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We develop a dynamic point process model of correlated default timing
in a portfolio of firms, and analyze typical default profiles in the limit as the
size of the pool grows. In our model, a firm defaults at a stochastic intensity
that is influenced by an idiosyncratic risk process, a systematic risk process
common to all firms, and past defaults. We prove a law of large numbers for
the default rate in the pool, which describes the “typical” behavior of defaults.

1. Introduction. The financial crisis of 2007–09 has made clear the need to
better understand the diversification of risk in financial systems with interacting
entities. Prior to the crisis, the common belief was that risk had been diversified
away by using the tools of structured finance. As it turned out, the correlation
between assets was much larger than supposed. The collapse fed on itself and
created a spiral.

We study the behavior of defaults in a large portfolio of interacting firms. We
develop a dynamic point process model of correlated default timing, and then an-
alyze typical default profiles in the limit as the number of constituent firms grows.
Our empirically motivated model incorporates two distinct sources of default clus-
tering. First, the firms are exposed to a risk factor process that is common to all
entities in the pool. Variations in this systematic risk factor generate correlated
movements in firms’ conditional default probabilities. Das, Duffie, Kapadia and
Saita [5] show that this mechanism is responsible for a large amount of corporate
default clustering in the U.S. Second, a default has a contagious impact on the
health of other firms. This impact fades away with time. Azizpour, Giesecke and
Schwenkler [1] provide statistical evidence for the presence of such self-exciting
effects in U.S. corporate defaults, after controlling for the exposure of firms to
systematic risk factors.

More precisely, we assume that a firm defaults at an intensity, or conditional ar-
rival rate, which follows a mean-reverting jump-diffusion process that is driven by
several terms. The first term, a square root diffusion, represents an independent,

Received January 2011; revised January 2012.
MSC2010 subject classifications. 91G40, 60H10, 60G55, 60G57, 91680.
Key words and phrases. Interacting point processes, law of large numbers, portfolio credit risk,

contagion.

348

http://www.imstat.org/aap/
http://dx.doi.org/10.1214/12-AAP845
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


DEFAULT CLUSTERING IN LARGE PORTFOLIOS: TYPICAL EVENTS 349

firm-specific source of risk. The second term is a systematic risk factor that in-
fluences all firms, and that generates diffusive correlation between the intensities.
For simplicity, we take this systematic risk factor to be an Ornstein–Uhlenbeck
process. The third term affecting the intensity is the default rate in the pool. De-
faults cause jumps in the intensity; they are common to all surviving firms. We
thus have two sources of correlation between the firms: the dependence on the
systematic risk factor and the influence of past defaults. While this formulation
parsimoniously captures several of the sources of default correlation identified in
empirical research, the intricate event dependence structure presents a challenge
for the mathematical analysis of the system.

Our goal is to understand the behavior of the default rate in the portfolio in the
limit as the number of firms in the pool grows. Large stochastic systems often tend
to have macroscopic organization due to limit theorems such as the law of large
numbers. This allows us to identify typical behavior. Our main result is a law of
large numbers for the default rate in the pool; this describes the macroscopically
typical profile. The limiting default rate satisfies an integral equation that makes
explicit the role of the contagion exposure for the behavior of default clustering
in the pool. The result depends heavily on the analysis of Markov processes via
the martingale problem; see Ethier and Kurtz [11]. We will have more to say on
the mathematical aspects of this in a moment. Once the typical behavior has been
identified, one can then study Gaussian fluctuations and the structure of atypically
large default clusters in the portfolio. We plan to pursue these directions in a future
work.

Previous studies have analyzed the behavior of defaults in large portfolios.
Dembo, Deuschel and Duffie [9] examine a doubly-stochastic model of default
timing. In their model, default correlation is due to the exposure of firms to a com-
mon systematic risk factor which is represented by a random variable. Conditional
on this variable, defaults are independent. A large deviation argument leads to an
approximation of the tail of the conditional portfolio loss distribution. Glasser-
man, Kang and Shahabuddin [14] study a copula model of default timing using
large deviation techniques. In that formulation, default events are conditionally
independent given a set of common risk factors. Bush, Hambly, Haworth, Jin and
Reisinger [2] prove a law of large numbers for a related dynamic model. Davis and
Rodriguez [6] develop a law of large numbers and a central limit theorem for the
default rate in a stochastic network setting, in which firms default independently
of one another conditional on the realization of a systematic factor governed by a
finite state Markov chain. Sircar and Zariphopoulou [20] examine large portfolio
asymptotics for utility indifference valuation of securities exposed to the losses in
the pool. As with these papers, our model includes exposure to a common system-
atic risk factor. In contrast, however, our model captures the self-exciting nature of
defaults. Therefore, the firms in the pool are correlated even after conditioning on
the path of the systematic factor process.
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The use of interacting particle systems to study the behavior of default clustering
in large portfolios is a growing area. In a mean-field model, Dai Pra, Runggaldier,
Sartori and Tolotti [3] and Dai Pra and Tolotti [4] take the intensity of a constituent
firm as a deterministic function of the percentage portfolio loss due to defaults. In
a model with local interaction, Giesecke and Weber [13] take the intensity of a
constituent firm as a deterministic function of the state of the firms in a specified
neighborhood of that firm. The interacting particle perspective leads to the study
of the convergence of interacting Markov processes, laws of large numbers for the
percentage portfolio loss, and Gaussian approximations to the portfolio loss distri-
bution based on central limit theorems. The interacting particle system which we
propose and study incorporates an additional source of clustering, namely, the ex-
posure of a firm to a systematic risk factor process. Moreover, firm-specific sources
of default risk are present in our system. Also, the nature of mean-field interaction
in our system is different. In [3] and [4], a constituent intensity is a function of the
current default rate in the pool. In that formulation, the impact of a default on the
dynamics of the surviving firms is permanent. In our work, a constituent intensity
depends on the path of the default rate. The impact of a default on the surviving
firms is transient, and fades away exponentially with time. There is a recovery
effect.

As we were finishing this work, we learned of a related law of large numbers
type result by Cvitanić, Ma and Zhang [16]. They take the intensity of a constituent
firm as a function of a firm-specific risk factor, a systematic risk factor and the per-
centage portfolio loss due to defaults. The risk factors follow diffusion processes
whose coefficients may depend on the portfolio loss. Our model of the risk factors
is more specific than theirs, and thus we are able to arrive at slightly more explicit
results. Moreover, the effect of defaults in [16] is permanent, as in [3] and [4].

There are several mathematical contributions in our efforts. Our analysis of typ-
ical events (a weak convergence result) is somewhat similar to that of certain ge-
netic models (most notably the Fleming–Viot process; see Chapter 10 of [11],
Fleming and Viot [12] and Dawson and Hochberg [7]), but the specific form of our
intensity processes imply both complications and simplifications. Our work is cen-
tered on a jump-diffusion intensity process which is driven by Ornstein–Uhlenbeck
and square root diffusion terms. This formulation allows some explicit simplifying
calculations which are not available in a more abstract framework. On the other
hand, due to the square root singularity, certain technical estimates need to be de-
veloped from scratch (see Section 10). A final point of interest is heterogeneity.
Interacting particle systems are often assumed to have homogeneous dynamics,
where various parameters are the same for each particle. This allows the main
mathematical arguments to take their simplest form. Practitioners in credit risk,
however, in reality face an extra problem in data aggregation, where each firm in
a portfolio has its own statistical parameters. We have framed our weak conver-
gence result to allow for a distribution of “types,” that is, a frequency count of the
different model parameters. This leads us to the correct effective dynamics of the
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portfolio and, in particular, to a precise formulation of the effects of self-excitation
(see Remark 5.2).

The rest of this paper is organized as follows. Section 2 formulates our model
of default timing. We establish that our model is well-posed via the results of Sec-
tion 3. In Section 4 we identify the limit as the number of firms in the portfolio goes
to infinity—a law of large numbers result. The proof of this result is in Section 8,
but depends upon the technical calculations of Sections 5, 6 and 7. Section 9 con-
cludes and discusses extensions. Section 10 contains a number of technical results
on square-root-like processes which are used in our calculations.

2. Model, assumptions and notation. We construct a point process model
of correlated default timing in a portfolio of firms. We assume that (�,F ,P) is
an underlying probability triple on which all random variables are defined. Let
{Wn}n∈N be a countable collection of standard Brownian motions. Let {en}n∈N be
an i.i.d. collection of standard exponential random variables. Finally, let V be a
standard Brownian motion which is independent of the Wn’s and en’s. Each Wn

will represent a source of risk which is idiosyncratic to a specific firm. Each en will
represent a normalized default time for a specific firm. The process V will drive a
systematic risk factor process to which all firms are exposed.

Fix an N ∈ N, n ∈ {1,2, . . . ,N} and consider the following system:

dλ
N,n
t = −αN,n(λ

N,n
t − λ̄N,n) dt + σN,n

√
λ

N,n
t dWn

t

+ βC
N,n dLN

t + εNβS
N,nλ

N,n
t dXt , t > 0,

λ
N,n
0 = λ◦,N,n,

(2.1)
dXt = −γXt dt + dVt , t > 0,

X0 = x◦,

LN
t = 1

N

N∑
n=1

χ[en,∞)

(∫ t

s=0
λN,n

s ds

)
.

Here, βC
N,n ∈ R+ def= [0,∞) and βS

N,n ∈ R are constants which represent the expo-
sure of the nth firm in the pool to LN and X, respectively. The αN,n’s, λ̄N,n’s and
σN,n’s are in R+ and characterize the dynamics of the firms. We will address the
role of εN in a moment. The initial condition x◦ of X is fixed and γ > 0. We use χ

to represent the indicator function here and throughout the paper. The description
of LN is equivalent to a more standard construction. In particular, define

τN,n def= inf
{
t ≥ 0 :

∫ t

s=0
λN,n

s ds ≥ en

}
.(2.2)

Then

χ[en,∞)

(∫ t

s=0
λN,n

s ds

)
= χ{τN,n≤t}(2.3)
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and, consequently,

LN
t = 1

N

N∑
n=1

χ{τN,n≤t}.

