z0)|
k∑

j=1

mj

n∑
i=1

z
mj−1
i

so that
n∑

i=1

exp{−(zi − εn)e
1/εn}

∣∣∣∣∂g(z)

∂zi

∣∣∣∣ ≤ nεn|f0(z0)|
k∑

j=1

mj → 0

uniformly as n → ∞ by (5.1). Furthermore,
n∑

i,j=1

∣∣∣∣ ∂2g(z)

∂zi ∂zj

∣∣∣∣
≤ |f0(z0)|

∞∑
i,j=1

[
∂ijϕmh

∏
� �=h

ϕm�
+ ∑

q �=h

∂iϕmh
∂jϕmq

∏
� �=h,q

ϕm�

]

= |f0(z0)|
[
mh(mh − 1)ϕmh−2

∏
� �=h

ϕm�

+ ∑
q �=h

mhmqϕmh+mq−2
∏

� �=h,q

ϕm�

+ ∑
q �=h

mhmqϕmh−1ϕmq−1
∏

� �=h,q

ϕm�

]

≤ |f0(z0)|
[
mh(mh − 1) + 2

∑
q �=h

mhmq

]
,

whose right-hand side is bounded. Since also the right-hand side of (5.14) is
bounded above by |f0(z0)|∑k

j=1 mj , it follows by (5.1) that the right-hand side
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of (5.13) goes to zero uniformly and, by means of (5.12), that

‖Ãnrng − Ag‖ −→ 0, g ∈ D(A).(5.15)

Proposition 5.2 implies that Ãn is a dissipative operator for every n ≥ 1, so that by
(5.15) A is dissipative. Moreover, Lemma 5.1 and Lemma 5.2, respectively, imply
that D(A) and the range of λ − A, for all but at most countably many λ > 0, are
dense in C0([0,∞) × ∇∞). The fact that the closure of A generates a strongly
continuous contraction semigroup {T (t)} on C0([0,∞) × ∇∞) now follows from
the Hille–Yosida theorem [see Theorem 1.2.12 in Ethier and Kurtz (1986)]. It is
also immediate to check that A1 = 0, so that (1,0) ∈ (g, Ag) and {T (t)} is con-
servative. Finally, (5.15), together with Lemma 5.1 and Theorem 1.6.1 of Ethier
and Kurtz (1986), implies the semigroup convergence

‖Tn(t)rng − T (t)g‖ −→ 0, g ∈ C0
([0,∞) × ∇∞

)
,(5.16)

uniformly on bounded intervals. From Proposition 5.2, {Tn(t)} is a positive opera-
tor for every n ≥ 1, so that {T (t)} is in turn positive.

The second assertion of the theorem, with D[0,∞)×∇∞([0,∞)) in place of
C[0,∞)×∇∞([0,∞)), follows from Theorem 4.2.7 in Ethier and Kurtz (1986), while
the continuity of sample paths follows from a similar argument to that used in the
proof of Proposition 5.1. �

The following corollary formalizes the convergence in distribution of the se-
quence of processes of Proposition 5.2 to the infinite-dimensional diffusion of
Theorem 5.1.

COROLLARY 5.1. Let Z(n)(·) be as in Proposition 5.1 with initial distribution
νn ∈ P([0,∞) × �̃n), and let Z(·) be as in Theorem 5.1 with initial distribution
ν ∈ P([0,∞) × ∇∞). If νn ◦ ρ−1

n ⇒ ν on ∇∞, then

ρn

(
Z(n)(·)) ⇒ Z(·) in C[0,∞)×∇∞([0,∞))

as n → ∞.

PROOF. The result with D[0,∞)×∇∞([0,∞)) in place of C[0,∞)×∇∞([0,∞))

follows from Proposition 5.2, together with (5.16) and Theorem 4.2.5 in Ethier
and Kurtz (1986). The fact that the weak convergence holds in C[0,∞)×∇∞([0,∞))

follows from relativization of the Skorohod topology. �

6. A population model for normalized inverse-Gaussian diffusions. By
formalizing the population process briefly mentioned in Section 4 for construct-
ing the α-diversity diffusion, in this section we provide a discrete approximation,
based on a countable number of particles, for the diffusion with operator (1.4).
More specifically, this is obtained as the limit in distribution of the process of fre-
quencies of types associated with a set of particles sampled from a normalized
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inverse-Gaussian random probability measure, jointly with the normalized version
of the diversity process.

