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Abstract.

We develop new tools for formal inference and informal model

validation in the analysis of spatial point pattern data. The score test is gen-
eralized to a “pseudo-score” test derived from Besag’s pseudo-likelihood,
and to a class of diagnostics based on point process residuals. The results
lend theoretical support to the established practice of using functional sum-
mary statistics, such as Ripley’s K -function, when testing for complete spa-
tial randomness; and they provide new tools such as the compensator of the
K -function for testing other fitted models. The results also support localiza-
tion methods such as the scan statistic and smoothed residual plots. Software
for computing the diagnostics is provided.
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1. INTRODUCTION

This paper develops new tools for formal infer-
ence and informal model validation in the analysis
of spatial point pattern data. The score test statistic,
based on the point process likelihood, is generalized
to a “pseudo-score” test statistic derived from Besag’s
pseudo-likelihood. The score and pseudo-score can be
viewed as residuals, and further generalized to a class
of residual diagnostics.

The likelihood score and the score test [61, 75],
[22], pages 315 and 324, are used frequently in applied
statistics to provide diagnostics for model selection and
model validation [2, 15, 19, 60, 77]. In spatial statistics,
the score test has been used mainly to support formal
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inference about covariate effects [13, 47, 76] assuming
the underlying point process is Poisson under both the
null and alternative hypotheses. Our approach extends
this to a much wider class of point processes, making
it possible (for example) to check for covariate effects
or localized hot-spots in a clustered point pattern.

Figure 1 shows three example data sets studied in the
paper. Our techniques make it possible to check sepa-
rately for “inhomogeneity” (spatial variation in abun-
dance of points) and “interaction” (localized depen-
dence between points) in these data.

Our approach also provides theoretical support for
the established practice of using functional summary
statistics such as Ripley’s K -function [63, 64] to study
clustering and inhibition between points. In one class
of models, the score test statistic is equivalent to the
empirical K-function, and the score test procedure is
closely related to the customary goodness-of-fit pro-
cedure based on comparing the empirical K -function
with its null expected value. Similar statements apply
to the nearest neighbor distance distribution function G
and the empty space function F.

For computational efficiency, especially in large
data sets, the point process likelihood is often re-
placed by Besag’s [14] pseudo-likelihood. The re-
sulting “pseudo-score” is a possible surrogate for the


http://www.imstat.org/sts/
http://dx.doi.org/10.1214/11-STS367
http://www.imstat.org
mailto:Adrian.Baddeley@csiro.au
mailto:rubak@math.aau.dk
mailto:jm@math.aau.dk
mailto:Adrian.Baddeley@csiro.au

614 A. BADDELEY, E. RUBAK AND J. M@LLER
‘..:..: 28 M .. .: °° : . o. ...‘ '. .:- .. : .:':l'....ﬁ
R I ISR R
o f.: . o o . L oo ¢ % e . o
. . . Y s . .. . . ) e o o o .
.o e Tt e Te o N R I
* .::f . - * RIS :
.o ."’ . * L *. . o . . LRI
S . :- L. N . e . L . .
. -"-......... o 1 .. * . ..0 .‘:..0
AN s .o ) .. A :.‘ ...’-o
SV Y .t . ..
(@ (b) ©
FIG. 1. Point pattern data sets. (a) Japanese black pine seedlings and saplings in a 10 x 10 metre quadrat [53, 54]. Reprinted by kind

permission of Professors M. Numata and Y. Ogata. (b) Simulated realization of inhomogeneous Strauss process showing strong inhibition
and spatial trend [7], Figure 4b. (c) Simulated realization of homogeneous Geyer saturation process showing moderately strong clustering

without spatial trend 7], Figure 4c.

likelihood score in the score test. In one model, this
pseudo-score test statistic is equivalent to a residual
version of the empirical K-function, yielding a new,
efficient diagnostic for model fit. However, in general,
the interpretation of the pseudo-score test statistic is
conceptually more complicated than that of the likeli-
hood score test statistic, and hence difficult to employ
as a diagnostic.

In classical settings the score test statistic is a
weighted sum of residuals. For point processes the
pseudo-score test statistic is a weighted point process
residual in the sense of [4, 7]. This suggests a sim-
plification, in which the pseudo-score test statistic is
replaced by another residual diagnostic that is easier to
interpret and to compute.

In special cases this diagnostic is a residual version
of one of the classical functional summary statistics
K, G or F obtained by subtracting a “compensator”
from the functional summary statistic. The compen-
sator depends on the fitted model, and may also depend
on the observed data. For example, suppose the fitted
model is the homogeneous Poisson process. Then (ig-
noring some details) the compensator of the empirical
K -function K (r) is its expectation Ko(r) = 7r? un-
der the model, while the compensator of the empirical
nearest neighbor function G(r) is the empirical empty
space function F(r) for the same data. This approach
provides a new class of residual summary statistics that
can be used as informal diagnostics for model fit, for
a wide range of point process models, in close analogy
with current practice. The diagnostics apply under very
general conditions, including the case of inhomoge-
neous point process models, where exploratory meth-
ods are underdeveloped or inapplicable. For instance,

Figure 2 shows the compensator of K (r) for an inho-
mogeneous Strauss process.

Section 2 introduces basic definitions and assump-
tions. Section 3 describes the score test for a general
point process model, and Section 4 develops the im-
portant case of Poisson point process models. Section 5
gives examples and technical tools for non-Poisson
point process models. Section 6 develops the general
theory for our diagnostic tools. Section 7 applies these
tools to tests for first order trend and hotspots. Sec-
tions 8—11 develop diagnostics for interaction between

0.04

0.03
|

0.02
|

0.01
|

0.00
|

T T T T T T T
0.00 0.02 0.04 0.06 0.08 0.10 0.12

FI1G. 2.  Empirical K -function (thick grey line) for the point pat-
tern data in Figure 1(b), compensator of the K-function (solid
black line) for a model of the correct form, and expected K -function
for a homogeneous Poisson process (dashed line).
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points, based on pairwise distances, nearest neighbor
distances and empty space distances, respectively. The
tools are demonstrated on data in Sections 12—-15. Fur-
ther examples of diagnostics are given in Appendix A.
Appendices B—E provide technical details.

2. ASSUMPTIONS
2.1 Fundamentals

A spatial point pattern data set is a finite set X =
{x1,...,x,} of points x; € W, where the number of
points n(x) = n > 0 is not fixed in advance, and the
domain of observation W C RY is a fixed, known re-
gion of d-dimensional space with finite positive vol-
ume |W|. We take d = 2, but the results generalize eas-
ily to all dimensions.

A point process model assumes that x is a realiza-
tion of a finite point process X in W without multiple
points. We can equivalently view X as a random finite
subset of W. Much of the literature on spatial statistics
assumes that X is the restriction X =Y N W of a sta-
tionary point process Y on the entire space R?. We do
not assume this; there is no assumption of stationar-
ity, and some of the models considered here are intrin-
sically confined to the domain W. For further back-
ground material including measure theoretical details,
see, for example, [50], Appendix B.

Write X ~ Poisson(W, p) if X follows the Poisson
process on W with intensity function p, where we as-
sume v = [y p(u)du is finite. Then n(X) is Poisson
distributed with mean v, and, conditional on »n(X), the
points in X are i.i.d. with density p(u)/v.

Every point process model considered here is as-
sumed to have a probability density with respect to
Poisson(W, 1), the unit rate Poisson process, under one
of the following scenarios.

2.2 Unconditional Case

In the unconditional case we assume X has a density
f with respect to Poisson(W, 1). Then the density is
characterized by the property

(1) E[rX)]=E[R(Y) f(Y)]

for all nonnegative measurable functionals /., where
Y ~ Poisson(W, 1). In particular, the density of
Poisson(W, p) is

@ s =exp( [ (1= pw)au) [Toc.

We assume that f is hereditary, that is, f(x) > 0 im-
plies f(y) > O for all finite y C x C W. Processes

satisfying these assumptions include (under integrabil-
ity conditions) inhomogeneous Poisson processes with
an intensity function, finite Gibbs processes contained
in W, and Cox processes driven by random fields. See
[38], Chapter 3, for an overview of finite point pro-
cesses including these examples. In practice, our meth-
ods require the density to have a tractable form, and are
only developed for Poisson and Gibbs processes.

2.3 Conditional Case

In the conditional case, we assume X =Y N W
where Y is a point process. Thus, X may depend on un-
observed points of Y lying outside W. The density of X
may be unknown or intractable. Under suitable condi-
tions (explained in Section 5.4) modeling and inference
can be based on the conditional distribution of X° =
XN We given XT =XN W+ =xT, where W C W is
a subregion, typically a region near the boundary of W,
and only the points in W° = W \ W™ are treated as
random. We assume that the conditional distribution of
X° =XNWe° given X* = XN W+ =x* has an hered-
itary density f(x°|x*) with respect to Poisson(W°, 1).
Processes satisfying these assumptions include Markov
point processes [74], [50], Section 6.4, together with
all processes covered by the unconditional case. Our
methods are only developed for Poisson and Markov
point processes.

For ease of exposition, we focus mainly on the un-
conditional case, with occasional comments on the
conditional case. For Poisson point process models, we
always take W = W° so that the two cases agree.

3. SCORE TEST FOR POINT PROCESSES

In principle, any technique for likelihood-based in-
ference is applicable to point process likelihoods. In
practice, many likelihood computations require exten-
sive Monte Carlo simulation [31, 50, 51]. To minimize
such difficulties, when assessing the goodness of fit of
a fitted point process model, it is natural to choose the
score test which only requires computations for the null
hypothesis [61, 75].

Consider any parametric family of point process
models for X with density fy indexed by a k-dimen-
sional vector parameter € ©® C RX. For a simple
null hypothesis Hp:6 = 6y where 6y € O is fixed, the
score test against any alternative H;:0 € ©1, where
®) C O\ {6}, is based on the score test statistic ([22],
page 315),

A3) T2 =U %) " 1(60)"'U(60).
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Here U (0) = % log fo(x) and 1 (0) = EQ[U(Q)U(Q)T]
are the score function and Fisher information, respec-
tively, and the expectation is with respect to fy. Here
and throughout, we assume that the order of integra-
tion and differentation with respect to 6 can be inter-
changed. Under suitable conditions, the null distribu-
tion of T2 is x2? with k degrees of freedom. In the
case k = 1 it may be informative to evaluate the signed
square root

“4) T =U(60)/v1(),

which is asymptotically N (0, 1) distributed under the
same conditions.

For a composite null hypothesis Hy:6 € ®g where
®op C O is an m-dimensional submanifold with 0 <
m < k, the score test statistic is defined in [22],
page 324. However, we shall not use this version of
the score test, as it assumes differentiability of the like-
lihood with respect to nuisance parameters, which is
not necessarily applicable here (as exemplified in Sec-
tion 4.2).

In the sequel we often consider models of the form

&) fla.p)(X) = c(a, B)ha(X) exp(BS(X)),

where the parameter 8 and the statistic S(x) are one
dimensional, and the null hypothesis is Hyp: 8 = 0. For
fixed «, this is a linear exponential family and (4) be-
comes

T(a) = (S(X) — E@,0[SX)])//Var,o0[SX)].

In practice, when « is unknown, we replace « by its
MLE under Hy so that, with a slight abuse of notation,
the signed square root of the score test statistic is ap-
proximated by

T=T()
(6)
= (Sx) = E4,0)[SX)])/,/ Varg,0) [SX)].
Under suitable conditions, 7" in (6) is asymptotically

equivalent to 7 in (4), and so a standard Normal ap-
proximation may still apply.

4. SCORE TEST FOR POISSON PROCESSES

Application of the score test to Poisson point process
models appears to originate with Cox [21]. Consider
a parametric family of Poisson processes,
Poisson(W, pg), where the intensity function is in-
dexed by 6 € ©. The score test statistic is (3), where

U®) =Y kp(xi) /W o (1) pp (1) dut,

16) = /W kg (10) K (1) T Py (1) d

with kg(u) = %log po(u). Asymptotic results are
given in [45, 62].