The process λN,n represents the intensity, or conditional event rate, of the nth
firm in a portfolio of N firms. More precisely, λN,n is the instantaneous Doob–
Meyer compensator to the default indicator process (2.3); see (4.1). We will see in
Proposition 3.3 in Section 3 that the λN,n’s are indeed nonnegative. The process
X represents a source of systematic risk; in our model this is a stable Ornstein–
Uhlenbeck process. The process LN is the default rate in the pool. The jump-
diffusion model for λN,n captures several sources of default clustering. A firm’s
intensity is driven by an idiosyncratic source of risk represented by a Brownian
motion Wn, and a source of systematic risk common to all firms—the process X.
Movements in X cause correlated changes in firms’ intensities and thus provide a
source of default clustering emphasized by [5] for corporate defaults in the U.S.
The sensitivity of λN,n to changes in X is measured by the parameter βS

N,n. The
second source of default clustering is through the feedback (“contagion”) term
βC

N,n dLN
t . A default causes an upward jump of size 1

N
βC

N,n in the intensity λN,n.
Due to the mean-reversion of λN,n, the impact of a default fades away with time,
exponentially with rate αN,n. Self-exciting effects of this type have been found to
be an important source of the clustering of defaults in the U.S., over and above any
clustering caused by the exposure of firms to systematic risk factors [1].

In the special case that βC
N,n = βS

N,n = 0 for all n ∈ {1,2, . . . ,N}, the intensities
λN,n follow independent square root processes so firms default independently of
one another. The formulation (2.1) is a natural generalization of the widely used
square root model to address the clustering between defaults.

The interest in large pools of assets is that they provide diversification; they
allow one to construct portfolios which have small variance. The dynamics of X

imply that X is stochastically of order 1, that is, it is stable.1 Thus, the only way
for the pool to have small variance in our model is for each of the constituent firms
to have small exposure to X. We thus assume that

lim
N→∞ εN = 0.

If εN is not small, the influence of the systematic risk factor X will be of order 1,
and the “typical” behavior of the pool will strongly depend on X (and the tail
behavior of the whole system will be strongly determined by the tail of X).

1Regulatory agencies, for example, are charged with preventing systematic factors from spiraling
out of control.
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REMARK 2.1. Given the simple structure of X, our model is equivalent, if
x◦ = 0, to a model where each intensity has exposure of order 1 to a small system-
atic risk. Namely, if x◦ = 0, then εNX = X̃N where

dX̃N
t = −γ X̃N

t dt + εN dVt .

Our model allows for a significant amount of bottom-up heterogeneity; the in-
tensity dynamics of each firm can be different. We capture these different dynamics
by defining the “types”

pN,n def= (αN,n, λ̄N,n, σN,n, β
C
N,n, β

S
N,n);(2.4)

the pN,n’s take values in parameter space P def= R4+ × R. In order to expect regular
macroscopic behavior of LN as N → ∞, the pN,n’s and the λ◦,N,n’s should have
enough regularity as N → ∞. For each N ∈ N, define

πN def= 1

N

N∑
n=1

δpN,n and 
N◦
def= 1

N

N∑
n=1

δλ◦,N,n
;

these are elements of P(P) and P(R+), respectively.2

We need two main assumptions. First, we assume that the types of (2.4) and the
initial distributions (the λ◦,N,n’s) are sufficiently regular.

ASSUMPTION 2.2. We assume that

π
def= lim

N→∞πN and 
◦ def= lim
N→∞
N◦

exist [in P(P) and P(R+), resp.].

Note that this is what happens in practice; one constructs a frequency count of
the parameters of the different assets in a large pool and uses this to seek aggregate
dynamics for the pool itself. For a large pool, one hopes that this frequency count
will have some simpler macroscopic description. Second, we assume that the types
are bounded.

ASSUMPTION 2.3. We assume that there is a K2.3 > 0 such that the αN,n’s,
λ̄N,n’s, σN,n’s, |βC

N,n|’s, |βS
N,n|’s and λ◦,N,n’s are all bounded by K2.3 for all N ∈ N

and n ∈ {1,2, . . . ,N}.
Equivalently, we require that the πN ’s and 
N◦ ’s all (uniformly in N ) have com-

pact support. We could relax this requirement, at the cost of a much more careful
error analysis.

We are interested in the typical behavior of {LN }. In Section 3 we consider the
well-posedness of the model (2.1), while in Section 4 we state the law of large
numbers result, Theorem 4.2.

2As usual, if E is a topological space, P(E) is the collection of Borel probability measures on E.
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3. Well-posedness of the model. We here state several technical results con-
cerning the intensities which are a central part of our model. We want to understand
the structure of the λN,n’s a bit more. The complications which require our atten-
tion are the square root singularity, and the fact that the λt dXt term contains the
term λtXt dt , implying that the dynamics of the R2-valued process (λ,X) contain
a superlinear drift. The proofs of the results here will be given in Section 10.

Let W ∗ be a reference Brownian motion with respect to a filtration {Gt }t≥0.
Assume also that V is adapted to {Gt }t≥0. Let ξ be a {Gt }t≥0-adapted, point process
which takes values in [0,1] and such that ξ0 = 0. Fix p = (α, λ̄, σ,βC,βS) ∈ P and
λ◦ in R+. Consider the SDE

dλt = −α(λt − λ̄) dt + σ
√

λt ∨ 0dW ∗
t + βC dξt + βSλt dXt , t > 0,

(3.1)
λ0 = λ◦.

Note that by expanding the dynamics of dX and rearranging a bit, we get that

dλt = −{α + βSγXt }λt dt + αλ̄dt + βC dξt + σ
√

λt ∨ 0dW ∗
t + βSλt dVt .

Also, we have for the moment subsumed the small parameter εN into the βS term;
see the proof of Proposition 3.3.

We will use a number of ideas from [15] (see also [8]).

LEMMA 3.1. There is a nonnegative solution λ of the R-valued SDE (3.1).
Furthermore, supt∈[0,T ] E[|λt |p] < ∞ for all T > 0 and p ≥ 1.

We also have uniqueness.

LEMMA 3.2. The solution of (3.1) is unique.

The model (2.1) is thus well posed.

PROPOSITION 3.3. The system (2.1) has a unique solution such that λ
N,n
t ≥ 0

for every N ∈ N, n ∈ {1,2, . . . ,N} and t ≥ 0.

PROOF. Using Lemmas 3.1 and 3.2, solve (2.1) between the default times.
Replace βS by εNβS in applying Lemma 3.1. �

We shall also need a macroscopic bound on the intensities.

LEMMA 3.4. For each p ≥ 1 and T ≥ 0,

Kp,T ,3.4
def= sup

0≤t≤T

N∈N

1

N

N∑
n=1

E[|λN,n
t |p]

is finite.
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4. Typical events: A law of large numbers. Our first task is to understand
the “typical” behavior of our system. To do so, we need to understand a system
which contains a bit more information than the default rate LN . For each N ∈ N

and n ∈ {1,2, . . . ,N}, define

M
N,n
t

def= χ[0,en)

(∫ t

s=0
λN,n

s ds

)
= χ{τN,n>t}(4.1)

[where τN,n is as in (2.2)]. In other words, M
N,n
t = 1 if and only if the nth firm is

still alive at time t ; otherwise M
N,n
t = 0. Thus, MN,n is nonincreasing and right-

continuous. It is easy to see that

M
N,n
t +

∫ t

s=0
λN,n

s MN,n
s ds

is a martingale. Define P̂ def= P ×R+. For each N ∈ N, define p̂N,n
t

def= (pN,n, λ
N,n
t )

for all n ∈ {1,2, . . . ,N} and t ≥ 1. For each t ≥ 0, define

μN
t

def= 1

N

N∑
n=1

δ
p̂N,n
t

M
N,n
t ;

in other words, we keep track of the empirical distribution of the type and credit
spread for those assets which are still “alive.” We note that

LN
t = 1 − μN

t (P̂)

for all t ≥ 0.
We want to understand the dynamics of μN

t for large N (this will then imply
the “typical” behavior for LN

t ). To understand what our main result is, let’s first
set up a topological framework to understand convergence of μN . Let E be the
collection of sub-probability measures (i.e., defective probability measures) on P̂ ,
that is, E consists of those Borel measures ν on P̂ such that ν(P̂) ≤ 1. We can
topologize E in the usual way (by projecting onto the one-point compactification
of P̂ ; see [19], Chapter 9.5). In particular, fix a point � that is not in P̂ and define

P̂ + def= P̂ ∪{�}. Give P̂ + the standard topology; open sets are those which are open
subsets of P̂ (with its original topology) or complements in P̂ + of closed subsets
of P̂ (again, in the original topology of P̂ ). Define a bijection ι from E to P(P̂ +)

(the collection of Borel probability measures on P̂ +) by setting

(ιν)(A)
def= ν(A ∩ P̂) + (

1 − ν(P̂)
)
δ�(A)

for all A ∈ B(P̂ +). We can define the Skorohod topology on P(P̂ +), and define a
corresponding metric on E by requiring ι to be an isometry. This makes E a Polish
space. We thus have that μN is an element3 of DE[0,∞).

3If S is a Polish space, then DS [0,∞) is the collection of maps from [0,∞) into S which are
right-continuous and which have left-hand limits. The space DS [0,∞) can be topologized by the
Skorohod metric, which we will denote by dS ; see Chapter 3.5 of [11].
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The main theorem of this section is Theorem 4.2, essentially a law of large
numbers. The construction of the limiting process will take several steps. First, for
each p = (α, λ̄, σ,βC,βS) ∈ P , let bp satisfy

ḃp(t) = 1 − 1
2σ 2(bp(t))2 − αbp(t), t > 0,

(4.2)
bp(0) = 0.

Note that if bp(t) = 0, then ḃp(t) = 1 > 0. Thus, bp(t) > 0 for all t > 0.
The next lemma is essential for the characterization of the limit. Its proof is

deferred to Section 10.

LEMMA 4.1. There is a unique R+-valued trajectory {Q(t); t ≥ 0} which sat-
isfies the equation

Q(t) =
∫

p̂=(p,λ)∈P̂
p=(α,λ̄,σ,βC,βS)

βC

[
ḃp(t)λ +

∫ t

r=0
ḃp(t − r){Q(r) + αλ̄}dr

]

× exp
[
−bp(t)λ −

∫ t

r=0
bp(t − r){Q(r) + αλ̄}dr

]
(4.3)

× π(dp)
◦(dλ).

Here, π and 
◦ are as in Assumption 2.2.