In view of (2.4), the conditional distribution of the ith component of an ex-
changeable sequence (X1, . . . ,Xn) drawn from a random probability measure of
Gibbs type can be written

P{Xi ∈ ·|X1, . . . ,Xi−1,Xi+1, . . . ,Xn}
= g0(n − 1,Kn−1,i)ν0(·)(6.1)

+ g1(n − 1,Kn−1,i)

Kn−1,i∑
j=1

(nj − α)δX∗
j
(·),

where ν0 is a nonatomic probability measure and (X∗
1, . . . ,X∗

Kn−1,i
) are the Kn−1,i

distinct values in (X1, . . . ,Xi−1,Xi+1, . . . ,Xn). For fixed n, define a Markov
chain {X(n)(m),m ≥ 0} on X

n by means of the transition semigroup

Tnf (x) =
∫

f (y)pn(x,dy), f ∈ C0(X
n),

where x, y ∈ X
n, C0(X

n) is the space of Borel-measurable continuous functions
on X

n vanishing at infinity,

pn(x,dy) = 1

n

n∑
i=1

p̃1
(
dyi |x(−i)

) ∏
k �=i

δxk
(dyk),(6.2)

x(−i) = (x1, . . . , xi−1, xi+1, . . . , xn) and p̃1(dy|x(−i)) is (6.1). The interpretation is
as follows. At each transition one component is selected at random with uniform
probability, and is updated with a value sampled from (6.1), conditional on all
other components, which are left unchanged. Hence, the incoming particle is either
a new type (a mutant offspring) or a copy of an old type (a copied offspring).
Embed now the chain in a pure jump Markov process on X

n with exponentially
distributed waiting times with intensity one, and denote the resulting process by
X(n)(·) = {X(n)(t), t ≥ 0}. The infinitesimal generator of X(n)(·) is given by

Bnf (x) = 1

n

n∑
i=1

g
(n−1,i)
0 [Pif (x) − f (x)]

(6.3)

+ 1

n

n∑
i=1

Kn−1,i∑
j=1

g
(n−1,i)
1 (nj − α)[�j∗if (x) − f (x)]

with domain

D(Bn) = {f :f ∈ C0(X
n)}.(6.4)

Here �j∗i :C0(X
n) → C0(X

n−1) is defined as

�j∗if (x1, . . . , xn) = f (x1, . . . , xi−1, x
∗
j , xi+1, . . . , xn)(6.5)
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for x∗
j ∈ (x∗

1 , . . . , x∗
Kn−1,i

), P is the transition semigroup

Pg(z) =
∫

g(y)p1(z,dy), g ∈ C0(X),(6.6)

where p1(z,dy) is given by

p1(z,dy) = ν0(dy),(6.7)

Pif denotes P acting on the ith coordinate of f , and we have set for brevity

g
(n−1,i)
j = gj (n − 1,Kn−1,i), j = 0,1.(6.8)

Defining (6.6) and (6.7) separately is somewhat redundant, but will allow us to
provide a general expression for the global mutation rate in this particle represen-
tation before making the assumptions of nonatomicity and parent independence as
in (6.7). See (A.15) below.

Define now the map w : Xn → ∇∞ by

w(x) = w
(
x(n)) = (z1, . . . , zKn,0,0, . . .),(6.9)

where zj and Kn, respectively, denote the relative frequency of the j th most abun-
dant type and the number of types in X(n). Let also A be as in (1.4). The next
theorem states that[

Kn(·)/nα,w
(
X(n)(·))] = {[

Kn(t)/nα,w
(
X(n)(t)

)]
, t ≥ 0

}
,(6.10)

if appropriately rescaled in time, converges in distribution to the process with gen-
erator A. The proof is deferred to the Appendix and contains, as a byproduct,
a more formal derivation of Theorem 4.1.

THEOREM 6.1. Let X(n)(·) be the X
n-valued process with generator (6.3) and

(6.4), w : Xn → ∇∞ as in (6.9) and Z(·) as in Theorem 5.1. If[
Kn(0)/nα,w

(
X(n)(0)

)] ⇒ Z(0),(6.11)

then [
Kn(n

3/2t)/nα,w
(
X(n)(n2t/2)

)] ⇒ Z(t)(6.12)

in C[0,∞)×∇∞([0,∞)).