4.1 Log-Linear Alternative

The score test is commonly used in spatial epidemi-
ology to assess whether disease incidence depends on
environmental exposure. As a particular case of (5),
suppose the Poisson model has a log-linear intensity
function

(7 Pa,py () =exp(a + BZw)),

where Z(u),u € W, is a known, real-valued and non-
constant covariate function, and « and g are real pa-
rameters. Cox [21] noted that the uniformly most pow-
erful test of Hy: 8 = 0 (the homogeneous Poisson pro-
cess) against Hj : 8 > 0 is based on the statistic

(8) Sx) =) Z(x).

Recall that, for a point process X on W with inten-
sity function p, we have Campbell’s Formula ([24],
page 163),

© B[ X he)= [ hwpw

x,-eX w
for any Borel function 2 such that the integral on
the right-hand side exists; and for the Poisson process
Poisson(W, p),

(10) Var(Z h(xi)> =/ h(u)?p(u) du
w
x; €X
for any Borel function /. such that the integral on the
right-hand side exists. Hence, the standardized version
of (8) is

(1) T= (S(x) —/e/WZ(u)du>/ /,efw Z(u)2du,

where k¥ = n/|W| is the MLE of the intensity « =
exp(a) under the null hypothesis. This is a direct ap-
plication of the approximation (6) of the signed square
root of the score test statistic.

Berman [13] proposed several tests and diagnostics
for spatial association between a point process X and a
covariate function Z(u). Berman’s Z; test is equivalent
to the Cox score test described above. Waller et al. [76]
and Lawson [47] proposed tests for the dependence of
disease incidence on environmental exposure, based on
data giving point locations of disease cases. These are
also applications of the score test. Berman conditioned
on the number of points when making inference. This
is in accordance with the observation that the statis-
tic n(x) is S-ancillary for 8, while S(x) is S-sufficient
for B.
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4.2 Threshold Alternative and
Nuisance Parameters

Consider the Poisson process with an intensity func-
tion of “threshold” form,

| kexp(¢p) if Z(u) <z,
Perep () = {K if Z(u) > z,
where 7z is the threshold level. If z is fixed, this

model is a special case of (7) with Z(u) replaced by
I{Z(u) <z}, and so (8) is replaced by

Sx) =S8(x,2) =) HZ(x) <z},

where I{-} denotes the indicator function. By (11) the
(approximate) score test of Hy:¢ = 0 against Hy : ¢ #
0 is based on

T=T() = (Sx 2) —RAQ)/RAQ),

where A(z) = {u € W:Z(u) < z}| is the area of the
corresponding level set of Z.

If z is not fixed, then it plays the role of a nuisance
parameter in the score test: the value of z affects infer-
ence about the canonical parameter ¢, which is the pa-
rameter of primary interest in the score test. Note that
the likelihood is not differentiable with respect to z.

In most applications of the score test, a nuisance pa-
rameter would be replaced by its MLE under the null
hypothesis. However, in this context, z is not identifi-
able under the null hypothesis. Several solutions have
been proposed [18, 25, 26, 33, 68]. They include re-
placing z by its MLE under the alternative [18], maxi-
mizing T (z) or |T (z)| over z [25, 26], and finding the
maximum p-value of T'(z) or |T (z)| over a confidence
region for z under the alternative [68].

These approaches appear to be inapplicable to the
current context. While the null distribution of 7' (z) is
asymptotically N (0, 1) for each fixed z as k — oo, this
convergence is not uniform in z. The null distribution
of S(x,z) is Poisson with parameter x A(z); sample
paths of T'(z) will be governed by Poisson behavior
where A(z) is small.

In this paper, our approach is simply to plot the score
test statistic as a function of the nuisance parameter.
This turns the score test into a graphical exploratory
tool, following the approach adopted in many other ar-
eas [2, 15, 19, 60, 77]. A second style of plot based
on S(x,z) — kA(z) against z may be more appropri-
ate visually. Such a plot is the lurking variable plot
of [7]. Berman [13] also proposed a plot of S(x, z)
against z, together with a plot of K A(z) against z,
as a diagnostic for dependence on Z. This is related

to the Kolmogorov—Smirnov test since, under Hy, the
values Y; = Z(x;) are i.i.d. with distribution function
PY <y)=AW)/IW].

4.3 Hot Spot Alternative

Consider the Poisson process with intensity

12) Pre.p,0 () = K exp(Ppk(u — v)),

where k is a kernel (a probability density on R?), x > 0
and ¢ are real parameters, and v € R? is a nuisance
parameter. This process has a “hot spot” of elevated
intensity in the vicinity of the location v. By (11) and
(9)—(10) the score test of Hy:¢ =0 against Hy:¢ #0
is based on

T =T(@) = (S v) — kM1 () /R Ma(v),

where

Sx,v) =) k(xi —v)

is the usual nonparametric kernel estimate of point pro-
cess intensity [28] evaluated at v without edge correc-
tion, and

M;(v) = /Wk(u —v)idu, i=1,2.

The numerator S(x, v) —k M7 (v) is the smoothed resid-
ual field [7] of the null model. In the special case where
k(u) o< If||lu]| < h} is the uniform density on a disc of
radius &, the maximum max, 7' (v) is closely related to
the scan statistic [1, 44].

5. NON-POISSON MODELS

The remainder of the paper deals with the case where
the alternative (and perhaps also the null) is not a Pois-
son process. Key examples are stated in Section 5.1.
Non-Poisson models require additional tools including
the Papangelou conditional intensity (Section 5.2) and
pseudo-likelihood (Section 5.3).

5.1 Point Process Models with Interaction

We shall frequently consider densities of the form
13 fx= c[]‘[ x(x,-)] exp(@V (X)),
i

where ¢ is a normalizing constant, the first order term
A is a nonnegative function, ¢ is a real interaction pa-
rameter, and V (X) is a real nonadditive function which
specifies the interaction between the points. We refer to
V as the interaction potential. In general, apart from the
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Poisson density (2) corresponding to the case ¢ =0,
the normalizing constant is not expressible in closed
form.

Often the definition of V can be extended to all finite
point patterns in R? so as to be invariant under rigid
motions (translations and rotations). Then the model
for X is said to be homogeneous if A is constant on W,
and inhomogeneous otherwise.

Let

d(u,X) = min |u — x;||
J

denote the distance from a location u to its nearest
neighbor in the point configuration x. Forn(x) =n > 1
andi =1,...,n, define

X—; =x\ {x;}.

In many places in this paper we consider the following
three motion-invariant interaction potentials V(x) =
V(x,r) depending on a parameter r > 0 which spec-
ifies the range of interaction. The Strauss process [73]
has interaction potential

(14) Vs(x,r) =Y I{llx; — x;ll <7},

i<j
the number of r-close pairs of points in Xx; the Geyer
saturation model [31] with saturation threshold 1 has
interaction potential

(15) Vox,r) =Y Md(xj,x_;) <r},

the number of points in x whose nearest neighbor is
closer than r units; and the Widom—Rowlinson pen-
etrable sphere model [78] or area-interaction process
[11] has interaction potential

’

(16) VA(x,r)=—‘WﬂUB(xl~,r)

the negative area of W intersected with the union
of balls B(x;,r) of radius r centered at the points
of x. Each of these densities favors spatial clustering
(positive association) when ¢ > 0 and spatial inhibi-
tion (negative association) when ¢ < 0. The Geyer
and area-interaction models are well-defined point pro-
cesses for any value of ¢ [11, 31], but the Strauss den-
sity is integrable only when ¢ < 0 [43].

5.2 Conditional Intensity

Consider a parametric model for a point process X
in R?, with parameter 6 € ®. Papangelou [59] defined

the conditional intensity of X as a nonnegative stochas-
tic process Ag(u, X) indexed by locations u € R? and
characterized by the property that

E{}%hunX\uﬁﬂ

(17)
=IE9[/RZh(u,X))\9(u,X)du:|

for all measurable functions 4 such that the left or
right-hand side exists. Equation (17) is known as
the Georgii—-Nguyen—Zessin (GNZ) formula [30, 41,
42, 52]; see also Section 6.4.1 in [50]. Adapting a term
from stochastic process theory, we will call the random
integral on the right-hand side of (17) the (Papangelou)
compensator of the random sum on the left-hand side.

Consider a finite point process X in W. In the un-
conditional case (Section 2.2) we assume X has den-
sity fp(x) which is hereditary for all 6 € ®. We may
simply define
(18) Ao (u,x) = fo(xU{u})/fo(x)
for all locations u € W and point configurations x C W
such that u ¢ x. Here we take 0/0 = 0. For x; € x
we set Ag(x;,X) = Ag(x;,X—;), and for u ¢ W we set
Lo (u, x) = 0. Then it may be verified directly from (1)
that (17) holds, so that (18) is the Papangelou condi-
tional intensity of X. Note that the normalizing con-
stant of fy cancels in (18). For a Poisson process, it
follows from (2) and (18) that the Papangelou condi-
tional intensity is equivalent to the intensity function
of the process.

In the conditional case (Section 2.3) we assume
that the conditional distribution of X° = X N W°
given X* = X N W' = x* has a hereditary den-
sity fp(x°|x™) with respect to Poisson(W°, 1), for all
6 € ©. Then define

by 2 S8 U )

Jo(xo\ {u}|xt)
if u € W°, and zero otherwise. It can similarly be veri-
fied that this is the Papangelou conditional intensity of

the conditional distribution of X° given Xt = x™.
It is convenient to rewrite (18) in the form

)\'9 (M, X) = eXp(AM log f(X))7
where A is the one-point difference operator
(20) Ayh(x) =h(xU{u}) —h(x\ {u}).

Note the Poincaré inequality for the Poisson process X,

21 Var[h(X)]SEf [ALh ()T p(u) du
W

(19) Ao (u, X°|X

holding for all measurable functionals / such that the
right-hand side is finite; see [46, 79].
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5.3 Pseudo-Likelihood and Pseudo-Score

To avoid computational problems with point pro-
cess likelihoods, Besag [14] introduced the pseudo-
likelihood function

PL() = [1‘[ e x>}

. exp(— /W Ao (U, X) du).

This is of the same functional form as the likelihood
function of a Poisson process (2), but has the Papan-
gelou conditional intensity in place of the Poisson in-
tensity. The corresponding pseudo-score

(22)

PU(9) = % log PL(0)
(23)

0 0
=3 Zlogrg(x;.x) — | —rg(u,x)d
ZZBQ og 1o (i, X) /W ka3 du

is an unbiased estimating function, EgPU(0) = 0, by
virtue of (17). In practice, the pseudo-likelihood is ap-
plicable only if the Papangelou conditional intensity
Ao (1, X) 1s tractable.

The pseudo-likelihood function can also be defined
in the conditional case [39]. In (22) the product is in-
stead over points x; € x° and the integral is instead over
W?; in (23) the sum is instead over points x; € x° and
the integral is instead over W°; and in both places x =
x° Ux™. The Papangelou conditional intensity Ag (1, X)
must also be replaced by Ag (u, x°|xT).

5.4 Markov Point Processes

For a point process X constructed as X =Y N W
where Y is a point process in R?, the density and Pa-
pangelou conditional intensity of X may not be avail-
able in simple form. Progress can be made if Y is
a Markov point process of interaction range R < o0;
see [30, 52, 66, 74] and [50], Section 6.4.1. Briefly,
this means that the Papangelou conditional intensity
Mo(u,Y) of Y satisfies Ag (1, Y) = Ag(u, YN B(u, R)),
where B(u, R) is the ball of radius R centered at u.
Define the erosion of W by distance R,

Wor={ueW:Bu,R) C W},

and assume this has nonzero area. Let B = W \ Wgg
be the border region. The process satisfies a spatial
Markov property: the processes Y N Wgg and Y N W€
are conditionally independent given Y N B.