Now let W ∗ be a reference Brownian motion. For each p̂ = (p, λ◦) ∈ P̂ where
p = (α, λ̄, σ,βC,βS), let λ∗

t (p) be the unique solution to

λ∗
t (p̂) = λ◦ − α

∫ t

s=0

(
λ∗

s (p̂) − λ̄
)
ds + σ

∫ t

s=0

√
λ∗

s (p̂) dW ∗
s

(4.4)

+
∫ t

s=0
Q(s)ds.

We now have our main result.

THEOREM 4.2. For all A ∈ B(P) and B ∈ B(R+), define

μ̄t (A × B)
def=

∫
p̂=(p,λ)∈P̂

χA(p)E

[
χB(λ∗

t (p̂)) exp
[
−

∫ t

s=0
λ∗

s (p̂) ds

]]
(4.5)

× π(dp)
◦(dλ).

Then

lim
N→∞ P

{
dP(P̂)

(μN, μ̄) ≥ δ
} = 0(4.6)
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for every δ > 0. Define

F(t)
def= 1 − μ̄t (P̂)

(4.7)

= 1 −
∫

p̂=(p,λ)∈P̂
E

[
exp

[
−

∫ t

s=0
λ∗

s (p̂) ds

]]
π(dp)
◦(dλ).

Then, for all δ > 0 and T > 0,

lim
N→∞ P

{
sup

0≤t≤T

|LN
t − F(t)| ≥ δ

}
= 0.

The parts of the proof of this result will be given in Sections 5, 6 and 7. In
particular, in Section 5 we identify a candidate limit for {μN } using the martingale
problem formulation. Then in Section 6 we prove that {μN } is tight, which ensures
that the laws of {μN }’s have at least one limit point. In Section 7 we prove that the
limit is necessarily unique. Then, in Section 8 we collect things together to prove
Theorem 4.2.

With this result in hand, we can rewrite (4.4) to see the exposure of a typical
firm to the contagion factor.

REMARK 4.3. We have that

Ḟ (t) =
∫

p̂=(p,λ)∈P̂
E

[
λ∗

t (p̂) exp
[
−

∫ t

s=0
λ∗

s (p̂) ds

]]
π(dp)
◦(dλ)

(4.8)
=

∫
p̂=(p,λ)∈P̂

λμ̄t (dp̂).

Thus,

λ∗
t (p̂) = λ◦ − α

∫ t

s=0

(
λ∗

s (p̂) − λ̄
)
ds + σ

∫ t

0

√
λ∗

s (p̂) dW ∗
s

(4.9)

+
∫ t

0
B(μ̄s)Ḟ (s) ds,

where

B(μ)
def=

∫
p̂=(p,λ)∈P̂

p=(α,λ̄,σ,βC,βS)

βCλμ(d p̂)
/ ∫

p̂=(p,λ)∈P̂
p=(α,λ̄,σ,βC,βS)

λμ(d p̂)

for all μ ∈ E. In other words, the effective sensitivity of a typical intensity to the
contagion is given by an average weighted by the instantaneous intensities. Note
that 0 ≤ B(μ) ≤ K2.3.

The homogeneous case provides more explicit insights into the role of the con-
tagion exposure for the behavior of default clustering in the pool.

REMARK 4.4. Fix p̂ = (p, λ◦) ∈ P̂ where p = (α, λ̄, σ,βC,βS). Assume that
the pool is homogeneous, that is, p̂N,n = p̂ for all N ∈ N and n ∈ {1,2, . . . ,N}. By
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the relation (4.9), we then have that Q(t) = βCḞ (t). In this case, F is given by the
unique solution to the integral equation

F(t) = 1 − exp
[
−αλ̄

∫ t

r=0
bp(t − r) dr − βC

∫ t

r=0
F(r)ḃp(t − r) dr − bp(t)λ◦

]
.

Furthermore, if there is no exposure to contagion, that is, βC = 0, then this integral
equation reduces to the well-known explicit formula

F(t) = 1 − exp
[
−αλ̄

∫ t

r=0
bp(t − r) dr − bp(t)λ◦

]
.

Figure 1 shows the limiting default rate F(t) for different values of the contagion
sensitivity βC . The default rate increases with βC . Figure 2 shows the limiting
default rate F(t) for different values of the parameter α, which specifies the rever-
sion speed of the intensity. The default rate is relatively insensitive to changes in α

for shorter horizons; for longer horizons it decreases with α. The limiting default
rate is more sensitive to variation in the reversion level λ̄, as indicated in Figure 3.
Variations in the diffusive volatility σ of the intensity have little effect on F(t).

We finally note that the structure of the unperturbed (i.e., βC = βS = 0) dy-
namics of the intensity (2.1) was crucial in singling out the equation (4.3) as the

FIG. 1. Comparison of limiting default rate F(t) for different values of the contagion sensitiv-
ity βC . The parameter case is σ = 0.9, α = 4, λ̄ = 0.5 and λ0 = 0.5.
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FIG. 2. Comparison of limiting default rate F(t) for different values of the reversion speed α. The
parameter case is σ = 0.9, βC = 2, λ̄ = 0.5 and λ0 = 0.5.

proper macroscopic effect of the contagion (see the proof of Lemma 8.2). The cal-
culations in fact hinge upon the explicit formulae for affine jump diffusions devel-
oped in [10]. In a more general setting we would need a more abstract framework
(see [16]).

5. Identification of the limit. We want to use the martingale problem (see
Chapter 4 of [11]) to show that μN ’s converge to a limiting process. For every
f ∈ C∞(P̂) and μ ∈ E, define

〈f,μ〉E def=
∫

p̂∈P̂
f (p̂)μ(d p̂).

Let S be the collection of elements � in B(P(P̂)) of the form

�(μ) = ϕ(〈f1,μ〉E, 〈f2,μ〉E, . . . , 〈fM,μ〉E)(5.1)

for some M ∈ N, some ϕ ∈ C∞(RM) and some {fm}Mm=1. Then S separates P(P̂)

(see Chapter 3.4 of [11]). It thus suffices to show convergence of the martingale
problem for functions of the form (5.1).

Let’s fix f ∈ C∞(P̂) and understand exactly what happens to 〈f,μN 〉E when
one of the firms defaults. Suppose that the nth firm defaults at time t and that none
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FIG. 3. Comparison of limiting default rate F(t) for different values of the reversion level λ̄. The
parameter case is σ = 0.9, βC = 2, α = 4 and λ0 = 0.5.

of the other firms default at time t (defaults occur simultaneously with probability
zero). Then

〈f,μN
t 〉E = 1

N

∑
1≤n′≤N

n′ �=n

f

(
pN,n′

, λ
N,n′
t + βC

N,n

N

)
M

N,n′
t ,

〈f,μN
t−〉E = 1

N
f (pN,n′

, λ
N,n′
t )M

N,n′
t + 1

N
f (pN,n, λ

N,n
t ).

Note, furthermore, that the default at time t means that
∫ t
s=0 λN,n

s ds = en, so
M

N,n
t = 0. Hence,

〈f,μN
t 〉E − 〈f,μN

t−〉E = J f
N,n(t),(5.2)

where

J f
N,n(t)

def= 1

N

N∑
n′=1

{
f

(
pN,n′

, λ
N,n′
t + βC

N,n

N

)
− f (pN,n′

, λ
N,n′
t )

}
M

N,n′
t

− 1

N
f (pN,n, λ

N,n
t )
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for all t ≥ 0, N ∈ N and n ∈ {1,2, . . . ,N}.
We now identify the limiting martingale problem for μN . For p̂ = (p, λ) where

p = (α, λ̄, σ,βC,βS) ∈ P and f ∈ C∞(P̂), define the operators

(L1f )(p̂) = 1

2
σ 2λ

∂2f

∂λ2 (p̂) − α(λ − λ̄)
∂f

∂λ
(p̂) − λf (p̂),

(5.3)

(L2f )(p̂) = ∂f

∂λ
(p̂).

Define also

Q(p̂)
def= λβC

for p̂ = (p, λ) where p = (α, λ̄, σ,βC,βS) ∈ P . The generator L1 corresponds to
the diffusive part of the intensity with killing rate λ, and L2 is the macroscopic
effect of contagion on the surviving intensities at any given time. For � ∈ S of the
form (5.1), define

(A�)(μ)
def=

M∑
m=1

∂ϕ

∂xm

(〈f1,μ〉E, 〈f2,μ〉E, . . . , 〈fM,μ〉E)

(5.4)
× {〈L1fm,μ〉E + 〈Q,μ〉E〈L2fm,μ〉E}.

We claim that A will be the generator of the limiting martingale problem.

LEMMA 5.1 (Weak convergence). For any � ∈ S and 0 ≤ r1 ≤ r2 · · · rJ = s <

t < T and {ψj }Jj=1 ⊂ B(E), we have that

lim
N→∞ E

[{
�(μN

t ) − �(μN
s ) −

∫ t

r=s
(A�)(μN

r ) dr

} J∏
j=1

ψj(μ
N
rj

)

]
= 0.

PROOF. For p̂ = (p, λ) where p = (α, λ̄, σ,βC,βS) ∈ P , define

(Laf )(p̂) = 1

2
σ 2λ

∂2f

∂λ2 (p̂) − α(λ − λ̄)
∂f

∂λ
(p̂),

(Lb
xf )(p̂) = λ

{
1

2

∂2f

∂λ2 (p̂) − γ x
∂f

∂λ
(p̂)

}
, x ∈ R.

Then La is the generator of the idiosyncratic part of the intensity and Lb
x is the

generator of the systematic risk.
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We start by writing that

�(μN
t ) = �(μN

0 ) +
∫ t

r=0
{AN,1

r + AN,2
r }dr + Mt ,

where M is a martingale and

A
N,1
t =

M∑
m=1

∂ϕ

∂xm

(〈f1,μ
N
t 〉E, 〈f2,μ

N
t 〉E, . . . , 〈fM,μN

t 〉E)

× 1

N

N∑
n=1

{(Lafm)(p̂N,n
t ) + εN(Lb

Xt
fm)(p̂N,n

t )}M
N,n
t

=
M∑

m=1

∂ϕ

∂xm

(〈f1,μ
N
t 〉E, 〈f2,μ

N
t 〉E, . . . , 〈fM,μN

t 〉E)

× {〈Lafm,μN
t 〉E + εN 〈Lb

Xt
fm,μN

t 〉E},

A
N,2
t =

N∑
n=1

λ
N,n
t

{
ϕ

(〈f1,μ
N
t 〉E + J f1

N,n(t),

〈f2,μ
N
t 〉E + J f2

N,n(t), . . . , 〈fM,μN
t 〉E + J fM

N,n(t)
)

− ϕ(〈f1,μ
N
t 〉E, 〈f2,μ

N
t 〉E, . . . , 〈fM,μN

t 〉E)
}

M
N,n
t .