We conclude the section by showing the reversibility of the particle process.
Denote the joint distribution of an n-sized sequence from the generalized Pólya
urn scheme (2.4) by

Mn(dx1, . . . ,dxn)

= ν0(dx1)

n−1∏
i=1

[
g0(i,Ki)ν0(dxi+1) + g1(i,Ki)

Ki∑
j=1

(nj − α)δx∗
j
(dxi+1)

]
.



NORMALIZED INVERSE-GAUSSIAN DIFFUSIONS 413

PROPOSITION 6.1. Let X(n)(·) be the X
n-valued process with generator given

by (6.3) and (6.4). Then X(n)(·) is reversible with respect to Mn.

PROOF. Let qn(x,dy) denote the infinitesimal transition kernel on X
n ×

B(Xn) of X(n). Denoting by λn the rate at which the discontinuities of X(n) occur,
and recalling (6.2), we have

Mn(dx)qn(x,dy)

= Mn(dx)λn

1

n

n∑
i=1

p1
(
dyi |x(−i)

) ∏
k �=i

δxk
(dyk)

= λn

n

n∑
i=1

Mn−1
(
dx(−i)

)
p1

(
dxi |x(−i)

)
p1

(
dyi |x(−i)

) ∏
k �=i

δxk
(yk)

= λn

n

n∑
i=1

Mn−1
(
dy(−i)

)
p1

(
dxi |y(−i)

)
p1

(
dyi |y(−i)

) ∏
k �=i

δyk
(xk)

= Mn(dy)
1

n

n∑
i=1

λnpn(dxi |y−i )
∏
k �=i

δyk
(xk) = Mn(dy)qn(y,dx),

giving the result. �

7. Conditioning on the alpha-diversity. We conclude by discussing an inter-
esting connection with the two-parameter model (1.2). In the Introduction it was
observed that conditioning on the α-diversity diffusion St to be constant in the op-
erator (1.4) only yields the special case β = 0 and α = 1/2, consistently with the
associated random probability measures. It turns out that performing the same con-
ditioning operation in the particle construction of the previous section, before tak-
ing the limit for n → ∞, yields a particular instance of the two-parameter model.
The following proposition states that under this pre-limit conditioning with St ≡ s,
the normalized inverse-Gaussian model with operator (1.4) reduces to the two-
parameter model with (θ,α) = ((αs)2, α) and α = 1/2.

PROPOSITION 7.1. Let X(n)(·) be as in Theorem 6.1, w be as in (6.9),
Z̃(n)(·) be defined by the left-hand side of (6.12), and denote by V θ,α(·) the process
with operator Lθ,α as in (1.2). Then[

Z̃(n)(·)|St ≡ s
] ⇒ V s2/4,1/2(·)

in C[0,∞)×∇∞([0,∞)) as n → ∞.

PROOF. Let α = 1/2 throughout the proof. In the pre-limit version of the pro-
cess of frequencies derived from the particle process, that is, (6.9), conditioning
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on St ≡ s means conditioning on Kn(·) being constant over time, hence with zero
conditional first and second moment. Denote

z − εi = (z1, . . . , zi−1, zi − 1, zi+1, . . .)

and assume z has k nonnull components obtained from n particles. Then, as in
Section 6, when a particle is removed we have the change of frequency

z �→ z − εi

n
w.p. zi,

where z − εi/n has

(1): k nonnull components w.p. 1 − m1,n

n
,

(2): k − 1 nonnull components w.p.
m1,n

n
.

Conditional on case (1), the number of nonnull components remains k if the in-
coming particle is a copy of an existing type, that is, we observe either of

z − εi

n
�→ z − εi

n
+ εi

n
w.p. g

(n,k)
1 (ni − 1 − α)/

(
1 − g

(n,k)
0

)
,

z − εi

n
�→ z − εi

n
+ εj

n
w.p. g

(n,k)
1 (nj − α)/

(
1 − g

(n,k)
0

)
,

where g
(n,k)
0 and g

(n,k)
1 are as in (6.8), while conditional on case (2) we observe

z − εi

n
�→ z − εi

n
+ εk+1

n
w.p. 1.

