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1. Introduction

Benford's Law, or BL for short, is the observation that in many collections
of numbers, be they e.g. mathematical tables, real-life data, or ambinations
thereof, the leading signi cant digits are not uniformly distributed, as might be
expected, but are heavily skewed toward the smaller digits. More sgci cally,
BL says that the signi cant digits in many datasets follow a very particular
logarithmic distribution. In its most common formulation, namely the s pecial
case of rst signi cant decimal (i.e. base-10) digits, BL is also known as the
First-Digit Phenomenon and reads

Prob(D; = di)=logg 1+ dll forall d; =1;2;:::;9; (1.2)
here D; denotes the rst signi cant decimal digit, e.g.
D1(p 2)= Dy(1:414::)=1;
D:( )= D,(0:3183:::)=3;
Di(e )= D1(23:14::)=2:
Thus, for example, (1.1) asserts that
Prob(D1=1) =log 1,2 =0:3010:::; Prob(D1=2)=log 10; =0:1760:::;
hence the two smallest digits occur with a combined probability close to50
percent, whereas the two largest digits together have a probabilit of less than

10 percent,

=0:05115:::; Prob(D1=9)=log 101—90 =0:04575::::

ol ©

Prob(D1=8) = log 4,
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A crucial part of the content of (1.1), of course, is an appropriate formulation or
interpretation of \Prob". In practice, this can take several for ms. For sequences
of real numbers ), for example, Prob usually refers to the proportion (or
relative frequency) of timesn for which an event such asD; = 1 occurs. Thus
Prob (D 1=1)is the limiting proportion,as N !'1 ,oftimesn N thatthe rst
signi cant digit of x, equals 1. Implicit in this usage of Prob is the assumption
that all limiting proportions of interest actually exist. Similarly, for re al-valued
functions f : [0;+1)! R, Prob(D.=1) refers to the limiting proportion, as
T!1 , of the total length of time t<T for which the rst signi cant digit of

f (t) is 1. For a random variable or probability distribution, on the other h and,
Prob simply denotes the underlying probability, e.g. if X a random variable
then Prob(D1(X) = 1) is the probability that the rst signi cant digit of X
equals 1. Finite datasets of real numbers can also be dealt with this ay, with
Prob being the empirical distribution of the dataset.

All of these approaches to {.1) will be studied in detail in subsequent chap-
ters. Fig lillustrates several of the possible settings, including simple sequeas
such as the Fibonacci numbersi,) =(1;1;2;3;5;8;13;:::), and real-life data
from [Ben] as well as recent census statistics; in addition, it previews some diie
many scenarios, also to be discussed later, that lead texact conformance with
BL. In Fig 1 and throughout, # A denotes the cardinality (number of elements)
of the nite set A.

In a form more complete than (1.1), BL is a statement about the joint dis-
tribution of all decimal digits: For every positive integerm,

X .
Prob (D1;D2;:::;Dm) = (dy;dp;:::;dm) =log,y 1+ J_m:l 10" 4
(1.2)

for j 2, d; is an integer inf0;1;:::;9g; here D;D3; D4 etc. represent the
second, third, forth etc. signi cant decimal digit, e.g.

D2"2)=4; D3 )=8; Dae)=4:
Thus, for example, (1.2) implies that

Prob (D1;D2;D3)=(3;1;4) =logqq z—]l_iz 0:001380:::
A perhaps surprising corollary of the general form of BL is that the signi cant
digits are dependenf and not independent as one might expectHli2]. Indeed,
from (1.2) it follows for instance that the (unconditional) probability that the
second digit equals 1 is

. 1o 8029312
0 +1 09102638501

whereas, given that the rst digit equals 1, the (conditional) probability that
the second digit equals 1 as well is

X 9
Prob(D,=1) = - log,, 1 0:1138:::;

l0g;012 log;g 11

090 2 =0:1255::::

PrOb(Dz = 1jD1 = 1) =
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#f1 n N :Di(xpn)= dg
N

Sequence (n) y ()=

Example: (xn) =( Fn) Fn2 = Fhe1 + Fn (N2 N), F1 = F2 =1

N =102

#fx2 X:D1(x)= dg
#X

Finite dataset X L (d) =

Original data from [ Ben] U.S. 1990 Census data
(# X =20;229) (# X =3;141) exact BL
(d)=log 1,1+ d 1)
031 0:3 1 mixture 0:3
| | of many
datasets

E> 0:1
see
Chapter 6 |IIIIIIII
1 d 9

Random variable X

X' uniform X exponential
on [0;1) | EX =1

0:1 1

Fig 1. Dierent interpretations of (1.1) for sequences, datasets, and random variables, re-
spectively, and scenarios that may lead to exact conformanc e with BL.

This dependence among signi cant digits decreases rapidly, in facbgonentially,
as the distance between the digits increases. For example, it folloneasily from
(1.2) that

Prob(Dy =1jD; =1)=Prob( D, =1)+ O(10 ™) asm!1l

(Here and throughout, the order symbol O is used as usual: If &,) and (b,)
are sequences of real numbers thea, = O(b,) asn!1 simply means that
jan]  ¢jbnj for all n, with some constantc > 0.)
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A related consequence of1.2) is that the distribution of the m-th signi cant
digit approaches the uniform distribution on f 0; 1; : : : ; 9g exponentially fast also,
e.g.

1 63

Prob(Dm =1)= —+

m + 2m |
0 20In1010 O(10 “™) asm!1

Apparently rst discovered by polymath S. Newcomb [Ne] in the 1880's, (1.1)
and (1.2) were rediscovered by physicist F. Benford Ben] and, Newcomb's ar-
ticle having been forgotten at the time, came to be known asBenford's Law.
Today, BL appears in a broad spectrum of mathematics, ranging fom di eren-
tial equations to number theory to statistics. Simultaneously, the applications
of BL are mushrooming | from diagnostic tests for mathematical mo dels in
biology and nance to fraud detection. For instance, the U.S. Internal Revenue
Service uses BL to ferret out suspicious tax returns, political scistists use it to
identify voter fraud, and engineers to detect altered digital images. As R. Raimi
already observed some 35 years ag&#1, p.512], \This particular logarithmic
distribution of the rst digits, while not universal, is so common and yet so
surprising at rst glance that it has given rise to a varied literature, among
the authors of which are mathematicians, statisticians, economist, engineers,
physicists, and amateurs." At the time of writing, the online database [BH2]
contains more than 600 articles on the subject.

It is the purpose of this article to explain the basic terminology, mathematical
concepts and results concerning BL in an elementary and accessibteanner.
Having read this survey, the reader will nd it all the more enjoyable to browse
the multifarious literature where a wide range of extensions and renements as
well as applications are discussed.

Note. Throughout this overview of the basic theory of BL, attention will m ore
or less exclusively be restricted to signi cantdecimal (i.e. base-10) digits. From
now on, therefore, logx will always denote the logarithm base 10 of, while In x

is the natural logarithm of x. For convenience, the convention log 0 := 0 will be
adopted. All results stated here only with respect to base 10 caxr over easily to
arbitrary integer basesb 2, and the interested reader may nd some pertinent
details e.g. in BBH]. The general form of (L.2) with respect to any such baseb
is

X )
Prob DD ::;D® =(di;dp;iii;dm) =log, 1+ jmzlld“ I, ;
(1.3)

where log, denotes the baseb logarithm and D, pP, ng) etc. are, respec-
tively, the rst, second, third etc. signi cant digits base b; in particular, there-

fore, d; is an integer inf1;2;:::;b 1g, and for | 2, d; is an integer in
f0;1;:::;b 1g. Note that in the casem = 1 and b = 2, (1.3) reduces to
Prob D(lz) = = 1, which trivially is true because the rst signi cant digit

base 2 of every non-zero number equals 1. |
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2. Signi cant digits and the signi cand

Benford's Law is a statement about the statistical distribution of signi cant
(decimal) digits or, equivalently, about signi cands viz. fraction par ts in oating-
point arithmetic. Thus a natural starting point for any study of BL is the formal
de nition of signi cant digits and the signi cand (function).

2.1. Signi cant digits

De nition 2.1.  For every non-zero real numberx, the rst signi cant decimal
digit of x, denoted by D(x), is the unique integerj 2 f 1;2;:::;9g satisfying
10f j xj < 10¢(j +1) for some (necessarily unique)k 2 Z.

Similarly, for every m 2, m 2 N, the m-th signi cant decimal digit of x,
denoted by D, (x), is de ned inductively as the unique integerj 2 0;1;:::;9g
such that

X m 1 P L X m1 o
100 D010 T+ jxj< 10t TDi(010" T4+l

for some (necessarily uniquek 2 Z; for convenience,D, (0) := 0 for all m 2 N.

Note that, by de nition, the rst signi cant digit D(x) of x 6 0 is never
zero, whereas the second, third, etc. signi cant digits may be anyintegers in
f0;1;:::;90.

Example 2.2.
Dl(p§)= D( IOE): D1(10p§)=1; Dz(p§)=4; Dg(p§)=1;
Di( H=Dy(20 YH=3; D( H=1; D3( ')=8:

2.2. The signi cand

The signi cand of a real number is its coe cient when it is expressed in oating-
point (\scienti ¢ notation") form, more precisely

De nition 2.3.  The (decimal) signi cand function S: R ! [1;10) is de ned
as follows: If x 6 0 then S(x) = t, wheret is the unique number in [1; 10) with
jxj = 10%t for some (necessarily uniquex 2 Z; if x = 0 then, for convenience,
S(0) :=0.

Observe that, for all x 2 R,
S(10%x) = S(x) foreveryk2 Z;
and alsoS S(x) = S(x). Explicitly, S is given by
S(x) = 10'091xib legixjc  for all x 60

here btc denotes, for any real numbert, the largest integer less than or equal to
t. (The function t 7! btc is often referred to as the \ oor function”.)



A basic theory of Benford's Law 7

Fig 2 . Graphing the (decimal) signi cand function S.

Note. The original word used in American English to describe the coe cient
of oating-point numbers in computer hardware seems to have bee mantissa,
and this usage remains common in computing and among computer scigsts.

However, this use of the word mantissa is discouraged by the IEEE oating-
point standard committee and by some professionals such as W. Kam and
D. Knuth because it conicts with the pre-existing usage of mantissa for the
fractional part of a logarithm. In accordance with the IEEE standard, only the
term signi cand will be used henceforth. (With the signi cand as in De nition

2.3, the (traditional) mantissa would simply be log S.) The reader should also
note that in some places in the literature, the signi cand is taken to have values
in [0:1; 1) rather than in [1;10). |

Example 2.4.

S(p 2) = S(lOp 2) =

S( YH=s@o YH=10 !'=3:183::::

p§=1:414:::;

The signi cand uniquely determines the signi cant digits, and vice versa.
This relationship is recorded in the following proposition which immediatdy
follows from De nitions 2.1 and 2.3.

Proposition 2.5.  For every real numberx:
) P
() S(x)= mZN:I-O:L ™D (X);
(i) Dm(x)= b10" 1S(x)c 10010™ 2S(x)c for every m 2 N.

Thus, Proposition 2.5() expresses the signi cand of a number as an explicit
function of the signi cant digits of that number, and (ii) expresses the signi cant
digits as a function of the signi cand.

It is important to note that the de nition of signi cand and signi can t digits
per se does not involve any decimakxpansion of x. However, it is clear from
Proposition 2.5(i) that the signi cant digits provide a decimal expansion of S(x),
and that a sequence @) in f0;1;:::;9qg is the sequence of signi cant digits of
some positive real number if and only ifd; 6 0 and d,, 6 9 for in nitely many m.
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Example 2.6. It follows from Proposition 2.5, together with Examples 2.2 and
2.4, that

S(pé)z Dl(p§)+1o 1D2(p§)+10 2D3(|D§)+ = 1:414:00 = pé;

as well as p

Dl(pi)zb 2c=1;
Dz(IO 2) = b10IO 2c 10bIO 2c=4;

P5 - biod 3 P~
D3( 2)= bl00 2c 10b10 2c=1; etc:

As the signi cant digits determine the signi cand, and are in turn det ermined
by it, the informal version (1.2) of BL in the Introduction has an immediate and
very concise counterpart in terms of the signi cand function, namely

Prob(S t)=logt foralll t< 10: (2.1)

(Recall that log denotes the base-10 logarithm throughout.) As need earlier,
the formal versions of (L.2) and (2.1) will be developed in detail below.

2.3. The signi cand -algebra

The informal statements (1.1), (1.2) and (2.1) of BL involve probabilities. Hence
to formulate mathematically precise versions of these statementst is necessary
to re-formulate them in the setting of rigorous probability theory.

The fundamental concept of standard modern probability theory is that of a
probability space( ;A;P); here , A and P are, respectively, a non-empty set, a
-algebra on , and a probability measure on ( ;A). Recall that a -algebraA
on is simply a family of subsets of suchthat ? 2 A, and A is closed under

taking complements and countable unions, that is,

A2A =) AS:=fl 2 : | 62Ag2A;

as well as [
An2Aforalln2 N =) nZNAnZA:

Given any collection E of subsets of , there exists a (unique) smallest -algebra
on containing E, referred to as the -algebragenerated byE and denoted by
(E). Perhaps the most important example is the so-calledBorel -algebraB
on R: By de nition, B is the -algebra generated by all intervals. IfC R
then B(C) is understood to be the -algebraC\ B := fC\ B:B 2 BgonC;
for brevity, write B[a;b) instead of B [a;b) and B* instead of B(R" ), where
R* =ft2R:t> 0Og.
In general, given any functionf : ! R, recall that, for every C R, the
setf (C) , called the pre-image of C under f, is de ned as

f Y(C)=f12 :f()2cCg:
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The -algebra on generated by
E=ff (1):1 R anintervalg

is also referred to as the -algebra generated byf ; it will be denoted by (f).
Thus (f) is the smallest -algebra on that contains all sets of the form
fl 2 : a f() by for everya;b2 R. It is easy to check that in fact

(f)y= ff 1(B):B 2 Bg. Similarly, a whole family F of functionsf : ! R
may be considered, and

(F) := [ e () = f Y1Yy:1 Raninterval; f 2 F
is then simply the smallest -algebra on containing all sets f! 2 : a
f(!) bgforall a;b2 Randallf 2 F.

In probability theory, the elements of a -algebraA on are often referred to
asevents and functionsf : ! Rwith (f) A are calledrandom variables
Probability textbooks typically use symbols X, Y etc., rather than f , g etc., to
denote random variables, and this practice will be adhered to herelao. Thus,
for example, for a Bernoulli random variable X on (R;B) taking only the values
0 and 1, (X) is the sub- -algebra of B given by

(X)= 72;f0g;f1g;f0; 1g; R; RnfOg; Rnflg; Rnf0; 1g ;

here, and throughout, AnB = A\ B¢ is the set of all elements ofA that are not
in B.

As the third ingredient in the concept of a probability space, a probability
measureon ( ;A) is a function P: A'! [0;1] such that P(?) =0, P() =1,
and [ X

nzNAn - nZNP(An)

holds whenever the setd\, 2 A are disjoint. The obvious probabilistic interpre-
tation of P is that, for every A 2 A, the number P(A) 2 [0; 1] is the probability
that the event f! 2 Ag occurs. Two of the most important examples of proba-
bility measures are thediscrete uniform distribution on a non-empty nite set
A, where the probability of any setB A is simply

#(B\ A)
#A

and its continuous counterpart the uniform distribution 5, with a < b, more
technically referred to as (hormalized) Lebesgue measuren [a; b), or more pre-
cisely on [a;b);BJ[a;b) , given by

ab [C;d] = g—; for every [c;d [a;b): (2.2)

In advanced analysis courses, it is shown thatZ.2) does indeed entail a unique,
consistent de nition of ,.,(B) for every B 2 B[a;b); in particular 4 [a;b) =
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1. Another example of a probability measure, on any ( ;A), is the Dirac mea-
sure (or point mass) concentrated at some! 2 , symbolized by . In this
case, 1 (A)=11if ! 2 A, and , (A) = 0 otherwise. Throughout, unspeci ed
probability measures on ( ; A) with RandA B will typically be denoted
by capital Roman letters P, Q etc.

In view of the above, the key step in formulating BL precisely is identifying
the appropriate probability space, and hence in particular the coriect -algebra.
As it turns out, in the signi cant digit framework there is only one nat ural
candidate which, although di erent from B, is nevertheless both intuitive and
easy to describe.

De nition 2.7.  The signicand -algebraSis the -algebra onR* generated
by the signi cand function S, i.e. S= R*\ (S).

The importance of the -algebraS comes from the fact that for every event
A 2 Sand every x > 0, knowing S(x) is enough to decide whetherx 2 A or
X 62A. Worded slightly more formally, this observation reads as follows.

Lemma 2.8. For every function f : R* ! R the following statements are
equivalent:
(i) f can be described completely in terms &, thatis, f (x) = ' S(x) holds
for all x 2 R*, with some function ' : [1;10) ! R satisfying (')
B[1; 10).
@i () s
Proof. First assume (i) and let | R be any interval. ThenB ="' (1) 2 B

andf Y(1)=S 1" (1) =S %B)2 S, showingthat (f) S
Conversely, if (f) S then f (10x) = f (x) holds for all x > 0. Indeed,
assuming by way of contradiction that, say, f (xo) < f (10xp) for somexy > 0,

let
A=f 1 f(x) 1;w

and note that xo 2 A while 10xq 62A. SinceA = S 1(B) for someB 2 B, this
leads to the contradiction that S(Xxp) 2 B and S(xo) = S(10xg) 62B. Hence
f (10x) = f (x) for all x> 0, and by induction alsof (10¥x) = f (x) for all k 2 Z.
Given x 2 [1;10), pick any y > 0 with S(y) = x and de ne ' (x) := f (y). Since
any two choices ofy di er by a factor 10 ¥ for somek 2 Z,' :[1;10)! R is well-
dened,and' S(y) = f(y)holdsforally > OSMoreover, foranyintervall R
andx> 0,' (x) 2| holdsifand only if x 2 ., 10 1(1). By assumption,
the latter set belongs to S, which in turn shows that (') B[1; 10). O

2 (f) S

Informally put, Lemma 2.8 states that the signicand -algebra S is the
family of all events A R* that can be described completely in terms of their
signi cands, or equivalently (by Theorem 2.9 below) in terms of their signi cant
digits. For example, the setA; of positive numbers whose rst signi cant digit
is 1 and whose third signi cant digit is not 7, i.e.

Ap=fx>0:D1(x)=1;D3(x) 679;
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belongs to S, as does the sefA, of all x > 0 whose signi cant digits are all 5 or
6, i.e.

A, =fx> 0:Dp(x) 2f5;6gforall m2 Ng;

or the set Az of numbers whose signi cand is rational,
Az =fx> 0:S(x) 2 Qg:

On the other hand, the interval [1; 2], for instance, does not belong toS. This
follows from the next theorem which provides a useful characteriation of the
signi cand sets, i.e. the members of the familyS. For its formulation, for every
t 2 Rand every setC R, let tC := ftc:c2 Cag.

Theorem 2.9 ([Hi2]). For every A 2 S,

[
A= 10¢S(A) (2.3)

holds, whereS(A) = fS(x): x 2 Ag [1;10). Moreover,

n[ (0}
S=R"\ (D1;DzDgi)= | 100B:B2B[L10) : (2.4)

Proof. By de nition,
S=R'\ (S)= R"\f S B):B2Bg=R"\f S }B):B 2 BJ[1;,10)g:

ghus givenanyA 2 S, there exists a setB 2 B[1;10) with A= R*\' S (B) =

K27 10“B. SinceS(A) = B, it follows that ( 2.3) holds for all A 2 S,
To prove (2.4), rst observe that by Proposition 2.5(i) the signi cand func-
tion S is completely determined by the signi cant digits Dy;D,;D3;:::, so

(S) (D1;Dy;Dg3;:::)and henceS R*\ (Di;D3;D3;:::). Conversely, ac-
cording to Proposition 2.5(ii), every D, is determined by S, thus (D) (S)
for all m 2 N, showing that (D1;D2;D3;::3) (S) as well. To verify the re-
malnl@ equality in (2.4), note that for every A 2 S, S(A) 2 B[1; 10) and hence
é = Lz 10¢B for B = S(A), by (2.3). Conversely, every set of the form

K27 10B = R* \ S (B) with B 2 B[1; 10) obviously belongs toS. O

Note that for every A 2 S there is aunique B 2 B[1;10) such that A =
27 10€B, and (2.3) shows that in fact B = S(A).

Example 2.10. The set A4 of positive numbers with
As=f10¢: k2 Zzg= f:::;0:01;0:1;1; 10, 10C : : :g

belongs toS. This can be seen either by observing thatA, is the set of positive
reals with signi cand exactly equal to 1, i.e. A; = R* \ S %(f1g), or by noting
that Ay = fx> 0 :Ql(x) =1;Dn(x)=0forall m 2g, or by using (2.4) and
the fact that A, = —,, 10¢f1g and f 1g 2 B[1; 10).
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Example 2.11. The singleton setf1g and the interval [1; 2] do not belong to
S, since the number 1 cannot be distinguished from the number 10, fanstance,
using only signi cant digits. Nor can the interval [1;?§ be distinguished from
[10; 20]. Formally, neither of these sets is of the form ., 10¢B for any B 2
B[1;10).

Although the signi cand function and -algebra above were de ned in the
setting of real numbers, the same concepts carry over immediately to the most
fundamental setting of all, the set of positive integers In this case, the induced

-algebra is interesting in its own right.

Example 2.12. The restriction Sy of Sto subsets ofN,i.e.Sy= fN\A:A 2 X
is a -algebra onN. A characterization of Sy analogous to that of S given in
Theorem 2.9 is as follows: Denote byN,, the set of all positive integers not
divisible by 10, i.e. N;g = Nn1ON. Then

n [ [0}
Sv= A N:A= 10B for someB Ny,

12 No

A typical member of Sy is
f271,2710 314127100 31410 271000314100: : :g:

Note that for instance the setf314103141003141000:::g doesnot belong to
Sv since 31410 is indistinguishable from 3141 in terms of signi cant digitsso
if the former number were to belong toA 2 Sy then the latter would too. Note

also that the corresponding signi cand function on N still only takes values in
[1;10), as before, but may never be an irrational nhumber. In fact, he possible
values of S on N are even more restricted:S(n) = t for somen 2 N if and only

if t 2 [1;10) and 10t 2 N for some integerl 0.

The next lemma establishes some basic closure properties of the sigrand

-algebra that will be essential later in studying characteristic aspets of BL

such as scale- and base-invariance. To concisely formulate theseoperties, for
everyC R* andn2 N, let C™ := ft> 0:t" 2 Cg.

Lemma 2.13. The following properties hold for the signi cand -algebra S:

(i) Sis self-similar with respect to multiplication by integer powers of10, i.e.
1A= A foreveryA2 Sandk?2 Z:
(i) Sis closed under multiplication by a scalar, i.e.
A 2S foreveryA2 Sand > O0:
(i) Sis closed under integral roots, i.e.

A" 2 S foreveryA2 Sandn 2 N:
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Informally, property (i) says that every signi cand set remains unchanged when
multiplied by an integer power of 10 | re ecting the simple fact that sh ifting the
decimal point keeps all the signi cant digits, and hence the set itself unchanged;
(ii) asserts that if every element of a set expressible solely in termsfaigni cant
digits is multiplied by a positive constant, then the new set is also exprasible by
signi cant digits; correspondingly, (iii) states that the collection of square (cubic,
fourth etc.) roots of the elements of every signi cand set is also epressible in
terms of its signi cant digits alone.

Proof. (i) This is obvious from (2.3) since S(10KA) = S(A) for every k.

(i) Given A 2 S, by (2.4) there existsB 2 B[1,10) suchthatA = |, 10°B.
In view of (i), assume without loss of generality that 1< < 10. Then

[ [ [

A = I(zzloks = kzzld‘ B\[; 10) [ EB\ 1, ) = kzz10kc,
with C= B \ [; 10) [ B\ [1, ) 2 B[1,10), showing that A 2 S,

(iii) Since intervals of the form [1;t] generateB[1;10), i.e. sinceB[1; 10) =

f[]gt] :1<t< 10g, it is enough to verify the claim for the special case
A= ",,,10¢1;10°] for every 0<s < 1. In this case

[

Al L 10k=“[1;105=“]:[ 106 " 1[1d=“;10“+5’=“]=[ 10°C;
k2z k2z i=0 k2z

S ! )
with C = j":ol[lO:n ;100+9)=11 2 B[1;10). HenceA™ 2 S, O

Remark. Note that S is not closed under taking integer powers: IfA 2 S and
n 2 N, then A" 2 Sif and only if

S(A)"=BJ[ 10B[ :::[ 10" !B for someB 2 B[1;10):
For example, consider
[ _
As= 1d‘f1;p 109 2 S;

for which S(As)2 = f1;10g= f1g[ 10f 1g and henceAZ 2 S, whereas choosing

[ P
As= 1062, 10g

leads to S(Ag)? = f4;10g, and correspondinglyA2 62S. |

Since, by Theorem?2.9, the signicand -algebra Sis the same as the sig-
ni cant digit -algebra (Di;D»;Dg3;:::), the closure properties established in
Lemma 2.13 carry over to sets determined by signi cant digits. The next exam-
ple illustrates closure under multiplication by a scalar and integral rods.

Example 2.14. Let A; be the set of positive real numbers with rst signi cant
digit 1, i.e.

[
A;=1fx>0:Dy(x)=1g=fx>0:1 S(X)< 2g= kzzld‘[l;Z):
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R+
A7=fDlzlg

‘ =fl S<292S
0 12 1 2 10 20

+
I
0 2 4 2 4 20

R+
I
0 pioto 1 P53 Pog 5 10 10”2

R+
I [ [
0:01 1 4 10 20

Fig 3. The -algebra Sis closed under multiplication by a scalar and integral root s but not
under integer powers (bottom), see Example 2.14.

Then

2A7= x> 0:D1(x)2f2;3g =fx>0:2 S(x)<3g= [ kzzld([2;4)2 S;
and also

ATP= x> 0:S(x)2[1;p 2)[ [p mpﬁ) = [ k221d< [1;p§)[ [pﬁ;zpﬁ) 2S;

whereas on the other hand clearly

[
AZ = 10°4[1; 4) 625;
k22

since e.g. [14) A2 but [10;40)6 AZ; seeFig 3.