Using Lemma 3.4, it is fairly easy to see that for all f ∈ C∞(P̂),

lim
N→∞ E

[
εN

∫ t

r=0
|〈Lb

Xr
f,μN

r 〉E|dr

]
= 0.

To proceed, let’s simplify J f
N,n. For each f ∈ C∞(P̂), t ≥ 0, N ∈ N and n ∈

{1,2, . . . ,N}, define

J̃ f
N,n(t)

def= βC
N,n

N

N∑
m=1

∂f

∂λ
(p̂N,n

t )M
N,m
t − f (pN,n, λ

N,n
t )

= βC
N,n〈L2f,μN

t 〉E − f (p̂N
t ).

Then
∣∣∣∣J f

N,n(t) − 1

N
J̃ f

N,n(t)

∣∣∣∣ ≤ K2
2.3

N2

∥∥∥∥∂2f

∂λ2

∥∥∥∥
C

,

where K2.3 is the constant from Assumption 2.3.
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Define ι(p̂)
def= λ for p̂ = (p, λ) ∈ P̂ . Setting

Ã
N,2
t

def=
M∑

m=1

∂ϕ

∂xm

(〈f1,μ
N
t 〉E, 〈f2,μ

N
t 〉E, . . . , 〈fM,μN

t 〉E)

× 1

N

N∑
n=1

λ
N,n
t J̃ fm

N,n(t)M
N,n
t

(5.5)

=
M∑

m=1

∂ϕ

∂xm

(〈f1,μ
N
t 〉E, 〈f2,μ

N
t 〉E, . . . , 〈fM,μN

t 〉E)

× {〈Q,μN
t 〉E〈L2fm,μN

t 〉E − 〈ιf,μN
t 〉E},

we have that

lim
N→∞ E

[∫ t

r=0
|AN,2

r − ÃN,2
r |dr

]
= 0.

Collecting things together, we have that

lim
N→∞ E

[{∫ t

r=s
AN,1

r dr +
∫ t

r=s
AN,2

r dr −
∫ t

r=s
(A�)(μN

r ) dr

} J∏
j=1

ψj(μ
N
rj

)

]
= 0,

which implies the claim. �

We, in particular, note the macroscopic effect of the contagion.

REMARK 5.2. The key step in quantifying the coarse-grained effect of con-
tagion was (5.5). Namely, we average the combination of the jump rate and the
exposure to contagion across the pool.

6. Tightness. In this subsection we verify that the family {μN }N∈N is rela-
tively compact (as a DE[0,∞)-valued random variable); this of course is neces-
sary to ensure that the laws of the μN ’s have at least one limit point. The complica-
tion of course is the feedback through contagion. We need to show that the system
is unlikely to “explode” via feedback. Our calculations are framed by Theorem 8.6
of Chapter 3 of [11]; we need to show compact containment and regularity of the
μN ’s.

In particular, compact containment ensures that there is a compact set K such
that μN

t will belong to K for all N ∈ N and t ∈ [0, T ] with high probability; see
Lemma 6.1. Regularity shows, roughly speaking, that μN

t − μN
s is bounded in a

certain sense by a function of the time interval t − s, that goes to zero as the length
of the time interval goes to zero; see Lemma 6.3. By Theorem 8.6 of Chapter 3
of [11], these two statements imply relative compactness of the family {μN }N∈N

in DE[0,∞); see Lemma 6.4.
Let’s first address compact containment.
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LEMMA 6.1. For each η > 0 and t ≥ 0, there is a compact subset K of E such
that

sup
N∈N

0≤t<T

P{μN
t /∈ K} < η.

PROOF. For each L > 0, define KL
def= [−K2.3,K2.3]3 × [0,K2.3]2 × [0,L].

Then KL ⊂⊂ P̂ , and for each t ≥ 0 and N ∈ N,

E[μN
t (P̂ \ KL)] = 1

N

N∑
n=1

P{λN,n
t ≥ L} ≤ K1,T ,3.4

L
.

Here K2.3 and K1,T ,3.4 are the constants from Assumption 2.3 and Lemma 3.4.
Let’s next define

K∗
L

def=
{
ν ∈ E :ν

(
P̂ \ K(L+j)2

)
<

1√
L + j

for all j ∈ N

}
;

these are compact subsets of E. We have that

P{μN
t /∈ K∗

L} ≤
∞∑

j=1

P

{
μN

t

(
P̂ \ K(L+j)2

)
>

1√
L + j

}

≤
∞∑

j=1

E[μN
t (P̂ \ K(L+j)2)]
1/

√
L + j

≤
∞∑

j=1

K1,T ,3.4

(L + j)2/
√

L + j
≤

∞∑
j=1

K1,T ,3.4

(L + j)3/2 .

Since

lim
L→∞

∞∑
j=1

K1,T ,3.4

(L + j)3/2 = 0,

the result follows. �

We next need to understand the regularity of the μN ’s. For each t ≥ 0 and
N ∈ N, we define

FN
t

def= σ
{
λN,n

s ;0 ≤ s ≤ t, n ∈ {1,2, . . . ,N}}.
Let’s also define q(x, y)

def= min{|x − y|,1} for all x and y in R.
To proceed, let’s first consider the LN ’s. A useful tool will be the following

integral bound. Fix T > 0 and suppose that f is a square-integrable function on
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[0, T ]. Then for any 0 ≤ s ≤ t ≤ T ,

∫ t

r=s
f (r) dr ≤ √

t − s

√∫ T

r=0
f 2(r) dr

≤ 1

2

{ √
t − s

(t − s)1/4 + (t − s)1/4
∫ T

r=0
f 2(r) dr

}
(6.1)

= 1

2
(t − s)1/4

{
1 +

∫ T

r=0
f 2(r) dr

}
.

LEMMA 6.2. Define

�N
def= 1

2N

N∑
n=1

{
1 +

∫ t

r=0
(λN,n

r )2 dr

}
= 1

2

{
1 + 1

N

N∑
n=1

∫ T

r=0
(λN,n

r )2 dr

}
.

Then E[�N ] ≤ 1
2{1 + K2,T ,3.4} (where K2,T ,3.4 is the constant from Lemma 3.4)

and

E[|LN
t − LN

s ||FN
s ] ≤ (t − s)1/4E[�N |FN

s ]
for all 0 ≤ s ≤ t ≤ T .

PROOF. The bound E[�N ] ≤ 1
2{1 + K2,T ,3.4} is clear from Lemma 3.4. To

proceed, let’s write

LN
t = 1 − 1

N

N∑
n=1

M
N,n
t .

By the martingale problem for LN , we have that LN
t = AN

t + Mt where M is a
martingale and where

AN
t = 1

N

N∑
n=1

∫ t

r=0
λN,n

r MN,n
r dr.

Thus, for 0 ≤ s ≤ t , we have (keeping in mind that LN is nondecreasing)

|LN
t − LN

s | = LN
t − LN

s = AN
t − AN

s + Mt − Ms .

We then can use (6.1) to see that

AN
t − AN

s ≤ 1

N

N∑
n=1

∫ t

r=0
λN,n

r dr ≤ (t − s)1/4�N.

The claimed bound follows. �

Of course, P{LN
t ∈ [0,1]} = 1 for all t ≥ 0 and N ∈ N, so compact containment

(i.e., condition (a) of Theorem 7.2 of Chapter 2 of [11]) definitely holds.
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Moreover, by Lemma 6.2 we have that for any 0 ≤ t ≤ T , 0 ≤ u ≤ δ, and 0 ≤
v ≤ δ ∧ t ,

E[q(LN
t+u,L

N
t )|FN

t ]q(LN
t ,LN

t−v) ≤ E[LN
t+u − LN

t |FN
t ] ≤ δ1/4E[�N |FN

t ].
Theorem 8.6 of Chapter 3 of [11] thus implies that {LN }N∈N is relatively compact.

LEMMA 6.3. There is a random variable HN with supN∈N E[HN ] < ∞, such
that for any 0 ≤ t ≤ T , 0 ≤ u ≤ δ, and 0 ≤ v ≤ δ ∧ t ,

E[q2(〈f,μN
t+u〉E, 〈f,μN

t 〉E)q2(〈f,μN
t 〉E, 〈f,μN

t−v〉E)|FN
t ] ≤ δ1/4E[HN |FN

t ].
PROOF. We start by using (5.2) to see that

〈f,μN
t 〉E = 〈f,μN

0 〉E + A
1,N
t + A

2,N
t + B

1,N
t + B

2,N
t ,

where

A
1,N
t = 1

N

N∑
n=1

∫ t

s=0
a1,N,n
s ds,

A
2,N
t =

N∑
n=1

∫ t

s=0
J f

N,n(s) d(1 − MN,n
s ),

B
1,N
t = 1

N

N∑
n=1

∫ t

s=0
σN,n

∂f

∂λ
(p̂N,n

s )

√
λ

N,n
s MN,n

s dWn
s ,

B
2,N
t = εN

1

N

N∑
n=1

∫ t

s=0
βS

N,nλ
N,n
s

∂f

∂λ
(p̂N,n

s )MN,n
s dVs,

where, for simplicity, we have defined

a1,N,n
s

def= 1

2

{(
σ 2

N,nλ
N,n
s + ε2

N(βS
N,n)

2(λN,n
s )2) ∂2f

∂λ2 (p̂N,n
s )

+ (−αN,n(λ
N,n
s − λ̄N,n) − εNβS

N,nλ
N,n
s Xs

) ∂f

∂λ
(p̂N,n

s )

}
MN,n

s .