For λn = n2/2, the generator of the process Z̃(n)(·) in this case can be written

Bn,1f1(z)

= lim
δt↓0

1

δt

{
λnδt

k∑
i=1

zi

[
f1(z)

(
1 − m1,n

n

)
g

(n,k)
1 (ni − 1 − α)

1 − g
(n,k)
0

+ ∑
j �=i

f1

(
z − εi

n
+ εj

n

)(
1 − m1,n

n

)
g

(n,k)
1 (nj − α)

1 − g
(n,k)
0

+ f1

(
z − εi

n
+ εk+1

n

)
m1,n

n

]

+ (1 − λnδt)f1(z) + O((δt)2) − f1(z)

}

for f1 ∈ C2(∇n),

∇n =
{
z ∈ ∇∞ : zn+1 = 0,

n∑
i=1

zi = 1

}
,(7.1)
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and ∇∞ as in (5.8). Exploiting the relation(
1 − m1,n

n

)
g1

∑k
j=1(nj − α)

1 − g0
+ m1,n

n
= 1,

we can write

Bn,1f1(z)

= λn

k∑
i=1

zi

{
[f1(z) − f1(z)]

(
1 − m1,n

n

)
g

(n,k)
1 (ni − 1 − α)

1 − g
(n,k)
0

+ ∑
j �=i

[
f1

(
z − εi

n
+ εj

n

)
− f1(z)

](
1 − m1,n

n

)
g

(n,k)
1 (nj − α)

1 − g
(n,k)
0

(7.2)

+
[
f1

(
z − εi

n
+ εk+1

n

)
− f1(z)

]
m1,n

n

}

= λn

∑
i,j

zi

[
f1

(
z − εi

n
+ εj

n

)
− f1(z)

](
1 − m1,n

n

)
g

(n,k)
1 (nj − α)

1 − g
(n,k)
0

+ λn

k∑
i=1

zi

[
f1

(
z − εi

n
+ εk+1

n

)
− f1(z)

]
m1,n

n
.

By making use of Taylor’s theorem, it can be easily verified that the following
three relations holds:∑

i,j

zizj

[
f1

(
z − εi

n
+ εj

n

)
− f1(z)

]
= 1

n2

∑
i,j

zi(δij − zj )
∂2f1

∂zi ∂zj

+ o(n−2),

∑
i,j

zi

[
f1

(
z − εi

n
+ εj

n

)
− f1(z)

]
= 1

n

∑
i

∂f1

∂zi

− k

n

∑
i

zi

∂f1

∂zi

+ O(n−2),

∑
i

zi

[
f1

(
z − εi

n
+ εk+1

n

)
− f1(z)

]
= −1

n

∑
i

zi

∂f1

∂zi

+ O(n−2).

By means of the last three expressions, we can write (7.2) as

Bn,1f1(z) = λn

n2

∑
i,j

zi(δij − zj )
∂2f1(z)

∂zi ∂zj

+ Bdr
n,1f1(z) + o(λnn

−2),

where Bdr
n,1f1(z) is the drift term, given by

Bdr
n,1f1(z) = λn

n

[(
αkg1

1 − g0

(
1 − m1,n

n

)
− m1,n

n

) ∑
i

zi

∂f1

∂zi

− αg1

1 − g0

(
1 − m1,n

n

) ∑
i

∂f1

∂zi

]
.
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Using (3.5) and Proposition 3.2, it can be seen that

αkg1

1 − g0

(
1 − m1,n

n

)
− m1,n

n
≈ −αkm1,n

n2 ≈ −α2s2

n

and

αg1

1 − g0

(
1 − m1,n

n

)
≈ α

n
,

yielding

Bn,1f1(z) = λn

n2

∑
i,j

zi(δij − zj )
∂2f1(z)

∂zi ∂zj

− λn

n2

∑
i

(
(αs)2zi + α

) ∂f1(z)

∂zi

+ o(λnn
−2).

For f ∈ C(∇∞), define r̃n :C(∇∞) → C(∇n) to be

r̃nf = f |∇n,(7.3)

namely, the restriction of f to ∇̃n, and note that

‖r̃nf − f ‖ −→ 0, f ∈ C(∇∞).