Example 2.15. Recall the signicand -algebra Sy on the positive integers
de ned in Example 2.12 Unlike its continuous counterpart S, the family Sy is
not even closed under multiplication by a positive integer, since for eample

Ag= N\f x> 0:S(x)=2g=12;20,200,:::9 2 S\;
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but
5Ag = f10;100, 1000 :::g 625y

Of course, this does not rule out that some events determined byigni cant
digits, i.e. some members ofS, still belong to Sy after multiplication by an
integer. For example, if

Ag=fn2N:Dy(n)=1g=f1,10;11;:::;19,100,10%;:::0 2 S\

then

It is easy to see that, more generallySy is closed under multiplication by m 2 N
precisely if gcd(m; 10) = 1, that is, whenever m and 10 have no non-trivial
commo%factor. Moreover, likeS, the -aIgebraSNsis closed under integral roots:
IfA =", 10Rwith R Ny then A¥™ = 7, 108" 2 5. With Ag
from above, for instance,

A= n2N:S(n)2 [1;p§)[ [pE;pﬁ))

Thus many of the conclusions drawn later for positive real numberscarry over
to positive integers in a straightforward way.

The next lemma provides a very convenient framework for studyingprobabil-
ities on the signi cand -algebra by translating them into probability measures
on the classical space of Borel subsets of;[0), that is, on [0;1);B[0;1) . For
a proper formulation, observe that for every functionf : ! R with A ()
and every probability measureP on ( ;A), f and P together induce a probability
measuref P on (R;B) in a natural way, namely by setting

f P(B)=Pf YB) foralB2B: (2.5)

Other symbols commonly used in textbooks to denote P include P f ! and
Pt . In the case of alinear function f, i.e. for f (t) t with some 2 R,
instead of f P simply write  P. The special case of interest for signi cands is
( ;A)=(R*;9 andf =logS.

Lemma 2.16. The function * : R* ! [0;1) de ned by "(x) = log S(x) es-
tablishes a one-to-one and onto correspondence (measureimorphism) between
probability measures on(R* ; S) and on [0;1); B[0; 1) , respectively.

Proof. From * ' [a;b = S ! [10%;10°] forall 0 a < b < 1, it follows
that ()= R"\ (S)= S and hence’ P according to (2.5) is a well-de ned
probability measure on [0;1);B[0;1) .

Conversely, given any probability measureP on [0; 1)SB[O; 1) and any A
in S, let B 2 B[0;1) be the unique set for whichA = —,,,10¢10%, where
108 = f10°:s2 Bg, and de ne

Pr(A) = P(B):
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It is readily conrmed that “(A) = B, *(B) = A, and Pp is a well-de ned
probability measure on (R* ; S). Moreover

“Pp(B)= Pr * Y(B) = Pp(A)= P(B) forall B 2 B[0;1);

showing that© Pp = P, and henceevery probability measure on [0;1); B[O; 1)
is of the form ~ P with the appropriate P. On the other hand,

P p(A)= " P(B)= P L(B) = P(A) forall A2S;

and hence the correspondenc® 7! ° P is one-to-one as well. OveralP $ "~ P
is bijective. O

From the proof of Lemma 2.16 it is clear that a bijective correspondence
between probability measures on R*;S) and on [0;1);BJ[0;1) , respectively,
could have been established in many other ways as well, e.g. by usingetunc-
tion §x) = %(S(x) 1) instead of °. The special role of according to that
lemma only becomes apparent through its relation to BL. To see this,denote
by B the (unique) probability measure on (R*; S) with

Bfx>0:S(x) tg =B [ oz 10¢[1;t] =logt foralll t< 10:
In view of (2.1), the probability measure B on (R*;S) is the most natural for-
malization of BL. On the other hand, it will become clear in subsequentchapters
thaton [0;1);B[0;1) the uniform distribution .1 has many special properties
and hence plays a very distinguished role. The relevance of the spexchoice for
" in Lemma 2.16 therefore, isthat ™ B = ¢.1. The reader will learn shortly why,
for a deeper understanding of BL, the latter relation is very bene cial indeed.

3. The Benford property

In order to translate the informal versions (1.1), (1.2) and (2.1) of BL into more
precise statements about various types of mathematical objeet it is necessary to
specify exactly what the Benford property means for any one of hese objects.
For the purpose of the present chapter, the objects of interesfall into three
categories: sequences of real numbers, real-valued functions ded on [0;+ 1 );
and probability distributions and random variables. (Recall also Fig 1.)

3.1. Benford sequences

A sequence Xn) = ( X1;X2;Xz;:::) of real numbers is a (base-10Benford se-
quence or simply Benford, if, as N ! 1 | the limiting proportion of indices
n N for which x, has rst signi cant digit d; exists and equals log(1 +d; h
forall d; 2 f1;2;:::;9g, and similarly for the limiting proportions of the occur-

rences of all other nite blocks of initial signi cant digits. The forma | de nition

is as follows.
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De nition 3.1. A sequence X,) of real numbers is aBenford sequence or
Benford for short, if

limyy LN '\[L:S(X”) Y9 _logt forall t 2 [1:10):

or equivalently, if forall m2 N, all d; 2f 1;2;:::;9gand all d; 2f0;1;:::;9g,
i 2

# 1 n N:Dj(xn)=djforj =1;2:::;m
N
X m .
=log 1+ i 10" Jd

limp i1

As will be shown below, the sequence of powers of 2, namely'(?=(2 ; 4;8;:::)
is Benford. However, it is not Benford base 2 since the second sigrdant digit
base 2 of 2 is 0 for everyn, whereas the generalized versioni(3) of BL requires
that 0 < Prob D§2> =0 =1 Prob D§2> =1 =log,3 1< 1. Similarly,
(3"), the sequence of powers of 3 is Benford, and so is the sequenddartorials
(n!) as well as the sequenceH,) of Fibonacci numbers. Simple examples of
sequences that are not Benford are the positive integersn|, the powers of 10
and the sequence of logarithms (log).

The notion of Benford sequence according to De nition3.1 o ers a natural
interpretation of Prob in the informal expressions (1.1){( 1.3): A sequence )
is Benford if, when one of the rst N entries in (x,) is chosen (uniformly) at
random, the probability that this entry's rst signi cant digit is  d approaches
the Benford probability log(1+ d )asN !1 ,foreveryd2f1;2;:::;9g, and
similarly for all other blocks of signi cant digits.

Example 3.2. Two speci ¢ sequences of positive integers will be used repeat-
edly to illustrate key concepts concerning BL: the Fibonacci numbes and the
prime numbers. Both sequences play prominent roles in many aread mathe-
matics.

(i) As will be seen in Example4.12, the sequences of Fibonacci numbers
(Fn) = (1;1;2;3;5;8;13;:::), where every entry is simply the sum of its two
predecessors, andF; = F, = 1, is Benford. Already the rst N =102 elements
of the sequence conform very well to the rst-digit version (1.1) of BL, with
Prob being interpreted as relative frequency, seé-ig 4. The conformance gets
even better if the rst N = 10 elements are considered, sefeig 5.

(i) In Example 4.11(v), it will become apparent that the sequence of prime
numbers (pn) = (2;3;5;7;11;13,17;::) is not Benford. Fig 4 shows how, ac-
cordingly, the rst hundred prime numbers do not conform well to (1.1). More-
over, the conformance gets even worse if the rst ten thousangrimes are con-
sidered (Fig 5).
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1 10946 165580141 2504730781961 37889062373143906
1 17711 267914296 4052739537881 61305790721611591
2 28657 433494437 6557470319842 99194853094755497
3 46368 701408733 10610209857723 160500643816367088
5 75025 1134903170 17167680177565 259695496911122585
8 121393 1836311903 27777890035288 420196140727489673
w2 13 196418 2971215073 44945570212853 679891637638612258
b 3 21 317811 4807526976 72723460248141 1100087778366101931
-g w 34 514229 7778742049 117669030460994 1779979416004714189
3 55 832040 12586269025 190392490709135 2880067194370816120
5 Q 89 1346269 20365011074 308061521170129 4660046610375530309
g 144 2178309 32951280099 498454011879264 7540113804746346429
5 o 233 3524578 53316291173 806515533049393 12200160415121876738
E 377 5702887 86267571272 1304969544928657 19740274219868223167
610 9227465 | 139583862445 | 2111485077978050 | 31940434634990099905
987 | 14930352 | 225851433717 | 3416454622906707 | 51680708854858323072
1597 24157817 | 365435296162 5527939700884757 83621143489848422977
2584 39088169 | 591286729879 8944394323791464 | 135301852344706746049
4181 63245986 | 956722026041 | 14472334024676221 | 218922995834555169026
6765 | 165580141 | 1548008755920 | 23416728348467685 | 354224848179261915075
2 31 73 127 179 233 283 353 419 467
° 3 37 79 131 181 239 293 359 421 479
» S 5 41 83 137 191 241 307 367 431 487
g o 7 43 89 139 193 251 311 373 433 491
[SR 11 47 97 149 197 257 313 379 439 499
2 r:‘ 13 53 101 151 199 263 317 383 443 503
L 17 59 103 157 211 269 331 389 449 509
é s 19 61 107 163 223 271 337 397 457 521
o 23 67 109 167 227 277 347 401 461 523
29 71 113 173 229 281 349 409 463 541

Fig 4. The rst one-hundred Fibonacci numbers conform to the rst

digit law (1.1) quite

well (top and bottom), while the rst one-hundred prime numb ers clearly do not (center and
bottom).
d 1 2 3 4 5 6 7 8 9

g

I Fibonacci 30 18 13 9 8 6 5 7 4

21 Prime 25 | 19 | 19 | 20 | 8 2 | 4 | 2 1

*

10% log(1+ d )| 30:10 | 17:60 | 12:49 | 9:691 | 7:918 | 6:694 |5:799 | 5:115 | 4575

Remark. Based on discrete density and summability de nitions, many alterna-
tive notions of Benford sequences have been proposed, utilizing e.giteration
of Cesro averaging Fl], and logarithmic density methods. The reader is referred
to [Ral, RaZ] for an excellent summary of those approaches. Those methods,
however, do not o er as natural an interpretation of \Prob" as D e nition 3.1
On this, Raimi [Ral, p.529] remarks that \[t]he discrete summability schemes
[...] can also be tortured into probability interpretations, though none of the
authors [...] (except Diaconis) does so".
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d 1 2 3 4 5 6 7 8 9 10° R

S| 5 N=102|830 | 18 | 13 | 9 | 8 6 5 7 4 18:84
z | @

s
z E N=104[3011| 1762| 1250| 968 | 792| 668| 580| 513 | 456 || 0:1574()
1l
g
0 N=102| 25 19 19 20 8 2 4 2 1 103:0
=
a =
;; o N =104 (1601 | 1129 | 1097 | 1069|1055 | 1013 | 1027 | 1003|1006 140:9

10* log(1+ d *)[3010:| 1760:| 1249:| 969:1| 791:8| 669:4| 579:9| 511.5| 457:5

Fig 5. Increasing the sample size from N = 102 to N = 10% entails an even better

conformance with (1.1) for the Fibonacci numbers, as measured by means of the quanti ty
R = max g:l n(d) log(L+ d 1) . For the primes, on the other hand, the rather poor con-
formance does not improve at all.

Only the notion according to De nition 3.1 will be used henceforth. How-
ever, to get an impression how alternative concepts may relate to B nition 3.1
analytically, denote, for any setC R, by 1¢ the indicator function of C, i.e.
1c :R!f 0;1g with

1 ift2c;
1e®M=" 5 otherwise

Given any sequence X,) and any number t 2 [1;10), consider the sequence
11 (S(xn)) . Clearly, since the latter contains only zeros and ones, it will
usually not converge. It may, however, converge in some averadesense, to a
limit that may depend on t. Speci cally, (x,) is Benford if and only if
PN
n=1 1ty S(xn)
N

limy iz =logt forallt2][110): (3.2)

Instead of (3.1), one could more generally consider the convergence of

o (Xn)

_ anl[l;t) SXn

n=ly N : (3.2)
an

n=1

P
where the a, can be virtually any non-negative numbers with Ezl ap! +1

asN ! 1 . With this, ( 3.1) corresponds to the special casa, = 1 for all
n. Another popular choice in (3.2), related to the number-theoretic concept
of Iogaritllg,mic (or analytic) density [Sq, is a, = n ! for all n, in which case
(InN) ,’:‘:l a, ! 1. Utilizing the latter, a sequence () of real numbers
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might be (and has been, seeRal]) called weakly Benford if

1 X N 1y S(Xn)

lim InN n=1 n

=logt forallt2][1;10):

It is easy to check that every Benford sequence is weakly Benfordio see that
the converse does not hold in general, take for instancexf) = ( n). A short
calculation con rms that, for every t 2 [1;10),

P g S(n) t 1
liminf n=1 —[1;t) - .
mint N1z N 9
whereas =
. r’:‘=1 1[1;t) S(n) _ 10 t 1
lim supy 11 N =35 T

showing that (n) is not Benford. (Recall that the limit inferior and limit superior
of a sequenced,), denoted by liminf,1» a, and limsup,,; a., are de ned,
respectively, as the smallest and largest accumulation value ofag).) On the
other hand, (n) turns out to be weakly Benford: Indeed, givenN, let Ly =
blogN c. For any t 2 [1; 10), it follows from the elementary estimate

1 X Ly 1X motcl 1 X N 1y S(n)
IN10v 1 i=o j=10' | InN  n=1 n
1 X Ly X b0t 1
InblOtvtc  i=0  j=107 j

together with

X bioitc 1 X p1oitc 10 1 21 )
. —=10"'" — | —=Int; asi!l ;
j=101 j i=0 1+10 j o 1+
as well as
) In10-+t Inb10-tc
I|m|_;1 ?lem L1 ?ﬂnlo

and the Cauchy Limit Theorem that

: 1 XN Ipgy S(M) _ Int
lim InN  n=1 n _Inlo_logt’

i.e., (n) is weakly Benford. In a similar manner, the sequence,) can be shown
to be weakly Benford without being Benford, see GG, Wh]. |

3.2. Benford functions

BL also appears frequently in real-valued functions such as e.g. tlee arising
as solutions of initial value problems for di erential equations (see ®ction 5.3
below). Thus, the starting point is to de ne what it means for a function to
follow BL.
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Recall that a function f : R! R is (Borel) measurableif f (1) is a Borel
set, i.e.f (1) 2 B, for every interval |  R. With the terminology introduced
in Section 2.3, this is equivalent to saying that (f) B. Slightly more gener-
ally, for any set and any -algebraA on , afunction f : ! R is (Borel)
measurableif (f) A. The collection of Borel measurable functiond : R! R
contains all functions of practical interest. For example, every pecewise contin-
uous function (meaning that f has at most countably many discontinuities) is
measurable. Thus every polynomial, trigpnometric and exponentiafunction is
measurable, and so is every probability density function of any releance. In
fact, it is a di cult exercise to produce a function that is not measurable, or
asetC R thatis not a member of B, and this can be done only in a non-
constructive way. For all practical purposes, therefore, the eader may simply
read \set" for \Borel set", and \function" for \Borel measura ble function".

Recall that given a set and a -algebraA on ,a measure on ( ;A)is
afunction :A! [0;+1 ]that has all the properties of a probability measure,
except that (A) may also be bigger than 1, and even in nite. By far the most
important example is the so-called Lebesgue measureon (R;B), denoted by

here and throughout. The basic, and in fact de ning property of is that

[a;h] = b aforeveryinterval [a;] R. The relation between the measure

and the probability measures ., considered earlier is such that, for instance,

(B)=Ilmpyiz 2N Ny BV [ N;N] foreveryB 2B:

It is customary to also use the symbol , often without a subscript etc., to
denote the restriction of Lebesgue measure toC;B(C) with the Borel set C
being clear from the context.

In analogy to the terminology for sequences, a functiorf is a (base-10) Ben-
ford function, or simply Benford, if the limiting proportion of the time < T
that the rst digit of f( ) equalsd; is exactly log(1 + d; 1), and similarly for
the other signi cant digits, and in fact the signi cand. The formal d e nition is
as follows.

De nition 3.3. A (Borel measurable) functionf :[0;+1 )! R is Benford if
2[0;T): S f() t
T

or equivalently, if for all m2 N, all d; 2f 1;2;:::;9gand all d; 2f0;1;:::;9g,
i 2

Iing +1

=logt forallt2][1;10);

2[0;T):D; f() =d;forj=1;2;:::;m
T
X m .
=log 1+ _ l10m Id,
J:

limri +1

Directly analogous to the probabilistic interpretation of a Benford sequence,
the de nition of a Benford function given in De nition 3.3 also o ers a natural
probabilistic interpretation: A function f :[0;+1 )! R is Benford if, when a
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time is chosen (uniformly) at random in [0; T), the probability that the rst
digit of f ( ) is d approaches log(1l+d ) asT! +1 ,foreveryd2f1;2;:::;9g,
and similarly for all other blocks of signi cant digits.

As will be seen in Example4.5 below, the function f (t) = e! is Benford
whenever 60, but f (t) = t and f (t) = sin t, for instance, are not.

3.3. Benford distributions and random variables

BL appears prominently in a wide variety of statistics and probability settings,
such as e.g. in products of independent, identically distributed ran@m variables,
mixtures of random samples, and stochastic models like geometric Bwnian
motion that are of great importance for the stochastic modelling ofreal-world
processes. This section lays the foundations for analyzing the Béord prop-
erty for probability distributions and random variables. The term independent,
identically distributed will henceforth be abbreviatedi.i.d., in accordance with
standard stochastic terminology.
Recall from Section2.3 that a probability space is a triple ( ; A; P) where

is a set, often referred to as theset of outcomesA is a -algebra (the family of
events), and P is a probability measure. A (real-valued) random variable X on
( ;A;P)is simply a Borel measurable functionX : ! R, and its distribution
Px is the probability measure on (R; B) de ned by

Px (1 ;t] =P(X t) forallt2R:

Thus with the notation introduced in ( 2.5), simply Px = X P. The expectation
or expected(or mean) value of X is
z z

EX = XdP = tdPx(t);
R

provided that this integral exists. More generally, for every measirable function
g:R! R, the expectation of the random variableg(X) is
Z z

Eg(X)=  g(X)dP= . g(t) dPx (1) :

In particular, if EX exists, then varX := E(X EX)? is the variance of X .

Any probability measure on (R;B) will be referred to as aBorel probability
measureon R. Again, since all subsets ofR of any practical interest are Borel
sets, the speci er \Borel" will be suppressed unless there is a potaial for confu-
sion, i.e., the reader may read \probability measure onR" for \Borel probability
measure onR". Any probability measure P on R is uniquely determined by its
distribution function Fp, de ned as

Fp(t)=P (1 ;t] forallt2R:

It is easy to check that the function Fp is right-continuous and non-decreasing,
with imyy Fp(t) =0 and limy, +1 Fp(t) = 1. For the sake of notational
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simplicity, write Fx instead of Fp, for every random variableX . The probability
measureP, or any random variable X with Px = P, is continuous (or atomless
if P(ftg) =0 for every t 2 R, or equivalently if the function Fp is continuous.
It is absolutely continuous(a.c.) if, for any B 2 B, P(B) = 0 holds whenever

(B) = 0. By the Radon{Nikodym Theorem, this is equivalent to P having a
density, i.e. to the existence of a measurable functiorfp : R! [0;+1 ) such
that Z,

Plal = fp()dt foral[aly R: (3.3)

Again, for simplicity Wl’it%{ fx instead offp, for every a.c. random variableX .

Note that (3.3) implies Il fp(t)dt = 1. Every a.c. probability measure on

(R; B) is continuous but not vice versa, see e.g.(T]. Given any probability P
on (R;B), denotej j P simply by jPj, that is,
jPi(B)=P ft2R:jtf2 Bg forall B 2B:
Clearly, jPj is concentrated on [Q+1 ), i.e. jPj [0;+1 ) =1, and
(
Foi(t) = if t< O;
PRYT Fo(t) Fe( )+ P(f tg) ift O;

in particular, therefore, if P is continuous or a.c. then so igPj, its density in
the latter case being fp(t)+ fp( t) 1p;+1), Wherefp is the density of P.

De nition 3.4. A Borel probability measure P on R is Benford if
Pfx2R:S(x) tg =SP fog[ [1;t] =logt forallt2[1;10):

A random variable X on a probability space ( ;A;P) is Benford if Px is Ben-
ford, i.e. if

PS(X) t =Px fx2R:S(x) tg =logt forallt2][1;10);
or equivalently, if forall m 2 N, all d; 2f1;2;:::;9gand all dj 2f0;1;:::;90,
2

X .
PD;(X)=d forj =1;2:::;m =log 1+ jm_l 10m i

Example 3.5. If X is a Benford random variable on some probability space
(' ;A;P), then from (1.1) and the numerical values given in Chapterl,
P(Di1(X)=1)= P(1 S(X)< 2)=log2=0:3010:::;
P(D1(X)=9) =log %) =0:04575:::;

P Di(X);D2(X);D3(X) =(3;1,4) =log g—]l_izo:001380:::
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P(S(X) <t) P(log S(X) <s)

logt
0:5+ 0:5+

1 t 10 0 s 1

f

log S(X)

lo;y

1 t 10

Fig 6 . The distribution functions (top) and densities of  S(X) and log S(X), respectively, for
a Benford random variable X.

As the following example shows, there are many probability measuresn the
positive real numbers, and correspondingly many positive random ariables that
are Benford.

Example 3.6. For every integer k, the probability measure Py with density
fk(X) = g on [1010¢" ) is Benford, and so is .95 (P + P+1 ). i fact, ev-
ery convex combination of thelfk)kz z, i.e. every probability measure |, , 0P«

withO o 1forallkand ,,0 =1,is Benford.

As will be seen in Example6.4 below, if U is a random variable uniformly
distributed on [0; 1), then the random variable X = 10Y is Benford, but the
random variable X '°92 = 2V is not.

De nition 3.7.  The Benford distribution B is the unique probability measure
on (R*;9) with

B(S t)=B [ k221d<[1;t] =logt forallt2 [1;10);

or equivalently, for all m 2 N, all d; 2 f1;2;:::;9g and all d; 2 f0;1;:::;90,
i 2

x m .
B Dj=dforj=1;2:::;;m =log 1+ . 10™ !4,

The combination of De nitions 3.4 and 3.7 gives
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Proposition 3.8. A Borel probability measure P on R is Benford if and only
if

jPj(A) = B(A) forall A2 S:
In particular, if P(R*) =1 then P is Benford precisely if P(A) = B(A) for all
A2S

Note that the Benford distribution B is a probability distribution on the
signi cant digits, or the signi cand, of the underlying data, and not on the raw
data themselves. That is,B is a probability measure on the family of sets de ned
by the base-10 signi cand, i.e. on R* ; S), but not on the bigger (R*;B*) or the
still bigger (R; B). For example, the probability B(f1g) is not de ned, simply
because the sef 1g cannot be de ned in terms of signi cant digits or signi cands
alone, and hence does not belong to the domain ds.

Example 3.9. In the framework of the Examples2.12and 2.15 it is tempting
to call a probability P on (N; Sy) a Benford distribution on N if

Pfn2N:S(n) tg =logt forallt2][1;10):

owever, no such probability exists! To see this, for everyn 2 N, let A, =

12n, 10fNg 2 Sy and note that N equals the disjoint union of the setsA,,, and

S(An) = 109" g; here Hogni 2 [0;1) denotes the fractiongh part of logn,

that is, HogBi =logn b lognc. With o, := P(A,) therefore |, th =1
10

and S P = n2n,, Oh om0 ni - Since the set of discontinuities oft 7! Fs p(t)

is 10M9ni :q, 60 6 ?, it is impossible to have Fs p(t) = logt for all
t 2 [1;10). Note that, as a consequence, a Borel probability measur® on
R concentrated onN, i.e. with P(N) =1, cannot be Benford.

On the other hand, given" > 0 it is not hard to nd a probability P on
(N; Sy) with

P fn2N:S(n) tg logt <" forallt2][110): (3.4)
For a concrete example, for anyN 2 N consider the probability measure
X lON +1 1
. 1 1.
QN =Gy j=10n J j s
P oM 1. g .
where cy = j=ion ] . Note that Qn may be thought of as a discrete
approximation of the Benford probability Py in Example 3.6. From
~ 1X N 1 N ~ X 10v* oM 1 .
SQu=67" v 1 s & TN+ 110 "G

P
together with the elementary estimate InM* < = M j 1< In M_ valid for
all L;M 2 N with 2 L < M , it is straightforward to deduce that, for all

1 t< 10,

10 N
In10

SQn [Lt] logt < log( 10 V)= +0(10 M) asN 1
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Thus (3.4) is guaranteed by taking P- = Qn with N su ciently large. A short
calculation con rms that it su ces to choose N > 1+ jlog"j.

Example 3.10. (i) If X is distributed according to U(0;1), the uniform dis-
tribution on [0;1), i.e. Px = o¢.1, thenforevery 1 t< 10,

[ X
PS(X) t = g1 kzz1o‘<[1;t] = o 1):%6|ogt;

showing that S(X) is uniform on [1; 10), and hence o.; is not Benford.

(i) If X is distributed according to exp(1), the exponential distribution with
mean 1, whose distribution function is given by Fexy) (1) = max(0;1 e '),
then

[ X ’ ’
— — . — 10 2 10
PO:(X)=1)= P X2 10L2) = e e

1=10 20

> e 62:10+el eZ+eloe

=0:3186::: > log2;

and henceexp(l) is not Benford either. (See EL, LSE, MN] for a detailed
analysis of the exponential distribution's relation to BL.)