Thus, for any 0 ≤ s ≤ t ≤ T ,

E[q2(〈f,μN
t 〉E, 〈f,μN

s 〉E)|FN
s ]

≤ 4{E[q2(A
1,N
t ,A1,N

s )|FN
s ] + E[q2(A

2,N
t ,A2,N

s )|FN
s ]

+ E[q2(B
1,N
t ,B1,N

s )|FN
s ] + E[q2(B

2,N
t ,B2,N

s )|FN
s ]}

≤ 4{E[|A1,N
t − A1,N

s ||FN
s ] + E[|A2,N

t − A2,N
s ||FN

s ]
+ E[|B1,N

t − B1,N
s |2|FN

s ] + E[|B2,N
t − B2,N

s |2|FN
s ]}.
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We now need to get some bounds. Due to Assumption 2.3, for any 0 ≤ s ≤ t <

T , we have that

|J f
N,n(t)| ≤

1

N

{
K2.3

∥∥∥∥∂f

∂λ

∥∥∥∥
C

+ ‖f ‖
}
.

This implies

|A2,N
t − A2,N

s | ≤
{
K2.3

∥∥∥∥∂f

∂λ

∥∥∥∥
C

+ ‖f ‖
}
|LN

t − LN
s |;

thus, by Lemma 6.2 we have that

E[|A2,N
t − A2,N

s ||FN
s ] ≤ (t − s)1/4

{
K2.3

∥∥∥∥∂f

∂λ

∥∥∥∥
C

+ ‖f ‖
}
E[�N |FN

s ]

for all 0 ≤ s ≤ t ≤ T . To bound the increments of A1,N , define

�
(1)
N

def= 1

2

{
1 + 1

N

N∑
n=1

∫ t

r=0
(a1,N,n

r )2 dr

}
.

By Lemmata 3.4 and 10.1 we have that supN∈N E[�(1)
N ] < ∞. By (6.1),

|A1,N
t − A1,N

s | ≤ (t − s)1/4E
[
�

(1)
N |FN

s

]
.

We next turn to the martingale terms. We have that

E[|B1,N
t − B1,N

s |2|FN
s ]

= E

[
1

N

N∑
n=1

∫ t

r=s

(
σN,n

∂f

∂λ
(p̂N,n

r )

√
λ

N,n
r MN,n

r

)2

dr
∣∣∣FN

s

]

≤ E

[
1

N

N∑
n=1

∫ t

r=s

(
σN,n

∂f

∂λ
(p̂N,n

r )

)2

λN,n
r dr

∣∣∣FN
s

]

≤ (t − s)1/4E
[
�

(2)
N |FN

s

]
,

E[|B2,N
t − B2,N

s |2|FN
s ]

= ε2
NE

[∫ t

r=s

(
1

N

N∑
n=1

βS
N,nλ

N,n
r

∂f

∂λ
(p̂N,n

s )MN,n
r

)2

dr
∣∣∣FN

s

]

≤ ε2
NE

[
1

N

N∑
n=1

∫ t

r=s

(
βS

N,n

∂f

∂λ
(p̂N,n

r )

)2

(λN,n
r )2 dr

∣∣∣FN
s

]

≤ ε2
N(t − s)1/4E

[
�

(2)
N |FN

s

]
,
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where

�
(2)
N

def= 1

2

{
1 + 1

N

N∑
n=1

∫ T

r=0

(
σN,n

∂f

∂λ
(p̂N,n

r )

)4

(λN,n
r )2 dr

}
,

�
(3)
N

def= 1

2

{
1 + 1

N

N∑
n=1

∫ T

r=0

(
βS

N,n

∂f

∂λ
(p̂N,n

r )

)4

(λN,n
r )4 dr

}
.

We have that

sup
N∈N

E
[
�

(2)
N

]
< ∞ and sup

N∈N

E
[
�

(3)
N

]
< ∞.

Collecting things together, we get that for any 0 ≤ t ≤ T , 0 ≤ u ≤ δ, and 0 ≤ v ≤
δ ∧ t ,

E[q2(〈f,μN
t+u〉E, 〈f,μN

t 〉E)|FN
t ]q2(〈f,μN

t 〉E, 〈f,μN
t−v〉E)

≤ E[q2(〈f,μN
t+u〉E, 〈f,μN

t 〉E)|FN
t ]

≤ 4δ1/4E

[{
�

(1)
N +

{
K2.3

∥∥∥∥∂f

∂λ

∥∥∥∥
C

+ ‖f ‖
}
�N + �

(2)
N + ε2

N�
(3)
N

}∣∣∣FN
t

]
. �

We can now prove the desired relative compactness.

LEMMA 6.4. The sequence {μN }N∈N is relatively compact in DE[0,∞).

PROOF. Given Lemmas 6.1 and 6.3, the statement follows by Theorem 8.6 of
Chapter 3 of [11]. �

7. Uniqueness. We next verify that the solution of the resulting martingale
problem is unique. We will use a duality argument (cf. Chapter 4.4 of [11]). In
particular, here duality means that existence of a solution to a dual problem ensures
uniqueness to the original problem.

LEMMA 7.1 (Uniqueness). There is at most one solution of the martingale
problem for A of (5.4) with initial condition π × 
◦.

PROOF. We will use the duality arguments of Chapter 4.4 of [11]. Define

E∗ def= ⋃∞
M=1 C∞(P̂ M). Let’s begin by defining a flow on E∗ as follows. Fix

f ∈ E∗. Then f ∈ C∞(P̂ M) for some M ∈ N. Fix next (p̂1, p̂2, . . . , p̂M) ∈ P̂ M

where p̂m = (pm,λm) and pm = (αm, λ̄m,σm,βC
m,βS

m) for m ∈ {1,2, . . . ,M}. De-
fine

(Ttf )(p̂1, p̂2, . . . , p̂M)
def= E

[
f (p̂∗,1

t , p̂∗,2
t , . . . , p̂∗,M

t ) exp

[
−

M∑
m=1

∫ t

s=0
λ∗,m

s ds

]]
,
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where p̂∗,m
t = (p, λ

∗,m
t ) and

λ
∗,m
t = λm − αm

∫ t

s=0
(λ∗,m

s − λ̄m) ds + σm

∫ t

s=0

√
λ

∗,m
s dWm

s

for all m ∈ {1,2, . . . ,M}. We also define

(Hmf )(p̂1, p̂2, . . . , p̂M, p̂M+1) = MβC
M+1λM+1

∂f

∂λm

(p̂1, p̂2, . . . , p̂M)

for m ∈ {1,2, . . . ,M} and p̂M+1 = (pM+1, λM+1) ∈ P̂ where pM+1 = (αM+1,

λ̄M+1, σM+1, β
C
M+1, β

S
M+1). Suppose that f ∈ E∗ and that in fact f ∈ C∞(P̂ M)

for some M ∈ N. Let e be an exponential(1) random variable. Set Ft
def= Ttf

for t < e. Select m ∈ {1,2, . . . ,M} according to a uniform distribution on

{1,2, . . . ,M} and set Fe
def= Hm(Tef ). Restart the system.

Let’s now connect F to μ. Fix f ∈ E∗ and μ ∈ E. Then f ∈ C∞(P̂ M) for some
M ∈ N, and we define

φ(μ,f )
def=

∫
(p̂1,p̂2,...,p̂M)∈P̂ M

f (p̂1, p̂2, . . . , p̂M)μ(d p̂1)μ(d p̂2) · · ·μ(dp̂M).(7.1)

If we fix 1 = m1 < m2 < m3 < · · · < mL+1 = M + 1 and {f̃l}Ll=1 ⊂ C∞(P̂) and
assume that

f (p̂1, p̂2, . . . , p̂M) = ∏
1≤l≤L

{ ∏
ml≤m<ml+1−1

f̃l(p̂m)

}

for all (p̂1, p̂2, . . . , p̂M) ∈ P̂ M , then

φ(μ,f ) =
L∏

l=1

〈f̃l,μ〉ml+1−ml−1
E .

By Stone–Weierstrass, we can thus approximate � in S by linear combinations of
functions of the form φ(·, f ) of (7.1) for some f ’s in E.

To proceed, let’s fix f ∈ E and apply A to the function μ �→ φ(μ,f ) given by
(7.1). It is fairly easy to see that if {μ̄∗

t }t≥0 satisfies the martingale problem for A,
then for each f ∈ E,

ϕ(μ̄∗
t , f ) =

∫ t

s=0
h1(μ̄

∗
s , f ) ds + M(1)

t ,

where M(1) is a martingale and where, if f ∈ C∞(P̂ M),

h1(μ,f ) =
M∑

m=1

∫
p̂=(p̂1,p̂2,...,p̂M)∈P M

{(L1,mf )(p̂) + 〈Q,μ〉E(L2,mf )(p̂)}

× μ(dp̂1)μ(d p̂2) · · ·μ(d p̂M),



370 K. GIESECKE, K. SPILIOPOULOS AND R. B. SOWERS

where L1,m and L2,m denote, respectively, the actions of L1 and L2 defined by
(5.3) on the mth coordinate of f . On the other hand, we also have that for μ ∈ E,

ϕ(μ,Ft) =
∫ t

s=0
h2(μ,Fs) ds + M(2)

t ,

where M(2) is a martingale and

h2(μ,f ) =
M∑

m=1

∫
p̂=(p̂1,p̂2,...,p̂M)∈P M

(L1,mf )(p̂)μ(d p̂2) · · ·μ(dp̂M)

+ 1

M

M∑
m=1

{ϕ(μ,Hmf ) − ϕ(μ,f )}.

Note that

1

M

M∑
m=1

ϕ(μ,Hmf )

=
M∑

m=1

∫
p̂=(p̂1,p̂2,...,p̂M,p̂M+1)∈P M+1

βC
M+1λM+1

∂f

∂λm

(p̂)μ(d p̂2) · · ·μ(d p̂M+1)

=
M∑

m=1

∫
p̂=(p̂1,p̂2,...,p̂M)∈P M

〈Q,μ〉E(L2,mf )(p̂)μ(d p̂2) · · ·μ(dp̂M).

Collecting things together, we have that

h1(μ,f ) = h2(μ,f ) + ϕ(μ,f )

and this implies uniqueness. �

8. Proof of main theorem. We now have our first convergence result. Let QN

be the P-law of μN , that is,

QN(A)
def= P{μN ∈ A}

for all A ∈ B(DE[0,∞)). Thus, QN ∈ P(DE[0,∞)) for all N ∈ N. For ω ∈
DE[0,∞), define Xt(ω)

def= ω(t) for all t ≥ 0.