Recalling that λn = n2/2 implies that for f as in (5.10) and Lθ,α as in (1.2),∥∥L(αs)2,αf − Bn,1r̃nf
∥∥ → 0.

The strong convergence of the corresponding semigroups on C(∇∞), similar to
(5.16), and the statement of the proposition now follow from an application of The-
orems 1.6.1 and 4.2.11 in Ethier and Kurtz (1986), together with the relativization
of the Skorohod topology to C[0,∞)×∇∞([0,∞)). �

APPENDIX

Proof of Proposition 3.2. Consider first that Vn,k appearing in (2.5), in the
case of generalized gamma processes, can be written [cf. Lijoi, Mena and Prünster
(2007b)]

Vn,k = ak

�(n)

∫ ∞
0

xn exp
{
−a

α
[(τ + x)α − τα]

}
(τ + x)αk−n dx.

Together with (2.3), this leads to writing

g0(n, k) = Vn,k − (n − αk)Vn+1,k

Vn,k

= 1 − (1 − αk/n)w(n, k),(A.1)
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where

w(n, k) =
∫ ∞

0 xn exp{−(a/α)[(τ + x)α − τα]}(τ + x)αk−n−1 dx∫ ∞
0 xn−1 exp{−(a/α)[(τ + x)α − τα]}(τ + x)αk−n dx

.

Denote by f (x) the integrand of the denominator of w(n, k), so

w(n, k) =
∫ ∞

0

x

τ + x
f (x)dx

/ ∫ ∞
0

f (x)dx.

Since f (x) is unimodal, by means of the Laplace method one can approximate
f (x) with the kernel of a normal density with mean given by

x∗ = arg max
x>0

xn−1 exp
{
−a

α
[(τ + x)α − τα]

}
(τ + x)αk−n(A.2)

and variance given by −[f ′′(x)]−1|x=x∗ . It follows that

w(n, k) ≈ fN(x∗
N)C(x∗

N,−[f ′′
N(x)]−1|x=x∗)

f (x∗
D)C(x∗

D,−[f ′′(x)]−1|x=x∗)
,

where fN denotes the integrand of the numerator, x∗
N and x∗

D the modes of the inte-
grands of numerator and denominator, respectively, and C(x, y) is the normalizing
constant of a normal kernel with mean x and variance y, yielding

w(n, k) ≈ fN(x∗
N)

f (x∗
D)

(
f ′′(x∗

D)

f ′′
N(x∗

N)

)1/2

.(A.3)

From (A.2), the mode x∗
D is the only positive real root of the equation

(n − 1)x−1 + (αk − n)(τ + x)−1 − a(τ + x)α−1 = 0,(A.4)

which, for α �= 1/2,1/3, involves finding roots of polynomials of degree greater
than 4. When α = 1/2 we have

x∗
D = (k − 2)2

12a2 − τ

3

+ 48a2τ(n − 1)(k − 2) + [4a2τ − (k − 2)2]2

6 · 21/3a2p1,D(a, τ, n, k)

+ p1,D(a, τ, n, k)

12 · 21/3a2 ,

where

p1,D(a, τ, n, k)

= {
p2,D + [

p2
2,D + 4

(−48a2τ(n − 1)(k − 2) − (
4a2τ − (k − 2)2)2)3]1/2}1/3
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and p2,D = p2,D(a, τ, n, k) with

p2,D(a, τ, n, k) = 2(k − 2)3[(k − 2)3 − 12a2τ(k + 4 − 6n)]
+ 96a4τ 2(

k(k + 2) + 10 − 6n(k + 4) + 18n2)
− 128a6τ 3.

Similarly, one finds that

x∗
N = (k − 2)2

12a2 − τ

3

+ 48a2τn(k − 2) + [4a2τ − (k − 2)2]2

6 · 22/3a2p1,N (a, τ, n, k)

+ p1,N (a, τ, n, k)

12 · 21/3a2 ,

where

p1,N (a, τ, n, k) = [p2,N + (p3,N )1/2]1/3

with

p2,N (a, τ, n, k) = p2,D(a, τ, n, k) − 144a2τ [4a2τ(k + 1 − 6n) − (k − 2)3]
and

p3,N (a, τ, n, k)

= −33210a6n2τ 3[
(k − 2)4 − 2n(k − 2)3

− 4a2τ [8 + 2k2 + 9n(3n + 4) − 2k(9n + 4)] + 16a4τ 2]
.