(iif) Let X be distributed accor%ing to the Beta %% - or arcsin-distribution,
meaning that P((X s)= Zarcsin’ sforall0 s< 1. Itfollows that, for every
1 t< 10,

[
Fsoo(= PS(X) =P X2 10 "[L]

2X 1 _ P _ }
= arcsin(10 n‘zpt) arcsin(10 "=2)

22X @ =2 g
T =0 22(I)2(21+1) 10+=2 1’

and hence in particular

p—  2X 1 2! 1
FsooC10= = e+ 10209 +1
E X 1 @2n! 10 (=2+1=4)

=0 221(112(2] + 1)
2 arcsin(10 %) =0:3801::: <

airnN

which in turn shows that X is not Benford, as FB(p 10) = % Alternatively,
Fsx) is easily seen to be strictlyconvexon [1; 10) and thereforeFg(x)(t) logt
cannot possibly hold.
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4. Characterizations of Benford's Law

The purpose of this chapter is to establish and illustrate four usefli charac-
terizations of the Benford property in the context of sequencesfunctions, dis-
tributions and random variables, respectively. These characteriations will be
instrumental in demonstrating that certain datasets are, or are not, Benford,
and helpful for predicting which empirical data are likely to follow BL clo sely.

4.1. The uniform distribution characterization

The uniform distribution characterization is undoubtedly the most b asic and
powerful of all characterizations, mainly because the mathematial theory of
uniform distribution mod 1 is very well developed, see e.g.0)T, KN] for author-
itative surveys of the theory.

Here and throughout, denote byhti the fractional part of any real numbert,
thatis hti = t b tc. For example,h i = h3;1415:::i =0:1415::: = 3. Recall
that .1 denotes Lebesgue measure o1i0; 1); B[O; 1) .

De nition 4.1. A sequence Xn) of real numbers isuniformly distributed mod-
ulo 1, abbreviated henceforth asu.d. mod 1, if

#f1 n N :hxi sg
N

limy it =s forall s2[0;1);

a (Borel measurable) functionf :[0;+1 )! Risu.d. mod 1 if

f 2[0:T):H()i sg

Iing +1 T

=s forall s2[0;1);

a random variable X on a probability space ( ;A;P) is u.d. mod 1 if
P(hXi s)=s forall s2[0;1);
and a probability measureP on (R;B) is u.d. mod 1 if
Pfx:mxi sg=P [ kzz[k;k+ s] =s forall s2[0;1):

The next simple theorem (cf. Di]) is one of the main tools in the theory of
BL because it allows application of the powerful theory of uniform digribution
mod 1. (Recall the convention log 0 :=0.)

Theorem 4.2 (Uniform distribution characterization) . A sequence of real num-
bers (respectively, a Borel measurable function, a randomariable, a Borel prob-
ability measure) is Benford if and only if the decimal logarthm of its absolute
value is uniformly distributed modulo 1.
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Proof. Let X be a random variable and, without loss of generality, assume that
P(X =0)=0. Then, for all s2 [0;1),

P Iogjxj2[ o Kik+ sl =P ijz[ kZZ[1ok;1o“S]
P(S(X) 10°):

P(HogjXiji s)

Hence, by De nitions 3.4and 4.1, X is Benford if and only if P(S(X) 10°) =
log 1 = s for all s2 [0;1), i.e., if and only if logjXj is u.d. mod 1.

The proofs for sequences, functions, and probability distributiors are com-
pletely analogous. O

Next, several tools from the basic theory of uniform distribution mod 1 will
be recorded that will be useful, via Theorem4.2, in establishing the Benford
property for many sequences, functions, and random variables.

Lemma 4.3. (i) The sequencgx,) is u.d. mod 1if and only if the sequence
(kxn + b) is u.d. mod 1 for every k 2 ZnfOg and everyb2 R. Also, (Xy) is
u.d. mod 1if and only if (y,) is u.d. mod 1wheneverimpi;  jyn Xnj =0.

(i) The function f is u.d. mod 1if and only if t 7! kf (t)+ bis u.d. mod 1
for every non-zero integerk and everyb2 R.

(i) The random variable X is u.d. mod 1if and only if kX + bis u.d. mod 1
for every non-zero integerk and everyb2 R.

Proof. (i) The \if" part is obvious with k = 1, b= 0. For the \only if" part,
assume that () is u.d. mod 1. Note rst that

. #f1 N :hxqi2 C

limpy n N n! 9- 0:1(C)
holds wheneverC is a nite union of intervals. Let k 2 Z be non-zero and
observe that, for any 0O<s< 1,

8 n h io

S o
2 xihki2 Tl e if k> 0;
X 1 hkxi s =_n S, 1h-l _lio
. i I1K] +1 s.j+ . .
x:ihi2 i Jiki ]JTJ if k<0
Consequently,
8 S h |
: k 1].j*s i .
. #f1 n N :hkxpi sg 2 01 =0 ki & if k> 0;
limpy 1 N = s, h i
T oot }:’01”]-175;% if k< O:
( k ¢ if k>0

jki = ifk<o0
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showing that (kx,) is u.d. mod 1. Similarly, note that, for any b;s2 (0;1),
fx:i2 [0;s B[ [T b;l)g if s b;
fx:xi2[1 b;l+s blg if s<b:

X:hxk+h s =

Thus, assuming without loss of generality that O<b < 1,

( .
i #f1 n N:lx,+b sg_ o1[0s BH[[1 bl ifs b
N N o1 [1 bil+s 1 if s<b

:S,

and hence &, + b) is also u.d. mod 1. The second assertion is clear from the
de nition.
The proofs of (ii) and (iii) are completely analogous. O

Example 4.4. (i) The sequencett )=( ; 2; 3;:::)isu.d. mod 1, by Weyl's
Equidistrityt_ion Theorem, see Propositionﬁl._S(i) below. Similarly, the sequence
(Xp) = (n 2)is u.d. mod 1, whereas X, 2) = (2n) = (2:;4;6;:::) clearly is
not, as i2ni = 0 for all n. Thus the requirement in Lemma 4.3(i) that k be an
integer cannot be dropped.

For an analogous example using random variBb_Ies, leX be uniform on [G; 2),

thatis Px = o¢.2. Then X is u.d. mod 1, but X 2 is not because

8
p_ < #5s if52[0;2p§ 2);
PhX 2 s = ) Py ) ) p_
Pbs+ =1 ifs2[2 2 21):

(i) The sequence (log) is not u.d. mod 1. A straightforward calculation
shows that N '#f1 n N :Hogni sg N2y Nas, for everys 2 [0; 1),

1 10
~(10° 1 d —(1 10°
500 1) and )

as its limit inferior and limit superior, respectively.

Example 4.5. (i) The function f (t) = at+ bwith real a;bis u.d. mod 1 if and
only if a6 0. Clearly, if a=0 then f is constant and hence not u.d. mod 1. On
the other hand, if a> O thenha + b sifand only if 2 X2,k Db*s for
somek 2 Z. Note that each of the intervals “-; X 5*s has the same length

$. Thus, givenT > 0 ands 2 [0; 1), : :
z(baTc 2)  f 2[0T):ha +b sg 2(baTc+2);

and since limp, +1 %(baTc 2) = s, the function f is u.d. mod 1. The argu-
ment for the casea < 0 is similar.
As a consequence, although the functiorf (t) = t is not Benford for any
, the function f (t) = e' is Benford whenever 6 0, via Theorem 4.2, since
logf (t)= t= In10is u.d. mod 1, sed-ig 7.
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(i) The function f (t) = log jat+ bj is not u.d. mod 1 for anya; b2 R. Indeed,
if a= 0 then f is constant and hence not u.d. mod 1. On the other hand, for
a 6 0 essentially the same calculation as in Example4.4(ii) above shows that,
for every s 2 [0; 1),

liminfr, ., 0 210:T):Mogia + Bl s9 _ L, ).
T 9
and
limsupy, .4 (f 2 [O;T):H_?gja + b sg) _ %)(1 10 )

Again, this implies that f (t) = at + bis not Benford for any a; b.
Similarly, f (t) = log(1+ t?) is not u.d. mod 1, and hencef (t) = (1+ t?) !
is not Benford, seeFig 7.

(iii) The function f (t) = €' is u.d. mod 1. To see this, letT > 0 and N :=
belc, and recall that t  1t2 In(L+t) tforallt O0.Given0O s<1,it
follows from

. X N o1 s
(f 2[0;T):hei sg) = - In 1+ﬁ +(T InN)

that
P P
s Nu'nt i Nt 2 (f 2[0;T):hei sg)
In(N +1) b T
s N.'n l4in@@+ N 1)
INN ’

and hence indeed lim, +1 T * (f 2[0;T):hei sg)=s.
As a consequence, the super-exponential functioh(t) = e s also Benford
if 60.

(iv) For the function f (t) = sin?t, it is straightforward to check that, given
any 0 s<1,
CTY - hein?
limr; 41 (f_ 2[0:T):Msin” i sg) _ Earcsinp§:
T
Thus, asymptotically i i is not uniform on [0; 1) but rather arcsin-distributed,
see Example3.1(iii).

(v) For the function f (t) = log(sin ? t), it follows from (iv) that the asymptotic
distribution of Hfi has the density

d 2X1 e e _ _ INn10X 1 1
“ )=2 n=2 —
i __, arcsin 1d arcsin 10 . pim
In10 105=2

102 1’
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10+ \

S(f2)

10
S(f1) I~ L
O fa(t)=(1+ t7) * 10
S(fs)
0 fi(t)=e !

%3 fa(t) =sin 2t

Ol—\

Fig 7 . While the function fi is Benford, the functions f2;f3 are not, see Example 4.5.

for0 s< 1. Thus clearly f is not u.d. mod 1, showing thatt 7! sin’t is not
Benford, seeFig 7.

Example 4.6. (i) If the random variable X is uniformly distributed on [0; 2)
then it is clearly u.d. mod 1. However, if X is uniform on, say, [Q ) then X is
not u.d. mod 1.

(i) No exponential random variable is u.d. mod 1. Speci cally, letX be an
exponential random variable with mean , i.e.

Fx(t)=max(0;1 e ©); t2R:
Hence varX = 2. For everyl O,

P X<l +3)=Fx(1+ 1) Fx()

>Fx(I+1) Fx(l+)=P(l+3 X<I +1);

P
and since ,1:0 P(I X <1 +1)=1, this implies that
X 1
)= 1=0

showing that X is not u.d. mod 1. To obtain more explicit information, observe
that, forevery 0 s< 1,

P(hXi < Pl X<l +3)>1;

2

N[

1 e*

X
Foi (9= POXT 9= Fx(1+9) Fx(l) = T
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from which it follows via a straightforward calculation that

1 -
maxo s<1 Frxi(S) s=x= 1 ° In( e '~ )= Ri():

Note that R;i(1) =In(e 1) £2=0:1233:::< %. Moreover,

e

[

Ri( )= g+ O %) as ! +1;

which shows that even thoughX is not u.d. mod 1, the deviation of hXi from
uniform is small for large . As a consequence, 20 resembles a Benford random
variable ever more closelyas ! +1 .

(i) If X is a normal random variable thenX is not u.d. mod 1, and neither
is jX j or max(0; X ). While this is easily checked by a direct calculation as in (ii),
it is again illuminating to obtain more quantitative information. To this en d,
assume thatX is a normal variable with mean 0 and variance 2. By means of
Fourier series Pi], it can be shown that, for every 0 s< 1,

X 1 sin(2ns)e 22 2,2

Fi(s) s=  —

From this, it follows that

1X 1
Rii ( ):=maxo s<1 Fxi(s) s = o lg 2% *n*.
and hence in particular
e 222 2
Rii ()= +0e?® ) as ! +1;

showing that Rji ( ), the deviation of hXi from uniformity, goes to zero very
rapidly as ! +1 . Already for =1 one nds that R (1) < 8516 10 0,
Thus even though a standard normal random variableX is not u.d. mod 1, the
distribution of hXi is extremely close to uniform. Consequently, alog-normal
random variable with large variance is practically indistinguishable from a Ben-
ford random variable.

Corollary 4.7. (i) A sequence(xn) is Benford if and only if, for all 2 R
and k 2 Z with k 60, the sequence x ¥) is also Benford.

(i) A function f :[0;+1)! R is Benford if and only if 1=f is Benford.
(i) A random variable X is Benford if and only if 1=X is Benford.

The next two statements, recorded here for ease of referenclist several key
tools concerning uniform distribution mod 1, which via Theorem 4.2 will be used
to determine Benford properties of sequences, functions, andandom variables.
Conclusion (i) in Proposition 4.8 is Weyl's classical uniform distribution result
[KN, Thm.3.3], conclusion (ii) is an immediate consequence of Weyl's criterion
[KN, Thm.2.1], conclusion (iii) is [Ber2, Lem.2.8], and conclusion (iv) is BBH,
Lem.2.4.(i)].
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Proposition 4.8. Let (x,) be a sequence of real numbers.
@) If limpy (Xn+1 Xn) = for some irrational , then (x;,) is u.d. mod 1.

(i) If (xn) is periodic, i.e. Xn+p = X, for somep 2 N and all n, then (n + X;)
is u.d. mod 1if and only if is irrational.

(i) The sequencexy) is u.d. mod 1if and only if (x, + logn) is u.d. mod
lforall 2R.

(iv) If (xn) is u.d. mod 1 and non-decreasing, then(x,=logn) is unbounded.

The converse of (i) is not true in general: &,) may be u.d. mod 1 even if
(Xn+1  Xp) has a rational limit. Also, in (ii) the sequence (n ) cannot be
replaced by an arbitrary uniformly distributed sequence ( ), i.e. ( n + Xn) may
not be u.d. mod 1 even though () is u.d. mod 1 and (x,) is periodic.

Another very useful result is Koksma's metric theorem KN, Thm.4.3]. For
its formulation, recall that a property of real numbers is said to hold for almost
every (a.e) x 2 [a;b) if there exists a setN 2 BJ[a;b) with 4,(N) = 0 such
that the property holds for every x 62N . The probabilistic interpretation of a
given property of real numbers holding for a.e.x is that this property holds
almost surely (a.s.), i.e. with probability one, for every random variable that
has a density(i.e., is absolutely continuous).

Proposition 4.9. Let f, be continuously di erentiable on [a; b for all n 2 N.
If £9 £2is monotone andjf % (x) f2(x)j > 0 for all m 6 n, where
does not depend orx, m and n, then f,(x) is u.d. mod 1 for almost every
X 2 [a;h.

Theorem 4.10 ([BHKRY]). If a;b; ; are real numbers witha6 0 andj j> | j
then ( "a+ "b) is Benford if and only if logj j is irrational.

Proof. Sincea60andj j>| j, limnn :—2 =0, and therefore

n

b
”a! 0;

logj "a+ "b logj "aj=log 1+

showing that (logj "a+ ") isu.d. mod 1 if and only if (logj "aj) = (log jaj +
nlogj j) is. According to Proposition 4.8(i), this is the case whenever log | is
irrational. On the other hand, if log j j is rational then Hogjaj+ nlogj ji attains
only nitely many values and hence (logjaj + nlogj j) is not u.d. mod 1. An
application of Theorem 4.2 therefore completes the proof. O

Example 4.11. (i) By Theorem 4.10the sequence (2) is Benford since log 2
is irrational, but (10 ") is not Benford since log10 = 12 Q. Similarly, FgO 2M),
(3"), (0:3"), 0:01 0:2" +0:2 0:.01" are Benford, whereas ("), ,
0:1 0:02" +0:02 0:1" are not.

(i) The sequence 0:2" +( 0:2)" is not Benford, since all odd terms are
zero, but 0:2" +( 0:2)" +0:03" is Benford | although this does not follow
directly from Theorem 4.10.
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(iif) By Proposition 4.9, the sequenceX; 2x; 3x;:::) = ( nx) is u.d. mod 1 for
almost every real x, but clearly not for every x, as for examplex = 1 shows.
Consequently, by Theorem4.2, (10™) is Benford for almost all real x, but not
e.g. forx = 1 or, more generally, wheneverx is rational.

(iv) By Proposition 4.8(iv) or Example 4.4(ii), the sequence (logn) is not
u.d. mod 1, so the sequencen() of positive integers is not Benford, and neither
is(n)forany 2 R, see alsdrig 8.

(v) Consider the sequencef,) of prime numbers. By the Prime Number
Theorem, p, = O(nlogn) asn!1 . Hence it follows from Proposition 4.8(iv)
that (pn) is not Benford, seeFig 8

Example 4.12. Consider the sequenceK,) = (1;1;2;3;5;8;13;:::) of Fi-
bonacci numbers, de ned inductively asFn., = Fps + Fy for all n 2 N,
with F; = F, = 1. It is well known (and easy to check) that
! .
1+P5" 1 P

1
Fo = p= =p="'" (' H" foraln2N;
n S 5 5 S ( ) orall n ;

where' = (1 + p§) 1:618. Since' > 1 and log' is irrational, (Fy,) is
Benford, by Theorem 4.10, see alsoFig 8. Sequences such as~() which are
generated by linear recurrence relations will be studied in detail in Setion 5.2.

Theorem 4.13. Let X;Y be random variables. Then:
(i) If X isu.d. mod 1andY is independent ofX, then X + Y is u.d. mod 1

@iy If iXi and hX + i have the same distribution for some irrational then
X is u.d. mod 1

(i) If (Xy) is an i.i.d. sequence of random variables andX 1 is not purely
atomic (i.e. P(X1 2 C) < 1 for every countable setC R), then
D x E

liman P jn_l X s =s forevery0 s<1; (4.2)
P
thatis, ~ [, X; ! U(0;1) in distribution as n!1
Proof. The proof is most transparently done by means of some elementary
Fourier analysis. To this end, for any random variableZ with values in [0; 1), or
equivalently for the associated probability measureP; on [0;1);B[0;1) , let
Z,
P, (k)= E@@* )= &% dPs(s)
Zol Z,
= cos(2ks )dPz(s)+ { sin(2ks)dPz(s); k2 Z:
0 0
The bi-in nite sequence P (k) o7+ Teferred to as the Fourier (or Fourier{
Stieltjes) coe cients of Z or Pz, is a bounded sequence of complex numbers,
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#f1 n N :D;1=1g¢g

v (D=

N
(Fn)=1(1;1,2,3,5,8;,13;:::) 1:04
S(Fn) =(1;1,2,3,581:3;::1) 852:
0:4+ o
0:2+
1 2 3 4 log 4 N
v (@
(2n) =(2;4,6;8,10,12,14;:::) 051
S(2n) =(2;4,6,8,1,1:2,1:4;::1) 85;"
0:2+
0:1+
! 2 3 4 logyo N
)
(pn) =(2:3;5,7,11;,13,17;::2) 054
S(pn) =(2:;3;,5,7,1:1; 1:3; 1.7;: %) gg
0:2+
0:1+
1 2 3 4 log N
v (@
(Xn) = (b10"*? =5¢) 05+
= (3;6;10; 15, 25,39, 63;:::) 0:at
0:31
S(xn) =(3:6;1;,152539,6:3;:::) |
0:1+
1 2 3 4 log N

Fig 8. For a Benford sequence, limy i n (1) =log2. Thus if N (1) ,, does not con-

verge (center) or has a di erent limit (bottom), then the seq  uence in question is not Benford,
see also Example 4.11.

with jBz (k)j 1 forall k2 Z, and Bz (0) = 1. The three single most important
properties of Fourier coe cients are that Bz (k) k27 Uniquely determinesPz,
i.e. Pz, = Pz, wheneverf;, (k) = B, (k) for all k 2 Z; that P\, z,i(k) =
ﬁzl(k) F'Zz(k) for all k, provided that Z; and Z, are independent; and that
Z, ' Z in distribution if and only if lim 1 Idzn(k) = Bz (k) for every Kk,
see e.g. €T] for an authoritative discussion of this material. Also note that

the sequence of Fourier coe cients is extremely simple ifZ is uniform, i.e. for
Z = U(0; 1), namely

_d _ 1 ifk=0;
Puin (k) = 9a(k) 0  otherwise
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With these preparations, the proof of the theorem is very short irdeed.
(i) Since Ppy i (k) = 0 for all k 60,

P+ vi (K) = By (k) Py (k)=0;

which in turn shows that hX + Yi = U(0;1), i.e. X + Y is u.d. mod 1.

(i) Note that if Z =  with probability one then B, (k) = €& for every
k 2 Z. Consequently, ifhXi and hX + i have the same distribution then

Prxi (K) = P+ 1 () = € B (k)

for every k 2 Z. If s irrational then € 6 1 for all k 6 0, implying that
Prxi (k) = 0. Thus Pk = 9.1 and hencePux; = 0.1, i.e. hXi = U(0;1).

(iif) Assume that X 1; X;::: are independent and all have the same distribu-
tion. Then, for every k 2 Z and n 2 N,

I:)hX\1+:::+Xni(k): PhX1|(k) n:

Recall that jPix,i(k)j 1. Thus Pix)s..ox.i(k)! Oasn!1 ,and hence
hXq1+ 0+ Xpi! U(O; 1) in distribution, unless jPhxli (ko)j = 1 for some non-

zero integerko. In the latter case, let Phxli(ko) = &2 with the appropriate
2 [0;1). It follows from

0=1 e 2 Phxli(ko):lZ P, =k oi (Ko)
1
= 1 cos(2k gs) dPpx, =k,i(s) O;
0

that cos(2 k phiX;  =kgi) =cos 2 (koX ) =1 with probability one. Hence

P(koX1 2 + Z)=1,and X is purely atomic. (In fact, X, is concentrated on
a lattice fa+ k=jkoj : k 2 Zg with the appropriate a > 0.) O

Example 4.14. (i) Let (X,) be ani.i.d. sequence of Cauchy random variables,

i.e.
1

@+)’

P
It is well known, or readily checked by a direct calculation, that % j“:1 Xj is
again Cauchy. Thus

fy,(t) = t2 R:

1 X n

Pn . - = . .
fh =1 le(s) k27 n2+(s+k)21 s< 11

from which it follows that, uniformly in s,

Z
1 X 1 17+ gt
fo 0, xi(9)= — _ ! =

——=1 asn!l
N KZji4 (s+k)=n’ 1 1+t
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As asserted by Theoren4.13 therefore, for every 0 s< 1,

D)(n E Zs Zs

X; s =limnn frPn xi()d = 1d = s:

Iimn|1 P '
=1 0 = 0

(i) Consider an i.i.d. sequenceX,) where P(X1; =0) = P(X1 =
In this case

NI
~
I
NI

P P _
A, (k)= 1 1+ 2 =gk 2cos(kp2); k22Z:

Note that jﬂxl(k)j = jcos(k pi)j < 1 for all k 6 0. Hence PR " x;i(K)

Phxli(k)“ ! Oasn!1 , which in turn shows that (4.1) holds, even though
X is purely atomic.

On the other hand, if P(X; =0) = P(X; = 1) = 3} then X is also purely
atomic, but

P " x;=4 =2 " foraln2N;l=0;1:::;n;

and consequently, for everyn,

Dx , E X
P X; =0 = 2" =

j=1 1=0 ;1 even I

showing that (4.1) does not hold in this case. Correspondinglyﬂxl(k) = % 1+

( ¥, and soﬂxl(k) =1 whenever k is even.

A careful inspection of the above proof shows that, in the settingof Theorem
4.13(iii), ( 4.2) holds if and only if P(X1 2 a+ %Z) < 1 for everya 2 R and
m 2 N. While the \if* part has been proved above, for the \only if" part
simply note that if P(X; 2 a+ %Z) =1 for somea?2 R and m 2 N then
hX1+ :::+ Xyi is, for everyn 2 N and possibly up to a rotation, concentrated
onthe setf0; 1;:::;™_1g= hlZi and hence does not converge in distribution
to U(0; 1).

None of the familiar classical probability distributions or random variables,
such as e.g. normal, uniform, exponential, beta, binomial, or gamma idtribu-
tions are Benford. Speci cally, no uniform distribution is even close to BL, no
matter how large its range or how it is centered. This statement canbe quanti-
ed explicitly as follows.

Proposition 4.15 ([Ber5, BH3]). For every uniformly distributed random vari-
able X,

9+In10+9In9 9InIn10
maxo s<1 Frogxi(S) S 181N 10 =0:1334:::;

and this bound is sharp.
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Similarly, all exponential and normal random variables are uniformly bound-
ed away from BL, as is explained in detail in BH3]. However, as the following
example shows, some distributions do come fairly close to being Benfh

Example 4.16. (i) Let X be exponential with mean 1, that is
Fx(t)=max(0;1 e'); t2R:
An explicit calculation shows that, for every 1 t< 10,

X k Kk X 10X 10%t
P(S(X) t)= ‘27 Fx (10°t) Fx (10%) = 27 e e

SinceP(S(X) t) 6 logt, the random variable X is not Benford. Numerically,
one nds max; < 10jP(S(X) <t) logtj < 3:054 10 ?, see alsoFig 9. Thus
even though X is not exactly Benford, it is close to being Benford in the sense
that jP(S(X) t) logtjis small for all t 2 [1; 10).
(i) Let X be standard normal. Then, for everyt 2 [1;10),
X
P(S(X) t= 10y (@0%) ;

where is the distribution function of X, that is

Zt
(1) = Fx (t) = P(X t):plzz e?’d; t2R:
1

Numerically, one nds max; ; 10jP(S(X) <t) logtj < 6:052 10 2. Though
larger than in the exponential case, the deviation ofX from BL is still rather
small.

Fsx)(t) logt Fsx)(t) logt

X exponential, EX =1 X standard normal
0:04 + 0:04 1

KFs(x)(t) logtk, 3:054 10 2 kFsx)() logtka  6:052 10 ©
S(X) 1 :

1 10 10
S e t

Jay

0:04 + 0:04 +

Fig 9. For standard exponential (left) and normal random variabl  es X, the distribution of
S(X) deviates from BL only slightly. Note, however, that non-standard normal variables can
be far from BL, e.g., if EX =75 and var X =1 then D1(X) =7 with very high probability.
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The next result says that every random variable X with a density is asymp-
totically uniformly distributed on lattices of intervals as the size of th e intervals
goes to zero. Equivalently, mX i is asymptotically uniform, as n ! 1 . This
result has been the basis for several recent fallacious argumenttaiming that if
a random variable X has a density with a very large \spread" then logX must
also have a density with large spread and thus, by the theorem, muse close to
u.d. mod 1, implying in turn that X must be close to Benford (cf. Fel, Few]).
The error in those arguments is that, regardless of which notion ofspread” is
used, the variableX may have large spread and at the same time the variable
logX may have small spread; for details, the reader is referred toBH3].