PROPOSITION 8.1. We have that QN converges [in the topology of P(DE[0,
∞))] to the solution Q of the martingale problem generated by A of (5.4) and such
that QX−1

0 = δπ×
◦ . In other words, Q{X0 = π × 
◦} = 1 and for all � ∈ S and
0 ≤ r1 ≤ r2 ≤ · · · ≤ rJ = s < t < T and {ψj }Jj=1 ⊂ B(E), we have that

lim
N→∞ EQ

[{
�(Xt) − �(Xs) −

∫ t

r=s
(A�)(Xr) dr

} J∏
j=1

ψj(Xrj )

]
= 0,

where EQ is the expectation operator defined by Q.
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PROOF. The result follows from Lemmata 5.1, 6.4 and 7.1. Of course, we also
have that for any � ∈ S ,

EQ[�(X0)] = lim
N→∞ EQ[�(μN

0 )] = �(π × 
◦),

which implies the claimed initial condition. �

We next want to identify Q.

LEMMA 8.2. We have that Q = δμ̄, where μ̄ is given by (4.5).

PROOF. Recall (4.4) and the operators L1, L2 from (5.3) and the definition of
Q in (4.3). For any f ∈ C∞(P̂),

〈f, μ̄t 〉E =
∫

p̂=(p,λ)∈P̂
E

[
f (p, λ∗

t (p̂)) exp
[
−

∫ t

s=0
λ∗

s (p̂) ds

]]
π(dp)
◦(dλ).

Thus,

d

dt
〈f, μ̄t 〉E =

∫
p̂=(p,λ)∈P̂

E

[
(L1f )(p, λ∗

t (p̂)) exp
[
−

∫ t

s=0
λ∗

s (p̂) ds

]]
π(dp)
◦(dλ)

+
∫

p̂=(p,λ)∈P̂
E

[
(L2f )(p, λ∗

t (p̂))Q(t) exp
[
−

∫ t

s=0
λ∗

s (p̂) ds

]]

× π(dp)
◦(dλ)

= 〈L1f, μ̄t 〉E + Q(t)〈L2f, μ̄t 〉E.

To proceed, define

G(t)
def=

∫
p̂=(p,λ)∈P̂

p=(α,λ̄,σ,βC,βS)

βCE

[
exp

[
−

∫ t

s=0
λ∗

s (p̂) ds

]]
π(dp)
◦(dλ).

On the one hand, we have that

Ġ(t) = −
∫

p̂=(p,λ)∈P̂
p=(α,λ̄,σ,βC,βS)

βCE

[
λ∗

t (p̂) exp
[
−

∫ t

s=0
λ∗

s (p̂) ds

]]
π(dp)
◦(dλ)

= −
∫

p̂=(p,λ)∈P̂
p=(α,λ̄,σ,βC,βS)

βCλμ̄t (dp̂) = −〈Q, μ̄t 〉E.

We want to show that

Ġ(t) = −Q(t).(8.1)
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Indeed, fix p̂ = (p, λ) ∈ P̂ where p = (α, λ̄, σ,βC,βS). Define

Ms
def= exp

[
−bp(t − s)λ∗

s (p̂) −
∫ t

r=s
bp(t − r){Q(r) + αλ̄}dr −

∫ s

r=0
λ∗

r (p̂) dr

]

for 0 ≤ s ≤ t . Using the calculations of [10],

dMs = dMs + {
ḃp(t − s)λ∗

s (p̂) − bp(t − s)
{−α

(
λ∗

s (p̂) − λ̄
) + Q(s)

}
+ 1

2σ 2(
bp(t − s)

)2
λ∗

s (p̂) + bp(t − s)
(
Q(s) + αλ̄

) − λ∗
s (p̂)

}
Ms ds

= dMs,

where M is a martingale [we use here the ODE (4.2)]. Noting that

M0 = exp
[
−bp(t)λ −

∫ t

r=0
bp(t − r){Q(r) + αλ̄}dr

]
,

Mt = exp
[
−

∫ t

r=0
λ∗

r (p̂) dr

]
,

we have that

G(t) =
∫

p̂=(p,λ)∈P̂
p=(α,λ̄,σ,βC,βS)

βC exp
[
−bp(t)λ

−
∫ t

r=0
bp(t − r){Q(r) + αλ̄}dr

]

× π(dp)
◦(dλ).

Differentiating this, we get that

Ġ(t) = −
∫

p̂=(p,λ)∈P̂
p=(α,λ̄,σ,βC,βS)

βC

[
ḃp(t)λ +

∫ t

r=0
ḃp(t − r){Q(r) + αλ̄}dr

]

× exp
[
−bp(t)λ −

∫ t

r=0
bp(t − r){Q(r) + αλ̄}dr

]

× π(dp)
◦(dλ)

= −Q(t),

where we have used the defining equation (4.3) for Q. Thus, (8.1) holds, so we
have that

d

dt
〈f, μ̄t 〉E = 〈L1f, μ̄t 〉E + 〈Q, μ̄t 〉E〈L2f, μ̄t 〉E.

Thus,

�(μ̄t ) = �(μ̄0) +
∫ t

s=0
(A�)(μ̄s) ds,
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and, hence, δμ̄ satisfies the martingale problem generated by A. Of course, we also
have that μ̄0 = π × 
◦. By uniqueness, the claim follows. �

We now can finish the proof of our main result.

PROOF OF THEOREM 4.2. Since weak convergence to a constant implies con-
vergence in probability, we have (4.6). Using the fact that the map ϕ : P̂ �→ 1 is in
C(P̂), LN is a continuous transformation of μN into DR[0,∞). From (4.7) we
have that

lim
N→∞ P{dR(LN,F ) ≥ δ} = 0

for each δ > 0. To finish the proof, we need to replace the Skorohod norm dR by

the supremum norm. From (4.8) we have that KT
def= sup0≤t≤T Ḟ (t) is finite for

each T > 0. To get the claimed convergence, we adopt the notation of Chapter 3.5
of [11]. For any nondecreasing and differentiable map g of [0, T ] into itself and
any t ∈ [0, T ], we have that

|LN
t − F(t)| ≤ |LN

t − F(g(t))| + |F(g(t)) − F(t)|
≤ sup

0≤t≤T

|LN
t − F(g(t))| + KT |g(t) − t |

≤ sup
0≤t≤T

|LN
t − F(g(t))| + KT T sup

0≤t≤T

|ġ(t) − 1|

≤ sup
0≤t≤T

|LN
t − F(g(t))|

+ KT T max
{∣∣∣exp

[
sup

0≤t≤T

|log ġ(t)|
]
− 1

∣∣∣,
∣∣∣exp

[
− sup

0≤t≤T

|log ġ(t)|
]
− 1

∣∣∣}.
Varying g, we get that

sup
0≤t≤T

|LN
t − F(t)|

≤ dR(LN,F ) + KT T max{|exp[dR(LN,F )] − 1|,
|exp[−dR(LN,F )] − 1|}.

The claim now follows; note that F and LN both take values in [0,1]. �

9. Conclusion and extensions. We have developed a point process model of
correlated default timing in a portfolio of firms, and have analyzed typical default
profiles in the limit as the size of the pool grows. Our empirically motivated model
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captures two important sources of default clustering, namely, the exposure of firms
to a systematic risk process, and contagion. We have proved a law of large numbers
for the default rate in the pool.

There are several potential extensions of our work. For example, the default
intensity dynamics (2.1) can be generalized to include a dependence on the sys-
tematic risk process of the magnitude of the jump at a default. Then, the impact of
a default on the surviving firms depends on the state of the systematic risk: intu-
itively, if the economy is weak, firms are fragile and more susceptible to contagion.
This generalization of the intensity dynamics is empirically plausible, and can be
treated with arguments similar to the ones we currently use.

10. Proofs of Lemmas 3.1, 3.2, 3.4 and 4.1. In this section we prove Lemmas
3.1, 3.2, 3.4 and 4.1. For presentation purposes, we first collect in Lemma 10.1
some a-priori bounds that will be useful in the proof of these lemmas. Then, in
Section 10.2 we proceed with the proof of Lemmas 3.1, 3.2 and 3.4. We mention
here that the square-root singularity unavoidably complicates the analysis. The
theory behind CIR-like processes is a bit delicate due to the square root singularity
in the diffusion, so we need to develop some new modifications to existing results
(cf. [15, 17, 18]). Last, in Section 10.3 we prove Lemma 4.1.

10.1. Effect of systematic risk. Our first step is to get some usable bounds on
the systematic risk X. We need these bounds since, as we mentioned in Section 3,
the λt dXt term contains the term λtXt dt , implying that the dynamics of the R2-
valued process (λ,X) contain a superlinear drift. Note that the systematic risk
process X of course has an explicit form:

Xt = e−γ tx◦ +
∫ t

s=0
e−γ (t−s) dVs, t > 0.

Fix p = (α, λ̄, σ,βC,βS) ∈ P , λ◦ in R+, and ξ as required in the beginning of
Section 3. Define

�t
def= αt + βSγ

∫ t

s=0
Xs ds,

Zt
def= λ◦ + αλ̄

∫ t

s=0
e�s ds + βC

∫ t

s=0
e�s dξs

= λ◦ + αλ̄

∫ t

s=0
e�s ds + βC

{
e�t ξt −

∫ t

s=0
e�s ξs(α + βSγXs) ds

}

= λ◦ +
∫ t

s=0
e�s {αλ̄ − βCξs(α + βSγXs)}ds + βCξte

�t

for all t ≥ 0. The alternate representations of Z will allow us bounds which are
independent of ξ .
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Our first result is a bounds on X, � and Z which explicitly depend on various
coefficients. The importance of the bound on the moments of Zt is that they do not
depend on ξ .

LEMMA 10.1. For each p ≥ 1 and t ≥ 0,

E[X2p
t ]1/(2p) ≤ |x◦| + 1

2
√

γ

(
(2p)!
p!

)1/(2p)

,

E[exp[p�t ]] ≤ exp
[|p|{αt + |βCx◦|} + 1

2(pβC)2t
]
,

E[Z2p
t ]1/(2p) ≤ λ◦ + |βC |E[e−2p�t ]1/(2p)

+ t1−1/(2p)

(∫ t

s=0
E[e−4p�s ]ds

)1/(4p)

×
{
αλ̄t1/(4p) + α|βC |t1/(4p)

+ |βCβSγ |
(∫ t

s=0
E[X4p

s ]ds

)1/(4p)}
.