In this situation we shall invoke the conditional case
with W° = Wgg and Wt = W \ W°. The conditional

distribution of X N W° given XN W = x™ has Papan-
gelou conditional intensity

Q4) Ao, x°x") = {*9(””‘0 Ux®) ifuews,
0 otherwise.
Thus, the unconditional and conditional versions of
a Markov point process have the same Papangelou
conditional intensity at locations in W°.
For x° = {x1, ..., x,°}, the conditional probability
density given x becomes

Jo(x®Ix™)

n
=co(x g (x1,x°) [ [ Ao (i, {x1, .o, xim }UXT)
i=2

if n° >0, and fy(T|x") = cp(xT), where @ denotes
the empty configuration, and the inverse normalizing
constant cg(x1) depends only on x™.

For example, instead of (13) we now consider

o

F&oIxt) = c(x+>{1‘[ x(x»} exp(¢V (x° UxH)),

i=1

assuming V (y) is defined for all finite y C R? such that
for any u € R?\'y, A,V (y) depends only on u and y N
B(u, R). This condition is satisfied by the interaction
potentials (14)—(16); note that the range of interaction
is R = r for the Strauss process, and R = 2r for both
the Geyer and the area-interaction models.

6. SCORE, PSEUDO-SCORE AND
RESIDUAL DIAGNOSTICS

This section develops the general theory for our di-
agnostic tools.

By (6) in Section 3 it is clear that comparison of
a summary statistic S(x) to its predicted value ES(X)
under a null model is effectively equivalent to the score
test under an exponential family model where S(x) is
the canonical sufficient statistic. Similarly, the use of
a functional summary statistic S(x, z), depending on
a function argument z, is related to the score test un-
der an exponential family model where 7 is a nuisance
parameter and S(X, z) is the canonical sufficient statis-
tic for fixed z. In this section we construct the corre-
sponding exponential family models, apply the score
test, and propose surrogates for the score test statistic.

6.1 Models

Let fp(x) be the density of any point process X on W
governed by a parameter 6. Let S(X, z) be a functional
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summary statistic of the point pattern data set x, with
function argument z belonging to any space.
Consider the extended model with density

(25)  fo.4.2(X) =co,4.2 fo (X) exp(¢S(X, 2)),

where ¢ is a real parameter, and cg ¢, is the normaliz-
ing constant. The density is well-defined provided

M@, ,z) =E[fo(Y)exp(pS(Y, 2))] < 0o,

where Y ~ Poisson(W, 1). The extended model is con-
structed by “exponential tilting” of the original model
by the statistic S. By (6), for fixed 6 and z, assuming
differentiability of M with respect to ¢ in a neighbor-
hood of ¢ = 0, the signed root of the score test statistic
is approximated by

26) T =(S(x,2) —Es[S(X, 2)1)/,/Varg[S(X, 2)],

where 6 is the MLE under the null model, and the
expectation and variance are with respect to the null
model with density f;.

Insight into the qualitative behavior of the extended
model (25) can be obtained by studying the perturbing
model

27) 8p.2(X) = kg - exp(9S(X, 2)),

provided this is a well-defined density with respect to
Poisson(W, 1), where ky  is the normalizing constant.
When the null hypothesis is a homogeneous Poisson
process, the extended model is identical to the perturb-
ing model, up to a change in the first order term. In
general, the extended model is a qualitative hybrid be-
tween the null and perturbing models.

In this context the score test is equivalent to naive
comparison of the observed and null-expected values
of the functional summary statistic S. The test statistic
T in (26) may be difficult to evaluate; typically, apart
from Poisson models, the moments (particularly the
variance) of S would not be available in closed form.
The null distribution of 7" would also typically be un-
known. Hence, implementation of the score test would
typically require moment approximation and simula-
tion from the null model, which in both cases may
be computationally expensive. Various approximations
for the score or the score test statistic can be con-
structed, as discussed in the sequel.

6.2 Pseudo-Score of Extended Model

The extended model (25) is an exponential family
with respect to ¢, having Papangelou conditional in-
tensity

Ko,¢.2 (U, X) = Ag (u, X) exp(¢A,S(X, 2)),

where Ay (u, X) is the Papangelou conditional intensity
of the null model. The pseudo-score function with re-
spect to ¢, evaluated at ¢ =0, is

PUGB.,2) =) Ay S(x,2) — /W AyS(X, 2)Ag(u, x) du,

where the first term

(28) TASX,2) =) Ay S(KX,2)

will be called the pseudo-sum of S. If 6 is the max-
imum pseudo-likelihood estimate (MPLE) under H,
the second term with 6 replaced by 6 becomes

29) CAS(x,z)= /W AyS(X, 2)hj(u, x) du

and will be called the (estimated) pseudo-compensator
of S. We call

RAS(x,z) =PU®, 2)
(30)
=XAS(x,z) —CAS(x,2)

the pseudo-residual since it is a weighted residual in
the sense of [7].

The pseudo-residual serves as a surrogate for the nu-
merator in the score test statistic (26). For the denomi-
nator, we need the variance of the pseudo-residual. Ap-
pendix B gives an exact formula (66) for the variance
of the pseudo-score PU(8, z), which can serve as an
approximation to the variance of the pseudo-residual
RAS(x, z). This is likely to be an overestimate, be-
cause the effect of parameter estimation is typically to
deflate the residual variance [7].

The first term in the variance formula (66) is

(31) C*AS(x, z):/W[AuS(X, 1Py (u, x) du,

which we shall call the Poincaré pseudo-variance be-
cause of its similarity to the Poincaré upper bound
in (21). It is easy to compute this quantity alongside
the pseudo-residual. Rough calculations in Sections 9.4
and 10.3 suggest that the Poincaré pseudo-variance is
likely to be the dominant term in the variance, except at
small r values. The variance of residuals is also studied
in [17].

For computational efficiency we propose to use the
square root of (31) as a surrogate for the denominator
in (26). This yields a “standardized” pseudo-residual

(32) TAS(x,z) =RAS(X,z2)/y/C*AS(X, 7).

We emphasize that this quantity is not guaranteed to
have zero mean and unit variance (even approximately)
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under the null hypothesis. It is merely a computation-
ally efficient surrogate for the score test statistic; its
null distribution must be investigated by other means.
Asymptotics of 7 AS(x, z) under a large-domain limit
[69] could be studied, but limit results are unlikely to
hold uniformly over r. In this paper we evaluate null
distributions using Monte Carlo methods.

The pseudo-sum (28) can be regarded as a functional
summary statistic for the data in its own right. Its defi-
nition depends only on the choice of the statistic S, and
it may have a meaningful interpretation as a nonpara-
metric estimator of a property of the point process. The
pseudo-compensator (29) might also be regarded as a
functional summary statistic, but its definition involves
the null model. If the null model is true, we may ex-
pect the pseudo-residual to be approximately zero. Sec-
tions 9-11 and Appendix A study particular instances
of pseudo-residual diagnostics based on (28)—(30).

In the conditional case, the Papangelou conditional
intensity A;(u,x) must be replaced by Aé(u,x°|x+)
given in (19) or (24). The integral in the definition of
the pseudo-compensator (29) must be restricted to the
domain W°, and the summation over data points in (28)
must be restricted to points x; € W°, that is, to summa-
tion over points of x°.

6.3 Residuals

A simpler surrogate for the score test is available
when the canonical sufficient statistic .S of the perturb-
ing model is naturally expressible as a sum of local
contributions

(33) S(x,2) =) s(xi,X_i,2).

Note that any statistic can be decomposed in this way
unless some restriction is imposed on s; such a decom-
position is not necessarily unique. We call the decom-
position “natural” if s(u, X, z) only depends on points
of x that are close to u#, as demonstrated in the exam-
ples in Sections 9, 10 and 11 and in Appendix A.

Consider a null model with Papangelou condi-
tional intensity Ag(u, x). Following [7], define the (s-
weighted) innovation by

B4) ISx,r)=S8(x,z2)— /Ws(u, X, 2) g (u, x)du,

which by the GNZ formula (17) has mean zero under
the null model. In practice, we replace 6 by an esti-
mate 0 (e.g., the MPLE) and consider the (s-weighted)
residual

(35) RS(X.2)=5(x.2) — /Ws(u,x, 2 (i, X) dut.

The residual shares many properties of the score func-
tion and can serve as a computationally efficient surro-
gate for the score. The data-dependent integral

(36) CS(x,z2) :/Ws(u,x, 2)hg(u, x) du

is the (estimated) Papangelou compensator of S. The
variance of RS(X, z) can be approximated by the in-
novation variance, given by the general variance for-
mula (65) of Appendix B. The first term in (65) is the
Poincaré variance

37 Sx,7) = /Ws(u,x, 2%, %) du.

Rough calculations reported in Sections 9.4 and 10.3
suggest that the Poincaré variance is likely to be the
largest term in the variance for sufficiently large r. By
analogy with (31) we propose to use the Poincaré vari-
ance as a surrogate for the variance of ‘RS(x, z), and
thereby obtain a “standardized” residual

(38) TS(x,2) =RS(X,2)//C2S(X, 2).

Once again 7 S(x, z) is not exactly standardized, be-
cause C>S(x, z) is an approximation to Var[RS(x, z)]
and because the numerator and denominator of (38) are
dependent. The null distribution of 7 S(x, z) must be
investigated by other means.

In the conditional case, the integral in the definition
of the compensator (36) must be restricted to the do-
main W°, and the summation over data points in (33)
must be restricted to points x; € W°, that is, to summa-
tion over points of x°.

7. DIAGNOSTICS FOR FIRST ORDER TREND

Consider any null model with density fs(x) and Pa-
pangelou conditional intensity Ag(u,x). By analogy
with Section 4 we consider alternatives of the form (25)
where

Sx,2) =) s(xi,2)

1

for some function s. The perturbing model (27) is a
Poisson process with intensity exp(¢s(-, z)), where z
is a nuisance parameter. The score test is a test for the
presence of an (extra) first order trend. The pseudo-
score and residual diagnostics are both equal to

RS(x,z)= Zs(x,-, 2)

i

(39)
— / s(u, 2)Ay(u, x) du.
w
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This is the s-weighted residual described in [7]. The
variance of (39) can be estimated by simulation, or ap-
proximated by the Poincaré variance (37).

If Z is a real-valued covariate function on W, then
we may take s(u, z) = [{Z(u) <z} for z € R, corre-
sponding to a threshold effect (cf. Section 4.2). A plot
of (39) against z was called a lurking variable plot in
[7].

If s (u, z) = k(u — z) for z € R?, where k is a density
function on R2, then

RSx,2) =3 k(xi —2) — /Wk(u — Ay, %) du,

which was dubbed the smoothed residual field in [7].
Examples of application of these techniques have been
discussed extensively in [7].

8. INTERPOINT INTERACTION

In the remainder of the paper we concentrate on di-
agnostics for interpoint interaction.

8.1 Classical Summary Statistics

Following Ripley’s influential paper [64], it is stan-
dard practice, when investigating association or de-
pendence between points in a spatial point pattern,
to evaluate functional summary statistics such as the
K -function, and to compare graphically the empiri-
cal summaries and theoretical predicted values under
a suitable model, often a stationary Poisson process
(“Complete Spatial Randomness,” CSR) [23, 29, 64].

The three most popular functional summary statis-
tics for spatial point processes are Ripley’s K -function,
the nearest neighbor distance distribution function G
and the empty space function (spherical contact dis-
tance distribution function) F. Definitions of K, G and
F and their estimators can be seen in [9, 23, 29, 50].
Simple empirical estimators of these functions are of
the form

K (r) = Kx(r)

(40) ]
=5 —— > ex(xi, x)I{|lxi — x;jll <r},
P2X)|W| oy
G(r) = Gx(r)
(41) |
e Zec(xi, X—i, r){d (xi, x—j) <r},
F(r) = Fx(r)
(42)

_ % /W e (. HYH{d (. X) < r)du.

where ex (u, v), eg(u, X, r) and er(u, r) are edge cor-
rection weights, and typically ,52(x) =nXx)(nx) —
D/IWP.