Theorem 4.17. If X has a density then

limpy P(NXi s)y=s forall0 s<1; 4.2)
that is, mXi! U(0O;1) in distribution as n!1
Proof. SincemXi = nhXi , it can be assumed thatX only takes values in

[0;1). Let f be the densityfX,i.e.f :[0;1]! R is a non-negative measurable
function with P(X s)= ;f( )d for all s2 [0;1). From

_ [ o1l 14s X n1Z0+9m
P(mXi s)=P X 2 - — = f()d
, =0 n’ n =0 \p
$1X n 1 +
= = " | d;
0 n 1=0 n

it follows that the density of mX i is given by

1X n1 +s
fhnxi(s)—ﬁ I=0f o 0 s<1:
Note that if f is continuous, or merely Riemann integrable, then, asn ! 1
z 1
fronx i (8) ! f()d =1 forall s2[0;1):
0

general, given any" > 0 there exists a continuous densityg- such that
Oljf( ) o()jd <" and hence

Zl,f Lid Z1 X UEPRNE. 1X n1 |+ q
. ffrxi() 1 X N =0 n no o= 9% T
11X 1 | +
+ = g 1d
0 n 1=0 n
Zl'f id +Zl 1X a1 o d d;
RELAACA sn o9 T , 90) ;

which in turn shows that
z 1

limsup,; ifaxi( ) 1jd ",
0
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R
and since" > 0 was arbitrary, Oljfhnx i() 4d ! Oasn!1l . From this,
the claim follows immediately because, for every 0 s < 1,
z S z 1
P(mXi s) s = (faxi() 1)d jfrxi() 2d 1 0O:
0 0
O

Remark. If X does not have a density, then 4.2) may not hold. Trivially, if
X is an integer with probability one then P(mXi s) = 1 for every n and
0 s< 1.Hence @.2) fails. For a simple continuous example, letX be uniformly
dIStrIbLE,ed on the classical Cantor middle thirds set. In more probabilistic terms
X =2 | 1 3 'X; where the X; are i.i.d. with P(X; =0)= P(X;=1)= 3
Then Py 6 0.1 but BXi has the same distribution asX, and so hasrB“X|
for every n 2 N. Thus (4.2) fails again.

In fact, using the Fourier analysis tools introduced in the proof of Theorem
4.13 together with the observation that

Prx i (K) = Prxi(nk) forall n2 N; k2 Z;

it is clear that (4.2) holds if and only if X has the property that Pry (k) ! 0 as
jkj'1 ,i.e. precisely if Ppx; is a so-calledRajchman probability. As Theorem
4.17 shows, a probability on [0 1) is Rajchman whenever it is a.c. (In advanced
calculus, this fact is usually referred to as theRiemann{Lebesgue Lemmg The

converse is not true, i.e., there exist Rajchman probabilities on [p1) that are

not a.c., see Ly]. |

4.2. The scale-invariance characterization

One popular hypothesis often related to BL is that of scale-invariance Infor-
mally put, scale-invariance captures the intuitively attractive notio n that any
universal law should be independent of units. For instance, if a su dently large
aggregation of data is converted from meters to feet, US$ te etc., then while
the individual numbers change, the statements about the overalldistribution
of signi cant digits should not be aected by this change. R. Pinkham [Pi]
credits R. Hamming with the idea of scale-invariance, and attempts b prove
that the Benford distribution is the only scale-invariant distribution . Pinkham's
argument has subsequently been used by numerous authors to @gain the ap-
pearance of BL in many real-life data, by arguing that the data in question
should be invariant under changes of scale and thus must be Benfdr
Although this scale-invariance conclusion is correct in the proper sting,
see Theorem4.20 below, Pinkham's argument contains a fatal error. As Knuth
[Kn] observes, the error is Pinkham's implicit assumption that there is a sale-
invariant Borel probability measure on R*, when in fact such a probability
measure does not exist, cf.Ral]. Indeed, the only real-valued random variable
X that is scale-invariant, i.e., X and X have the same distribution for all
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scaling factors > 0, is the random variable that is constant equal to zero,
that is P(X = 0) = 1. Clearly, any such random variable is scale-invariant
sinceX = X with probability one. To see that this is the only scale-invariant

random variable, suppose thatP(jXj > c) = > 0 for somec > 0. Then
PGX j>c)=P(jXj>c= )& Oas & 0, so for su ciently small positive
P(j X j>c)< = P(jXj>c), contradicting scale-invariance. Thus no non-zero

random variable is scale-invariant. Note, however, that the measte on (R*;B*)
de ned as

Zy
dt b
[a;b := — =log - forall[a; R*;
2t a
is scale invariant because, for every > 0,
Z -
- dt b
o= — =log - = ;
g = T=lg = [l
Obviously, is not nite, i.e. (R*) = g1, but is still - nite . (Generally, a
measure on ( ;A)is -nite if = nanAn for some sequenceA,) in A,

and (A,)< +1 forall n)
In a similar spirit, a sequence &,) of real numbers may be calledscale-

invariant if
limy 1 #f1 n NN:an[a;tﬂg]:limm1 #f1 n I\’l\I:XnZ[a;tﬂg

holds for all > O and [a;h R. For example, the sequence

22 2232312342 %3k4 2302 %3 L2

is scale-invariant. As above, it is not hard to see that

limy 1 #f1 1 l\,l\l.xn 2 [a;big =0 forall[a;h RnfOg;

holds whenever &,) is scale-invariant. Most elements of a scale-invariant se-
quence of real numbers, therefore, are very close to either 0 ot

While a positive random variable X cannot be scale-invariant, as shown
above, it may nevertheless havescale-invariant signi cant digits . For this, how-
ever, X has to be Benford. In fact, Theorem4.20below shows that being Benford
is (not only necessary but) also su cient for X to have scale-invariant signi cant
digits. The result will rst be stated in terms of probability distributio ns.

De nition 4.18. Let A Sbe a -algebra onR*. A probability measure P
on (R*;A) has scale-invariant signi cant digits if

P(A)=P(A) forall > OandA?2S;

or equivalently if for all m 2 N, all d; 2f 1;2;:::;9g and all d; 2f0;1;:::;90,
2

P x:Dj(x)=dforj=1;2;:::m =P x:Dj(x)=dforj =1;2;:::;m

holds for every > 0.
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Example 4.19. (i) The Benford probability measure B on (R* ;S) has scale-
invariant signi cant digits. This follows from Tgeorem 4.20below but can also be
seen from a direct calculation. Indeed, ifA = —,, 10¢[a;with1 a<b< 10,
then, given any > 0,

Zld“h'og a; b = [ 10B;

[ o |
A= zzld<|g [a; b = k2z

k k2

where the setB is given by

8 ) :
3 10009 ig: 1009 ip ifO hlog i<1 logb;
B = 5 1;10M09 T 1p [ 109 1a;10 ifl1 logb hlog i<1 loga;
10009 i 1g.1qflog i 1p ifl1 loga hlog i< 1:

From this, it follows that

8 . )

3 log 1079 ip log10'9 ia
B(A)= 5 log10'9 ' 1p+1 logl0'9 ia
log10'9 ' 1p Jog1dl9 I 1a

=logb loga = B(A);
showing that B has scale-invariant digits.

(i) The Dirac probability measure ; concentrated at the constant 1 does
not have scale-invariant signi cant digits, since , =2 jiyet (D;1=1)=1 6
0= 2(D1 = 1)

(i) The uniform distribution on [0 ;1) does not have scale-invariant digits,
since if X is distributed according to .1 then, for example

1 11 3
P(Dy(X)=1)= 5< ==P Di X =1

As mentioned earlier, the Benford distribution is the only probability m easure
(on the signi cand -algebra) having scale-invariant signi cant digits.

Theorem 4.20 (Scale-invariance characterization Hil]). A probability measure
P on (R*;A) with A S has scale-invariant signi cant digits if and only if
P(A) = B(A) for every A 2 S i.e., if and only if P is Benford.

Proof. Fix any probability measure P on (R*;A), denote by Py its restriction

to (R*;9), and let Q := ° Py with * given by Lemma2.16 According to Lemma
2.16 Q is a probability measure on [0;1); B[0; 1) . Moreover, under the corre-
spondence established by,

Po(A )= Po(A) forall > O;A2S (4.3)
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B(3A) = B(A) 0:1(log3A) = o:1(log A)
i A=fD1=2 0 )
3A 9 2 =1th1=29 0:1
=f2 S<3g
3 3 0:2
.07 0:3
7 4
e 0:6 0:4
S 6 ° log S 0:5
; : 5 log A
Fig 10 . Visualizing the scale-invariant signi cant digits of BL.
is equivalent to
Q(ht+ Bi)= Q(B) forallt2 R;B 2 B[0;1); (4.4)

whereht + Bi = fht + xi : x 2 Bg. Pick a random variable X such that the
distribution of X is given by Q. With this, ( 4.4) simply means that, for every
t 2 R, the distributions of hX'i and ht+ X i coincide. By Theorem4.13(i) and (ii)
this is the case if and only if X is u.d. mod 1, i.e.Q = ¢.1. (For the \if" part,
note that a constant random variable is independent from every other random

variable.) Hence @.3) is equivalentto Po = (" 1) ¢.1 = B. O
Example 4.21. For every integerk, let gx > 0 and
8
z 1 if 10k t< 107 ;
fi(t) = tin10
z

0 otherwise

If P w2z & = 1 then, according to Example 3.6, P w2z %fk is the density of
a Benford probability measure P on (R*;B*). By Theorem 4.20 P has scale-
invariant signi cant digits. Note that, in full agreement with earlier o bservations,
P is not scale-invariant, as for instance

g = P [105,10) = P 10¢ '[10;10") = P [10;10") =g

cannot possibly hold forall pairs (k;I) of integers.

In analogy to De nition 4.18 a sequenceX,) of real numbers is said to have
scale-invariant signi cant digits if

#f1 n N :S(xp)<tg . #f1 n N :S(xp) <tg
N = limyn N

forall > 0;t2[1;10): (4.5)

limn g
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Implicit in ( 4.5) is the assumption that the limits on either side exit for all t.
A similar de nition can be considered for real-valued functions. To formulate
an analog of Theorem4.20 using this terminology, recall that a set A N has
density 2 [0;1] if the limit imyiy #f1 n N :n 2 Ag=N exists and
equals . For example, (fn:neveng) = % and (fn:nprimeg) =0, whereas
fn:Di(n) =1gdoes not have a density.

Theorem 4.22. (i) For any sequence(x,) of real numbers, letfn : x, 6 0g
= fny < ny <:::g. Then (x,) has scale-invariant signi cant digits if
and only if fn : x, 6 0g has a density and either (fn : x, =0g) =1
or else (Xp; )j2n is Benford. In particular, if (fn : x, =0g) =0 then
the sequencgXx,) has scale-invariant signi cant digits if and only if it is
Benford.

(i) A (Borel measurable) functionf :[0;+1)! Rwith ft 0:f(t)=0g
< +1 has scale-invariant signi cant digits if and only if it is Be nford.
Moreover, f is Benford precisely if f is Benford for every 6 0.

Proof. (i) Assume rstthat ( x,) has scale-invariant signi cant digits. According

to (4.5),
#f1 n N :S(x,) < 10°g

N

exists for every 0 s < 1. In particular, fn : x5, =0g has a density G(0). For
G(0) = 1 there is nothing else to show. Thus, assume&s(0) < 1 from now on,
and de ne a non-decreasing functionH : [0;1)! R as

_ G 6.
H(S) = — 50)

G(S) =1lim N 11

s<1:

Note that
#f1 n N :S(xn) < 105x, 60g
#f1 n N :x, 60g
#f1 ) N :S(xp )< 10°g
N ;

soH takes into account only the non-zero entries in k). Dene h: R! R as

H(s)=1im nu

=limnn

h(s)= H(lsi) hsi forall s2 R:

Clearly, h is 1-periodic, with h(0) = 0 and jh(s)j 1 for all s2 R. In terms of
the function H, the invariance property (4.5) simply reads

H(1+s hlog i) H(1 hlog i) if s< Hog i;

H =
) 1 H@ hlog i)+ H(s hlog i) if s hlog i;

provided that log 62Z. In terms of h, this is equivalent to

h(s)= h(1+s hlog i) h(1 hlog i) forall s2 R; > O0: (4.6)
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As a consequences 7! h(1+ s hlog i) h(s)is constant for every > 0.
Since the function h is bounded and 1-periodic, it can be represented (at least
in the L2-sense) by a Fourier series

X
h(s) = joette

k2

from which it follows that

X :
h(1+ s thg |) h(S): kzzck e2{k (I1+shlog i) e2{kS

X
- 2{k hlog i 2 {ks .
kzzck e 1 e :
Pick > 0 such that Hog i is irrational, e.g. = 2. Then e 2{1fog i g1
wheneverk 6 0, which in turn implies that ¢, = 0 for all k 6 0, i.e. h is
constant almost everywhere. ThusH (s) = s+ ¢y for a.e.s 2 [0;1), and in fact
H(s) s becauseH is non-decreasing withH (0) = 0. Overall, therefore,

#f1 j N :S(xp)< 10g

= forall s2 [0;1);
N s forall s2[0;1);

limy i

showing that (xn,; ) is Benford.

Conversely, if (fn : x, = 0g) = 1 then (4.5 holds with both sides being
equal to 1 for allt 2 [1;10). Assume, therefore, that (fn : x, =0g) < 1 and
(Xn; ) is Benford. By the above,h(s) 0, so @.6) and hence also 4.5) hold, i.e.,
(Xn) has scale-invariant signi cant digits.

The proof of (ii) is completely analogous, utilizing

2[0,T):Sf() <1

) <1
T ;0 s<1

G(s) :=Ilim 1y +1

Note that the assumption ft 0:f(t)=0g < +1 implies G(0) =0. O

Example 4.23. Let (xn) equal either the sequence of Fibonacci or prime num-
bers. In both casesx, 6 0 for all n, and hence by Theorem4.22i) (x,) has

scale-invariant signi cant digits if and only if it is Benford. Thus ( F,) does

have scale-invariant signi cant digits, and (p,) does not. These facts are illus-
trated empirically in Fig 11to 13 which show the relevant data for, respectively,

the rst 102 (Fig 11 and 12) and 10* (Fig 13) entries of either sequence, and
compare them with the respective expected values for BL.

The next example is an elegant and entertaining application of the idea
underlying Theorems 4.20 and 4.22 to the mathematical theory of games. The
game may be easily understood by a schoolchild, yet it has proven a alienge
for game theorists not familiar with BL.
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2504730781961 37889062373143906
267914296 4052739537881 61305790721611591
433494437 6557470319842 99194853094755497
701408733
259695496911122585
7777890035288 420196140727489673
2971215073 44945570212853 679891637638612258
(o] 317811 4807526976 72723460248141
E 34 514229 7778742049
© 832040 2880067194370816120
< 20365011074 308061521170129 4660046610375530309
£ 2178309 32951280099 498454011879264 7540113804746346429
g.’ 3524578 53316291173 806515533049393
o 377 5702887 86267571272
610 9227465 2111485077978050 31940434634990099905
225851433717 3416454622906707 51680708854858323072
24157817 365435296162 5527939700884757 83621143489848422977
39088169 591286729879 8944394323791464
4181 63245986 956722026041 218922995834555169026
23416728348467685 354224848179261915075
2 331160282 5009461563922 75778124746287812
2 35422 535828592 8105479075762
4 866988874
6 21220419715446 321001287632734176
2269806340 34335360355130 519390993822245170
242786 3672623806 55555780070576 840392281454979346
N 392836 5942430146 89891140425706
42 635622 9615053952 2200175556732203862
_5‘ 235338060921988 3559958832009428378
- 25172538050 380784981418270 5760134388741632240
@ 2692538 40730022148 616123042340258 9320093220751060618
[} 4356618 65902560198 996908023758528
8 466 7049156 24400320830243753476
9_) 2609939089857314 39480548439736446334
279167724890 4222970155956100 63880869269980199810
29860704 451702867434 6832909245813414
48315634 730870592324
78176338 270603704689413492098
28944668049352442 437845991669110338052

204668310 3096017511840 46833456696935370 708449696358523830150
265223436612007342
7 28369176765167 429140535051281137
200599 3034461059 45902292238894 694363971663288479
21 324576 4909861131 74271469004061
35 525175 7944322190
849751 2941372985092427711
~ 20798505511 314618991489971 4759241463470285806
2224677 33652688832 509064221736987 7700614448562713517
_g‘ 3599603 54451194343 823683213226958
Ee] 385 5824280 88103883175 20160470360595712840
2 9423883 2156430648190903 32620326272628712163
g 230658960693 3489178083154848 52780796633224425003
1%} 24672046 373214038211 5645608731345751 85401122905853137166
e 39920209 603872998904 9134786814500599
4270 64592255 977087037115 223583042444930699335
23915182360346949 361764961984008261504
2558047073134 38695577906193299 585348004428938960839
273617183 4139007109153 62610760266540248 947112966412947222343
442721902 6697054182287
716339085 2479573937254833405525
d 2 3 5 6 7 8 9 10° R
= (Fn)2o 18 | 13 8 | 6 | 5 | 7 | 4 | 1884
1}
5 (2Fn)1% 19 | 11 | 10 | 8 | 7 6 5 4 | 14:93
b (TFn)% 9 | 13 | 8 | 8 7 5 4 | 5 | 1601
102 log(1 + d 1) 17:60 |12:49 |9:691 | 7:918 | 6:694 | 5:799 |5:115 | 4575

Fig 11 . Illustrating the (approximate) scale-invariance of the

numbers, cf. Fig 5.

rst one-hundred Fibonacci
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2 31 73 127 179 233 283 353 419 467
3 37 79 131 181 239 293 359 421 479
[0 5 41 83 137 191 241 307 367 431 487
a 7 43 89 139 193 251 311 373 433 491
© 11 47 97 149 197 257 313 379 439 499
< 13 53 101 151 199 263 317 383 443 503
E 17 59 103 157 211 269 331 389 449 509
g 19 61 107 163 223 271 337 397 457 521
o 23 67 109 167 227 277 347 401 461 523
29 71 113 173 229 281 349 409 463 541
4 62 146 254 358 466 566 706 838 934
N 6 74 158 262 362 478 586 718 842 958
10 82 166 274 382 482 614 734 862 974
_8‘ 14 86 178 278 386 502 622 746 866 982
Lo} 22 94 194 298 394 514 626 758 878 998
2 26 106 202 302 398 526 634 766 886 1006
8 34 118 206 314 422 538 662 778 898 1018
1%} 38 122 214 326 446 542 674 794 914 1042
e 46 134 218 334 454 554 694 802 922 1046
58 142 226 346 458 562 698 818 926 1082
14 217 511 889 1253 1631 1981 2471 2933 3269
~ 21 259 553 917 1267 1673 2051 2513 2947 3353
35 287 581 959 1337 1687 2149 2569 3017 3409
E 49 301 623 973 1351 1757 2177 2611 3031 3437
S 7 329 679 1043 1379 1799 2191 2653 3073 3493
Q 91 371 707 1057 1393 1841 2219 2681 3101 3521
8 119 413 721 1099 1477 1883 2317 2723 3143 3563
1) 133 427 749 1141 1561 1897 2359 2779 3199 3647
q,_" 161 469 763 1169 1589 1939 2429 2807 3227 3661
203 497 791 1211 1603 1967 2443 2863 3241 3787
d 1 2 3 4 7 9 10° R
g (pn )99 25 | 19 | 19 | 20 | 8 4 1 || 103:0
Il
N (2pn) 1% 17 | 12 | 13| 9 |10 | 10 | 9 | 11 | 9 | 1310
" (7pn) 39 31 | 26 | 22 | 5 3 2 6 1 4 || 95:06
102 log(1+ d 1) |80:10|17:60 [12:49 |9:691 | 7:918 |6:694 |5:799 | 5:115 |4:575

Fig 12 . lllustrating the lack of scale-invariance for the rst one  -hundred prime numbers.

Example 4.24 ([Mo]). Consider a two-person game where Player A and Player
B each independently choose a (real) number greater than or eqlido 1, and
Player A wins if the product of their two numbers starts with a 1, 2, or 3;
otherwise, Player B wins. Using the tools presented in this section, imay easily
be seen that there is a strategy for Player A to choose her numbsrso that she
wins with probability at least log4 = 60:2%, no matter what strategy Player B
uses. Conversely, there is a strategy for Player B so that Player Awill win no
more than log 4 of the time, no matter what strategy Player A uses.

The idea is simple, using the scale-invariance property of BL discusseabove.
If Player A chooses her numberX randomly according to BL, then since BL is
scale-invariant, it follows from Theorem 4.13i) and Example 4.19() that X vy
is still Benford no matter what number y Player B chooses, so Player A will win
with the probability that a Benford random variable has rst signica nt digit
less than 4, i.e. with probability exactly log 4. Conversely, if Player B ctooses his
number Y according to BL then, using scale-invariance againx Y is Benford,
so Player A will again win with the probability exactly log 4. In fact, as will now
be shown, BL is the only optimal strategy for each player.
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d 1 2 3 4 5 6 7 8 9 10° R

original {3011 | 1762 | 1250 | 968 | 792 | 668 | 580 | 513 | 456 || 0:1574

©
Q
8 213009 | 1763 | 1248 | 970 | 792 670 | 580 | 511 | 457 || 0:2087
8
[
713009 | 1762 | 1249 | 969 | 791 668 | 583 | 511 | 458 | 0:3080
original {1601 | 1129 | 1097 | 1069 | 1055| 1013 | 1027 | 1003 | 1006 | 140:9
©
£ 2 (5104 | 1016 | 585 | 573 556 | 556 | 541 | 543 | 526 209:3
o

7 (1653 | 1572 | 1504 | 1469 | 1445 | 1434 | 584 174 | 165 135:7

10% log(1+ d *)[ 3010: | 1760: | 1249: | 969:1 | 791:8 | 669:4 | 579:9 | 511.5| 457:5

Fig 13 . When the sample size is increased from N =102 to N =104 the Fibonacci numbers
are even closer to scale-invariance. For the primes, this is  not the case at all, see also Fig 5.

To prepare for the formal argument, model the strategy of Player A, i.e. the
way this player chooses a number, by a probability measurd® on (R*;B").
For example, if Player A chooses the same numbea all the time, then P = ;.
(Game theorists refer to this as apure strategy.) Similarly, Q represents the
strategy of Player B. Denote by M* the set of all probability measures on
(R*;B*) and, given P;Q 2 M™*, let p(P;Q) 2 [0;1] be the probability that
Player A wins, i.e., the product of the chosen numbers begins with 1, 2or 3,
assuming Players A and B choose their numbers independently and aording to
the strategiesP and Q, respectively. It is natural for Player A to try to maximize
infaam+ P(P; Q), whereas Player B aims at minimizing sup , - P(P; Q). Which
strategies should the players choose, and what probabilities of wiring/losing
are achievable/unavoidable?

In view of the informal discussion above, it may not come as a complet
surprise that these questions ultimately have very simple answersA little pre-
paratory work is required though. To this end, forevery0 s< landP 2 M*,
let

Gp(s):= P fx> 0:S(x) 10g ;
and note that s 7! Gp (S) is non-decreasing, right-continuous, withGp (0) 0
as well as limy1 Gp (s) = 1. (With the terminology and notation introduced

in Sections 2.3 and 3.3 simply Gp(s) = Fs p(10°).) Extend Gp to a (non-
decreasing, right-continuous) functionGp : R! R by setting

Gp(s) = Gp(lsi)+ bsc forall s2 R;



A basic theory of Benford's Law 49

and let gp (S) := Gp(S) s. Since
Op(s+1)= Gp(s+1l) (s+1)= Gp(hsi) hsi=gp(s);

the function gp is 1-periodic with gr (0) = 0. Also, gp is Riemann integrable,
and jgp (s)] 1 for all s 2 R. With these preliminary de nitions, observe now
that, given any a > 0,

Gp(log4 hlogai)+1 Gp(1 hlogai) if Hogai < log4

p(P; a) = . . . .
Gp(l+log4 hlogai) Gp(1l hlogai) if Hogai log4

gp(l+log4 hlogai) gp(1 hlogai)+log4
=log4+ hp(Hogai);

where the 1-periodic, Riemann integrable functionhp : R! R is given by
hp(s)= gp(1+logd s) gr(1 s); Ss2R:

R
From 01 hp (s)ds = 0, it follows that ¢cp :=inf s2,rhp(s) 0. Consequently, if
cp < 0 then

infoam+ P(P;Q)  infas o p(P; a) =l0g4+ cp < log4:

On the other hand, if cp = 0 then necessarilyhp (s) = 0 for a.e. s and hence,
asgp is right-continuous,

gr( s+log4)= gp( s) forall s2 R:

This in turn implies that ge (M log4i) = gp (0) for all n 2 N. Recall now that gp
has at most countably many discontinuities and that (mlog4i) is u.d. mod 1
and hence dense in the interval [01). Thus, if 0 < s < 1 is a point of continuity
of gp, then choosing a sequence 1 n; <n, <::: with limj;; njlog4i = sp
shows that

Op (So) =1lim juu gp (Mj log4i) = g (0):

With the possible exception of at most countably many s therefore, Gp (s) =
s+ gr(0) whenever 0 s < 1. But since s 7! Gp (s) is non-decreasing with
Gp(s) 0O andlimg1Gp(s) =1, gp(0) =0 and Gp(s) = s must in fact hold
for all s, i.e.

P fx>0:S(x) 10g s:

In other words, P is Benford. Overall therefore
infaow+ p(P;Q) log4 =0:6020:::;

with equality holding if and only if P is Benford. Thus the unique optimal
strategy for Player A is to choose her numbers according to BL.
A completely analogous argument shows that

SUpsoy+ P(P;Q)  log4;
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with equality holding if and only if Q is Benford. Hence the unique optimal
strategy for Player B to minimize the probability of loosing is also to choose
numbers obeying BL. Overall,

SUppom + INfaam+ P(P; Q) =log4 =inf gom+ SUPp - P(P; Q)

holds, and the value (expected gain) of one game for Player A is givelby
log4 (1 log4)=0:2041:::> L.