When k ≈ snα [cf. (3.7) above] and α = 1/2, it can be checked that

n−1p1,i(a, τ, n, k) → 21/3s2, i = N,D,(A.5)

from which

n−1x∗
i → (s/2a)2, i = N,D.(A.6)

Using this fact, one finds that

fN(x∗
N)

f (x∗
D)

≈ 1

1 + τ(s/2a)−2 .

Computing also the ratio of the two second derivatives, it can be seen that
w(n, k) → 1, which by means of (A.1) and (2.6) implies (3.8). In order to find
the speed at which w(n, k) goes to 1, consider

1 − w(n, k) =
∫ ∞

0

τ

τ + x
f (x)dx

/ ∫ ∞
0

f (x)dx.
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The denominator is unchanged, while the mode of τ/(τ + x)f (x) is

x′∗
N = (k − 4)2

12a2 − t

3

− −48a2t (n − 1)(k − 4) − [4a2t − (k − 4)2]2

6 · 22/3a2p′
1,D(a, τ, n, k)

+ p′
1,D(a, τ, n, k)

12 · 21/3a2 ,

where

p′
1,D(a, τ, n, k)

= {
p2,D + [

p2
2,D + 4

(−48a2t (n − 1)(k − 4) − (
4a2t − (k − 4)2)2)3]1/2}1/3

and p2,D = p2,D(a, τ, n, k) with

p′
2,D(a, τ, n, k)

= 2(k − 4)3[(k − 4)3 − 12a2τ(k + 2 − 6n)]
+ 96a4τ 2(

k(k − 2) + 10 − 6n(k + 2) + 18n2) − 64a6τ 3.

Moreover, p′
2,D satisfies (A.5), and (A.6) follows. Unfortunately the fact that the

two modes grow with an asymptotically equivalent rate is too rough an approxima-
tion for our purposes here, which ignores how far apart they are if this is negligible
with respect to the growth speed. Indeed, it turns out that

n−1/2(x∗
D − x∗

N) → s/a2.

Using this information in the Laplace approximation for w(n, k) − 1 yields

n
(
1 − w(n, k)

) → 2a
√

τ/s = β/s

with β as in the statement of the proposition. From (A.1) it is now easy to see that

ng0(n, k) − αkw(n, k) = n
(
1 − w(n, k)

)
,

which provides the second order approximation for g0(n, k),

g0(n, k) = αk

n
+ β/sn

n
+ o(n−1),

where the first term is of order n−1/2, yielding immediately, by means of (2.6), the
second order term for g1(n, k), that is,

g1(n, k) = 1

n
− β/sn

n2 + o(n−2).
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Proof of Theorem 6.1. We can write the generator of (6.10) as

Bn(f0 × f1) = f1Bn,0f0 + f0Bn,1f1,(A.7)

where Bn,0 and Bn,1 drive Kn(·)/nα and w(X(n)(·)), respectively, and f0 ∈
D(A0), with D(A0) as in (4.10), f1 ∈ C2(∇n) and ∇n is as in (7.1). Based on (4.1),
while retaining m1,n temporarily, we can write

Bn,0f0

(
k

nα

)

= lim
δt↓0

1

δt

{
δt

[
f0

(
k + 1

nα

)(
1 − m1,n

n

)
g

(n−1,k)
0

+ f0

(
k − 1

nα

)
m1,n

n
g

(n−1,k−1)
1

(
n − 1 − α(k − 1)

)

+ f0

(
k

nα

)[
1 −

(
1 − m1,n

n

)
g

(n−1,k)
0

− m1,n

n
g

(n−1,k−1)
1

(
n − 1 − α(k − 1)

)]]

+ (1 − δt)f0

(
k

nα

)
+ O((δt)2) − f0

(
k

nα

)}

=
(

1 − m1,n

n

)
g

(n−1,k)
0

[
f0

(
k + 1

nα

)
− f0

(
k

nα

)]

+ m1,n

n
g

(n−1,k−1)
1

(
n − 1 − α(k − 1)

)[
f0

(
k − 1

nα

)
− f0

(
k

nα

)]
.