8.2 Score Test Approach

The classical approach fits naturally into the scheme
of Section 6. In order to test for dependence between
points, we choose a perturbing model that exhibits
dependence. Three interesting examples of perturb-
ing models are the Strauss process, the Geyer sat-
uration model with saturation threshold 1 and the
area-interaction process, with interaction potentials
Vs(x,r), Vg(x,r) and V4 (X, r) given in (14)—(16). The
nuisance parameter » > 0 determines the range of inter-
action. It is interesting to note that, although the Strauss
density is integrable only when ¢ < 0, the extended
model obtained by perturbing fy by the Strauss density
may be well-defined for some ¢ > 0. This extended
model may support alternatives that are clustered rela-
tive to the null, as originally intended by Strauss [73].

The potentials of these three models are closely re-
lated to the summary statistics K G and F in (40)—
(42). Ignoring the edge correction weights e(-), we
have

(43) Ry(r) ~ %v (X, 7)
T TCTC R R
@) G~ %VG(X ",
N 1
@) RO ®-maVaon).

To draw the closest possible connection with the
score test, instead of choosing the Strauss, Geyer or
area-interaction process as the perturbing model, we
shall take the perturbing model to be defined through
(27) where S is one of the statistics K , G or F. We
call these the (perturbing) K -model, G-model and F -
model, respectively. The score test is then precisely
equivalent to comparing K, G or F' with its predicted
expectation using (6).

Essentially K , G, F are renormalized versions of
Vs, Vg, Va as shown in (43)—(45). In the case 9f F the
renormalization is not data-dependent, so the F-model
is virtually an area-interaction model, ignoring edge
correction. For K, the renormalization depends only on
n(x), and so, conditionally on n(x) = n, the K -model
and the Strauss process are approximately equivalent.
Similarly for G, the normalization also depends only
on n(x), so, conditionally on n(x) = n, the G-model
and Geyer saturation process are approximately equiv-
alent. If we follow Ripley’s [64] recommendation to
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condition on n when testing for interaction, this implies
that the use of the K, G or F-function is approximately
equivalent to the score test of CSR against a Strauss,
Geyer or area-interaction alternative, respectively.

When the null hypothesis is CSR, we saw that the ex-
tended model (25) is identical to the perturbing model,
up to a change in intensity, so that the use of the K-
function is equivalent to testing the null hypothesis of
CSR against the alternative of a K -model; similarly for
G and F. For a more general null hypothesis, the use
of the K -function, for example, corresponds to adopt-
ing an alternative hypothesis that is a hybrid between
the fitted model and a K -model.

Note that if the edge correction weight eg (u, v) is
uniformly bounded, the K -model is integrable for all
values of ¢, avoiding a difficulty with the Strauss pro-
cess [43].

Computation of the score test statistic (26) requires
estimation or approximation of the null variance of
K (r), é(r) or F (r). A wide variety of approximations
is available when the null hypothesis is CSR [29, 65].
For other null hypotheses, simulation estimates would
typically be used. A central limit theorem is available
for K r), G(r) and F (r) in the large-domain limit, for
example, [3, 34, 35, 40, 65]. However, convergence is
not uniform in r, and the normal approximation will be
poor for small values of r. Instead Ripley [63] devel-
oped an exact Monte Carlo test [12, 36] based on simu-
lation envelopes of the summary statistic under the null
hypothesis.

In the following sections we develop the residual and
pseudo-residual diagnostics corresponding to this ap-
proach.

9. RESIDUAL DIAGNOSTICS FOR INTERACTION
USING PAIRWISE DISTANCES

This section develops residual (35) and pseudo-
residual (30) diagnostics derived from a summary
statistic S which is a sum of contributions depending
on pairwise distances.

9.1 Residual Based on Perturbing Strauss Model

9.1.1 General derivation. Consider any statistic of
the general “pairwise interaction” form

(46) S&x,r) =Y q{xi, xj}, 7).

i<j

This can be decomposed in the local form (33) with

1
s(u,x,r)= EZq({xi,u},r), ué¢x.

Hence,

Ay, S(X,r)=2s5(x;,Xx_;,r) and
AySX,r)=2s(u,X,r), ué¢x.

Consequently, the pseudo-residual and the pseudo-
compensator are just twice the residual and the Papan-
gelou compensator:

A7) TASKX,r)=28Sxr) =) q({xi,xj}r),

i#]j
CAS(x,r)=2CS(x,r)
(43)
= /W Zq({x,', up, r)hy(u, x)du,
RAS(x,z) =2RS(x,r)
(49)

=28(x,r) —2CS(x,r).

9.1.2 Residual of Strauss potential. The Strauss in-
teraction potential Vg of (14) is of the general form
(46) with g ({x;, x;},r) =I{llx; — x|l <r}. Hence, Vs
can be decomposed in the form (33) with s(u, x,r) =
%t(u, X, ), where

tu,x,r) =Y llu—xill <r}), u¢x
i
Hence, the Papangelou compensator of Vg is

50) CVs(x,r)= %/Wt(u, X, r)Ay(u, X) du.

9.1.3 Case of CSR. If the null model is CSR with in-
tensity p estimated by p = n(x)/|W| (the MLE, which
agrees with the MPLE in this case), the Papangelou
compensator (50) becomes

CVS(X,r)zgf S Il — x| < r}du
W =
1

0
= EZDWHB(xi,r)L

Ignoring edge effects, we have |W N B(x;, r)| ~ wr?

and, applying (43), the residual is approximately

n(x)2

2 _ 2
W] [Kx(r) —mre].

51 RVs(x,r) ~

The term in brackets is a commonly-used measure of
departure from CSR, and is a sensible diagnostic be-
cause K (r) = r? under CSR.
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9.2 Residual Based on Perturbing K-Model

Assuming p2(x) = p2(n(x)) depends only on n(x),
the empirical K -function (40) can also be expressed as
a sum of local contributions Kx(r) = > ; k(x;,X—;, 1)
with

1" (u,X,r)

KX = S + DT

uéx,
where
1, x,r) = e (u, x)I{|lu—x;| <r}
J

is a weighted count of the points of x that are r-close
to the location u. Hence, the compensator of the K-
function is

1
A2 (n(x) + 1| W]

. / " (u, X, r)hy(u, x) du.
w

CRx(r) =

(52)

Assume the edge correction weight ex (u,v) =
ex(v,u) is symmetric; for example, this is satis-
fied by the Ohser—Stoyan edge correction weight
[57,58] given by ek (u, v) = 1/|W, "W, | where W,, =
{u 4+ v:v € W}, but not by Ripley’s [63] isotropic cor-
rection weight. Then the increment is, for u ¢ x,

PA(X) = A (x U {u)) »

ARy = F R )
2t (u, x, r)
TRV
and when x; € x
Axi Iex(r) = pZ(XA_zi) — ,OZ(X) Iex(r)

P (X—;)

2t (x;, X_j, 1)
PH(x—i)|W]|

Assuming the standard estimator p>(x) = n(n — 1)/
|W |2 with n = n(x), the pseudo-sum is seen to be zero,
so the pseudo-residual is apart from the sign equal to
the pseudo-compensator, which becomes

CAKx(r) =2CKx(r) — [nsz /W AU, X) du]léx(r),

where C I%X(r) is given by (52). So if the null model
is CSR and the intensity is estimated by n/|W|, the
pseudo-residual is approximately 2[[€X(r) - Ckx(r)],
and, hence, it is equivalent to the residual approximated
by (51). This is also the conclusion in the more general

case of a null model with an activity parameter «, that
is, where the Papangelou conditional intensity factor-
izes as

Ao (u,x) =kép(u,x),

where 0 = (k, B) and &4 () is a Papangelou conditional
intensity, since the pseudo-likelihood equations then
imply that n = [y, A5(u, X) du.

In conclusion, the residual diagnostics obtained from
the perturbing Strauss and K-models are very simi-
lar, the major difference being the data-dependent nor-
malization of the K -function; similarly for pseudo-
residual diagnostics which may be effectively equiva-
lent to the residual diagnostics. In practice, the popular-
ity of the K -function seems to justify using the residual
diagnostics based on the perturbing K -model. Further-
more, due to the familiarity of the K -function, we often
choose to plot the compensator(s) of the fitted model(s)
in a plot with the empirical K -function rather than the
residual(s) for the fitted model.

9.3 Edge Correction in Conditional Case

In the conditional case, the Papangelou conditional
intensity A;(u, x) is known only at locations u € W°.
The diagnostics must be modified accordingly, by re-
stricting the domain of summation and integration to
W®. Appropriate modifications are discussed in Ap-
pendices C-E.

9.4 Approximate Residual Variance Under CSR

Here we study the residual variance and the accu-
racy of the Poincaré variance approximation in a sim-
ple case.

We shall approximate the residual variance
Var[RVs(X,r)] by the innovation variance
Var[ZVs(X, r)], that is, ignoring the effect of param-
eter estimation. It is likely that this approximation is
conservative, because the effect of parameter estima-
tion is typically to deflate the residual variance [7].
A more detailed investigation has been conducted in
[17].

Assume the null model is CSR with intensity p es-
timated by p = n(x)/|W]|. The exact variance of the
innovation for the Strauss canonical statistic Vg is
Var[ZVs(X, r)] = I1 + I from equation (65) of Ap-
pendix B, where

I = %/W Elt(u, X, r)*A(u, X)]du

_P 2
_ 4fWE[z(u,X,r) 1du
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and

1
b= /W /W E[I{|lu — v]| < r}ra(u, v, X)]dudv

o2
:_/ / (I — vl < r}dudv
4 Jwlw

as A(u,X) = p and Ar(u,v,X) = A(u, X)A(v, X U
{u}) = p>. This is reminiscent of expressions for the
large-domain limiting variance of K under CSR ob-
tained using the methods of U-statistics [16, 48, 65],
summarized in [29], page 51 ff. Now Y =1¢(u, X, r) is
Poisson distributed with mean u = p|B(u,r) N W| so
that E(Y?) = u + u?. For u € We, we have = pmr?,
so ignoring edge effects

I~ g(v ) W] and b~ §v|W|,

where v = pmr?. Note that since v is the expected
number of points within distance r of a given point,
a value of v =1 corresponds to the scale of nearest-
neighbor distances in the pattern, rny = 1/,/7p. For
the purposes of the K function this is a “short” dis-
tance. Hence, it is reasonable to describe I; as the
“leading term” in the variance, since Iy > I, for
v> 1.
Meanwhile, the Poincaré variance (37) is

)
4w\ Jw

which is an approximately unbiased estimator of /7 by
Fubini’s Theorem. Hence,

C?Vs(x,r) = t(u,x, ) du,

EC?Vs(x,r) _ EC?Vs(x,r)
Var[RVs(X,r)]  Var[ZVs(X, r)]
I 14+v
“hL+bL 24v

Thus, as a rule of thumb, the Poincaré variance un-
derestimates the true variance; the ratio of means is
(1 +v)/(2 4+ v) > 1/2. The ratio falls to 2/3 when
v =1, that is, when r = rqy = 1/,/p. We can take
this as a rule-of-thumb indicating the value of r below
which the Poincare variance is a poor approximation to
the true variance.

10. RESIDUAL DIAGNOSTICS FOR INTERACTION
USING NEAREST NEIGHBOR DISTANCES

This section develops residual and pseudo-residual
diagnostics derived from summary statistics based on
nearest neighbor distances.

10.1 Residual Based on Perturbing Geyer Model

The Geyer interaction potential Vg (X, r) given by
(15) is clearly a sum of local statistics (33), and its
compensator is

CVg(x,r) = /W I{d (u,x) <riry(u,x)du.

The Poincaré variance is equal to the compensator in
this case. Ignoring edge effects, Vg (X, r) is approxi-
mately n(x)Gx(r); cf. (41).

If the null model is CSR with estimated intensity k¥ =
n(x)/|W|, then

CVg(X,r) =k

’

Wl JB(xi,r)

ignoring edge effects, this is approximately & |W | F(r);
cf. (42). Thus, the residual diagnostic is approximately
n(x)(é(r) —F (r)). This is a reasonable diagnostic for
departure from CSR, since F' = G under CSR. This ar-
gument lends support to Diggle’s [27], equation (5.7),
proposal to judge departure from CSR using the quan-
tity sup |é — 13|.