If both players are required to choosepositive integers then their strategies
are probabilities on (N; N\ B). Denote by My the set of all such probabilities.
Sincefhlogni : n 2 Ng is dense in [Q1), the above argument shows that

infoam, P(P; Q) < log4

for every P 2 My, and similarly

Supp2 v, P(P; Q) > log 4
for every Q 2 My. On the other hand, given" > 0, it is not hard to nd
P-; Q- 2 My such that
logd "< infgam, P(P;Q) < log4< supsyy, P(P; Q") < log4 +":

Indeed, it is enough to chooseP-; Q- such that these probabilities approximate
BL su ciently well. (Recall Example 3.9 which also showed that noP 2 My is
Benford.) When played with positive integers only, therefore, the game has no
optimal strategy for either player, but there are "-optimal strategies for every
"> 0, and

SUPs oM, INfQam y P(P; Q) =log 4 =inf gam SUPs v, P(P; Q)

still holds.

Theorem 4.20 showed that for a probability measureP on (R*;B*) to have
scale-invariant signi cant digits it is necessary (and su cient) that P be Ben-
ford. In fact, as noted in [Sm], this conclusion already follows from a much weaker
assumption: It is enough to require that the probability of a single sigii cant
digit remain unchanged under scaling.

Theorem 4.25. For every random variable X with P(X =0) =0 the following
statements are equivalent:

(i) X is Benford.
(i) There exists a numberd 2 f 1;2;:::;9g such that

P(D1(X )= d)= P(Dy(X)=d) forall > O:

In particular, (ii) implies that P(D1(X)= d)=log(1+ d 1).
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Proof. Assume rstthat X is Benford. By Theorem4.20 X has scale-invariant
signi cant digits. Thus for every > 0,

P(Dy(X )=dy=log(1+ d )= P(D1(X)=d) forall d=1;2;:::;9:

Conversely, assume that (ii) holds. Similarly as in the proof of Theoren 4.22),
forevery0 s<1let

Gx (s) :== P(S(X) < 10°):
HenceGy is non-decreasing and left-continuous, withGyx (0) = 0, and
P(D1(X)=d)= Gx log(1+d) Gx(logd):

Extend Gx to a (non-decreasing, left-continuous) functionGx : R'! R by
setting Gx (s) = Gx (hsi) + bsc, and let gx (s) = Gx(s) s. Hencegx is
1-periodic, Riemann-integrable, with gx (0) =0 and jgx (s)j 1. Speci cally,

P(D1(X)= d)= g« log(1+d) gx(logd)+log(l+ d *);
and essentially the same calculation as in Examplé.24 shows that
P(D1(X )= d)= gx (log(l+d) hlog i) gx(logd hlog i)+log(1+ d 1):
With the 1-periodic, Riemann-integrable hy : R! R given by

hx (s) = gx (log(1+d) s) gx(logd s);

the assumption that P(D1(X ) = d) = P(D1(X) = d) for all > 0 simply
means that hy (s)  hx (0), i.e., hx is constant, and so is the functions 7!
ox (log(1+d) s) ox(logd s). The same Fourier series argument as in the
proof of Theorem4.22 now applies: From

X 2 {ks
ox(s)= e

it follows that
X

gx (log(l+d) s) gx(ogd = o
X

- Cke2{k logd 2 {k log(1+ d D) 1 g?lks :
k2z

ez {k log(1+ d) ez {k logd ez{ks

and since log(1 +d 1) is irrational for every d 2 N, necessarilyce = 0 for all
k 6 0, i.e.,, gx is constant almost everywhere, andGx (s) = s+ ¢ for a.e.
s 2 [0;1). As Gx is non-decreasing withGy (0) = 0, overall, Gx (s) s, which
in turn shows that X is Benford. O

Remark. A close inspection of the above proof shows that Theorem.25can still
be strengthened in di erent ways. On the one hand, other signi cant digits can
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be considered. For example, the theorem (and its proof also) renia virtually
unchanged if in (i) it is assumed that, forsomem 2 and somed 2 f 0;1;:::; 9g,

PODm(X )=d)= P(Dn(X)=d) forall > O:
On the other hand, it is enough to assume in (ii) that, for somed 2 f 1;2;:::;9qg,
P(D1( nX)=d)= P(D1(X)=d) forall n2 N;

with the sequence ( ) of positive numbers being such thatfhlog ni : n 2 Ng
is dense in [01). Possible choices for such a sequence include"§2(n?), and the
sequence of prime numbers. For example, therefore is Benford if and only if

P(D1(2"X)=1)= P(Dy(X)=1) forall n2 N: I

Example 4.26 ([Sm]). (\Ones-scaling-test") In view of the last remark, to in-
formally test whether a sample of data comes from a Benford distrilation, sim-
ply compare the proportion of the sample that has rst signi cant d igit 1 with
the proportion after the data has been re-scaled, i.e. multiplied by; ?; 3;:::
where log is irrational, e.g. = 2. In fact, it is enough to consider only re-
scalings by n? n=1:2:3:::. On the other hand, note that merely assuming

P(D12X)=d)= P(D1(X)=d) forall d=1;2;:::;9; 4.7)

is not su cient to guarantee that X is Benford. Indeed, @.7) holds for instance
if X attains each of the four values 12;4; 8 with equal probability %.

4.3. The base-invariance characterization

One possible drawback to the hypothesis of scale-invariance in sontables is
the special role played by the constant 1. For example, consider ta physical
laws, namely Newton'slex secundaF = ma and Einstein's famousE = mc?.

Both laws involve universal constants. In Newton's law, the constat is usually

made equal to 1 by the choice of units of measurement, and this 1 ishen not
recorded in most tables of universal constants. On the other had, the speed of
light cin Einstein's equation is typically recorded as a fundamental constah If

a \complete" list of universal physical constants also included the &, it seems
plausible that this special constant might occur with strictly positive frequency.
But that would clearly violate scale-invariance, since then the consant 2, and in

fact every other constant as well would occur with this same positie probability,

which is impossible.

Instead, suppose it is assumed that any reasonable universal sigrant-digit
law should have base-invariant signi cant digits, that is, the law should be
equally valid when rewritten in terms of bases other than 10. In fact all of the
classical arguments supporting BL carry overmutatis mutandis [Ral] to other
bases. As will be seen shortly, a hypothesis of base-invariant sigréant digits
characterizes mixtures of BL and a Dirac probability measure concetrated on
the special constant 1 which may occur with positive probability.
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Just as the only scale-invariant real-valued random variable is O with pob-
ability one, the only positive random variable X that is base-invariant, i.e.
X = 10Y with some random variable Y for which Y;2Y;3Y;::: all have the
same distribution, is the random variable which almost surely equals 1that is,
P(X =1) =1. This follows from the fact that all nY have the same distribution
forn=1;2;3:::, and henceP(Y =0) = 1, as shown in the previous section.

On the other hand, a positive random variable (or sequence, fundbn, dis-
tribution) can have base-invariant signi cant digits. The idea behind base-
invariance of signi cant digits is simply this: A base-10 signi cand evert A
corresponds to the base-100 evenA'=2, since the new baseb = 100 is the
square of the original baseb = 10. As a concrete example, denote byA the set
of positive reals with rst signi cant digit 1, i.e.

A=1fx>0:Di(x)=1g=fx> 0:S(x) 2 [1;2)g:

It is easy to see thatA'=? is the set

A2 = fx > 0:5(x)2[1;p§)[ [pmp

20)g:

Consider now the base-100 signi cand functionS; oo, i.€., for any x 6 0, S;go(X)
is the unique number in [1 100) such thatjxj = 100 S;90(x) for some, necessarily
unique k 2 Z. (To emphasize that the usual signi cand function S is taken
relative to base 10, it will be denotedS;o throughout this section.) Clearly,

A=1fx> 0:Si00(X) 2 [1;2)[ [10;20)g:
Hence, letting a = log 2,

Al=2 if b=10;
. =2 =2. 1+ a)=2 — !
x> 0:Sp(x) 2 [1;¥2) [ b2 1 ) A b= 100"
Thus, if a distribution P on the signi cand -algebra S has base-invariant sig-
ni cant digits, then P (A) and P(A'™?) should be the same, and similarly for
other integral roots (corresponding to other integral powers @ the original base
b = 10). Thus P(A) = P(A'™) should hold for all n. (Recall from Lemma
2.13iii) that A¥™ 2 Sforall A 2 Sandn 2 N, so those probabilities are
well-de ned.) This motivates the following de nition.

De nition 4.27. Let A Sbe a -algebra onR*. A probability measure P
on (R*;A) has base-invariant signi cant digits if P(A) = P(A¥™") holds for all
A2Sandn2N.

Example 4.28. (i) Recall that , denotes the Dirac measure concentrated at
the point a, thatis, (A)=1if a2 A, and ,(A)=0if a62A. The probability
measure ; clearly has base-invariant signi cant digits since 12 A if and only
if 12 A¥™ . Similarly, o« has base-invariant signi cant digits for every k 2 Z.
On the other hand, , does not have base-invariant signi cant digits since, with
A=1fx> 0:S;p(x) 2 [1;3)g, 2(A)=1yet »(A¥?)=0.
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P P
B( A)= B(A) o;1(log = A)= o;1(log A)
. ' A=fDy=2 0
2 T b= eg 0:9 01
=f2 S<3g
P 3 : P /fﬁi

log- A

. 0:8
A
02,7/ 0:3
4 4
06 0:4
5 I. log S R 0:5

Fig 14 . Visualizing the base-invariant signi cant digits of BL.

8

9
7
6

log A

(i) It is easy to see that the Benford distribution B has base-invariant sig-
ni cant digits. Indeed, forany 0 s< 1, let

A= fx> 0:S0(x) 2 [1;10°)g = [ kzz1ok[1; 10°) 2 S:

Then, as seen in the proof of Lemma.13iii),

amn = b gl age ggieamy
k272 i=0

and therefore

B(AT™) log100*9="  Jog10™ =

s = B(A):

(i) The uniform distribution .1 on [0;1) does not have base-invariant
signi cant digits. For instance, again taking A = fx> 0:D(x) =19 leads to

p_ p_
P Po . P— P— 1 (5 12 2
1=2y\ — n _
oi(A)= 1072 14720 10)= 5+ 5
1
> 5 = oA

_ (iv) The probability measure % 1+ %B has base-invariant signi cant digits
since both 1 and B do.

Example 4.29. Completely analogously to the case of scale-invariance, it is
possible to introduce a notion of a sequence or function havindpase-invariant
signi cant digits and to formulate an analoge of Theoren¥.22in the context of
Theorem 4.30below. With this, the sequence F,) has base-invariant signi cant
digits, whereas the sequencey ) does not. As in Example4.23 this is illustrated
empirically in Fig 15to 17.
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2504730781961 37889062373143906
267914296 4052739537881 61305790721611591
2 433494437 6557470319842 99194853094755497
3 46368 701408733
5 259695496911122585
8 27777890035288 420196140727489673
2971215073 44945570212853 679891637638612258
© 317811 4807526976 72723460248141
}E 34 514229 7778742049
© 832040 2880067194370816120
< 20365011074 308061521170129 4660046610375530309
= 2178309 32951280099 498454011879264 7540113804746346429
g’ 3524578 53316291173 806515533049393
o 377 5702887 86267571272
9227465 2111485077978050 31940434634990099905
225851433717 3416454622906707 51680708854858323072
24157817 365435296162 5527939700884757 83621143489848422977
39088169 591286729879 8944394323791464
4181 63245986 956722026041 218922995834555169026
23416728348467685 354224848179261915075
6:273
~N
[}
%]
©
o]
X
(0]
(2]
@
o)
~
?
@
o]
X
()
0
©
o)
d 2 3 4 5 6 7 8 9 10° R
j=))
S (Fn)i% 18 | 13 8 6 5 7 | 4 | 1884
1
N (F2)kg 17 |12 | 11 | 7 8 4 5 5 | 17:99
“— 71100 .
by (GEOR 18 | 11 9 8 7 6 4 6 14:93
10% log(1+ d 1) 17:60 [12:49 |9:691|7:918 | 6:694 | 5:799 |5:115 | 4575

Fig 15 . lllustrating the (approximate) base-invariance of the r

st one-hundred Fibonacci num-

bers. (In the two middle tables, the values of S(F2) and S(F/), respectively, are shown to

four correct digits.)



56 A. Berger and T.P. Hill

2 31 73 127 179 233 283 353 419 467
3 37 79 131 181 239 293 359 421 479
© 5 41 83 137 191 241 307 367 431 487
E 7 43 89 139 193 251 311 373 433 491
= 11 a7 97 149 197 257 313 379 439 499
< 13 53 101 151 199 263 317 383 443 503
£ 17 59 103 157 211 269 331 389 449 509
g 19 61 107 163 223 271 337 397 457 521
o 23 67 109 167 227 277 347 401 461 523
29 71 113 173 229 281 349 409 463 541
4:000 9:610 5:329 1:612 3:204 5:428 8:008 1:246 1:755 2:180
NCD 9:000 1:369 6:241 1:716 3:276 5:712 8:584 1:288 1:772 2:294
0 2:500 1:681 6:889 1:876 3:648 5:808 9:424 1:346 1:857 2:371
g 4:900 1:849 7:921 1:932 3:724 6:300 9:672 1:391 1:874 2:410
1:210 2:209 9:409 2:220 3:880 6:604 9:796 1:436 1:927 2:490
~ 1:690 2:809 1:020 2:280 3:960 6:916 1:004 1:466 1:962 2:530
) 2:890 3:481 1:060 2:464 4:452 7:236 1:095 1:513 2:016 2:590
g 3:610 3:721 1:144 2:656 4:972 7:344 1:135 1:576 2:088 2:714
o 5:290 4:489 1:188 2:788 5:152 7:672 1:204 1:608 2:125 2:735
8:410 5:041 1:276 2:992 5:244 7:896 1:218 1:672 2:143 2:926
1:280 2:751 1:104 5:328 5:888 3:728 1:453 6:830 2:267 4:844
'\d) 2:187 9:493 1:920 6:620 6:364 4:454 1:853 7:685 2:344 5:785
2] 7:812 1:947 2:713 9:058 9:273 4:721 2:570 8:967 2:762 6:496
g 8:235 2:718 4:423 1:002 9:974 6:276 2:813 1:004 2:853 6:879
1:948 5:066 8:079 1:630 1:151 7:405 2:943 1:123 3:142 7:703
~ 6:274 1:174 1:072 1:789 1:235 8:703 3:216 1:208 3:348 8:146
[} 4:103 2:488 1:229 2:351 1:861 1:019 4:353 1:347 3:678 8:851
% 8:938 3:142 1:605 3:057 2:742 1:073 4:936 1:554 4:163 1:041
o 3:404 6:060 1:828 3:622 3:105 1:251 6:057 1:667 4:424 1:070
1:724 9:095 2:352 4:637 3:302 1:383 6:306 1:914 4:561 1:356
d 1 2 3 4 5 6 7 8 9 10° R
g (pn)%% 25 | 19 | 19 | 20 | 8 2 4 2 1 | 1030
I
N (p2)1 35 | 24 9 5 8 5 5 3 6 || 63:90
b (MY 383 | 15 | 11 |11 | 4 | 10 | 4 7 | 5 | 3918
10% log(L+ d ') |80:10|17:60 |12:49 |9:691 |7:918 | 6:694 |5:799 | 5:115 | 4575

Fig 16 . lllustrating the lack of base-invariance for the rst one-  hundred prime numbers. (In
the two middle tables, the values of S(p32) and S(p}), respectively, are shown to four correct
digits.)

The next theorem is the main result for base-invariant signi cant digits. It
shows that convex combinations as in Examplet.2§(iv) are the only probability
distributions with base-invariant signi cant digits. To put the argum ent in per-
spective, recall that the proof of the scale-invariance theorem Theorem 4.20)
ultimately depended on Theorem4.13(,ii) which in turn was proved analyti-
cally using Fourier analysis. The situation here is similar: An analytical result
(Lemma 4.32 below) identi es all probability measures on [0;1);B[0;1) that
are invariant under every map x 7! hnxi on [0; 1). Once this tool is available, it
is straightforward to prove

Theorem 4.30 (Base-invariance characterization Hil]). A probability measure
P on (R*;A) with A S has base-invariant signi cant digits if and only if, for
someq 2 [0; 1],

P(A)=q1(A)+(1 qB(A) foreveryA2S: (4.8)
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d 1 2 3 4 5 6 7 8 9 10° R

original {3011 | 1762 | 1250 | 968 792 | 668 580 513 | 456 0:1574

‘C
Q
e b7! b? | 3012 | 1760 | 1248 | 971 | 791 672 577 | 513 456 || 0:2919
8
[
b7! b’ [3011 | 1762 | 1248 | 969 791 671 | 579 511 458 || 0:1532
original {1601 | 1129 | 1097 | 1069 | 1055| 1013 | 1027 | 1003 | 1006 || 140:9
©
£ b7! b> | 2340 | 1437 | 1195 | 1036 | 944 844 775 | 745 684 67:02
o

b7! b’ | 3012 | 1626 | 1200 | 987 798 716 609 536 | 516 36:85

10% log(1+ d ') [ 3010: | 1760: | 1249 | 969:1| 791:8 | 669:4 | 579:9| 5115 | 4575

Fig 17 . Increasing the sample size from N =102 to N = 10* makes the Fibonacci numbers'
leading digits even more closely base-invariant. As in the ¢ ase of scale-invariance, this is not
at all true for the primes, cf. Fig 13.

Corollary 4.31. A continuous probability measureP on R* has base-invariant
signi cant digits if and only if P(A)= B(A) forall A2 S i.e., if and only if P
is Benford.

Recall that (., denotes Lebesgue measure of0; 1); B[0; 1) . For eachn 2 N,
denote the mapx 7! hnxi of [0; 1) into itself by T,. Generally, if T : [0;1)! R
is measurable, andT [0;1) [0; 1), a probability measure P on [0;1); B[0;1)
is said to beT-invariant, or T is P-preserving if T P = P. Which probability
measures arel, -invariant for all n 2 N? A complete answer to this question is
provided by

Lemma 4.32. A probability measure P on [0;1);B[0;1) is T,-invariant for
aln2 Nifandonlyif P=qo+(1 Q) o1 for someq2 [0;1].

Proof. From the proof of Theorem 4.13recall the de nition of the Fourier coef-
cients of P,

z 1
Pky= ¥ dp(s); k22z;
0
and observe that

H,P(k)= B(nk) forall k2Z;n2N:

Assume rstthat P=qo+(1 Q) o1 for someq?2 [0;1]. From l3b(k) 1 and
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dy..(k) = 0 for all k &0, it follows that

_ 1 ifk=0;
P = q ifk60:
For everyn 2 N and k 2 Znf0g, therefore, B,P (k) = g, and clearly ,P(0) = 1.
Thus TP = P and since the Fourier coe cients of P determine P uniquely,
Tn P=P foralln2 N.

Conversely, assume thatP is T, -invariant for all n 2 N. In this case,Fb(n) =
'F’nP(l) = Fb(l), and similarly Fb( n) = 'FinP( 1) = Fb( 1). Since generally
Ib( k) = Ib(k), there exists q 2 C such that

8 .
2 q if k> 0;
rb(k):> 1 ifk=0;
©q if k< 0:
Also, observe that for everyt 2 R
. 1 ift2z;
limnn 1 n el = .
n j=1 0 ift 622 :

Using this and the Dominated Convergence Theorem, it follows from

Z, X X
PO = limpy ~ @G dP(=lima | B()=a;
0 j=1 n i=1

that g is real, and in fact g 2 [0;1]. Hence the Fourier coe cients of P are
exactly the same as those ofj o + (1 Q) o.1. By uniqueness, thereforeP =
do*t(1 0 o1 m

Remark. Note that P is Ty, -invariant if it is both T,,- and T, -invariant. Thus,
in Lemma 4.32it is enough to require that P be T,-invariant whenever n is a
prime number.

Itis natural to ask how small the set M of natural numbersn can be chosen for
which T, -invariance really has to be required in Lemma4.32 By the observation
just made, it can be assumed thatM is closed under multiplication, hence a
(multiplicative) semi-group. If M is lacunary, i.e. M f p™ : m 2 Ng for some
p 2 N, then probability measuresP satisfying T, P = P for all n 2 M exist in
abundance, and hence an analogue of Lemn¥a32 cannot hold. If, on the other
hand, M is not lacunary, then it is not known in general whether an appropriae
analogue of Lemma4.32may hold. Fo‘_r,example, ifM = £2M13M2 : my;m; 2 Nog
then the probability measure P = % j4:1 j=5 is Tp-invariant for every n 2 M,
but it is a famous open question of H. Furstenberg [Ei] whether any continuous
probability measure with this property exists | except, of course, for P = 1.
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Proof of Theorem 4.30. As in the proof of Theorem4.20, x a probability mea-
sure P on (R*;A), denote by Py its restriction to (R*;S), and let Q = °~ Py.
Observe that Py has base-invariant signi cant digits if and only if Q is T,-
invariant for all n 2 N. Indeed, with0 s< 1andA = fx> 0:S;p(x) < 1C°g,

[ ol j+s
ji=0 n’ n

Tn Q [0;9)

[ [0

- =n . j+s)=n — 1=n

Po 10 o 120 ;10 ) Po(A™")
and henceT, Q = Q for all n precisely if P has base-invariant signi cant digits.
In this case, by Lemma4.32 Q=qo+(1 ) o1 for someq2 [0; 1], which in
turn implies that Pg(A) = q 1(A)+(1 g)B(A) forevery A 2 S. O

Corollary 4.33.  If a probability measure onR* has scale-invariant signi cant
digits then it also has base-invariant signi cant digits.

4.4. The sum-invariance characterization

No nite data set can obey BL exactly, since the Benford probabilities of sets
with m given signi cant digits become arbitrarily small as m goes to in nity, and
no discrete probability measure with nitely many atoms can take arbitrarily
small positive values. But, as rst observed by M. Nigrini [Ni], if a table of real
data approximately follows BL, then the sum of the signi cands of all entries in
the table with rst signi cant digit 1 is very close to the sum of the sign i cands
of all entries with rst signi cant digit 2, and to the sum of the signic ands
of entries with the other possible rst signi cant digits as well. This cle arly
implies that the table must contain more entries starting with 1 than with 2,
more entries starting with 2 than with 3, and so forth. Similarly, the sums of

rst or rst and second digits yields a distribution close to BL, see Fig 18 and
19. Nigrini conjectured, and partially proved, that this sum-invariance property
also characterizes BL. Note that it is the signi cands of the data, rather than
the data themselves, that are summed up. Simply summing up the ravdata will
not lead to any meaningful conclusion, as the resulting sums may beaminated
by a few very large numbers. It is only through considering signi cards that the
magnitude of the individual numbers becomes irrelevant.

To motivate a precise de nition of sum-invariance, note that if (x,,) is Benford
then the setfx, : n 2 Ng[_i,s necessarily in nite, and consequently, for every
d2f1,2:::;99, the sum .5 )= gS(Xn) is innite as well. To compare
such sums, it is natural to normalise them by considering limiting averaes. To
this end, foreverym 2 N, d; 2f1;2;:::;9gandd; 210;1;:::;99,) 2, dene

—  S(X) if Di(x);::5;Dm(x) = (dg;iiiidm);
Sdsid m (X) = 0 otherbvise '
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d 1 2 3 4 5 6 7 8 9

Ng=# fxn=dg| 2520 | 1260 | 840 630 504 620 360 315 280

dNg 2520 | 2520 | 2520 | 2520 | 2520 | 2520 | 2520 | 2520 | 2520

Na=N 0:3535 |0:1767 |0:1178 |0:0884 [0:0707 | 0:0589 | 0:0505 | 0:0442 |0:0393

log(1+d 1) 0:3010 | 0:1761 | 0:1240 |0:0969 [0:0792 | 0:0669 | 0:0580 | 0:0512 |0:0458

P
N = ,Ng=7129

and showing exact sum-invariance for the rst digit. Note that the relative fr equencies N4=N
are quite close to the Benford probabilities log(1+ d 1).

(d1;d2) Naja, =# fxn=10d; + dog Najd,=N i aNdia,=N Jlog(z+ d; 1)
(1;0) | 6972037522971247716453380893531230355680 | O :04258

(1;1) | 6338215929973861560412164448664754868800 | O :03871 1 i
(1;2) | 5810031269142706430377817411276025296400 | 0:03549 Il i
(1;3) | 5363105786900959781887216071947100273600 | O :03276 T i
(1:;4) | 4980026802122319797466700638236593111200 | 0:03042 0-30607 0-30102
(1;5) | 4648025015314165144302253929020820237120 | O :02839 : :

(1,6) | 4357523451857029822783363058457018972300 | O :02661 T i
(1:;7) | 4101198542924263362619635819724253150400 | O :02505
(1,8) | 3873354179428470953585211607517350197600 | O :02366

(1;9) | 3669493433142761956028095207121700187200 | O :02241 T 1
(2:0) | 3486018761485623858226690446765615177840 | 0:02129 1 |
(8:9) 783375002581039069264424819497891051200 | O :00478 T 1
90 774670835885694190717042321503470039520 | 0 :00473

©:1) 766157969557279968841030867421014324800 | O :00468 T 1
9:2) 757830165540353012657976184079481560400 | O :00463 T 1
(9;3) 749681454082929861984234504680777457600 | 0:00458 T i
(9i4) 741706119465026352814189456758641527200 | 0 :00453 004520 | 0:04575
9:5) 733808686628552391205619041424340037440 | 0:00448

9:6) 726253908642838303797227176409503162050 | O :00444 T i
©:7) 718766754945489455304472257065075294400 | 0 :00439 T 1
(9:8) 711432400303188542495242948319513301600 | 0 ;00434 T 1
9:9) 704246214441540173379129383184972763200 | O :00430 1 I
Nz 40, Noya, = 163731975056100444033114230488313094880847  1:637 10%

(10dy + d2)Ng,a, 69720375229712477164533808935312303556800 6:972 10%

Fig 19. An (even more hypothetical) sample x1;X2;:::xy containing N 1:637 10*' num-
bers from f10;11;:::;99g and showing exact sum-invariancqafor the rst two digits. When
compared with the values in Fig 18, the relative frequencies dy Ndyidp =N of the rst digits

are even closer to the Benford values log(1+ d; 1).
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d 1 2 3 4 5 6 7 8 9
Fibonacci 42:71 | 43:82 | 4475 | 4035 | 43:28 | 3867 | 37:10 | 59:21 | 38:58
Prime 37:67 | 47.68 | 6592 | 89:59 | 4217 | 1280 | 29:30 | 17:20 | 9:700
N =102 Exact sum-invariance: 10°> ESq = % 4343 ford=1;2;:::;9

P
Fig 20. Except for d = 8, the value of Di=d S does not vary much with d for the rst
one-hundred Fibonacci numbers, but it varies wildly for the rst one-hundred primes.