An application of Taylor’s theorem yields

Bn,0f0

(
k

nα

)

=
(

1 − m1,n

n

)
g

(n−1,k)
0

×
[
f0

(
k

nα

)
+ 1

nα
f ′

0

(
k

nα

)

+ 1

2n2α
f ′′

0

(
k

nα

)
+ O(n−3α) − f0

(
k

nα

)]

+ m1,n

n
g

(n−1,k−1)
1

(
n − 1 − α(k − 1)

)

×
[
f0

(
k

nα

)
− 1

nα
f ′

0

(
k

nα

)
+ 1

2n2α
f ′′

0

(
k

nα

)

+ O(n−3α) − f0

(
k

nα

)]
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= 1

nα
f ′

0

(
k

nα

)[(
1 − m1,n

n

)
g

(n−1,k)
0

− m1,n

n
g

(n−1,k−1)
1

(
n − 1 − α(k − 1)

)]

+ 1

2n2α
f ′′

0

(
k

nα

)[(
1 − m1,n

n

)
g

(n−1,k)
0

+ m1,n

n
g

(n−1,k−1)
1

(
n − 1 − α(k − 1)

)]

+ O(n−4α).

From (4.4) and (4.5) we have

Bn,0f0

(
k

nα

)
= 1

nα
f ′

0

(
k

nα

)[
β/sn

n
+ o(n−1)

]

+ 1

2n2α
f ′′

0

(
k

nα

)[
sn

nα
+ O(n−1−2α)

]
+ O(n−4α)

= β/sn

n1+α
f ′

0

(
k

nα

)
+ sn

2n3α
f ′′

0

(
k

nα

)
+ o(n−1−α),

from which it follows that

‖A0f0 − n3/2Bn,0f0‖ → 0(A.8)

as n → ∞, with A0 as in (4.9). Since (6.11) implies Kn(0)/nα ⇒ S0, the previous
expression, together with Theorems 1.6.1 and 4.2.5 in Ethier and Kurtz (1986),
implies (4.3) with C[0,∞)([0,∞)) replaced by D[0,∞)([0,∞)), while (4.3) follows
from relativization of the Skorohod topology to C[0,∞)([0,∞)).

In order to describe Bn,1 in (A.7), define

φn(μ) = f1(〈h1,μ〉, . . . , 〈hn,μ〉), f1 ∈ C2
0(Rn), hi ∈ C(X),(A.9)

and

μn(t) = 1

n

n∑
i=1

δXi(t), t ≥ 0.(A.10)

Then the generator of the P(X)-valued process μn(·) = {μn(t), t ≥ 0} can be
written

Bnφn(μ) = 1

n

n∑
i=1

g
(n−1,i)
0 [〈Phi,μ〉 − 〈hi,μ〉] ∂f1

∂zi

− α

n

n∑
i=1

g
(n−1,i)
1 Kn−1,i

[〈
Q(n−1,i)hi,μ

〉 − 〈hi,μ〉] ∂f1

∂zi

(A.11)

+ 1

n

∑
1≤k �=i≤n

g
(n−1,i)
1 [〈hihj ,μ〉 − 〈hi,μ〉〈hj ,μ〉] ∂2f1

∂zi ∂zj

,
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where gzi
is the derivative of g with respect to its ith argument and Q(n−1,i) is

defined as

Q(n−1,i)g(z) =
∫

g(y)p∗
n−1,i (z,dy), g ∈ C0(X),(A.12)

with

p∗
n−1,i(z,dy) = 1

Kn−1,i

Kn−1,i∑
j=1

δx∗
j
(dy).(A.13)

Unlabel now the model by choosing φn(μ) as in (A.9) with hj (·) being the in-
dicator function of the j th largest atom in μ, so that 〈hj ,μ〉 = zj is the relative
frequency associated with the j th most abundant species. Note that some argu-
ments of f1(z1, . . . , zn) can be null since Kn−1,i ≤ Kn ≤ n. With this choice we
have 〈hihj ,μ〉 − 〈hi,μ〉〈hj ,μ〉 = ziδij − zizj , where δij is the Knonecker delta,
and, under (6.6) and (A.12),

〈Phi,μ〉 − 〈hi,μ〉 =
n∑

j=1

p1(x
∗
j ,dx∗

i )zj − zi

=
n∑

j=1

[p1(x
∗
j ,dx∗

i ) − δij ]zj

and

〈
Q(n−1,i)hi,μ

〉 − 〈hi,μ〉 =
n∑

j=1

[p∗
n−1,i(x

∗
j ,dx∗

i ) − δij ]zj .