This example illustrates the important point that
the compensator of a functional summary statistic S
should not be regarded as an alternative parametric es-
timator of the same quantity that § is intended to esti-
mate. In the example just given, under CSR the com-
pensator of G is approximately F,a qualitatively dif-
ferent and in some sense “opposite” summary of the
point pattern.

We have observed that the interaction potential Vg
of the Geyer saturation model is closely related to G.
However, the pseudo-residual associated to Vg is
a more complicated statistic, since a straightforward
calculation shows that the pseudo-sum is

YAVg(x,1)
=Ve(x,r1) +Z Z {llx; — x|l <r and

i jijti
d(xj,x_;)>r},

and the pseudo-compensator is
CAVg(x,r) = / {d(u,x) < rirs(u, x) du
14

+ Z]I{d(xi, X_;j)>r}

/ I{llu — xi || < r}rg(u, x) du.
w
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10.2 Residual Based on Perturbing G-Model

The empirical G-function (41) can be written

(53) Ge(r) =Y g(xi, x_i,7),

where

glu,x,r)= eg(u,X,r)

1
nx)+1
Hd(u,x) <r}, ué¢x,

(54)

so that the Papangelou compensator of the empirical
G-function is

CGx(r)
= / g(u, X, r)Ay(u,x)du
w

1
= 0T 1 oL B eg(u, X, r)h;(u,x)du.

The residual diagnostics obtained from the Geyer and
G-models are very similar, and we choose to use the
diagnostic based on the popular G-function. As with
the K -function, we typically use the compensator(s) of
the fitted model(s) rather than the residual(s), to visu-
ally maintain the close connection to the empirical G-
function.

The expressions for the pseudo-sum and pseudo-
compensator of G are not of simple form, and we
refrain from explicitly writing out these expressions.
For both the G- and Geyer models, the pseudo-sum
and pseudo-compensator are not directly related to
a well-known summary statistic. We prefer to plot
the pseudo-residual rather than the pseudo-sum and
pseudo-compensator(s).

10.3 Residual Variance Under CSR

Again assume a Poisson process of intensity p as the
null model. Since Vi is a sum of local statistics,

Ve (x,r) =) T{d(x;,x\ xi) <r},

we can again apply the variance formula (65) of Ap-
pendix B, which gives Var[ZVs(X,r)] = L1 + Lo,
where

L :pf P{d(u,X) <r}du
w
and

L2=p2/f19>{||u—vusr,
wJW

du,X)>r,d,X) >r}dudv.

The Poincaré variance is equal to the compensator in
this case, and is

C2VG(x,r) = / I{d(u. %) < r}iy(ue. %) du

= & |(WNU(x,r)l,
W]
where U (X, r) = J; b(x;, r). The Poincaré variance is
an approximately unbiased estimator of the term L.
For u € Wg, we have P{du,X) <r} =1 —
exp(—,orrrz) so that

Ly~ p|W|(1— exp(—,onrz)),

ignoring edge effects. Again, let v = pmr? so that
L1~ p|W|(1 —exp(—v)). Meanwhile,

P{d(u,X)>r,dw,X)>r}

=exp(—plb(u,r) Ub(v,r)|).

This probability lies between exp(—v) and exp(—2v)
for all u, v. Thus (ignoring edge effects),

Lo~ p*nr?|Wlexp(—(1 + 8)v)
= pv|W|exp(—(1+8)v),

where 0 <6 < 1. Hence,

L, ve
£ <

Ly 1—eV’

Let f(v) =ve ™" /(1 —e™"). Then f(v) is strictly de-
creasing and f(v) <1 for all v > 0 so that L{/(L +
Ly) > %, that is, the variance is underestimated by
at most a factor of 2. Note that f(1.25) =~ 0.5, so
Li/(Li + L) > % when r < reit, where reit =
V1.25/mp. The conclusions and rule-of-thumb for
TG are similar to those obtained for 7K in Sec-

tion 9.4.

11. DIAGNOSTICS FOR INTERACTION BASED ON
EMPTY SPACE DISTANCES

11.1 Pseudo-Residual Based on Perturbing
Area-Interaction Model

When the perturbing model is the area-interaction
process, it is convenient to reparametrize the density,
such that the canonical sufficient statistic V4 given in
(16) is redefined as

1
VaAX, 1) = W‘WﬂUB(xi,r) .
i
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This summary statistic is not naturally expressed as a
sum of contributions from each point as in (33), so we
shall only construct the pseudo-residual. Let

Ux,r)=Wn|JB(xi,r).

]

The increment
Ay Va4 (X7 r )

UxU{u}, N —UX, ), uéx,

W]
can be thought of as “unclaimed space”—the propor-
tion of space around the location « that is not “claimed”
by the points of x. The pseudo-sum

TAVAX ) =) Ay Vax,r)

1

is the proportion of the window that has “single
coverage”—the proportion of locations in W that are
covered by exactly one of the balls B(x;,r). This can
be used in its own right as a functional summary statis-
tic, and it corresponds to a raw (i.e., not edge corrected)
empirical estimate of a summary function Fi(r) de-
fined by

Fi(r)=P#x e X|d(u,x) <r}=1)

for any stationary point process X, where u € R? is
arbitrary. Under CSR with intensity p we have

Fi(r)= ,oyrr2 exp(—pnrz).

This summary statistic does not appear to be treated
in the literature, and it may be of interest to study it
separately, but we refrain from a more detailed study
here.

The pseudo-compensator corresponding to this
pseudo-sum is

CAVs(x, 1) = / A, Va(x, r))\é(u, x) du.
w
This integral does not have a particularly simple inter-

pretation even when the null model is CSR.

11.2 Pseudo-Residual Based on
Perturbing F-Model

Alternatively, one could use a standard empirical es-
timator F of the empty space function F as the sum-

mary statistic in the pseudo-residual. The pseudo-sum
associated with the perturbing F-model is

SAF(r) =n(X) Fx(r) — Y Fx_, (1),
with pseudo-compensator
CAFx(r) = /W(ﬁxu{u}(r) — Fx() A5, %) du.

Ignoring edge correction weights, I:‘Xu{u}(r) — I:‘X (r)is
approximately equal to A, V4 (X, r), so the pseudo-sum
and pseudo-compensator associated with the perturb-
ing F-model are approximately equal to the pseudo-
sum and pseudo-compensator associated with the per-
turbing area-interaction model. Here, we usually pre-
fer graphics using the pseudo-compensator(s) and the
pseudo-sum since this has an intuitive interpretation as
explained above.

12. TEST CASE: TREND WITH INHIBITION

In Sections 12—-14 we demonstrate the diagnostics on
the point pattern data sets shown in Figure 1. This sec-
tion concerns the synthetic point pattern in Figure 1(b).

12.1 Data and Models

Figure 1(b) shows a simulated realization of the
inhomogeneous Strauss process with first order term
Ax,y) =200exp(2x + 2y + 3x2), interaction range
R =0.05, interaction parameter y = exp(¢) = 0.1 and
W equal to the unit square; see (13) and (14). This is
an example of extremely strong inhibition (negative as-
sociation) between neighboring points, combined with
a spatial trend. Since it is easy to recognize spatial trend
in the data (either visually or using existing tools such
as kernel smoothing [28]), the main challenge here is
to detect the inhibition after accounting for the trend.

We fitted four point process models to the data in
Figure 1(b). They were (A) a homogeneous Poisson
process (CSR); (B) an inhomogeneous Poisson process
with the correct form of the first order term, that is,
with intensity

(55 p(x,y) =exp(Bo+ Bix + By + B3x?),

where B, ..., B3 are real parameters; (C) a homo-
geneous Strauss process with the correct interaction
range R = 0.05; and (D) a process of the correct form,
that is, inhomogeneous Strauss with the correct inter-
action range R = 0.05 and the correct form of the first
order potential (55).
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fitted model of the correct form.

12.2 Software Implementation

The diagnostics defined in Sections 9-11 were im-
plemented in the R language, and has been pub-
licly released in the spatstat library [6]. Unless
otherwise stated, models were fitted by approximate
maximum pseudo-likelihood using the algorithm of
[5] with the default quadrature scheme in spat-
stat, having an m x m grid of dummy points where
m = max (25, 10[1 + 24/n(x)/10]) was equal to 40 for
most of our examples. Integrals over the domain W
were approximated by finite sums over the quadra-
ture points. Some models were refitted using a finer
grid of dummy points, usually 80 x 80. In addition to
maximum pseudo-likelihood estimation, the software
also supports the Huang—Ogata [37] approximate max-
imum likelihood.

12.3 Application of K Diagnostics

12.3.1 Diagnostics for correct model. First we fit-
ted a point process model of the correct form (D).
The fitted parameter values were y = 0.217 and
/§ = (5.6, —0.46, 3.35,2.05) using the coarse grid of
dummy points, and y = 0.170 and ,3 = (5.6, —0.64,
4.06, 2.44) using the finer grid of dummy points, as
against the true values y =0.1 and 8 = (5.29, 2,2, 3).

Figure 2 in Section 1 shows K along with its com-
pensator for the fitted model, together with the theoret-
ical K -function under CSR. The empirical K -function

and its compensator coincide very closely, suggesting
correctly that the model is a good fit. Figure 3(a) shows
the residual K -function and the two-standard-deviation
limits, where the surrogate standard deviation is the
square root of (37). Figure 3(b) shows the correspond-
ing standardized residual K-function obtained by di-
viding by the surrogate standard deviation.

Although this model is of the correct form, the stan-
dardized residual exceeds 2 for small values of r. This
is consistent with the prediction in Section 9.4 that
the variance approximation would be inaccurate for
small r. The null model is a nonstationary Poisson pro-
cess; the minimum value of the intensity is 200. Taking
p = 200 and applying the rule of thumb in Section 9.4
gives

1

Fn =
" /2007

suggesting that the Poincaré variance estimate be-
comes unreliable for r < (0.04 approximately.

Formal significance interpretation of the critical
bands in Figure 3(b) is limited, because the null dis-
tribution of the standardized residual is not known ex-
actly, and the values +2 are approximate pointwise
critical values, that is, critical values for the score test
based on fixed r. The usual problems of multiple test-
ing arise when the test statistic is considered as a func-
tion of r; see [29], page 14. For very small r there are
small-sample effects so that a normal approximation

=0.04,
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F1G. 4} Null distribution of standardized residual of K. Pointwise 2.5% and 97.5% quantiles (grey shadin;g) and sample mean (dotted lines)
of TK from 1000 simulated realizations of model (D) with estimated parameter values (a) y =0.217 and 8 = (5.6, —0.46, 3.35, 2.05) using
a 40 x 40 grid of dummy points; (b) y =0.170 and B = (5.6, —0.64, 4.06, 2.44) using a 80 x 80 grid.

to the null distribution of the standardized residual is
inappropriate.

To confirm this, Figure 4 shows the pointwise 2.5%
and 97.5% quantiles of the null distribution of 7 K, ob-
tained by extensive simulation. The sample mean of the
simulated 7 K is also shown, and indicates that the ex-
pected standardized residual is nonzero for small val-
ues of r. Repeating the computation with a finer grid
of quadrature points (for approximating integrals over
W involved in the pseudo-likelihood and the residuals)
reduces the bias, suggesting that this is a discretization
artefact.

12.3.2 Comparison of competing models. Figu-
re 5(a) shows the empirical K-function and its com-
pensator for each of the models (A)—(D) in Section 12.1.
Figure 5(b) shows the corresponding residual plots,
and Figure 5(c) the standardized residuals. A posi-
tive or negative value of the residual suggests that the
data are more clustered or more inhibited, respectively,
than the model. The clear inference is that the Pois-
son models (A) and (B) fail to capture interpoint inhibi-
tion at range r ~ (.05, while the homogeneous Strauss
model (C) is less clustered than the data at very large
scales, suggesting that it fails to capture spatial trend.
The correct model (D) is judged to be a good fit.

The interpretation of this example requires some
caution, because the residual K-function of the fitted
Strauss models (C) and (D) is constrained to be approx-

imately zero at r = R = 0.05. The maximum pseudo-
likelihood fitting algorithm solves an estimating equa-
tion that is approximately equivalent to this constraint,
because of (43).