PROOF. We first bound X. For every p ≥ 1 and t ≥ 0

E[X2p
t ]1/(2p) ≤ |x◦e−γ t | +

{
E

[∣∣∣∣
∫ t

s=0
e−γ (t−s) dVs

∣∣∣∣
2p]}1/(2p)

= |x◦e−γ t | +
√∫ t

s=0
e−2γ (t−s) ds

(
(2p)!
2pp!

)1/(2p)

≤ |x◦| + 1√
2γ

(
(2p)!
2pp!

)1/(2p)

= |x◦| + 1

2
√

γ

(
(2p)!
p!

)1/(2p)

.

Next note that

�t = αt − βSγ

∫ t

s=0
x◦e−γ s ds

− βSγ

∫ t

s=0

{∫ s

r=0
e−γ (s−r) dVr

}
ds

= αt − βSx◦{1 − e−γ t } − βSγ

∫ t

r=0

{∫ t

s=r
e−γ (s−r) ds

}
dVr

= αt − βSx◦{1 − e−γ t } − βS
∫ t

r=0

{
1 − e−γ (t−r)}dVr .
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Thus, for any p ∈ R

E[exp[p�t ]] = exp
[
p{αt + βCx◦(1 − e−γ t )}

+ (pβC)2

2

∫ t

r=0

{
1 − e−γ (t−r)}2

dr

]

≤ exp
[
|p|{αt + |βCx◦|} + 1

2
(pβC)2t

]
.

We can finally bound Z. We have that

E[Z2p
t ]1/(2p) ≤ λ◦ + E

[(∫ t

s=0
e−�s {αλ̄ − βCξs(α + βSγXs)}ds

)2p]1/(2p)

+ |βC |E[e−2p�t ]1/(2p).

We also have that

E

[(∫ t

s=0
e�s {αλ̄ − βCξs(α + βSγXs)}ds

)2p]1/(2p)

≤ E

[(∫ t

s=0
e2�s ds

)p(∫ t

s=0
{αλ̄ − βCξs(α + βSγXs)}2 ds

)p]1/(2p)

≤ E

[(∫ t

s=0
e2�s ds

)2p]1/(4p)

× E

[(∫ t

s=0
{αλ̄ − βCξs(α + βSγXs)}ds

)2p]1/(4p)

≤ t1−1/(2p)E

[∫ t

s=0
e−4p�s ds

]1/(4p)

× E

[∫ t

s=0
{αλ̄ − βCξs(α + βSγXs)}2p ds

]1/(4p)

≤ t1−1/(2p)

(∫ t

s=0
E[e−4p�s ]ds

)1/(4p)

×
{
αλ̄t1/(4p) + α|βC |t1/(4p) + |βCβSγ |E

[∫ t

s=0
X4p

s ds

]1/(4p)}
.

Combine things together to get the bound on Z. �

10.2. Proofs of Lemmas 3.1, 3.2 and 3.4. Let’s next understand the regularity
of various CIR-like processes which we use. Before proceeding with the proofs,
we define a function ψη(x) that will be essential for the proofs. It is introduced in
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order to deal with the square-root singularity. In particular, let

ψη(x)
def= 2

lnη−1

∫ |x|
y=0

{∫ y

z=0

1

z
χ[η,η1/2](z) dz

}
dy and gη(x)

def= |x| − ψη(x)

for all x ∈ R.
Let us then study some important properties of ψη(x) that will be repeatedly

used in the proofs. First, we note that ψη is even, so gη is also even. Taking deriva-
tives, we have that

ψ̇η(x) = 2

lnη−1

∫ x

z=0

1

z
χ[η,η1/2](z) dz and ψ̈η(x) = 2

lnη−1

1

x
χ[η,η1/2](x)

for all x > 0. Since g̈η = −ψ̈η ≤ 0, ġη is nonincreasing. For x >
√

η,

ġη(x) = 1 − 2
lnη1/2 − lnη

ln(1/η)
= 0,

so in fact ġη is nonnegative on (0,∞) and it vanishes on [√η,∞). Thus, gη is
nondecreasing and reaches its maximum at

√
η. Since gη(0) = 0, we in fact have

that

0 ≤ gη(x) ≤ gη

(√
η
)

for all x ≥ 0. Since ġη is nonincreasing on (0,∞) and ġη(x) = 1 for x ∈ (0, η), we
have that ġη(x) ≤ 1 for all x ∈ (0,

√
η), so gη(

√
η) ≤ √

η. Since gη is even, we in
fact must have that |gη(x)| ≤ √

η for all x ∈ R. Hence,

|x| ≤ ψη(x) + √
η

for all x ∈ R. We finally note that

|ψ̈η(x)| ≤ 2

lnη−1

1

|x|χ[η,∞)(|x|) ≤ 2

lnη−1 min
{

1

|x| ,
1

η

}

for all x ∈ R.
Now we have all the necessary tools to proceed with the proof of the lemmas.

PROOF OF LEMMA 3.1. For each N ∈ N, define

�N(t)
def= �tN�

N

for all t ∈ [0, T ]. For each N ∈ N, define

YN
t = σ

∫ t

s=0
e�s/2

√(
YN

�N(s) + Zs

) ∨ 0dW ∗
s + β

∫ t

s=0

((
YN

�N(s)
+ Zs

) ∨ 0
)
dVs.

We will show that (Zt + YN
t )e�t converges to a solution of (3.1) (as N ↗ ∞).
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As a first step, let’s bound some moments. Fix p > 1. For 0 ≤ s ≤ t ≤ T , [17],
Exercise 3.25, gives us that

E

[∣∣∣∣
∫ t

r=s

((
YN

�N(r)
+ Zr

) ∨ 0
)
dVr

∣∣∣∣
2p]

≤ (
p(2p − 1)

)p
(t − s)p−1

∫ t

r=s
E

[((
YN

�N(r)
+ Zr

) ∨ 0
)2p

dr
]

≤ (
p(2p − 1)

)p
(t − s)p−1

∫ t

r=s
E

[∣∣YN
�N(r)

+ Zr

∣∣2p]
dr

≤ 22p−1(
p(2p − 1)

)p
(t − s)p−1

×
{∫ t

r=s
E

[∣∣YN
�N(r)

∣∣2p]
dr +

∫ t

r=s
E[|Zr |2p]dr

}
.

Similarly,

E

[∣∣∣∣
∫ t

r=s
e�r/2

√(
YN

�N(r) + Zr

) ∨ 0dW ∗
r

∣∣∣∣
2p]

≤ (
p(2p − 1)

)p
(t − s)p−1

∫ t

r=s
E

[
ep�r

∣∣(YN
�N(r) + Zr

) ∨ 0
∣∣p]

dr

≤ 1

2

(
p(2p − 1)

)p
(t − s)p−1

{∫ t

r=s
E[e2p�r ] + E

[∣∣YN
�N(r) + Zr

∣∣2p]
dr

}

≤ 1

2

(
p(2p − 1)

)p
(t − s)p−1

×
{∫ t

r=s
E[e2p�r ]dr + 22p−1

∫ t

r=s
E

[∣∣YN
�N(r)

∣∣2p]
dr

+ 22p−1
∫ t

r=s
E[|Zr |2p]dr

}
.

We can bound the effect of Z by Lemma 10.1. Collecting things together, and
using the fact that �N(t) ≤ t , we have that there is a KA > 0 such that

E
[∣∣YN

�N(t)

∣∣2p] ≤ KA + KA

∫ �N(t)

s=0
E

[∣∣YN
�N(s)

∣∣2p]
dr

≤ KA + KA

∫ t

s=0
E

[∣∣YN
�N(s)

∣∣2p]
dr

for all N ∈ N and t ∈ [0, T ], which in turn implies that

sup
0≤t≤T

E
[∣∣YN

�N(t)

∣∣2p] ≤ KAeKAT(10.1)

for 0 ≤ t ≤ T . This in turn implies that there is a KB > 0 such that

E
[∣∣YN

t − YN
�N(t)

∣∣2p] ≤ KB |t − �N(t)|p ≤ KB

1

Np
(10.2)
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for all 0 ≤ t ≤ T .
We next want to show that YN converges in L1. Fix N and N ′ in N and define

ν
N,N ′
t

def= YN
t − YN ′

t .

Fix also η > 0. We have that

|νN,N ′
t | ≤ ψη(ν

N,N ′
t ) + √

η = σ 2A
1,N,N ′
t + β2A

2,N,N ′
t + Mt + √

η,

where M is a martingale and

A
1,N,N ′
t = 1

2

∫ t

s=0
ψ̈η(ν

N,N ′
s )e�s

{√(
YN ′

�N(s) + Zs

) ∨ 0 −
√(

YN
�N ′ (s) + Zs

) ∨ 0
}2

ds

≤ 1

2

∫ t

s=0
ψ̈η(ν

N,N ′
s )e�s

∣∣YN
�N(s) − YN ′

�N ′ (s)
∣∣ds

≤ 1

2

∫ t

s=0
e�s ψ̈η(ν

N,N ′
s )

{|νN,N ′
s | + ∣∣YN

s − YN
�N(s)

∣∣ + ∣∣YN ′
s − YN ′

�N ′ (s)
∣∣}ds

≤ 1

2 lnη−1

∫ t

s=0
e�s

{
1 + 1

η

∣∣YN
s − YN

�N(s)

∣∣ + 1

η

∣∣YN ′
s − YN ′

�N ′ (s)
∣∣}ds

≤ 1

4 lnη−1

∫ t

s=0

{
e2�s +

{
1 + 1

η

∣∣YN
s − YN

�N(s)

∣∣ + 1

η

∣∣YN ′
s − YN ′

�N ′ (s)
∣∣}2}

ds

≤ 1

4 lnη−1

∫ t

s=0

{
e2�s + 3 + 3

η2

∣∣YN
s − YN

�N(s)

∣∣2 + 3

η2

∣∣YN ′
s − YN ′

�N ′ (s)
∣∣2}

ds,

A
2,N,N ′
t = 1

2

∫ t

s=0
ψ̈η(ν

N,N ′
s )

{((
YN

�N(s)
+ Zs

) ∨ 0
) − ((

YN ′
�N ′

(s)
+ Zs

) ∨ 0
)}2

ds

≤ 1

2

∫ t

s=0
ψ̈η(ν

N,N ′
s )

∣∣YN
�N(s) − YN ′

�N ′ (s)
∣∣2 ds

≤ 3

2

∫ t

s=0
ψ̈η(ν

N,N ′
s )

{|νN,N ′
s |2 + ∣∣YN

s − YN
�N(s)

∣∣2 + ∣∣YN ′
s − YN ′

�N ′ (s)
∣∣2}

ds

≤ 3

2 lnη−1

∫ t

s=0

{
η1/2 + 1

η

∣∣YN
s − YN

�N(s)

∣∣2 + 1

η

∣∣YN ′
s − YN ′

�N ′ (s)
∣∣2}

ds.