It follows that Bn reduces to

Bn,1f1 = 1

n

n∑
i=1

g
(n−1,i)
0

(
n∑

j=1

[p1(x
∗
j ,dx∗

i ) − δij ]zj

)
∂f1

∂zi

− α

n

n∑
i=1

g
(n−1,i)
1 Kn−1,i

(
n∑

j=1

[p∗
n−1,i(x

∗
j ,dx∗

i ) − δij ]zj

)
∂f1

∂zi

(A.14)

+ 1

n

n∑
i,j=1

g
(n−1,i)
1 zi(δij − zj )

∂2f1

∂zi ∂zj

.

Here a mutation from type i to type j occurs at rate qij = qij (z) given by

qij = 1

n

[
g

(n−1,i)
0 [p1(i, {j}) − δij ]

(A.15)
− αg

(n−1,i)
1 Kn−1,i[p∗

n−1,i (i, {j}) − δij ]],
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where p1(i, {j}) and p∗
n−1,i (i, {j}) stand for p1(x

∗
i ,dx∗

j ) and p∗
n−1,i(x

∗
i ,dx∗

j ).
When (6.7) holds, from the nonatomicity of ν0 we have p1(z,dy) = 0 for every
y ∈ X, and when (A.13) holds, we have p∗

n−1,i(z,dy) = K−1
n−1,i , from which

qij = 1

n

[−δij g
(n−1,i)
0 − αg

(n−1,i)
1 + αg

(n−1,i)
1 Kn−1,iδij

]

= 1

n

[−δij

(
1 − (n − 1)g

(n−1,i)
1

) − αg
(n−1,i)
1

]

= 1

n

[
−δij

(
1 − (n − 1)

(
1

n − 1
− β/s

(n − 1)2

))
(A.16)

− α

(
1

n − 1
− β/s

(n − 1)2

)]
+ o(n−2)

= − δijβ/s

n(n − 1)
− α

n(n − 1)
+ o(n−2),

where the second equality follows from (2.6) and the third from (3.9). Once again
it is clear that the key point for determining the limiting behavior of the diffu-
sion is the second order approximation of the predictive weights, as obtained in
Proposition 3.2. Hence, we have

n∑
i=1

n∑
j=1

qij zj = −
n∑

i=1

[
ziβ/s

n(n − 1)
+ α

n(n − 1)
+ o(n−2)

]
,

from which (A.14), substituting (3.9) in the third term, reduces to

Bn,1f1 =
n∑

i,j=1

[n−2 − O(n−3)]zi(δij − zj )
∂2f1

∂zi ∂zj

−
n∑

i=1

[
ziβ/s

n(n − 1)
+ α

n(n − 1)
+ o(n−2)

]
∂f1

∂zi

,

which in turn implies that

‖A1f1 − (n2/2)Bn,1r̃nf1‖ → 0(A.17)

with A1 as in (5.9), f1 ∈ D(A1) as in (5.10) and r̃n as in (7.3). From (A.8) and
(A.17) it follows that

‖A(f0 × f1) − (r̃nf1)n
3/2Bn,0f0 − f0n

2Bn,1r̃nf1/2‖ → 0

with A as in (1.4) and (f0 × f1) as in (5.11). The fact that (6.12) holds in
D[0,∞)×∇∞([0,∞)) follows from the density of (5.11) in C0([0,∞) × ∇∞), to-
gether with Theorems 1.6.1 and 4.2.11 in Ethier and Kurtz (1986), which imply,
respectively, the strong convergence of the associated semigroups on C0([0,∞) ×
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∇∞), similarly to (5.16), and the weak convergence of the probability measures
induced on D[0,∞)×∇∞([0,∞)). The same assertion with C[0,∞)×∇∞([0,∞)) in
place of D[0,∞)×∇∞([0,∞)) now follows from relativization of the Skorohod
topology.
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