It is debatable which of the presentations in Figure 5
is more effective at revealing lack of fit. A compen-
sator plot such as Figure 5(a) seems best at capturing
the main differences between competing models. It is
particularly useful for recognizing a gross lack of fit.
A residual plot such as Figure 5(b) seems better for
making finer comparisons of model fit, for example,
assessing models with slightly different ranges of inter-
action. A standardized residual plot such as Figure 5(c)
tends to be highly irregular for small values of r, due to
discretization effects in the computation and the inher-
ent nondifferentiability of the empirical statistic. In dif-
ficult cases we may apply smoothing to the standard-
ized residual.

12.4 Application of G Diagnostics

12.4.1 Diagnostics for correct model. Consider
again the model of the correct form (D). The resid-
ual and compensator of the empirical nearest neighbor
function G for the fitted model are shown in Figure 6.
The residual plot suggests a marginal lack of fit for
r < 0.025. This may be correct, since the fitted model
parameters (Section 12.3.1) are marginally poor esti-
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F1G. 5. Model diagnostics based on pairwise distances, for each of the models (A)—(D) fitted to the data in Figure 1(b). (a) K anAd its com-
pensator under each model. (b) Residual K -function (empirical minus compensator) under each model. (c) Standardized residual K -function

under each model.

mates of the true values, in particular, of the interaction
parameter. This was not reflected so strongly in the K
diagnostics. This suggests that the residual of G may
be particularly sensitive to lack of fit of interaction.

Applying the rule of thumb in Section 10.3, we have
rerit = 0.044, agreeing with the interpretation that the
42 limits are not trustworthy for r < 0.05 approxi-
mately.

Figure 7 shows the pointwise 2.5% and 97.5% quan-
tiles of the null distribution of 7G. Again, there is a

suggestion of bias for small values of » which appears
to be a discretization artefact.

12.4.2 Comparison of competing models. For each
of the four models, Figure 8(a) shows G and its Papan-
gelou compensator. This clearly shows that the Poisson
models (A) and (B) fail to capture interpoint inhibition
in the data. The Strauss models (C) and (D) appear vir-
tually equivalent in Figure 8(a).

Figure 8(b) shows the standardized residual of G,
and Figure 8(c) the pseudo-residual of Vg (i.e., the
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FI1G. 6. Residual diagnostics obtained from the perturbing G-model when the data pattern is a realization of an inhomogeneous Strauss
process. (a) G and its compensator under a fitted model of the correct form, and theoretical G-function for a Poisson process. (b) Residual
G -function and two-standard-deviation limits under the fitted model of the correct form.

pseudo-residual based on the pertubing Geyer model),
with spline smoothing applied to both plots. The
Strauss models (C) and (D) appear virtually equiv-
alent in Figure 8(c). The standardized residual plot
Figure 8(b) correctly suggests a slight lack of fit for
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(a)

model (C) while model (D) is judged to be a reasonable
fit.

12.5 Application of F Diagnostics

Figure 9 shows the pseudo-residual diagnostics
based on empty space distances. Both diagnostics
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FI1G. 7. Null distribution of standardized residual of G. Pointwise 2.5% and 97.5% quantiles (grey shading) and sample mean (dotted
lines) from 1000 simulated realizations of model (D)Awith estimated parameter values (a) y = 0.217 and B = (5.6, —0.46, 3.35,2.05) using
a 40 x 40 grid of dummy points; (b) y =0.170 and B = (5.6, —0.64, 4.06, 2.44) using a 80 x 80 grid.
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Diagnostics based on nearest neighbor distances, for the models (A)—(D) fitted to the data in Figure 1(b). (a) Compensator for G.

(b) Smoothed standardized residual qfé. (c) Smoothed pseudo-residual derived from a perturbing Geyer model.

clearly show models (A)—(B) are poor fits to data. How-
ever, in Figure 9(a) it is hard to decide which of the
models (C)—(D) provide a better fit. Despite the close
connection between the area-interaction process and
the F-model, the diagnostic in Figure 9(b) based on the
F-model performs better in this particular example and
correctly shows (D) is the best fit to data. In both cases
it is noticed that the pseudo-sum has a much higher
peak than the pseudo-compensators for the Poisson
models (A)—(B), correctly suggesting that these mod-

els do not capture the strength of inhibition present in
the data.

13. TEST CASE: CLUSTERING WITHOUT TREND

13.1 Data and Models

Figure 1(c) is a realization of a homogeneous Geyer
saturation process [31] on the unit square, with first or-
der term A = exp(4), saturation threshold s =4.5 and
interaction parameters r = 0.05 and y = exp(0.4) ~
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F1G. 9. Pseudo-sum and pseudo-compensators for the modelsA (A)—(D) fitted to the data in Figure 1(b) when the perturbing model is (a) the
area-interaction process (null fitted on a fine grid) and (b) the F-model (null fitted on a coarse grid).

1.5, that is, the density is
(56) f(x) xexp(n(x)logh + Vg s(x,r)logy),

where

Ve.s(X, 1) = Zmin{s, > Illxi — xjll < r}}.

i Jiii
This is an example of moderately strong clustering
(with interaction range R = 2r = 0.1) without trend.
The main challenge here is to correctly identify the
range and type of interaction.

We fitted three point process models to the data:
(E) a homogeneous Poisson process (CSR); (F) a ho-
mogeneous area-interaction process with disc radius
r = 0.05; (G) a homogeneous Geyer saturation pro-
cess of the correct form, with interaction parameter
r = 0.05 and saturation threshold s = 4.5 while the
parameters A and y in (56) are unknown. The param-
eter estimates for (G) were log)A\ =4.12 and logy =
0.38.

13.2 Application of K Diagnostics

A plot (not shown) of the K -function and its com-
pensator, under each of the three models (E)—(G),
demonstrates clearly that the homogeneous Poisson
model (E) is a poor fit, but does not discriminate be-
tween the other models.

Figure 10 shows the residual K and the smoothed
standardized residual K for the three models. These
diagnostics show that the homogeneous Poisson model

(E) is a poor fit, with a positive residual suggesting cor-
rectly that the data are more clustered than the Poisson
process. The plots suggests that both models (F) and
(G) are considerably better fits to the data than a Pois-
son model. They show that (G) is a better fit than (F)
over a range of r values, and suggest that (G) captures
the correct form of the interaction.

13.3 Application of G Diagnostics

Figure 11 shows G and its compensator, and the
corresponding residuals and standardized residuals,
for each of the models (E)-(G) fitted to the clus-
tered point pattern in Figure 1(c). The conclusions
obtained from Figure 11(a) are the same as those in
Section 13.2 based on K and its compensator. Fig-
ure 12 shows the smoothed pseudo-residual diagnos-
tics based on the nearest neighbor distances. The mes-
sage from these diagnostics is very similar to that from
Figure 11.

Models (F) and (G) have the same range of interac-
tion R = 0.1. Comparing Figures 10 and 11, we might
conclude that the é—compensator appears less sensi-
tive to the form of interaction than the K -compensator.
Other experiments suggest that G is more sensitive
than K to discrepancies in the range of interaction.

13.4 Application of F Diagnostics

Figure 13 shows the pseudo-residual diagnostics
based on the empty space distances, for the three mod-
els fitted to the clustered point pattern in Figure 1(c).
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F1G. 10. Model diagnostics based on pairwise distances for each of the models (E)—(G) fitted to the data in Figure 1(c). (a) Residual K;

(b) smoothed standardized residual K.

In this case diagnostics based on the area-interaction
process and the F-model are very similar, as expected
due to the close connection between the two diag-
nostics. Here it is very noticeable that the pseudo-
compensator for the Poisson model has a higher peak
than the pseudo-sum, which correctly indicates that the
data is more clustered than a Poisson process.

14. TEST CASE: JAPANESE PINES
14.1 Data and Models

Figure 1(a) shows the locations of seedlings and
saplings of Japanese black pine, studied by Numata
[53, 54] and analyzed extensively by Ogata and Tane-
mura [55, 56]. In their definitive analysis [56] the fit-
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F1G. 11. Model diagnostics based on nearest neighbor distances for each of the models (E)—(Q) fitted to the data in Figure 1(c). (a) G and

its compensator under each model; (b) smoothed standardized residual G.



DIAGNOSTICS FOR SPATIAL POINT PROCESSES 635

RN Perfect fit

/ : - =- (E): RAVg(r)
n . — - (F): RAVg(r)
— (G): RAVg(M)

50
|

0.00 0.02 0.04 0.06 0.08 0.10

(a)

;0 D \ Perfect fit
. . A
9 o "= (E):RAG(n)
o . A
. \ — = (F:RAG()
s | / \ — (G): RAG(Y)
S .
! \
0 I \
s | ! \
I \
9 i .
=}
8 |
o
8 |
o
8
ﬂ:’ B T T T T T
0.00 0.02 0.04 0.06 0.08 0.10
(b)

FI1G. 12.  Smoothed pseudo-residuals for each of the models (E)—(G) ]iitted to the clustered point pattern in Figure 1(c) when the perturbing
model is (a) the Geyer saturation model with saturation 1 and (b) the G-model.

ted model was an inhomogeneous “soft core” pair-
wise interaction process with log-cubic first order term
Ag(x,y) =exp(Pg(x,y)), where Pg is a cubic polyno-
mial in x and y with coefficient vector 8, and density

f(ﬁ’UZ) (X) = C(ﬁ’UZ) exp(Z Pﬁ (Xl‘)
i

(57)
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where o2

is a positive parameter.

Here we evaluate three models: (H) an inhomo-
geneous Poisson process with log-cubic intensity;
(I) a homogeneous soft core pairwise interaction pro-
cess, thatis, when Pg(x, y) in (57) is replaced by a real
parameter; (J) the Ogata—Tanemura model (57). For
more detail on the data set and the fitted inhomoge-

neous soft core model, see [7, 56].

s AR
3 TN
’ AN (E): CAF(r)
/ " (F):CAF(
’ v (G): CAF(r)
g n ,. \
] \
g -
g ]

(d)

Pseudo-sum and pseudo-compensators for the models (E)—(Q) fitted to the clustered point pattern in Figure 1(c) when the per-
turbing model is (a) the area-interaction process and (b) the F-model.
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FIG. 14. Model diagnostics based on pairwise distances for each of the models (H)—(J) fitted to the Japanese pines data in Figure 1(a).

(a) Smoothed residual K ; (b) smoothed standardized residual K.

A complication in this case is that the soft core
process (57) is not Markov, since the pair poten-
tial ¢(u, v) = exp(—o?/|lu — v||*) is always positive.
Nevertheless, since this function decays rapidly, it
seems reasonable to apply the residual and pseudo-
residual diagnostics, using a cutoff distance R such
that | log c(u, v)| < & when |ju —v|| < R, for a specified
tolerance . The cutoff depends on the fitted parame-
ter value o>. We chose & = 0.0002, yielding R = 1.
Estimated interaction parameters were 6> = 0.11 for
model () and 6% = 0.12 for model (J).

14.2 Application of K Diagnostics

A plot (not shown) of K and its compensator for
each of the models (H)—(J) suggests that the homoge-
neous soft core model (l) is inadequate, while the inho-
mogeneous models (H) and (J) are reasonably good fits
to the data. However, it does not discriminate between
the models (H) and (J).

Figure 14 shows smoothed versions of the residual
and standardized residual of K for each model. The
Ogata—Tanemura model (J) is judged to be the best fit.

14.3 Application of G diagnostics

Finally, for each of the models (H)—(J) fitted to the
Japanese pines data in Figure 1(a), Figure 15(a) shows
G and its compensator. The conclusions are the same
as those based on K shown in Figure 14. Figure 16
shows the pseudo-residuals when using either a per-

turbing Geyer model [Figure 16(a)] or a perturbing G-
model [Figure 16(b)]. Figures 16(a)—(b) tell almost the
same story: the inhomogeneous Poisson model (H) pro-
vides the worst fit, while it is difficult to discriminate
between the fit for the soft core models (I) and (J).
In conclusion, considering Figures 14, 15 and 16, the
Ogata—Tanemura model (J) provides the best fit.