In the bound on A1,N,N ′
, we have used Young’s inequality, and in the bound on

A2,N,N ′
we have used the fact that the support of ψ̈η is contained in [0,

√
η]. Col-

lecting things together, we have that there is a K > 0 such that

E[A1,N,N ′
t ] ≤ K

lnη−1

{
1 + 1

Nη2 + 1

N ′η2

}
,

E[A2,N,N ′
t ] ≤ K

lnη−1

{
η1/2 + 1

Nη
+ 1

N ′η

}
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for all t ∈ [0, T ]. Thus,

lim
N,N ′→∞E[|νN,N ′

t |] ≤ √
η + Kσ 2

lnη−1 + Kβ2η1/2

lnη−1

for all t ∈ [0, T ]. Letting η ↘ 0, we indeed get that limN,N ′→∞ E[|νN,N ′
t |] = 0.

We thus have that

lim
N,N ′→∞ E[|YN

t − YN ′
t |] = 0.

For any p > 1, we also have by interpolation and (10.1) and (10.2) that

lim
N,N ′→∞ E[|YN

t − YN ′
t |p] ≤ lim

N,N ′→∞

√
E[|YN

t − YN ′
t |]E[|YN

t − YN ′
t |2p−1]

= 0.

Thus, there is a solution Y of the integral equation

Yt = σ

∫ t

s=0
e�s/2

√
(Ys + Zs) ∨ 0dW ∗

s + β

∫ t

s=0

(
(Ys + Zs) ∨ 0

)
dVs

such that supt∈[0,T ] E[|Yt |p] < ∞ for all T > 0 and p ≥ 1. Setting Ȳt
def= Zt + Yt ,

we have that Ȳt ∈ ⋂
p≥1 Lp and that

Ȳt = Zt + σ

∫ t

s=0
e�s/2

√
Ȳs ∨ 0dW ∗

s + β

∫ t

s=0
(Ȳs ∨ 0) dVs.

We claim that Ȳ is nonnegative. For each η > 0 we have that

ψη(Ȳt )χR−(Ȳt ) = ψη(λ◦)χR−(λ◦) + σ 2

2

∫ t

s=0
ψ̈η(Ȳs)χR−(Ȳs)e

�s/2(Ȳs ∨ 0) ds

+ β2

2

∫ t

s=0
ψ̈η(Ȳs)χR−(Ȳs)(Ȳs ∨ 0)2 ds + Mt ,

where M is a martingale. Taking expectations and then letting η ↘ 0, we have

that E[Ȳ−
t ] = 0. We finally set λt

def= e−�t Ȳt . The claim follows. �

PROOF OF LEMMA 3.2. Let λ and λ′ be two solutions of (3.1). Define Yt
def=

λte
�t − Zt and Y ′

t
def= λ′

t e
�t − Zt . Since λ and λ′ are assumed to be nonnegative, Y

and Y ′ satisfy

Yt = σ

∫ t

s=0
e�s/2

√
Ys + Zs dW ∗

s + βS
∫ t

s=0
(Ys + Zs)dVs,

Y ′
t = σ

∫ t

s=0
e�s/2

√
Y ′

s + Zs dW ∗
s + βS

∫ t

s=0
(Y ′

s + Zs)dVs.
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Set νt
def= Yt − Y ′

t . For each η > 0,

|νt | ≤ ψη(νt ) + √
η = σ 2A1

t + (βS)2A2
t + Mt + √

η,

where M is a martingale and where

A1
t = 1

2

∫ t

s=0
ψ̈η(νs)e

�s
{√

Ys + Zs −
√

Y ′
s + Zs

}2
ds ≤ 1

lnη−1

∫ t

s=0
e�s ds,

A2
t = 1

2

∫ t

s=0
ψ̈η(νs)ν

2
s ds ≤ η1/2

lnη−1 t.

Collecting things together, we have that

E[|νt |] ≤ √
η + 1

lnη−1

{√
ηt +

∫ t

s=0
E[e�s ]ds

}
.

Let η ↘ 0 to get that Y = Y ′. The claim follows. �

Let’s next prove the needed macroscopic bound on the λN,n’s.

PROOF OF LEMMA 3.4. For each N ∈ N and n ∈ {1,2, . . . ,N}, define

�
N,n
t

def= αN,nt + βS
N,nγ

∫ t

s=0
Xs ds,

Z
N,n
t

def= λN,n,◦ + αN,nλ̄N,n

∫ t

s=0
e�

N,n
s ds + βC

N,n

∫ t

s=0
e�s dLN

s

and let YN,n satisfy the equation

Y
N,n
t = σN,n

∫ t

s=0
e�

N,n
s /2

√
Y

N,n
s + Z

N,n
s dWn

s

+ εNβS
N,n

∫ t

s=0
(YN,n

s + ZN,n
s ) dVs;

then λ
N,n
t = e�

N,n
t (Y

N,n
t + Z

N,n
t ). We calculate that

|λN,n
t |p ≤ 1

2{e−2p�
N,n
t + |YN,n

t + Z
N,n
t |2p}

≤ 1
2{e−2p�

N,n
t + 22p−1(|YN,n

t |2p + |ZN,n
t |2p)}.

From Lemma 10.1, we have that

sup
0≤t≤T

N∈N

1

N

N∑
n=1

E[e2p�
N,n
t ] and sup

0≤t≤T

N∈N

1

N

N∑
n=1

E[|ZN,n
t |2p]

are both finite.
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For each N ∈ N and n ∈ {1,2, . . . ,N}, we compute that

E[|YN,n
t |2p] = p(2p − 1)

{
σ 2

N,n

∫ t

s=0
E[|YN,n

s |2p−2e�
N,n
s |YN,n

s + ZN,n
s |]ds

+ ε2
N(βS

N,n)
2
∫ t

s=0
E[|YN,n

s |2p−2|YN,n
s + ZN,n

s |2]ds

}
.

To bound the integrals, we have that

|YN,n
s |2p−2e�

N,n
s |YN,n

s + ZN,n
s |

≤ 1

2p
e2p�

N,n
t + p − 1

p
|YN,n

t |2p + 1

2p
|YN,n

s + ZN,n
s |2p

≤ 1

2p
e2p�

N,n
t + p − 1

2p
|YN,n

t |2p + 22p−1

2p
{|YN,n

s |2p + |ZN,n
s |2p},

|YN,n
s |2p−2|YN,n

s + ZN,n
s |2

≤ p − 1

p
|YN,n

s |2p + 1

p
|YN,n

s + ZN,n
s |2p

≤ p − 1

p
|YN,n

s |2p + 22p−1

p
{|YN,n

s |2p + |ZN,n
s |2p}.

Combining things together, we have that there is a K > 0 such that

E[|YN,n
t |2p] ≤ K{σ 2

N,n + ε2
N(βS

N,n)
2}

×
{∫ t

s=0
E[|YN,n

s |2p]ds +
∫ t

s=0
E[e2p�

N,n
s ]ds

+
∫ t

s=0
E[|ZN,n

s |2p]ds

}
for all N ∈ N and n ∈ {1,2, . . . ,N}. Using Assumption 2.3 and averaging over n,
we get the claimed result. �

10.3. Proof of Lemma 4.1. Define a homeomorphism � of C[0,∞) as

�(q)(t)
def=

∫
p̂=(p,λ)∈P̂

p=(α,λ̄,σ,βC,βS)

βC

[
ḃp(t)λ +

∫ t

r=0
ḃp(t − r){q(r) + αλ̄}dr

]

× exp
[
−bp(t)λ −

∫ t

r=0
bp(t − r){q(r) + αλ̄}dr

]

× π(dp)
◦(dλ)

for all q ∈ C[0,∞) and t ≥ 0. Note that since b, q and λ are all nonnegative,

0 ≤ exp
[
−bp(t)λ −

∫ t

r=0
bp(t − r){q(r) + αλ̄}dr

]
≤ 1.
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We can then set up a recursion; we want to solve Q = �(Q). Note that there is a
K > 0 such that

|�(q)(t)| ≤ K

∫ t

s=0
q(r) dr

for all nonnegative q ∈ C[0,∞).
For any q1 and q2 in C[0,∞), we have that

�(q1)(t) − �(q2)(t) = �a
t (q1, q2) + �b

t (q1, q2),

where

�a
t (q1, q2)

def=
∫ t

s=0

{∫ 1

θ=0

∫
p̂=(p,λ)∈P̂

p=(α,λ̄,σ,βC,βS)

βCḃp(t − s){q1(s) − q2(s)}

× exp
[
−bp(t)λ

−
∫ t

r=0
bp(t − r)

[{
q2(r) + θ

(
q1(r) − q2(r)

)} + αλ̄
]
dr

]

× π(dp)
◦(dλ)dθ

}
ds,

�b
t (q1, q2)

def= −
∫ t

s=0

{∫ 1

θ=0

∫
p̂=(p,λ)∈P̂

p=(α,λ̄,σ,βC,βS)

βC

{
ḃp(t)λ +

∫ t

r=0
ḃp(t − r)

× [{
q2(r) + θ

(
q1(r) − q2(r)

)} + αλ̄
]
dr

}

× {
bp(t − s)

(
q1(s) − q2(s)

)}
× exp

[
−bp(t)λ

−
∫ t

r=0
bp(t − r)

[{
q2(r) + θ

(
q1(r) − q2(r)

)} + αλ̄
]
dr

]

× π(dp)
◦(dλ)dθ

}
ds.

Standard techniques from Picard iterations give us the result.
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