De nition 4.34. A sequence X,) of real numbers hassum-invariant signi cant
digits if, for every m 2 N, the limit

1 Sdid w (Xn)

In particular, therefore, if ( X,,) has sum-invariant signi cant digits then there
exists ¢ > 0 such that

P
hz1 Sau (Xn) _

limyig N

As will follow from Theorem 4.37below, the sequence (2) and the Fibonacci
sequenceF,) have sum-invariant signi cant digits. Clearly, (10 ") does not have
sum-invariant signi cant digits since all the rst digits are 1, i.e. fora Il N,

P ( _
Ny So,(107) 1 ifdi=1;
N 0 ifd, 2

Not too surprisingly, the sequence p,) of prime numbers does not have sum-
invariant signi cant digits either, see Fig 20.

The de nitions of sum-invariance of signi cant digits for functions, distribu-
tions and random variables are similar, and it is in the context of distributions
and random variables that the sum-invariance characterization ofBL will be
established. Informally, a probability distribution has sum-invariant signi cant
digits if in a collection of numbers with that distribution, the sums of (t he sig-
ni cands of) all entries with rst signi cant digit 1 is the same as each of the
sums of all entries with the other rst signi cant digits; and the sum of all the
entries with, say, rst two signi cant digits 1 and 3, respectively, is the same as
the sum of all entries with any other combination of rst two signi ca nt digits,
etc; and similarly for all other nite initial sequences of signi cant dig its. In
complete analogy to De nition 4.34 this is put more formally by

De nition 4.35. A random variable X has sum-invariant signi cant digits if,
for everym 2 N, the value of ESy, .4, (X) is independent ofds;:::;dm.
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Example 4.36. (i) If X is uniformly distributed on [0 ; 1), then X does not have
sum-invariant signi cant digits. This follows from Theorem 4.37 below but can
also be seen by a simple direct calculation. Indeed, for evergh 2 f 1;2;:::;9qg,

Z 19 n(dy+1) 20y + 1

X
ESq, (X) = nzNlo” o tdt= 18
nd;

which obviously depends ond;.

(i) Similarly, if P(X =1) = 1then X does not have sum-invariant signi cant
digits, as
1 ifdi =1;

BSu(X)= 5 g 2

(i) Assume that X is Benford. For everym 2 N, d; 2 f1;2;:::;99 and
d 2f0;1;:::;9,] 2,

z di+10 lda+ 4101 M (dpy +1) 1 10t m

""" 41410 ldp+::+101 mdp, tin10 In10

Thus X has sum-invariant signi cant digits. Note, however, that even in this
example the higher moments 0fSy, -4, (X) generally depend onds;:::;dm, as
for instance

2d; +1 .
2In10"’

This example shows that it would be too restrictive to require in De nit ion
4.35that the distribution of the random variable Sy, ---q , (X), rather than its

ESq, (X)? =

d;=1;2;:::;9:

According to Example 4.3€(iii) every Benford random variable has sum-
invariant signi cant digits. As hinted at earlier, the converse is also true, i.e.,
sum-invariant signi cant digits characterize BL.

Theorem 4.37 (Sume-invariance characterization [Al]). A random variable X
with P(X = 0) = 0 has sum-invariant signi cant digits if and only if it is
Benford.

Proof. The \if"-part has been veri ed in Example 4.3(iii). To prove the \only

if"-part, assume that X has sume-invariant signi cant digits. For every m 2 N,
dp2f1;2;:::;9gandd; 270;1;:::;99,] 2, let

di+10 dy+ ::: 4101 Mdy:dy +10 tdy + :::+ 10T M(dy +1)

[
(=%
=
[=3
3
1

= 1 x<10: D1(X);D2(x);:::;Dm(x) =(dg;do;:::dm)

With this,
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and since the family

Jdyidm -M2N;dy 271;2;:::;9gand d; 210;1;:::;90, ) 2

generatesB[1; 10),
b a
E SX)1ap S(X) = —5—ES(X) (4.9)

holds for every 1 a<b < 10. Given any 1<t < 10, consider the sequence of
functions (f,), wheref, : R! R is given by

ot oy :
T jmon+(t 1) T ot pitase pkoc
Note that f,( )" twol) asp11 , uniformly in . Hence by the Monotone

Convergence Theorem and4.9),

Pl S(X)<t)= Elpy S(X) = E S(X)Ti)l[l;t) S(X)

=limar E S(X)fn S(X)

. X n n
=lim n't i=1 mE S(X)l 14(t 1)jT1;1+(t l)# S(X)
X n n t 1
= lim : ES(X
Mo i=t n+(t 1) 9n (X)
ES(X) .. t 1X n 1
= lima, —— _—
5 ' n j=t 1+(t 1)j=n
CES(X)TY ot q
T 9, 1+(t 1)
ES(X)
= Int:
9 n

From P(1 S(X) < 10) = P(X 6 0) = 1, it follows that ES(X) = 37 and

hence nt
n
P(S(X) <t)= m—logt for all t 2 [1;10);

i.e., X is Benford. O
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Remarks. (i) As shown by Example 4.3§(iii) and Theorem 4.37, a random vari-
able X has sum-invariant signi cant digits if and only if

100 ™

ESd1 ..... dm()(): in10

P(X 60)

holds forallm2 N, d; 2f1;2;:::;9gandd; 2f0;1;:::;99,] 2.

(i) Theorem 4.37 provides another informal test for goodness-of-t to BL:
Simply calculate the di erences between the sums of the signi cand®f the data
corresponding to the same initial sequence of signi cant digits, se@Ni]. [

5. Benford's Law for deterministic processes

The goal of this chapter is to present the basic theory of BL in the ontext
of deterministic processes, such as iterates of maps, powers ofatrices, and
solutions of di erential equations. Except for somewhat arti cial examples, pro-
cesses with linear growth are not Benford, and among the otherghere is a clear
distinction between those with exponential growth or decay, and hose with
super-exponential growth or decay. In the exponential case, qocesses typically
are Benford for all starting points in a region, but are not Benford with respect
to other bases. In contrast, super-exponential processes fycally are Benford
for all bases, but have small sets (of measure zero) of exceptiahpoints whose
orbits or trajectories are not Benford.

5.1. One-dimensional discrete-time processes

This section presents some elementary facts about BL for one-diemsional dis-
crete-time processes. The focus is rst on processes with expential growth
or decay, then on processes with doubly-exponential or more gemal growth
or decay. Finally, some possible applications such as Newton's methodnd
extensions to nonautonomous and chaotic systems are discusskde y.

Processes with exponential growth or decay

Many classical integer sequences exhibiting exponential growth arknown to be
Benford.

Example 5.1. (i) Recall from Examples4.11(i) and 4.12that (2") and the
Fibonacci sequenceK,) are Benford. Similarly, (n!) is Benford [BBH, Di], see
alsoFig 21

(i) Recall from the remark on pl18 that (n) is not Benford, but weakly
Benford in the sense explained there, and the same is true for theeguence of
prime numbers.



A basic theory of Benford's Law 65

d 1 2 3 4 5 6 7 8 9

S 2") 301 | 176 | 125 97 79 69 56 52 45
! (n!) 293 | 176 | 124 | 102 69 87 51 51 47
“E (Fn) 301 | 177 | 125 96 80 67 56 53 45
10% log(1+ d %) [301:0 | 176:0 | 124:9 | 96:91 | 79:18 | 66:94 | 57:99 | 51:15 | 45:75

Fig 21 . Empirical frequencies of D1 for the rst 103 terms of the sequences (2"), (n!) and
the Fibonacci numbers (Fn), as compared with the Benford probabilities.

Let T : C! C be a measurable map that mapsC R into itself, and for
everyn 2 N denote by T" the n-fold iterate of T, i.e. T* := T and T"*! :=
T" T; also let T? be the identity map idc on C, that is, T%(x) = x for all
x 2 C. The orbit of xg 2 C is the sequence

Or(x0) = T" *(X0) 1,0 = XosT(X0); T?(xo);ii:

Note that this interpretation of the orbit as a sequencedi ers from terminology
sometimes used in dynamical systems theory (e.gkH]) according to which the
orbit of Xxq is the mereset f T" 1(xg): n 2 Ng.

Example 5.2. (i) If T(x) =2x then Ot (Xo) = ( Xo; 2X0; 2°X0;:::) = (2" 1Xo)
for all xo. Hence limyi;  jxhj =+ 1 wheneverxg 6 0.

(i) If T(x) = x2 then Ot (Xo) = (Xo;x&;x%";::)= x2° " for all xo. Here
Xn approaches 0 or 1 depending on whetherjxgj < 1 or jxoj > 1. Moreover,
Or( )=( 1;,1;1;::).

(i) If T(x) =1+ x2then Or(xg) = (Xo;1+ x3;2 +2x3 + x3;:::). Since
Xn nforall xoandn 2 N, limy;  x, =+ 1 for every Xop.

Recall from Example 4.11(i) that (2 ") is Benford, and in fact (2"x) is Ben-
ford for every xo 6 0, by Theorem 4.22 In other words, Example 5.2(i) says
that with T (x) = 2x, the orbit Ot (Xp) is Benford wheneverxy 6 0. The goal
of the present sub-section is to extend this observation to a muchvider class of
maps T. The main result (Theorem 5.8) rests upon three simple lemmas.

Lemma 5.3. Let T(x) = ax with a 2 R. Then Ot (Xq) is Benford for every
Xo 6 0 or for no X at all, depending on whethelogjaj is irrational or rational,
respectively.

Proof. By Theorem 4.10, Ot (xo) = (a" 1xo) is Benford for every xo 6 0 or
none, depending on whether loggj is irrational or not. O

Example 5.4. (i) Let T(x) = 4x. Since log 4 is irrational, Ot (xo) = (4" xo)is

Benford for everyxg 6 O; in particular Ot (4) = (4 ") is Benford. Note, however,
that (4") is not base-2 Benford since log4 = 2 is rational, and correspond-
ingly the secondbinary digit of 4" is identically equal to zero, whereas for a
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Fig 22 . With T(x) =2 x, Ot (Xo) is Benford for all xo 60.

2-Benford sequence the second binary digit is zero only with a relate frequency
of log,(3=2) 0:5850.

(i) Since log is irrational, every orbit of T(x) = x is Benford, unless
Xo = 0. Here Ot (Xo) is actually base+b Benford for every b2 Nnf 1g.

Clearly, the simple proof of Lemma5.3 works only for maps that are exactly
linear. The same argument would for instance not work forT(x) = 2x + e *
even thoughT(x) 2x for large x. To establish the Benford behavior of maps
like this, a simple version ofshadowingwill be used. While the argument em-
ployed here is elementary, note that in dynamical systems theoryshadowing is
a powerful and sophisticated tool, see e.gHal].

To explain the basic idea, x T as above, i.e. letT(x) =2x + e * and note
rst that T(x) max(0;x + 1) for all x, and hence limy;  T"(xg) =+ 1 for
every xo. While no explicit analytical expression is available for T"(xg), it is
certainly plausible to expect that, for large n, the orbit Ot (X() should resemble
an orbit of the linear map x 7! 2x. Fortunately, this is easily made rigorous. To
this end, note that

T"(x0) =2"%o + X " ie T X0

0 0 =1

holds for everyn 2 N and xp 2 R. SinceT"(xo) 0 for all n and xq, the number
X 1

o P
Xo = Xo + j_121eT X0) > x o +

e Xo
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is well-de ned and positive, and a short calculation using the fact tha T"(x)
X + n con rms that

n Neo— _ X 1 nja T Y(xo)
T"(xo) 2"%Xg = N 2" le
j=n

X1 e evien D
e = )
i=1 2e 1

elnXo

(5.1)

and hencejT"(xo) 2"Xpj! 0 exponentially fastasn!1 . As will be seen
shortly, this implies that O+ (X) is Benford for all xo 2 R. Note also that even
if jT"(xo) 2"yj were merely required to remainboundedasn!1 , the only
choice fory would still be y = Xg. Moreover, Xg depends continuously ornxg. As
the following lemma shows, these observations hold in greater gersdity.

Lemma 5.5 (Shadowing Lemma) Let T : R! R be a map, and a real
number withj j > 1. If sup,,gjT(X) X ] < +1 then there exists, for every
X 2 R, one and only one pointx such that the sequencéT"(x) "X) is bounded.

Proof. Let ( x) := T(x) x and note that D := sup,,gj( X)j < +1 by
assumption. With this, for all x 2 R and n 2 No,
X n

T'(x)= "x+ - nio T x):

Using this expression, together with the well-de ned number

X 1 . _
X=X+ - i T (x);
it follows that
. X1 . _
Theo =T T
i T ) -
j=1 i1

and hence ["(x) "X) is bounded. Moreover, the identity
T'(x)  "y=T"(x) "x "y X)
shows that (T"(x) "y) is bounded only ify = X. O

Remarks. (i) From the proof of Lemma 5.5it can be seen that the maph : x 7! X
is continuous wheneverT is continuous. In general,h need not be one-to-one.
For example, h(x) = 0 for every x for which Ot (x) is bounded. Also note that
if limjx; +1 j( x)j=0thenlimj +1 jh(x) xj=0 as well. This is often the
case in applications and may be used to improve the bounds ofT " (x) nXj.
For example, for the mapT(x) =2 x+ e * considered above, the rough estimate

e Xo
2e 1

T"(x0) 2"Xo
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obtained from (5.1) can be substituted into (5.1) again, leading to the much
more accurate

iT"(xo) 2"Xgj= 0 e X asnl!1

(ii) Stronger, quantitative versions of the Shadowing Lemma have leen estab-
lished. They are very useful for an analysis of BL in more complicatedgystems,
see e.g.BBH] or [Ber3]. |

Example 5.6. (i) Let T(x) = 2x+1. For this simple map, T" can be computed
explicitly, and it is illuminating to compare the explicit ndings with Lemma
5.5 From

T"(x)=2"x+2" 1;

it is clear that (T"(x) 2"x) is unbounded for everyx 2 R. However, using
X := X + 1, one obtains

T"(x) 2"x 1;

and hence T"(x) 2"X) is bounded.

(ii) Strictly speaking, the map T(x) =2 x+ e * studied above does not meet
the assumptions of Lemmab.5,as ( x) = e * isnotbounded forx ! 1 . The
conclusion of the lemma, however, does hold nevertheless becausg bounded
onR* and T mapsR into R*. Put di erently, X is well-de ned for every x 2 R.

(i) Let T(x) = 2x e *. Note that T has a unique xed point x , i.e.
T(x )= x ; numerically, x 0:5671. Lemmab5.5 appliesto T for x >x . To
see this formally, replaceT (x) by x +2(x x ) wheneverx x and note that
this modi cation of T does not a ect Ot (Xp) for xo X . Thus for everyx X
there exists anx such that (T"(x) 2"X) is bounded. Lemma5.7 below implies
that Ot (Xo) is Benford for all xo >x . Clearly, Or(x )= (X ;X ;X ;:::)is not
Benford. If xo <x then T"(xg) ! 1 super-exponentially fast. The Benford
properties of Ot (Xp) in this case will be analyzed in the next sub-section.

The next lemma enables application of Lemmab.5 to establish the Benford
property for orbits of a wide class of maps.

Lemma 5.7. (i) Assume that(a,) and (b,) are sequences of real numbers

with ja,j! +1 andsup,,yjan bhj < +1 . Then (b,) is Benford if and
only if (a,) is Benford.

(i) Suppose that the measurable functiongg : [0;+1 ) ! R are such that
@yl +1 ast! +1,andsup ojf(t) g(t)j < +1. Thenf is
Benford if and only if g is Benford.

Proof. To prove (i), let ¢:=sup,,yjan  bnj + 1. By discarding nitely many
terms if necessary, it can be assumed thafa, j;jb,j 2c for all n. From
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c jbnj
log 1+ — log —
g Jan] C glhwl*'c
ibnj
jan]
) O
Jan] Jan] C

log

log

it follows that

bn log 1+ ¢ !

— — 0 asn!l
Jan) Jan) C

logjbnj logjanj = log

Lemma 4.3(i) now shows that (log jb,j) is u.d. mod 1 if and only (logjan]) is.
The proof of (ii) is completely analogous. O

Lemmas5.5 and 5.7 can now easily be combined to produce the desired gen-
eral result. The theorem is formulated for orbits converging to zeo. As explained
in the subsequent Example5.9, a reciprocal version holds for orbits converging
to 1

Theorem 5.8 ([BBH]). Let T: R! R be aC2-map with T(0) = 0. Assume
that 0 < jTY0)j < 1. Then Ot (xo) is Benford for all xo 6 0 su ciently close to

0 if and only if logjTY0)j is irrational. If logjTY0)j is rational then Ot (xo) is
not Benford for any Xxo su ciently close to O.

Proof. Let := TY0) and observe that there exists a continuous functionf :
R! Rsuchthat T(x)= x 1 xf(x) . In particular, T(x) 60 forall x 60
su ciently close to 0. De ne

N

— 1y 1 - .
P(x):=T(x 7) *= Tx fx 1)

and note that

x _fxh _fxhH,  fxhH?

B(x Ix = =
() x f(x 1 x f(x1)
From this it is clear that supjy; iB(x) 1xj is nite, provided that is
su ciently large. Hence Lemma 5.5 shows that for everyx with jxj su ciently
large, jP"(x) "Xj is bounded with an appropriate X 6 0. Lemma 5.7

implies that O (Xo) is Benford if and only if ( 1 nx5) is, which in turn is the
case precisely if log | is irrational. The result then follows from noting that,
for all xo & O with jxoj suciently small, Or(xo) = F" }(xo") ' ., and
Corollary 4.7(i) which shows that (x, 1) is Benford whenever ) is. O
Example 5.9. () For T(x) = ix + 1x2, the orbit Or(xo) is Benford for

every Xo 6 0 suciently close to 0. A simple graphical analysis shows that
limay TN(x)=0ifand only if 4<x< 2. Thus for everyxo 2 ( 4;2)nf0g,
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Ot (Xo) is Benford. Clearly, Ot ( 4) = ( 4;2;2;:::)and Or(2) = (2;2;2;::7)
are not Benford. For Xo < 4 or Xg > 2, one might try to mimic the proof of
Theorem 5.8 and consider

4x?
1+2x

Px)=T(x ) =

nearx = 0. Note that indeed F is a smooth (C! ) map nearx = 0, and ®(0) = 0.
However, Y0) = 0 as well, and Theorem 5.8 does not apply. It will follow from
the main result of the next subsection (Theorem5.12) that for almost every point
Xo 2 Rn[ 4;2] the orbit Ot (Xo) is Benford. However,Rn[ 4; 2] also contains a
large set of exceptional points, i.e. points whose orbit is1ot Benford.

(i) To see that Theorem5.8 applies to the mapT(x) =2x + e * considered
in Example 5.€(ii), let
X

— 2y 1=2 _ . .
= = P :
P(x) T(x 9) T x2e 7 x60

With B(0) := 0, the map : R ! R is smooth, and Y0) = pl—i Moreover,

limyy  B"(x) = 0 for every x 2 R. By Theorem 5.8, O(xo) is Benford for
every Xo 6 0, and hence Ot (Xg) is Benford for every xo 6 0 as well, because
T'(x) = B"(jxj ¥72) 2 for all n.

(i) As in (i), Theorem 5.8 applies to the map T(x) = 10x + € *. Note
that again limp;; T"(x) =+ 1 for every x 2 R, but since log 10 is rational,
no T-orbit is Benford. In fact, it is not hard to see that for every m 2 N and
X 2 R, the sequence ofm-th signi cant digits of T"(x), i.e. Dn(T"(x))
eventually constant.

n2N IS

Remark. Theorem 5.8 remains essentially unchanged if the casgr 40)j = 1 is
also allowed, the conclusion being that in this cas©+ (Xo) is not Benford for any
x near 0. However, this extension requires the expliciesssumption that x = 0
be attracting, see Ber4]. (If jT40)j < 1thenx =0is automaticﬂly attracting.)

For a simple example, consider the smooth mapr (x) = = 1+ x2. While
limni "(x) = +1 for every x 2 R, it follows frpm the explicit formula
Th(x) =~ n+ x2 that Ot (o) is not Benford, as (log n + x3) is not u.d. mod

1, by Proposition 4.8(iv). The extended version of Theorem5.8 just mentioned
easily leads to the same conclusion because
Bx):= T(x Y) 1= poe
(x) (x ) T
is smooth, with B(0) =0 and P%0) =1, and x =0 is an attracting xed point
for F.
To see that the situation can be more complicated ifi Tq0)j =1 yet x =0 is
not attracting, x > 1 and consider the map

(. Dx,

T =X S e
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for which T (0) =0, T°0) =1, and x =0 is repelling. As far as the dynamics
near x = 0 is concerned, all mapsT are the same. However,

1+ x2
— 1y 1 _
PX)=T(x ) =X
is smooth with B°(0) = 1. Hence it is clear from Theorem5.8 that Ot (Xo)

is Benford for all xo 6 0 or for none, depending on whether log is irrational
or not. |

Processes with super-exponential growth or decay

As was seen in the previous subsection, for the maps
T:x7! (x+e?X)

with > 1, either all orbits are Benford (if log is irrational) or else none are
(if log is rational). This all-or-nothing behavior is linked to the exponential
growth of orbits since, by the Shadowing Lemma5.5,

T"(x)= "X+O(e ") asn!l
For an altogether di erent scenario, consider the smooth map
p—
T:x7! 30+12x2+ x*:

As before, limy; T"(x) = + 1 for every x 2 R. However, it follows from
T(x)2+6 =( x?>+6)? that

T”(x)=p(x2+6)2” 6=(x>+6)2 "+062 " asn!l ;

showing that every T -orbit grows at a doubly-exponential rate. Is Ot (Xo) Ben-
ford for some or even allxg 2 R? The main result of this subsection, Theorem
5.12 below, shows that indeedOr+ (Xg) is Benford for most xo. While it is dif-
cult to explicitly produce even a single xq with this property, it is very easy
to see that Ot (Xg) cannot be Benford for every xo. Indeed, taking for example
Xo = 2, one obtains

p

or@=(2;" 9"

9994 P 999994::1);
anditis clearthat D; T"(2) =9 E)or every n 2 N. HenceOr (2) is not Benford.

For another example, chooseg = 1043 6 = 3:943::: for which the sequence
of rst signi cant digits is eventually 2-periodic,

Di(T" Y(x0)) =(3:2,4;2;4,2:4;::2):

As also shown by Theorem5.12, for maps like T there are alwaysmany excep-
tional points.

The following is an analog of Lemmab.3 in the doubly-exponential setting.
Recall that a statement holds for almost every x if there is a set of Lebesgue
measure zero that contains allx for which the statement doesnot hold.
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Lemma 5.10. Let T(x) = x for some > Oand > 1 Then Or(Xp)
is Benford for almost every xo > 0, but there also exist uncountably many
exceptional points, i.e.xg > 0 for which Ot (Xg) is not Benford.

Proof. Note rst that letting ®(x) = cT(c *x) for any ¢ > 0 implies Ot (x) =

¢ '0g(cx), andwith c= ¢ D *one nds B(x) = x . Without loss of general-
ity, it can therefore be assumedthat =1,i.e. T(x)= x .Dene R:R! Ras
R(y)=log T(10¥) = y . Sincex 7! logx establishes a bijective correspondence
between both the points and the nullsets inR* and R, respectively, all that has
to be shown is that Og(y) is u.d. mod 1 for a.e.y 2 R, but also that Or(y)
fails to be u.d. mod 1 for at least uncountably manyy. To see the former, let
fn(y)= R"(y)= "y.Clearly, f9(y) fo(y)= ™ ™( ™ 1)is monotone, and
it f0] 1> 0 wheneverm 6 n. By Proposition 4.9, therefore, Or (y) is
u.d. mod 1 for a.e.y 2 R.

The statement concerning exceptional points will be proved here ly under
the additional assumption that is an integer, see Ber4] for the remaining
cases. Given an integer 2, let ( ) be any sequence of Os and 1s such that

n ntt =0 forall n 2N, that is, ( ) does not contain two consecutive 1s.

With this, consider X
— L
Yo = =1 j
and observe that, for everyn 2 N,
X 1 | 1
Nvai = .on T S .
0 h "ypgi fenet + 7 1)<1,

from which it is clear that ( "yg) is not u.d. mod 1. The proof is completed
by noting that there are uncountably many di erent sequences (), and each
sequence de nes a di erent pointyp. O

Example 5.11. Let T(x) = x2. By Lemma 5.1Q, Ot (Xo) is Benford for almost
every but not for every xo 2 R, as for instanceT"(x) = x2" always has rst
signi cant digit D; =1 if x = 10 for somek 2 Z.

To study maps like T(x) = P 30 + 12x2 + x4 mentioned above, Lemma5.10
has to be extended. Note that
£ 1y 1 x?
X) = T(X = P
Gy =Tt ) "1+ 12x2+30x%

soB(x) x? nearx = 0. Again the technique of shadowing can be applied to
relate the dynamics of ® to the one of x 7! x? covered by Lemma5.1Q The
following is an analog of Theorem5.8 for the case whenT is dominated by
power-like terms.