14.4 Application of F diagnostics

Finally, the empty space pseudo-residual diagnostics
are shown in Figure 17 for the Japanese Pines data
in Figure 1(a). This gives a clear indication that the
Ogata—Tanemura model (J) is the best fit to the data,
and the data pattern appears to be too regular compared
to the Poisson model (H) and not regular enough for the
homogeneous softcore model (l).

15. SUMMARY OF TEST CASES

In this section we discuss which of the diagnostics
we prefer to use based on their behavior for the three
test cases in Sections 12—14.

Typically, the various diagnostics supplement each
other well, and it is recommended to use more than one
diagnostic when validating a model. It is well known
that K is sensitive to features at a larger scale than
G and F. Compensator and pseudo-compensator plots
are informative for gaining an overall picture of model
validity, and tend to make it easy to recognize a poor fit
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FIG. 15. Model diagnostics based on nearest neighbour distances for each of the models (H)—(J) fitted to the Japanese pines data in

Figure 1(a). (a) G and its compensator; (b) smoothed residual é; (c) smoothed standardised residual G.

when comparing competing models. To compare mod-
els which fit closely, it may be more informative to use
(standardized) residuals or pseudo-residuals. We pre-
fer to use the standardized residuals, but it is important
not to over-interpret the significance of departure from
Zero.

Based on the test cases here, it is not clear whether
diagnostics based on pairwise distances, nearest neigh-
bor distances, or empty space distances are prefer-
able. However, for each of these we prefer to work
with compensators and residuals rather than pseudo-

compensators and pseudo-residuals when possible
(i.e., it is only necessary to use pseudo-versions for
diagnostics based on empty space distances). For in-
stance, for the first test case (Section 12) the best com-
pensator plot is that in Figure 5(a) based on pairwise
distances (I% and CK ) which makes it easy to iden-
tify the correct model. On the other hand, in this test
case the best residual type plot is that in Figure 8(b)
based on nearest neighbor distances (T@) where the
correct model is the only one within the critical bands.
However, in the third test case (Section 14) the best
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Smoothed pseudo-residuals for each of the models (H)—(J) fitted to the Japanese pines data in Figure 1(a) when the perturbing
model is (a) the Geyer saturation model with saturation 1 (null fitted on a fine grid) and (b) the G-model.

compensator plot is one of the plots in Figure 17
with pseudo-compensators based on empty space dis-
tances (X AV, and CAV4 or Y AF and CAﬁ, respec-
tively) which clearly indicates which model is cor-

rect.

In the first and third test cases (Sections 12 and 14),
which both involve inhomogeneous models, it is clear

FI1G. 17.

0.4

0.3

0.2

0.1

0.0

that K and its compensator are more sensitive to lack
of fit in the first order term than G and its compensator
[compare, e.g., the results for the homogeneous model
(C) in Figures 5(a) and 8(b)]. It is our general experi-
ence that diagnostics based on K are particularly well
suited to assess the presence of interaction and to iden-
tify the general form of interaction. Diagnostics based

8. 7N aFw
/ \ "= (H): CAR()

o \ — - (): CAF(D

S \ — (J): CAF()

0.0 0.2 0.4 0.6 0.8 1.0 1.2

(d)

Pseudo-sum and pseudo-compensators for the models (H)—(J) fitted to the real data pattern in Figure 1(a) when the perturbing
model is (a) the area-interaction process and (b) the F-model.
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on K and, in particular, on G seem to be good for as-
sessing the range of interaction.

Finally, it is worth mentioning the computational dif-
ference between the various diagnostics (timed on a
2.5 GHz laptop). The calculations for K and CK used
in Figure 2 are carried out in approximately five sec-
onds, whereas the corresponding calculations for G
and CG only take a fraction of a second. For X AF and
CAF , for example, the calculations take about 45 sec-
onds.

16. POSSIBLE EXTENSIONS

The definition of residuals and pseudo-residuals
should extend immediately to marked point processes.
For space—time point processes, residual diagnostics
can be defined using the spatiotemporal conditional in-
tensity (i.e., given the past history). Pseudo-residuals
are unnecessary because the likelihood of a gen-
eral space—time point process is a product integral
(Mazziotto—Szpirglas identity). In the space—time case
there is a martingale structure in time, which gives
more hope of rigorous asymptotic results in the tem-
poral (long-run) limit regime.

Residuals can be derived from many other summary
statistics. Examples include third-order and higher-
order moments (Appendix A.l), tessellation statistics
(Appendix A.2), and various combinations of F, G
and K.

In the definition of the extended model (25) the
canonical statistic S could have been allowed to de-
pend on the nuisance parameter 6, but this would have
complicated our notation and some analysis.

APPENDIX A: FURTHER DIAGNOSTICS

In this appendix we present other diagnostics which
we have not implemented in software, and which there-
fore are not accompanied by experimental results.

A.1 Third and Higher Order Functional
Summary Statistics

While the intensity and K -function are frequently-
used summaries for the first and second order moment
properties of a spatial point process, third and higher
order summaries have been less used [49, 67, 70, 72].

Statistic of order k. For a functional summary statis-
tic of kth order, say,

(58) S, = Y qUxi,.xi ),

we obtain
YASX,r)
59) =k!S(x,r)
=k! Z Q({xila---,xik}»’”),
{xip e xif X
CAS(x,r)
=k!ICS(x,r)
(60) =k -1
Z q({xilv"‘yxik_]9u}’r)
w {Xll ----- x,'k_l}CX
Mg (u, x) du,
PU®, r)
(61)
=kIRSx,r)=k!S(x,r) —k!ICS(x,r),
where i1, 2, ... are pairwise distinct in the sums in

(59)—(60). In this case again, pseudo-residual diagnos-
tics are equivalent to those based on residuals.

Third order example. For a stationary and isotropic
point process (i.e., when the distribution of X is in-
variant under translations and rotations), the intensity
and K-function of the process completely determine
its first and second order moment properties. However,
even in this case, the simplest description of third order
moments depends on a three-dimensional vector spec-
ified from triplets (x;, x;, x¢) of points from X such
as the lengths and angle between the vectors x; — x;
and x; — xi. This is often considered too complex,
and instead one considers a certain one-dimensional
property of the triangle T (x;,x;, x;) as exemplified
below, where L(x;, x;, x;) denotes the largest side in
T(xi, xj, xk).

Let the canonical sufficient statistic of the perturbing
density (27) be

S(X, r) = VT(X, I")
= Y LG, xj,x) <r}.

i<j<k

(62)

The perturbing model is a special case of the triplet in-
teraction point process studied in [31]. It is also a spe-
cial case of (58) with

qUxi,xj, xi}, r) =I{L(x;, xj,xx) <r};

residual and pseudo-residual diagnostics are equivalent
and given by (59)-(61).
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A.2 Tessellation Functional Summary Statistics

Some authors have suggested the use of tessellation
methods for characterizing spatial point processes [38].
A planar tessellation is a subdivision of planar region
such as W or the entire plane R?. For example, con-
sider the Dirichlet tessellation of W generated by x,
that is, the tessellation with cells

C(xi[x) ={u € Wlllu — x;[| < llu — x|
for all x; in x},
i=1,...,n.

Suppose the canonical sufficient statistic of the perturb-
ing density (27) is

63) S(x.r)=Vox,r)=) I{Cx|=r}.
1

This is a sum of local contributions as in (33), although
not of local statistics in the sense mentioned in Sec-
tion 6.3, since I{|C (x;|x)| < r} depends on those points
in x_; which are Dirichlet neighbors to x; and such
points may of course not be r-close to x; (unless r is
larger than the diameter of W). We call this perturb-
ing model a soft Ord process; Ord’s process as defined
in [10] is the limiting case ¢ — —oo in (27), that is,
when r is the lower bound on the size of cells. Since
Vo (x) < n(x), the perturbing model is well-defined for
all ¢ e R.

Let ~ denote the Dirichlet neighbor relation for the
points in X, that is, x; ~x x; if C(x;|x) N C(x;[x) # <.
Note that x; ~x x;. Now,

AuSx,r) =T{|Culx U {uh)| <r}

(64) + >

VAUV~ XU} U

—I{IC@Ix\ (u)| < r}]

depends not only on the points in x which are Dirich-
let neighbors to u (with respect to ~xyj,)) but also on
the Dirichlet neighbors to those points (with respect
to ~xufu) or with respect to ~x\(4}). In other words,
if we define the iterated Dirichlet neighbor relation by
that x; ~,2( x if there exists some x; such that x; ~x xx
and x; ~ xi, then 7 (u, X) depends on those points in x
which are iterated Dirichlet neighbors to u with respect
to ~xufu) or with respect to ~x\(y}. The pseudo-sum
associated to the soft Ord process is

TAVo(x, 1) = Vo(x,7)

OINDYD

i JALX~xX

[{ICIxU{uh| <r}

[{IC(x1x) <7}

—{IC(xjlx_)I = r}]

and from (29) and (64) we obtain the pseudo-compen-
sator. From (36) and (63), we obtain the Papangelou
compensator

CVo(x,r) = ./W I{|C(ulx U {u})| <r}rsu,x)du.

Many other examples of tessellation characteristics
may be of interest. For example, often the Delaunay
tessellation is used instead of the Dirichlet tessella-
tion. This is the dual tessellation to the Dirichlet tes-
sellation, where the Delaunay cells generated by x are
given by those triangles T (x;, x, xx) such that the disc
containing x;, X, X in its boundary does not contain
any further points from x (strictly speaking we need
to assume a regularity condition, namely, that x has to
be in general quadratic position; for such details, see
[10]). For instance, the summary statistic #(x, ) given
by the number of Delaunay cells T'(x;, x;, xx) with
L(x;,xj,x;) <r,where L(u, v, w) is the length of the
triangle with vertices u, v, w, is a kind of third order
statisticis related to (62) but concerns only the maxi-
mal cliques of Dirichlet neighbors (assuming again the
general quadratic position condition). The correspond-
ing perturbing model has not been studied in the liter-
ature, to the best of our knowledge.

APPENDIX B: VARIANCE FORMULAE

This appendix concerns the variance of diagnostic
quantities of the form

I=>) h(x,X_;)— /Wh(u, X) Ao (u, X) du,

R=> h(x;, X)) — fwh(u, X)hg(u, X) du,

where /(-) is a functional for which these quantities
are almost surely finite, X is a point process on W with
Papangelou conditional intensity Ag(u, X) and 6 is an
estimate of 6 (e.g., the MPLE).

B.1 General Identity

Exact formulae for the variance of the innovation /
and residual R are given in [4]. Expressions for VarR
are unwieldy [4], Section 6, but to a first approximation
we may ignore the effect of estimating 6 and consider
the variance of /. Suppressing the dependence on 6,
this is ([4], Proposition 4),

Varl = / E[ (. X)2A(u, X)] du
(65) v
+[ E[A(u,v.X) + B(u, v, X)]dudv,
W2
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where
A, v, X) = A,h(v, X)Aph(u, X)Xy (1, v, X),
B(u,v,X) =h(u,X)h(v,X)
Ar(u, X)A (v, X) — A2 (u, v, X)},

where Ay (u, v,Xx) = A(u, x)A(v, x U {u}) is the second
order Papangelou conditional intensity. Note that for a
Poisson process B(u, v, X) is identically zero.

B.2 Pseudo-Score

Let S(x,z) be a functional summary statistic with
function argument z. Take h(u, X) = A, S(x, z). Then
the innovation / is the pseudo-score (23), and the vari-
ance formula (65) becomes

Var[PU(0)]

=/ E[(AyS(X, 2))*A(u, X)] du

w

(66) +/ E[(AyAyS(X, 2)* A2, v, X)] du dv
W2

+ /WZ E[A,S(x, 2)AyS(X, 2)
AA(u, X)A (v, X) — A2 (u, v, X)}]du dv,
where for u £ v and {u, v} Nx =g,
AyAyS(x,2) =SxU{u, v}, z) — SxU{u}, z)
—S(xU{v},2) +S5(x,2)
satisfies A, Ay S(X,2) = AyALS(X, 2).