Theorem 5.12 ([BBH]). Let T be a smooth map withT (0) = 0, and assume
that TY0) = 0 but T(P’(0) 6 0 for some p 2 Nnflg. Then Ot (xo) is Benford

for almost every xo su ciently close to 0, but there are also uncountably many
exceptional points.
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Fig 23. With T(x) = x2, Ot (Xo) is Benford for almost every, but not every xo 2 R.

Proof. Without loss of generality, assume thatp = minfj 2 N : T4)(0) 6 0g.
The map T can be written in the form T(x) = x P 1+ f(x) wheref is a
C! -function with f(0)=0, and 6 0. As in the proof of Lemma 5.1Q it may
be assumed that =1. Let R(y)= logT(10 ¥Y)= py log 1+ f (10 Y) , so
that Ot (Xp) is Benford if and only if Og( logxg) is u.d. mod 1. As the proof
of Lemma5.10has shown, @"y) is u.d. mod 1 for a.e.y 2 R. Moreover, Lemma
5.5 applies to R, and it can be checked by term-by-term di erentiation that the

shadowing map

hiy7iy=y ' pilog 1+f 10 RO
y7rty=y . p'llog

isaC?t -di eomorphism on [yo; + 1 ) for yo su ciently large. For a.e. su ciently
large y, therefore, Or(y) is u.d. mod 1. As explained earlier, this means that
Ot (X0) is Benford for a.e.xq su ciently close to 0. The existence of exceptional
points follows similarly as in the proof of Lemma5.10 O

Example 5.13. (i) Consider the map T(x) = 3(x? + x*) and note that
limyy  T"(x) = 0 if and only if jxj < 1. Theorem 5.12 shows that Ot (Xg)
is Benford for a.e.xp 2 ( 1;1). If jxj > 1 thenlim,; T"(x) =+ 1, and the
reciprocal version of Theorem5.12 applies to

2X4
1+ x2

near x = 0. Overall, therefore, Ot (X¢) is Benford for a.e.xg 2 R.

Bx)=T(x Y 1=
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(i) For T(x)= P 30 + 12x2 + x4, Theorem 5.12 applied to

2
BX)= T(Xx Y) 1= p——ob
09 x5 "1+ 12x2 + 30x%

shows that Ot (Xg) is Benford for a.e.xp 2 R.
(i) Let T(x)=1+ x2. Again Theorem 5.12 applied to

_ 1y 1_ X2
PO TY PE

shows that Ot (Xo) is Benford for a.e.xp 2 R. As also asserted by that theorem,
there are many exceptional points as well. For example, it can be shen that

qu
Xo = lim pnn D 10" 1 1:::=9:949:::;

the rst signi cant digit of T" (xo) always equals 9, i.e.D; T" (xg) =9
for all n 2 N. (In fact, xo is the only point with this property, see [BBH] for
details.)

Remarks. (i) Note that while in Lemma 5.3 and Theorem5.8 Ot (Xo) is Benford
either for all xo or for none at all, Lemma 5.10 and Theorem 5.12 guarantee
the coexistence of manyxg for which Ot (Xg) is Benford and many exceptional
points. The latter form an uncountable set of Lebesgue measureezo. From a
measure-theoretic point of view, therefore, exceptional pointare extremely rare.
It can be shown, however, that the pointsxg for which Ot (Xg) is Benford form
aset of rst category, i.e. a countable union of nowhere dense sets. In particular,
the exceptional points aredensein a neighbourhood ofx = 0. (Recall that a set
M isdense inC R if,givenanyc?2 C and" > 0, there exists anm 2 M with
jm ¢ <".) Thus from a topological point of view, most points are exceptional.
This discrepancy between the measure-theoretic and the topolagal point of
view is not uncommon in ergodic theory and may explain why it is di cult
to explicitly nd even a single point xo for which Ot (Xo) is Benford for, say,
T(x) = 1+ x? | despite the fact that Theorem 5.12 guarantees the existence
of such points in abundance.

(i) Theorem 5.12 covers for instance all polynomial or rational functions of
degree at least two, forjxj su ciently large. An example not covered by that
theorem is T(x) = € or, more precisely, its reciprocal®(x) = e . In this
case,Or (Xg) grows even faster than doubly-exponential. Theorem5.21 below
shows that neverthelesO+ (Xg) is Benford for a.e.xp 2 R. Again, there is also
a (measure-theoretically small yet topologically large) set of excejonal points.

(i) In the context of Lemma 5.10 and Theorem 5.12 and in view of (i),
many interesting questions may be asked. For instanceQr (Xxo) is Benford for
a.e.xo 2 Rif T(x) = x2. What if xo = 2, i.e., is Or(2) = (22" ") Benford?
More generally, let T be any polynomial with integer coe cients and degree at
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least two. Then Ot (Xo) is Benford for almost all su ciently large jXoj. Is Ot (k)
Benford for some, or even many integerk? In the case of T(x) = x2, this is
equivalent to asking whether (2" logjkj) is u.d. mod 1 or, in number-theoretic
terminology, whether logjkj is 2-normal. At present, 2-normality of common
mathematical constants such as log2, or e is a well-known open problem,
considered to be exceedingly di cult. Similarly, one may ask whether (Fan) is
Benford. Again, this may be a very hard problem, contrasting the smple fact
that (Fjp (n);) is Benford wheneverP is a non-constant polynomial with integer
coe cients. |

To conclude the present section on one-dimensional processesfeav possible
applications and extensions of the results above will be discussedh& presenta-
tion is very brief and mostly based on examples; for any details, the iterested
reader may wish to consult the references mentioned in the text.

An application: Newton's method and related algorithms

In scienti c calculations using digital computers and oating point ar ithmetic,
roundo errors are inevitable, and as Knuth points out in his classic text The
Art of Computer Programming [Kn, pp.253{255]

In order to analyze the average behavior of oating-point ar ithmetic algorithms

(and in particular to determine their average running time) , we need some statis-

tical information that allows us to determine how often vari  ous cases arise . ..[lf,

for example, the] leading digits tend to be small [that] make s the most obvious

techniques of \average error" estimation for oating-poin  t calculations invalid.
The relative error due to rounding is usually ... more than ex pected.

Thus for the problem of nding numerically the root of a function by m eans of
Newton's Method (NM), it is important to study the distribution of signi cant
digits (or signi cands) of the approximations generated by the method. As will
be seen shortly, the di erences between successive Newton agpimations, and
the di erences between the successive approximations and the kmown root
often exhibit exactly the type of non-uniformity of signi cant digits alluded to
by Knuth | they typically follow BL.

Throughout this subsection, letf : 1 | R be a di erentiable function de ned
on some open intervall R, and denote by N; the map associated withf by
NM, that is

Nt (X) := X o9 for all x 2 1 with f%x) 6 0:

f qx)

For N¢ to be de ned whereverf is, setN¢ (x) := x if f {x) = 0. Using NM for
nding roots of f (i.e. real numbersx with f (x ) = 0) amounts to picking an
initial point X 2 | and iterating N¢ . Henceforth, (x,) will denote the sequence
of iterates of N; starting at Xo, that is (x,) = On; (Xo).

Clearly, if (x,) converges tox , say, and if N¢ is continuous at x , then
N¢(x )= x ,sox isa xed point of N¢, and f (x ) = 0. (Note that according
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to the de nition of N; used hereN; (x ) = x could also mean thatf 9x ) = 0.
If, however, f(x ) = 0 yet f(x ) 6 0 then N is not continuous at x unless
f is constant.) It is this correspondence between the roots of and the xed
points of N¢ that makes NM work locally. Often, every xed point x of Ns is
attracting, i.e. limyi1 N{'(xo) = x for all xo su ciently close to x . (Observe
that if f islinear nearx ,i.e.f(x) = c¢(x x )forsomec6 0, then N (x) = X
for all x nearx .)

To formulate a result about BL for NM, it will be assumed that f : 1 ! R
is real-analytic. Recall that this means that f can, in a neighbourhood of every
point of |, be represented by its Taylor series. Although real-analyticity is a
strong assumption indeed, the class of real-analytic functions cars most prac-
tically relevant cases, including all polynomials, and all rational, exporential,
and trigonometric functions, and compositions thereof.

If f ;1! Risreal-analyticandx 2 | arootof f,ie.if f(x ) =0, then
f(x)=(x x )Mg(x) for somem 2 N and some real-analyticg : | ! R with
g(x ) 8 0. The number m is the multiplicity of the root x ; if m = 1 then
x is referred to as asimple root. The following theorem becomes plausible
upon observing thatf (x) = (x x )Mg(x) implies that N; is real-analytic in a
neighbourhood ofx , and

f(0f °%)
f9(x)?
m(m  1g(x)*+2m(x  x )g¥x)g(x) +(x  x )*g°1)g(x) .
m2g(x)?+2m(x  x )gAx)g(x) +(x x )2gAx)? '
so that in particular N°(x )=1 m 1

Theorem 5.14 ([BH1]). Letf : 1 ! R be real-analytic with f(x ) = 0, and
assume thatf is not linear.

NfO(X) =

(i) If x is a simple root, then(x, x ) and (Xh+1 Xn) are both Benford
for (Lebesgue) almost every, but not everyp in a neighbourhood ofx .

(iiy If x is a root of multiplicity at least two, then (X, X ) and (Xp+1  Xn)
are Benford for all xo 6 x su ciently close to x .

The full proof of Theorem 5.14 can be found in BH1]. It uses the following
lemma which may be of independent interest for studying BL in other rumerical
approximation procedures. Part (i) is an analog of Lemma5.7, and (ii) and (iii)
follow directly from Theorem 5.12 and 5.8, respectively.

Lemma 5.15. Let T:I! | beC! with T(y )=y for somey 2 1.

(i) If Ty ) 61, then for all yo such thatlim,; T"(yo) = y , the sequence
(T"(yo) vy ) is Benford precisely when T"*1 (yq) T"(yo) is Benford.

(i) f Ty )=0 but TP (y ) 60 for somep2 Nnflg, then (T"(yo) vy )is
Benford for (Lebesgue) almost every, but not everyp in a neighbourhood
ofy .
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(i) 1f 0< jTYy )j < 1, then (T"(yo) Yy ) is Benford for all yo 6 y su-
ciently close toy precisely whenlogjTYy )j is irrational.

Example 5.16. (i) Let f(x) = x=(1 x) for x < 1. Then f has a simple
root at x =0, and N¢ (x) = x2. By Theorem 5.14(i), the sequences X,) and
(Xn+1  Xp) are both Benford sequences for (Lebesgue) almost everp in a
neighbourhood of 0.

(i) Letf(x)= x2. Thenf has a double root atx =0 and N; (x) = x=2, so
by Theorem 5.14(ii), the sequence of iterates K, ) of N aswell as €,+1 Xxn) are
both Benford for all starting points xo 6 0. (They are not, however, 2-Benford.)

Utilizing Lemma 5.15 an analog of Theorem5.14 can be established for other
root- nding algorithms as well.

Example 5.17. Let f (x) = x + x® and consider the successive approximations
(yn) generated by the Jacobi-Ste ensen method,

f (yn)?
fiyn) f yn f(yn)

For almost every, but not every yo near 0, (yn) is Benford. This follows from
Lemma 5.15(ii), since y, = J{'(yo) with the Jacobi-Ste ensen transformation

Yn+1 = Yn ;7 N2Ng:

1 y?
— 5 .
an (X) - y 1 + y2 y4 T y6 ’

and Js (y) y® neary = 0. Alternatively, J; = N with the real-analytic
function f{x) = (x + xe’)e%x4 x* 50 Theorem5.14(i) applies directly as well.

If f fails to be real-analytic, then Ny may not be well-behaved analytically.
For instance, N; may have discontinuities even iff is C! . Pathologies like this
can cause NM to fail for a variety of reasons, of which the readeran gain an
impression from BH1, Sec.4]. Even ifN¢ is smooth, (x,) may not be Benford.

Example 5.18. Let f be the C! -function

_ e ifx60;
f=" ifx=0;

for which Nf (x) = x(1  3x?) is C' as well. Note that limn;  NJ'(x) = O if
and only if jxj < 2. In this case, howeverOy, (x) is not Benford. This follows
from the extended version of Theorenb.8 mentioned in the remark on p.70 but
can also be seen directly. Indeed, leT (x) = 1%1“ and note that N°(x) > 0,
TYx) > 0 andjT(x)j] j Ni(x)j holds wheneverjx; % From this it follows
that

foralln2 N;

. o ) iXj
NP ] T ()j = — Jj ;

1+ njx
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and consequently (logNy'(x)j) is not u.d. mod 1 by Proposition 4.§iv), i.e.,
On; (x) is not Benford. On the other hand, if jxoj > 2 then limnir  jN{ (Xo)j =
+1 , and Theoremb5.12, applied to

2x3

B(x):= Ny(x 1) 1= T o2

near x = 0, shows that Oy, (Xo) is Benford for almost every, but not every xq
in this case.

Theorem 5.14 has important practical implications for estimating roots of a
function via NM using oating-point arithmetic. One type of error in s cienti c
computations is over ow (or under ow), which occurs when the running compu-
tations exceed the largest (or smallest, in absolute value) oatingpoint number
allowed by the computer. Feldstein and Turner [FT, p.241] show that under \the
assumption of the logarithmic distribution of numbers [i.e. BL] oating -point
addition and subtraction can result in over ow and under ow with ala rming
frequency ..." Together with Theorem 5.14 this suggests that special attention
should be given to over ow and under ow errors in any computer algorithm
used to estimate roots by means of NM.

Another important type of error in scienti ¢ computing arises due t o round-
o . In estimating a root from its Newton approximations, for examp le, a rule for
stopping the algorithm must be speci ed, such as \stop whenn = 108" or \stop
when the di erences between successive approximations are leskan 10 6.
Every stopping rule will result in some round-o error, and Theorem 5.14shows
that this di erence is generally Benford. In fact, justi ed by heur istics and by
the extensive empirical evidence of BL in other numerical procedwes, analysis
of roundo errors has often been carried out under thehypothesisof a statistical
logarithmic distribution of signi cant digits or signi cands [ BB]. Therefore, as
Knuth points out, a naive assumption of uniformly distributed signi ¢ ant digits
in the calculations tends to underestimate the average relative rondo error in
cases where the actual statistical distribution is skewed toward maller leading
signi cant digits, as is the case for BL. To obtain a rough idea of the nagnitude
of this underestimate when the true statistical distribution is BL, let X denote
the absolute round-o error at the time of stopping the algorithm, and let Y
denote the fraction part of the approximation at the time of stopping. Then the
relative erroris X=Y , and assuming thatX andY are independent random vari-
ables, the average (i.e., expected) relative error is sSimpliEX E(1=Y). As shown
in [BH1], the assumption that Y is uniform while its true distribution is BL leads
to an averageunderestimation of the relative error by more than one third.

The relevance of BL for scienti ¢ computing does not end here. Forexample,
Hamming gives \a number of applications to hardware, software, ad general
computing which show that this distribution is not merely an amusing curiosity"
[Ha, p.1609], and Schatte analyzes the speed of multiplication and divisiofn
digital computers when the statistical distribution of oating-poin t numbers is
logarithmic and proves that, for design of computers, \[tjhe baseb = 8 is optimal
with respect to [minimizing expected] storage use" $chal p.453].
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Extension I: Time-dependent systems

So far, the sequences considered in this chapter have been geated by the iter-
ation of a single mapT or, in dynamical systems terminology, by anautonomous
dynamical system. Autonomous systems constitute a classical ahwell-studied
eld. Beyond this eld there has been, in the recent past, an incresed interest
in systems that are nonautonomous i.e. explicitly time-dependent in one way
or the other. This development is motivated and driven by important practical
applications as well as pure mathematical questions. In this contet it is inter-
esting to study how the results discussed previously extend to sysms with the
map T explicitly depending on n. In full generality, this is a very wide topic
with many open problems, both conceptual and computational. Onlya small
number of pertinent results (without proofs) and examples will be nmentioned
here, and the interested reader is referred e.g. tdBer4] for a fuller account and
references as well as toqM, LS] for an intriguing speci ¢ problem.
Throughout, let ( T,) be a sequence of maps that majR or parts thereof into

itself, and for everyn 2 N denote byT" the n-fold compositionT" := T, ::: Ty;
also let T? be the identity map on R. Given xg, it makes sense to consider the
sequenceOr (Xo) = T" (xq) noN = X0; T1(X0); T2 T1(Xo) ;::: . As in the

autonomous case (which corresponds t®, being independent ofn) the sequence
Ot (Xo) is referred to as the (nonautonomous)orbit of Xg.

The following is a nonautonomous variant of Theorem5.8. A proof (of a
substantially more general version) can be found inBBH]. It relies heavily on
a nonautonomous version of the Shadowing Lemma.

Theorem 5.19 ([BBH]). Let Tj : R! R be C?-maps with Tj(0) = 0 and
TjO(obslo fgnall j 2. N, and set §E Tj‘_’(O). Assume 'Fhatgug ma;y _1jT_j°‘(x)j
and . _; j=11 ] are both nite. If lim;;1 logj jj exists and is irrational,
then Ot (Xo) is Benford for all xo 6 0 su ciently close to O.

Example 5.20. (i) Let Rj(x) =2+ j Y)x forj =1;2;::. Itis easy to see
that all assumptions of Theorem5.19 are met for

j
q 1

T)=R(x Y '=
with lim;y  logj jj= log2. HenceOr(Xo) is Benford for all xo 6 0.

(i) LetT;(x)= Fjsa=Fxforallj 2N, whe{ge;Fi denotes thej -th Fibonacci
number. Since lim; log(Fj+1 =F) = log ¥2 is irrational, and by taking
reciprocals as in (i), Theorem5.19 shows that Ot (Xo) is Benford for all x¢ 6 0.
In particular, Ot (F1) = ( Fp) is Benford, as was already seen in Exampld.12
Note that the same argument would not work to show that (n!) is Benford.

P—r P-
(iii) Consi%er the family of linear mapsJ; (x) =10 ¥ I+ “ix forj =
n P 1

R Y = n+ n+l +1 xn o
1,2, Here ~;; j =10 »SO I o1l gl < +1 . However,
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Theorem 5.19 does not apply since limi;  logj jj= 1 is rational. Neverthe-
less, asnt) n) is u.d. mod 1 by KN, Ex.3.9] and

logjT"(X)j= n+ IOn+1 1+logjxj;

the sequenceDr (Xg) is Benford for every xq 6 0.

In situations where most of the mapsT; are power-like or even more strongly
expanding, the following generalization of Lemma5.10 may be useful. (In its
fully developed form, the result also extends Theorenb.12 see BBH, Thm.5.5]
and [Ber3, Thm.3.7].) Again the reader is referred to Ber4] for a proof.

Theorem 5.21 ([Ber4]). Assume the mapsT; : R* | R* satisfy, for some
> 0O and allj 2 N, the following conditions:

@) x 70 InT,;(e) is convex on[; +1 );
(i) xTAX)=Tj(x) ;> Oforall x

If liminf;;  j > 1then Ot (Xo) is Benford for almost every su ciently large
Xo, but there are also uncountably many exceptional points.

Example 5.22. (i) To see that Theorem5.21 does indeed generalize Lemma
510 let Tj(x) = x forallj 2 N. Thenx 7! InTj(e*) = x +In clearly is
convex, andxTXx)=Tj (x) = > 1forall x> 0.

(i) As mentioned already in (ii) of the remark on p.74, Theorem 5.21 also
shows that Ot (xp) with T(x) = €* is Benford for almost every, but not every
Xo 2 R,asx 7! InT(e) = € is convex, and xT {x)=T(x) = x as well as
T3(x) > e holds for all x 2 R. Similarly, the theorem applies to T(x) = 1+ x2.

(iif) For a truly nonautonomous example consider

x? if j is even;

TOI= 2 it is odd:

or Tj(x)=(j+1)*:
In both cases,Or (Xp) is Benford for almost every, but not every xp 2 R.

(iv) Finally, it is important to note that Theorem 5.21 may fail if one of its
hypotheses is violated even for a singlg¢. For example

. 10 ifj =1;
0= e 2

satis es (i) and (ii) for all j> 1, but does not satisfy assumption (ii) forj = 1.
Clearly, Ot (xp) is not Benford for any xo 2 R, sinceD; T"(xg) = 1 for all
n2N.

Using slightly more sophisticated tools, Theorem5.21 can be extended so as
to provide the following corollary for polynomial maps.
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Corollary 5.23. Let the mapsT; be polynomials,
Ty (x) = x" + Qjin XMt a;1X + &0,

with nj 2 Nnflganda; 2 Rforallj 2 N,0 I<nj.If sup,y max;’, ljaj;| j<
+1 then Ot (Xo) is Benford for almost everyxg 2 Rn[ ; ] with some 0.
However,Rn[ ; ]also contains an uncountable dense set of exceptional pant

Example 5.24. Let Tj(x) = x} 1 forallj 1. Then even though (T})
do not satisfy the hypothesis (i) of Theorem5.21, by Corollary 5.23 the orbit
O1(X0) = (Xo;Xo Lx3 2xo;:::)is Benford for almost all jxoj 3, but that
region also contains uncountably many points for whichO+ (Xo) is not Benford.

Extension II: Chaotic dynamical systems

The dynamical scenarios studied so far for their conformance wittBL have all
been very simple indeed: In Theorems.8, 5.12 and 5.191lim,; T"(x) = 0
holds automatically for all relevant initial values x, whereas limy;;  T"(x) =
+1 in Theorem5.21 While this dynamical simplicity does not necessarily force
the behaviorof S T"(x) to be equally simple (recall e.g. Examples.13iii)), it
makes one wonder what might be observed under more general cinmstances.
The present subsection presents two simple examples in this regardAmong
other things, they illustrate that, as a rule, Benford sequences ray be rare in
more general dynamical systems.

Example 5.25. Consider the tent-mapT : R! Rgivenby T(x)=1 j 2x 1j.
Using Theorem 5.8, it is not hard to see that Ot (Xp) is Benford wheneverxg
lies outside [Q 1]. Clearly, O1(0) = (0;0;0;:::) and O (1) =(1;0;0;:::) are not
Benford. As far as BL is concerned, therefore, it remains to analye Ot (Xg) for
0<xp< 1. Denetwomaps L; r:[0;1]! [O;1] as

(0= 35 RO=1 D
ThenT | (X)=T Rgr(x)=xforall x2[0;1],and _, r can be used for a
symbolic description of the dynamics ofT. To this end, recall that the set of
all sequences consisting of the two symbols and R, thatis = fL;RgV, isa
compact metric space when endowed with the metric

2 minfn:!,6k,9 ifl 6 b

dt; B):= it =k

Moreover, the (left) shift map on , givenby (!)=(!,+1) is a continuous
map. With these ingredients, de ne a maph: ! [0;1] as

h(!):=|imn;1 1 b, oid |

- n

N

It is easy to see thath is well de ned, continuous and onto, andh  (!) =
T h(!)forall ! 2 .In particular, therefore, T" 1 h(!)2 1,  holds for all

n
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I 2 and n2 N, wherel. = ([0;1]) =[0;%] and Igr = r([0;1]) = [%;1].
Thus it is reasonable to think of ! as the \symbolic itinerary” of h(!) under
the iteration of T. (Note that h is not one-to-one, however #h 1(fxg) = 1
unlessx is a dyadic rational, i.e. unless 2« is an integer for somel 2 Ny.) By
means of this symbolic coding, some dynamical properties of are very easy
to understand. For example, the set ofxg for which O+ (Xo) is periodic is dense
in [0; 1]. To see this simply observe thath(! ) is periodic (under T) whenever
! 2 is periodic (under ), and periodic sequences are dense in . On the
other hand, T is topologically transitive. Informally, this means that there is
no non-trivial way of breaking the dynamics of T on [0; 1] into non-interacting
pieces. In the present example, this property (de ned and studid thoroughly
e.g. in [KH]) simply means that Ot (Xo) is dense for at least one, but in fact
many Xo 2 [0;1]. Overall, therefore, the map T : [0;1] ! [O;1] is chaotic in
the sense of Berl, Def.2.21]. In particular, it exhibits the hallmark property of
chaos, namelysensitive dependence on initial conditionsThe latter means that,
for every 0<x < 1 and every" > 0, a point X can be found such that

x Xj<" yet limsup,, jT"(x) T"(X)j % :
This follows e.g. from Berl, Thm.2.18] but can also be seen directly by noticing
that T" is piecewise linear with slope 2.

While the above analysis clearly reveals the complexity of the dynamic®f

T on [G; 1], the reader may still wonder how all this is related to BL. Is Ot (Xg)
Benford for many, or even mostxgy 2 [0; 1]? The chaotic nature of T suggests
a negative answer. For a more de nitive understanding, note that for every
O<ac< 1,

T o1[0a] = o1 0 (@ [ r(@;1 =a= o1 [0a] ;

showing that T .1 = o1, i.e. T preserves ¢1. In fact, T is known to even be
ergodic with respect to o.1. As a consequence of the Birkho Ergodic Theorem,
O7 (Xo) is distributed according to .1 for Lebesgue almost everyxg 2 [0; 1].
By Example 3.1(Q(i), for every such xo the sequence S(T"(xg)) is uniformly
distributed on [1; 10). Thus for a.e.xq 2 [0; 1], the orbit Ot (xg) is not Benford.
It remains to investigate whether Ot (Xo) is Benford for any xq 2 [0; 1] at
all. To this end rst note that while O (Xo) is guaranteed to be uniformly
distributed for a.e. xo 2 [0; 1], there are plenty of exceptions. In fact, given any
sequenced 2 whose asymptotic relative frequencies
#f1 n N:!',=Lg #f1 n N :!';=Rg

and |ImN 11

limy i N N

do not both equal % or perhaps do not even exist at all, the orbit ofh(! ) is not
uniformly distributed. For instance, if

N times
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for someN 2 Ng, then h(!) = 213N ,and T" h(!) = % foralln N.In
view of this abundance of exceptional points, one may hope to ideifyy some
Xo 2 [0;1] for which Ot (Xp) is Benford. Using the symbolic encoding of the
dynamics, this can indeed be done as follows: Observe thdt(x) = 2 x whenever
X 3, ie. wheneverx 2 I, in which case

logS T(x) = Hog2+logS(x)i:

Thus if T"(xe) 2 I held for all n, then Ot (Xo) would be Benford. This is
impossible sinceT"(xp) 2 I for all n implies that xo = 0, and xq is a xed
point for T. However, since being Benford is an asymptotic property oD+ (Xo),
it is enough for T"(xp) 2 I. to hold for most n and along arbitrarily long
sequencesConcretely, let

e _L{Z_L}R L{Z_L}R ;_I';{z:i'};R;L;::: ; (5.2)

N, times N, times N3 times

where (N,) is any sequence irN with N, !'1 , and setx = h(! ). According
to (5.2), the orbit Ot (x ) staysin I for the rst Nj steps, then makes a one-
step excursion tol g, then remains in I for N, steps, etc. It follows from Ber4,
Lem.2.7(i)], but can also be veried directly, that Ot (x ) is Benford. For a
concrete example, choose e.gN,  2n, then

' = LLRLLLLRLLLLLLR L
as well as

X 1 ,
x =h( )= w2n nt o )t = 0:2422::

n=1
and Ot (x ) is Benford. Notice nally that ( 5.2) provides uncountably many
di erent points x , and hence the set

fXo 2 [0; 1] : Ot (Xo) is Benfordg

is uncountable; as initial segments of  do not matter, this set is also dense in
[0; 1]. To put this fact into perspective, note that with the points x constructed
above, Ot (x ) is actually also Benford baseb wheneverb is not a power of 2,
i.e. wheneverb62 " : n 2 Ng. On the other hand, Ot (Xxo) is not Benford base
2, 4, 8 etc. forany xp 2 R, see Ber4, Ex.2.11].