APPENDIX C: MODIFIED EDGE CORRECTIONS

Appendices C-E describe modifications to the stan-
dard edge corrected estimators of K(r) and G(r) re-
quired in the conditional case (Section 2.3) because the
Papangelou conditional intensity A(u, X) can or should
only be evaluated at locations u € W*° where W° C W.
Corresponding compensators are also given.

Assume the point process is Markov and we are in
the conditional case as described in Section 5.4. Con-
sider an empirical functional statistic of the form

(67) Swx,r) = swxi,x\ {x;},7)

X; EX

with compensator (in the unconditional case)
CSwx,r)= / sw(u, X, r)Az(u, x) du.
w

We explore two different strategies for modifying the
edge correction.

In the restriction approach, we replace W by W*° and
x by x° =xN W°, yielding

Swo(X,r) = D swe(xi, X\ {x;}, 1),
Xx; €x°

(68)
CSwe (X, r)=/ swo (u, X°, r)Ag(u, X°|xT) du.
WO

Data points in the boundary region W+ are ignored
in the calculation of the empirical statistic Syo. The
boundary configuration x™ = x N W contributes only
to the estimation of 6 and the calculation of the Pa-
pangelou conditional intensity (-, -|xT). This has the
advantage that the modified empirical statistic (68) is
identical to the standard statistic S computed on the
subdomain W°; it can be computed using existing soft-
ware, and requires no new theoretical justification. The
disadvantage is that we lose information by discarding
some of the data.

In the reweighting approach we retain the boundary
points and compute

Swew®X,r) =Y swow(xi,x\ {xi},r),

X; €X°

CSyo.w (x,7) = / swe.w (i X, ) (e, X°xH) dut,
WO

where swo w(-) is a modified version of sy (-). Bound-
ary points contribute to the computation of the modi-
fied summary statistic Swo w and its compensator. The
modification is designed so that Sy w has properties
analogous to Sy .

The K -function and G-function of a point process Y
in R? are defined [63, 64] under the assumption that
Y is second order stationary and strictly stationary, re-
spectively. The standard estimators K w(r) and Gx(r)
of the K -function and G-function, respectively, are de-
signed to be approximately pointwise unbiased estima-
tors when applied to X =Y N W.

We do not necessarily assume stationarity, but when
constructing modified summary statistics Ko w ()
and CA;Wo,W(r), we shall require that they are also ap-
proximately pointwise unbiased estimators of K (r)
and G(r), respectively, when Y is stationary. This
greatly simplifies the interpretation of plots of
K we,w (r) and (A}qu(r) and their compensators.

APPENDIX D: MODIFIED EDGE CORRECTIONS
FOR THE K-FUNCTION
D.1 Horvitz-Thompson Estimators

The most common nonparametric estimators of
the K-function [9, 57, 63] are continuous Horvitz—
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Thompson type estimators [8, 20] of the form

K(r)=Kw(r)
(69) 1

PXIW] &
Here p? = p2(x) should be an approximately unbiased
estimator of the squared intensity p? under stationarity.
Usually p%(x) =n(n — 1)/|W|* where n = n(x).

The term ew (u, v) is an edge correction weight, de-
pending on the geometry of W, designed so that the
double sum in (69), say, ¥ (r) = p2(x)|W|K (r), is an
unbiased estimator of Y (r) = p?|W|K (r). Popular ex-
amples are the Ohser—Stoyan translation edge correc-
tion with

ew (u, v) = efi™ (u, v)

_ Wl
(WD (W4 (u—v))|
and Ripley’s isotropic correction with

80(u, v)

(70)

ew(u,v)=e
(71)
_ 27 ||u — vl
~ length(@B(u, [lu —v|[) " W)’
Estimators of the form (69) satisfy the local decompo-
sition (67) where

1

WD T B W]

S ewuxpHllu —xjl <r), uéx.

J

Now we wish to modify (69) so that the outer summa-
tion is restricted to data points x; in W° C W, while re-
taining the property of unbiasedness for stationary and
isotropic point processes. The restriction estimator is

Kwe(r)

(72) =

1
A2 (w© o
pe(x°)|We
YD ewe G, x Il — xjll <7},
X €X° xjexil.
where the edge correction weight is given by (70) or
(71) with W replaced by W°. A more efficient alterna-
tive is to replace (69) by the reweighting estimator
Kwe,w(r)

B 1
A2 (x)|We|
S0 Y ewew @i xp)I{lx — xjll <7},

X;EX° XjEX

(73)

Zew(xi,xj)ﬂ{llxi —xjll<r}.

where ewe w(u, v) is a modified version of ew (-) con-
structed so that the double sum in (73) is unbiased for
Y (r). Compared to the restriction estimator (72), the
reweighting estimator (73) contains additional contri-
butions from point pairs (x;,x;) where x; € x° and
Xj € xt.

The modified edge correction factor ewo w(-) for
(73) is the Horvitz—Thompson weight [9] in an ap-
propriate sampling context. Ripley’s [63, 64] isotropic
correction (71) is derived assuming isotropy, by Palm
conditioning on the location of the first point x;, and
determining the probability that x; would be observed
inside W after a random rotation about x;. Since the
constraint on x; is unchanged, no modification of
the edge correction weight is required, and we take
ewe w(-) = ew(:) as in (71). Note, however, that the
denominator in (73) is changed from |W| to |[W°|.

The Ohser—Stoyan [58] translation correction (70)
is derived by considering two-point sets (x;, x;) sam-
pled under the constraint that both x; and x; are in-
side W. Under the modified constraint that x; € W°
and x; € W, the appropriate edge correction weight is

ewe,w(u,v) =ewe w(u —v)
WO (WO (4 — )]
- Wel
so that 1/ew- w(z) is the fraction of locations u in W°
suchthatu +ze W.

D.2 Border Correction

A slightly different creature is the border corrected
estimator [using usual intensity estimator p = n(x)/
W]

W]
n(n(xN We,)
> D T € Werll{ll — x;l <)

XiEXX;EX_;

Kw(r) =

with compensator (in the unconditional case)
. W2k ex llu —xjll < r}
CRw(r) = / s ’
Wer (n(X) + D(n(xNWgp) + 1)

g (u, x°1xT) du.

The restriction estimator is
[We|
n(x)n(xNWg,)
2o > M e Wy — xjl <)

L EXO . ox©
Xj €X Xj Ex_i

Kwo(r) =
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and the compensator is

Rt = | WOl s e Ll — 31 < 1)
VI Jws, () + D(nx N W) + 1)

g (u, x°)x ) du.

Typically, W° = Wgpg, so W2, is equal to Wgr+s)-
The reweighting estimator is
W]
nx)n(x° N Wg,)
Y D Hxi e Worll{llx — xjl <7)

X;EXC XjEX

Kwe.w(r) =

and the compensator is

) WIS ex Il — x; <7}
CRwew(r) = /womwe, (n(x) + D(n(x° N We,) + 1)

g (u, x°xT) du.

Usually, W° = Wgg, so W° N Wg, is equal to
We max(r,r)- From this we conclude that when using
border correction we should always use the reweight-
ing estimator since the restriction estimator discards
additional information and neither the implementation
nor the interpretation is easier.

APPENDIX E: MODIFIED EDGE CORRECTIONS
FOR NEAREST NEIGHBOR FUNCTION G
E.1 Hanisch Estimators

Hanjsch [32] gonsidered estimators for G(r) of the
form Gw (r) = Dx(r)/p, where 0 is some estimator of
the intensity p, and

El

R I{x; € Weg, }I{d; <r}
74 Dun=Y" Sd
Wed,|

where d; = d(x;, x \ {x;}) is the nearest neighbor dis-
tance for x;. If o were replaced by p, then Gy (r)
would be an unbiased, Horvitz—Thompson estimator of
G(r). See [71], pages 128-129, [9]. Hanisch’s recom-
mended estimator Dy is the one in which p is taken to
be

N {x; € Weq,}
Dx(o0) =3 === f
Xj €X &d;

This is sensible because ﬁX(OO) is an unbiased estima-
tor of p and is positively correlated with ﬁx(r). The
resulting estimator f}W(r) can be decomposed in the
form (67) where

{u € Weau,x{du,x) <r}
Dxuiuy (00) | Wedu,x) |

swu,X,r)=

for u ¢ x, where d(u, X) is the (“empty space”) distance
from location u to the nearest point of x. Hence, the
corresponding compensator is

e ) :/ T{u € Woa,x)I{d(u, x) <r)

w Dxujuy (00) Wodu,»|
. )\‘é\(l,[, X) du-

This is difficult to evaluate, since the denominator
of the integrand involves a summation over all data
points: Dyy(,)(00) is not related in a simple way to
Dy (00). Instead, we choose p to be the conventional
estimator 0 = n(x)/|W|. Then

A W]

Gw(r)= @f)x(r),

which can be decomposed in the form (67) with

W u e Weau,x))H{du,x) <r}
nx)+1

swu,x,r)=
W( ) |W9d(u,x)|

for u ¢ x, so that the compensator is

Cow(r) = ('?’J’r 1 I{u € Wezli;z;x)}]l{d(lu,x) <1
n(x w
(75) od(u,x)
“hg(u, x) du.

In the restriction estimator we exclude the boundary
points and take d = d(x;,x2;), effectively replacing
the data set x by its restriction x° =x N W°:

R |We| I{x; € Wédf}ﬂ{df <r}
G (r) = d
w00 T Wyl

The compensator is (75) but computed for the point
pattern x° in the window W°:

CGye(r)
o wel H{u € W,y xo) Hid (u, x°) < r}
n(x°) + 1 Jwe |Wéd(u,X°)|

g (u, x°xT) du.

In the usual case W° = Wgg, we have W3, =
Wo(r+a)-

In the reweighting estimator we take d; = d(x;, X\
{x;}). To retain the Horvitz—Thompson property, we
must replace the weights 1/|Wgg, | in (74) by 1/|W° N
Wgg; |. Thus, the modified statistics are

{xi € Woq }l{d; < r}
|Wen Weg|

N w
(76) Gwo,w<r>=' | >

n(X) Xx; €x°
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and
CGwe,w(r)
a7 = Wi {u € W, {d(u,x) <r}
n(x)+1Jwe W N Woaq,xl

g (u, x°xT) du.

In the usual case where W° = Wgg, we have W° N
W@d,— = Wemax(R,d,-)-

Optionally, we may also replace |W|/n(x) in (76) by
|W?|/n(xN W?), and, correspondingly, replace (l}gll
in (77) by |[W°|/(n(xN W°) 4+ 1).

E.2 Border Correction Estimator

The classical border correction estimate of G is
1
n(xN Wey)
: Z {x; € W, J{d (xi, x—;) <r}

X €X

Gw(r)=
(78)

with compensator (in the unconditional case)

1
1+n(xN War)

/ {d(u,x) <rir;(u,x)du.
Wor

CGw(r) =
(79)

In the conditional case, the Papangelou conditional
intensity Aj;(u,X) must be replaced by A, (u,x°|xh)
given in (24). The restriction estimator is obtained by
replacing W by W° and x by x° in (78)—(79), yield-
ing

. 1
Gwo P
W) = R AWE,)
Y Ixi € WA (%, x2)) <1},
x; €X°
CGwe(r) =

1+n(xNWe,)

:/Oﬂmuhf)fruﬂmxﬂxﬂdw

or
Typically, W° = Wgg so that W2, = Wgr+s). The
reweighting estimator is obtained by restricting x; and
u in (78)—(79) to lie in W°, yielding
1
n(x° N W@r)
- Y I € Wo, Y i{d (i, x—) <),

x; €X°

Gweo,w(r) =

1
1+n(x° N Wey)

f Hd(u,x) <r}
WenWe,

“Ag(u, x°|x 1) du.

CGwow(r) =

In the usual case where W° = Wgp, we have W° N
Weor = Womax(r,r)- Again, the reweighting approach
is preferable to the restriction approach.

The border corrected estimator G(r) has relatively
poor performance and sample properties [38], page 209.
Its main advantage is its computational efficiency in
large data sets. Similar considerations should apply to
its compensator.
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