Example 5.26. The family of quadratic polynomials Q :x 7! x (1 x), with

2 R, often referred to as thelogistic family, plays a pivotal role in dynamical
systems theory, see e.gBerl, KH]. Arguably the most prominent member of
this family is the map Q4 which has many features in common with the tent
map T from the previous example. Unlike the latter, however,Q, is smooth,
and it is this smoothness which makes the dynamics 00,4, or generally the
logistic family, a much richer yet also more subtle topic.
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To understand the dynamics of Q4 with regards to BL, note rst that near

x =0,
2 2
Qs(x 1) 1= 74(1)( 3 = XZ + O(x3):

Hence Theorem5.12 applies, showing that Og, (Xo) is Benford for almost ev-
ery, but not every xo 2 Rn[0; 1]. As in Example 5.25 it remains to study the
dynamics within the interval [0; 1]. A similar symbolic coding can be applied to
demonstrate that on this interval Q4 is, in any respect, as chaotic as the tent
map T. This is somewhat hard to do directly, but it becomes very simple upon
introducing the homeomorphismH : [0; 1]! [0; 1] with H(x) = sin 2(% x ) and
noting that, for all x 2 [0; 1],

Qs HX)=sin?(x)=H T(x): (5.3)
Thus Q4 and T di er only by a change of coordinates, and all topological prop-
erties of T (such as e.g. the existence of a dense set of periodic orbits, and

topological transitivity) carry over to Q. Together with T .1 = o1 it follows
from (5.3) that

Qs H 01)=(Qs H) o01=(H T) 01=H (T o01)=H o1;

henceQ, preserves the probability measureH .1, and is in fact ergodic with
respect to it. Note that

d o _ d 2 P 1 . .
&H 01 [0;X] = o Ot [0; — arcsin® X] ——pﬁ, O<x< 1;

showing that H .1 is simply the arcsin- or Beta(%; %)—distribution, and there-
fore H o.1(B) = 0 if and only if .1(B) = 0. Again, the Birkho Ergodic

Theorem implies that Ogq, (Xo) is, for almost every xo 2 [0; 1], distributed ac-
cording to H .1, and consequently not Benford, see Exampl&.1Qii). As in
Example 5.25 one may wonder whetherOq, (Xo) is Benford for any xq 2 [0; 1]
at all. Essentially the same argument shows that the answer is, agaimositive.
With ! asin (5.2), the orbit of H h(! ) spends most of its time arbitrarily
close to the (unstable) xed point at x =0, and

logS Q4(x) = Hog4 +logS(x)+log(l x)i h log4+logS(x)i
wheneverx > 0 is very small. A careful analysis in the spirit of Lemma4.3(i)

then shows thatOg, H h(! ) isindeed Benford. As in the previous example,
it follows that

fXxo 2 [0;1] : Og, (Xo) is Benfordg

is uncountable and dense in [01].
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5.2. Multi-dimensional discrete-time processes

The purpose of this section is to extend the basic results of the prgéous section
to multi-dimensional systems, notably to linear, as well as some nofinear re-
currence relations. Recall from Example4.12that the Fibonacci sequence E)
is Benford. Hence the linear recurrence relatiorx,+; = X + X5 1 generates a
Benford sequence when started fronxg = x; = 1. As will be seen shortly, many,
but not all linear recurrence relations generate Benford sequerss.

Under a BL perspective, an obvious di culty when dealing with multi-di-
mensional systems is the potential for more or less cyclic behaviogither of the
orbits themselves or of their signi cands.

Example 5.27. (i) Let the sequence X,) be de ned recursively as
Xn+1 = Xn  Xp 1, N=1;2;:::; (5.4)

with given Xg, X1 2 R. By using the matrix (1) i associated with 6.4), it is

straightforward to derive an explicit representation for (xy),
2X1 Xo _.
Xn = X COS 3N +—Jp§—03|n%n © n=0:1:::;

From this it is clear that x,+6 = Xp for all n, i.e., (X,) is 6-periodic. This oscilla-
tory behavior of (x,) corresponds to the fact that the roots of the characteristic
equation 2 = 1 associated with 6.4) are = e {=3 and hence lie on the
unit circle. For no choice of xg, x1, therefore, is (x,) Benford.

(i) Consider the linear 3-step recursion
Xn+1 =2Xn +10X, 1 20X, 2; n=2:3;::::

Again it is easy to con rm that, for any Xxg, X1, X2 2 R, the value of x,, is given
explicitly by
Xn = €12" + 1072 + c3( 1)"10™Z;
where
10xg X2 . _ X2 4Xo Xo + 3)r(11 10X .
6 o 93T T 610

Clearly, limp;;  jxnj = +1 unlessxg = X1 = X2 = 0, so unlike in (i) the
sequence X,) is not bounded or oscillatory. However, ifjc,j & jcsj then

CL =

l0gixaj = 2 +l0g €10 " 92+ G+ ( 1)f'cs 2 +logice+( sl

showing that S(x,) is asymptotically 2-periodic and hence &, ) is not Benford.
Similarly, if jcpj = jcsj 6 0 then S(x,) is convergent along even (ifc, = c3) or
odd (if c; = ¢3) indices n, and again (x,) is not Benford. Only if ¢, = ¢c3 =0
yet ¢, 6 0, or equivalently if 3x, = 2x; = Xo 6 0 is (xn) Benford. Obviously,
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the oscillatory behavior of S(x,) in this example is due to the characteristic
equation 2 =2 2410 20 having twg,roots with the same modulus but
opposite signs, namely = 10and = 10.

(i) Let =cos( log2) 0:5852 and consider the sequencex{) de ned
recursively as
Xn+#1 =4 Xn 4Xp 1; n=1;2:::; (5.5)

with given Xg, X1 2 R. As before, an explicit formula for x,, is easily derived as

Xn = 2" cos(n log2)+2" 13(13% sin(n log2):

Although somewhat oscillatory, the sequence X,) is clearly unbounded. As
will be shown now, however, it is not Benford. While the argument is es
sentially the same for any (o;Xx1) 6 (0;0), for convenience letxo = 0 and
X1 =2sin( log2) 1:622, so that

logjxnj =log2"jsin(n log2)j = nlog2+logjsin(n log2)j; n=1;2;::::
With the (measurable) map T : [0;1)! [O;1) de ned as
T(s)= ks+logjsin(s)ji; 0 s<1;

therefore simply Hogjx,ji = T(hnlog2i). Recall that (nlog?2) is u.d. mod 1,
and hence flogjx,ji) is distributed according to the probability measure T ¢.1.
Consequently, kn) is Benford if and only if T .1 equals o.1. The latter, how-
ever, is not the case. While this is clear intuitively, an easy way to seehis
formally is to observe that T is piecewise smooth and has a unique local max-
imum at some 0< so < 1. (Concretely, sp =1 Larctan w1 0:7013 and
T(so) 0:6080.) ThusifT o1 = o1, then for all suciently small "> O,

T(s) T(so ") _ o1 T(So ")iT(so) _ T o1 T(so ");T(so)

o1 [So  ";So)

=1;:

which is impossible sinceTYsy) = 0. Hence (x,) is not Benford. The reason
for this can be seen in the fact that, while log j = log 2 is irrational for the

characteristic roots = 2e { 992 associated with (5.5), there obviously is a
rational dependence between the two real numbers logj and zi arg , namely
logj j 2(arg )=0.

The above recurrence relations are linear and have constant coeients.
Hence they can be rewritten and analyzed using matrix-vector noation. For
instance, in Example 5.27(i)

Xn
Xn+1
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sothat, with A= 9 1 2R? 2 the sequenceX,) is simply given by
Xpn= 1 0 A" X0 © n=0;1;:::;
X1

It is natural, therefore, to study the Benford property of more general sequences
(x>A"y) for any A 2 RY 9 and x;y 2 RY. Linear recurrence relations like
the ones in Example5.27 are then merely special cases. As suggested by that
example, in order to guarantee the Benford property for &> A"y), conditions
have to be imposed onA so as to rule out cyclic behavior of orbits or their
signi cands. To prepare for these conditions, denote the real pd, imaginary
part, complex conjugate, and modulus (absolute value) oz 2 C by <z, =z, Z,
and jzj, respectively. For z 6 0, de ne arg z as the unique number in [ ; )
that satises z = jzjel®97; for notational convenience, let arg0 := 0. Recall
that real or conp;plex numbers z;;7,;:::;z, are rationally independent (or Q-
independen)) if jn=1 gz =0with qi;p;:::; 00 2 Q implies that ¢ = O for
allj =1;2;:::;n. AsetZ C is rationally independent if every of its nite
subsets is, andrationally dependent otherwise.

Let Z C be any set such that all elements oZ have the same modulus

, .e., Z is contained in the periphery of a circle with radius centered at the

origin of the complex plain. Call the set Z resonant if either #( Z \ R) = 2
or the numbers 1log and the elements ofzi argZ are rationally dependent,
where ;~argZ = Jtargz:z2 2z nf };0g.

Given A 2 RY 9 recall that the spectrum (A) C of A is simply the set of
all eigenvalues ofA. Denote by (A)* the \upper half" of the spectrum, i.e., let

A)r=Ff 2 (A):= Og. Usage of (A)* refers to the fact that non-real

eigenvalues of real matrices always occur in conjugate pairs, andehce (A)*
only contains one of the conjugates.

With the above preparations, what will shortly turn out to be an app ropriate
condition on A reads as follows.

De nition 5.28. A matrix A 2 RY 9 is Benford regular (base 10) if (A)*
contains no resonant set.

Note that in the simplest case, i.e. ford = 1, the matrix A =[a] is Benford
regular if and only if log jaj is irrational. Hence Benford regularity may be con-
sidered a generalization of this irrationality property. Also note that A is regular
(invertible) whenever it is Benford regular.

Example 5.29. None of the matrices associated with the recurrence rela-

tions in Example 5.27 is Benford regular. Indeed, in (i), A = 2 1 , hence

(A)*, = fel=3g,and clearly logjel= % = 0 is rational. Similarly, in (i),
0 1 0 — —
A=4 o o 15,and (A)" = f P 16; 2;p 10g contains the resonant set
10 10 2
p_ p_ . e — 0 1 - I .
f 10, 10g. Finally, for (i), A=, ,* ,and (A)" = f2el 1092¢ is res-
onant.
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Example 5.30. Let A = 1 I 2 R? 2 with characteristic polynomial

pa( )= 2 2 +2,and hence (A)* = P 56l 49. As 1; Iogpi and ;= %
are rationally dependent, the matrix A is not Benford regular.

Example 5.31. ConsiderA = ¢ © 2 R? 2. The characteristic polynomial
of Aispa( )= 2 1, and so, with' = 1(1+ P 5), the eigenvalues ofA

are' and 1. Sincepa is irreducible and has two roots of di erent absolute
value, it follows that log ' is irrational (in fact, even transcendental). Thus A is
Benford regular.

With the one-dimensional result (Lemma 5.3), as well as Example5.27 and
De nition 5.28 in mind, it seems realistic to hope that iterating (i.e. taking
powers of) any matrix A 2 RY 9 produces many Benford sequences, provided
that A is Benford regular. This is indeed the case. To concisely formulate #
pertinent result, call a sequence %,) of complex numbersterminating if z, =0
for all su ciently large n.

Theorem 5.32 ([Ber2]). Assume thatA 2 RY 9 is Benford regular. Then, for
every x;y 2 RY, the sequencgx” A"y) is either Benford or terminating. Also,
(kA" xk) is Benford for every x 6 0.

The proof of Theorem 5.32 will make use of the following variant of [Ber2,
Lem.2.9].

Proposition 5.33.  Assume that the real numbersl; o; 1;:::; m are Q-inde-
pendent. Let(z,) be a convergent sequence i€, and at least one of the numbers
C1;C2;:::;¢m 2 C non-zero. Then (x,) given by

Xpn=n g+log < ¢ 1+ i+ ¢l o+ 7,

is u.d. mod 1.

Proof of Theorem 5.32. Given A 2 R 9 let (A)* = f 1; 2;:::; sg, where
s dand, without loss of generality,j 1j j 2j ::: j sj. Fix x;y 2 RY and
recall that there exist (possibly non-real) polynomials p;; pz;:::;ps of degrees

at mostd 1 such that
X>A"y =< p(n) T+ i+ ps(n) T n=0;1:00 (5.6)
(This follows e.g. from the Jordan Normal Form Theorem.) If (x> A"y) is not

terminating, then it can be assumed that p; 6 0. (Otherwise relabel the p; and
i ,» and reduces accordingly.) Now distinguish two cases.

Case 1;j 1j>] 2j

In this case, ; is adominant eigenvalue. Denote byk the degree ofp; and let
c:=lim,1 n ¥pi(n). Note that cis a non-zero number that is real whenever
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1 is real. From

AN = 4j"n < n Kp(n) —& 40 Kpp(n) =&+
J 1 J 1)
n
+n Kpg(n) —
1)
= a"nNj<(cd" ¥+ zy)j;
P .
with z, =(n ¥pi(n) ©) T "4 =0 ¥pi(n) - " 0, it follows that

logjx> A"yj = nlogj 1j + klogn +log j< (c™ "= + z,)j:

In view of Proposition 4.§(iii), no generality is lost by assuming that k = 0. If
1 is real then, by Lemma4.3(i) and the irrationality of log | 1j, the sequence

(logjx> A"yj) is u.d. mod 1. If ; is not real, then apply Proposition 5.33 with

m=1, o=logj i1j,and ;= Zi arg 1. In either case, k> A"y) is Benford.

Case 2;j 1j=:::=] j>] 1+1] for somel s.
Here severaldi erent eigenvalues of the same magnitude occur. Lek be the

maximal degree ofpy;po;:::pand g = limn1 n kpj (n) forj =1;2;:::;1.
Note that if x> A"y 6 0 innitely often then at least one of the numbers

n n
AN = 4j"n < n Kp(n) —E 40 Kpp(n) =&+
J 1) J 1)
n
+n Kpg(n) —
1)

= 1j"nKj<(c @9 1 4+ ik el @9+ 7))

where

TUnem o) e+ npm 1o
Zn = n (N i — n (N — ! .

" i=1 h G IR j=1+1 A J ol
Propositions 4.§(iii) and 5.33with m=1land ¢=logj 1j, 1= ziarg 1,0,
| = garg | imply that

logjx™ A"yj = nlogj 1j + klogn +log j<(c;e™ 9 *+ + :::+ el @9 1 4+ 7)j

is u.d. mod 1, hence x> A"y) is Benford.
The assertion concerning KA" xk) is proved in a completely analogous man-
ner. (I

Example 5.34. According to Example 5.31, the matrix (1) i is Benford

regular. By Theorem 5.32, every solution of the di erence equation x,+; =
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Xn + Xn 1 is Benford, except for the trivial solution x, 0 resulting from xg =
X1 = 0. In particular, therefore, the sequences of Fibonacci and Laas numbers,
(Fn) = (1;1;2;3;5;::)) and (Ln) = ( 1;2;1;3;4;:::), generated respectively
from the initial values xo X1 = 1 1 and Xo X1 = 1 2 ,are
Benford. For the former sequence, this has already been seen ix&mple 4.12
Note that (F?2), for instance, is Benford as well by Corollary4.7(i), see Fig 24.

Example 5.35. Recall from Example5.30that A = 1 1 is not Benford

regular. Hence Theorem5.32 does not apply, and the sequencex{ A"y) may,
for somex;y 2 R?, be neither Benford nor terminating. Indeed, pick for example

x=y= 10 " and note that

" #
1 in(l
x>A"y= 1 0 272 C(_)S(An) sinGz 1) Lo one20g in
sin(n) cos(zn) 0
Hence &~ A"y) is clearly not Benford as x> A"y = 0 whenevern = 2 + 41 for
somel 2 Np. It will be seen later (in Theorem 5.37) that in the case ofa 2 2-
matrix A, the Benford regularity of A is actually necessary forevery sequence
of the form (x> A"y) to be either Benford or terminating. Note, however, that
this does of course not rule out the possibility that some sequenceaterived from
iterating A may be Benford nevertheless. For a concrete example, x any 6 0
and, for eachn 2 N, denote by E,, the area of the triangle with vertices at A"x,
A" x, and the origin. Then

En:% det(A"x; A" 1x) =2" 2%kxk?; n=1;2;:::;

so (En) is Benford, seeFig 24.

Remark. According to Theorem 5.32 Benford regularity of a matrix A is a
simple condition guaranteeing the widespread generation of Benfdrsequences of
the form (x> A"y). Most d d-matrices are Benford regular, under a topological
as well as a measure-theoretic perspective. To put this more foraily, let

Bg:= fA2 RY 9: Ais Benford regularg:

While the complement of By is dense inRY ¢, it is a topologically small set:
RY 9nBy is of rst category, i.e. a countable union of nowhere dense sets. A
(topologically) typical (\generic") d d-matrix therefore belongs to By, i.e. is
Benford regular. Similarly, if A is an RY 9-valued random variable, that is, a
random matrix, whose distribution is a.c. with respect to the d?-dimensional
Lebesgue measure oRY 9, then P(A 2 Bqy) = 1, i.e., A is Benford regular
with probability one. Similar statements hold for instance within the fa mily of
stochastic matrices see BHKR]. |

While Benford regularity of A is a property su cient for all sequences (x>A"y)
to be either Benford or terminating, the following example shows thd this
property is not in general necessary.
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11
A= 1 1
A9
16
Eo
8
s [J% o
4
Es

8

Fig 24 . Two Benford sequences derived from linear 2-dimensional systems, see Examples 5.34
and 5.35. Note that the matrix A associated with (E) is not Benford regular.

Example 5.36. Consider the 4 4-matrix

2 — — 3
cos(2 P 3) sin(2 P 3) 0 0
p,g sin(2  3) cos(2' 3) 0 0
— 2 .
A=10 0 0 cos(4 3)  sin(4 P 3) 2"
0 0 sin4 3) cos(4 3)

P P. P, P

for which (A)* = 10 2e 21 3:10 2e*t S8g = f ; ,g. Since 2arg 1 +
arg » = 0, the matrix A is not Benford regular. It will now be shown that
nevertheless for anyx;y 2 R* the sequence X A"y) is either Benford or termi-
nating. Indeed, with x> = X1 X2 X3 X4 andy= yi1 VY2 VY3 Vs . a
straightforward calculation con rms that

P~ P P
XAy =10" Z< (xo+ {x2)(y1 {y2)e 21 S+(xs+{xa)(ys {ya)e 40" 3

Unless &3 + x3)(y2 + y2) + (x5 + x3)(y3 + y3) = 0, therefore, (x™ AMy) is not
terminating, and p_ p_
logjx>A"yj=n 2+f(n 3);
with the function f :[0;1)! R given by

f(s)=log < (x1+ {x2)(y1 {y2)e 2C +(xz+ {xa)(ys {ya)e *®
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Note that f has at most nitely many discontinuities. Moreover, 1; P 2; P 3 are
Q-independent, and henceBer2, Cor.2.6] implies that (x> A"y) is Benford.

The dimensiond = 4 in Example 5.36is smallest possible. Indeed, as the fol-
lowing result shows, Benford regularity is (not only su cient but also ) necessary
in Theorem 5.32wheneverd < 4.

Theorem 5.37. Assumed < 4, and let A 2 RY 9 be invertible. Then the
following statements are equivalent:

(i) A is Benford regular.

(i) For every x;y 2 RY the sequencgx™ AMy) is either Benford or terminat-
ing.

Proof. As demonstrated by Theorem5.32, assumption (i) implies (ii) even with-
out any restrictions on d.

Conversely, assume that (ii) holds. Notice that wheneverA has a real eigen-
value 6 0, with a corresponding eigenvectore 6 0, then choosingx = y = e
results in x> A"y = "ke k2. Hence log j must be irrational. For d = 1, this
shows that A is Benford regular.

Next let d = 2. In this case, two di erent eigenvalues of the same modulus can
occur either in the form with > 0, i.e. as non-zero eigenvalues of opposite
sign, or in the form = j je 2{ with j j> 0and 0< < 1, ie. as a pair of
conjugate non-real eigenvalues. In the former case, let and e, be normalized
eigenvectors corresponding to  and , respectively. Note that 1+ e; e > 0,
by the Cauchy{Schwarz inequality. Then

2"(1+ee) if nis even;
> n —_ + y
(& +e)Allere)= if n is odd;
showing that (x> A"y) is not Benford for x = y = e, + e . Assuming (ii),
therefore, implies that A does not have real eigenvalues of opposite sign. On the
other hand, if (A)* = fj je?{ gthen there exists a regular matrix P 2 R? 2
such that @) ne )
1 _ . . cos(2 sin(2

PoAP =1 sin2 ) cos(2 )
Specically choosingx> = 0 1 P 'andy=P 1 0 g yields

x> A"y =j j"sin2n ); n=0;1;:::: (5.7)
If logj j is rational, say logj j = % then the sequence

hglogjx™ A"yji = hglogjsin(2n )j

is either periodic (if is rational) or else distributed according to T .1, with
T:[0;1)! [0;1) given by T(s) = hglogjsin(2 s )ji. As in Example 5.27iii), it
can be shown thatT .1 6 1. Thus, as before, rationality of logj j is ruled
out by assumption (ii). If is rational then x> A"y = 0 holds for in nitely many
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but not all n, and hence &> A"y) is neither Benford nor terminating. Again,
this possibility is ruled out by assumption (ii). To conclude the cased = 2,
assume that logi j and are both irrational, yet 1, logj j and are rationally
dependent, i.e., there exist integersky, ks, ks with koks 6 0 such that

ki + k2|Og] j+k3 =0:

Without loss of generality, assumeks > 0. For everyj 2 f1;2;:::;ksg and
n 2 Ng therefore

o> ankKatie,: . - . .k1 .k2 . .
logjx”A™:"lyj = (nks+j)logj j+log sin 2] PR v nkz logj j
3 3
so (logjx> Aks*1yj) is distributed according to T; 0.1, with T; : [0;1) ! [0; 1)
given by

Ti(s)= kss+jlogj j+log sin 2j %+2 %j logj j+2 k2s ;
3 3

and (Hogjx> AMyji) is distributed according to % P }‘il T, o:1.Again it can be
shown that the latter probability measure on [0; 1); B[0; 1) doesnot equal ¢:1.
Overall, therefore, ford = 2 and (A)* = fj je?{ g, assumption (ii) implies
that 1, logj j, and ziarg are rationally independent. In other words, A is
Benford regular.

Finally, consider the cased = 3. The only eigenvalue con guration not cov-
ered by the preceding arguments is that of three di erent eigenvéues with the

same modulus, i.e. withj j> 0and 0< < 1 either (A)* =1 j;j j#{ gor
(A" =fj j;j j€®t g. In both cases, there exists a regular matrixP 2 R® 3
such that 2 3
1 0 0

PP =jj4 0 cos2 ) sin2 )S5;
0 sin2 ) cos(2 )

and choosingx” = 0 0 1 P 'andy=P 0 1 O - again yields (.7).
As before, assumption (i) implies that 1, logj j, and are rationally indepen-
dent. O

Finally, it is worth noting that even if A is not Benford regular, many or even
most sequences of the formx> A"y) may nevertheless be Benford.

1 1
1 1

P _, . .
regular because (A)* = f 2el= “4gis resonant. However, a short calculation
with x> = X1 X2 ,y= y1 Y2 ” con rms that

Example 5.38. Recall from Example 5.30that A = is not Benford

x” A"y =2"™2kxkkykcos 1n + 5 n=0;L:::;

here 2 [ ; ) is the angle of a counter-clockwise rotation movingx=kxk
into y=kyk. (Note that is unique unlesskxk kyk = 0 in which casex> A"y 0



94 A. Berger and T.P. Hill

anyway.) By virtue of Proposition 4.8(ii),if 67 ; )\ % Z then (logjx> A"yj)
is u.d. mod 1. Thus, if is not an integer multiple of 3 | or equivalently if

(x2 x5)yiye xaxa(yi y5) (x3 X5)(yi y5)+4xiXoyiy. 60;

then (x> A"y) is Benford.

The present section closes with two examples of non-linear systemghe sole
purpose of these examples is to hint at possible extensions of theg@lts pre-
sented earlier; for more details the interested reader is referretb the references
provided.

Example 5.39. Consider the non-linear mapT : R> ! R? given by

X1 20 xa f(x1) .
T: % 7! 0 2 %o + f(xy) °
with the bounded continuous function
8
3 0 if jtj  2;
_ 3. S S N ._ 3t+6 if 2<t< 1
f(t)= éJt+2] Jt+1j+3jt 1 zJt ZJ_B 3t i1 t< 1:

3t 6 ifl1 t< 2:

Su ciently far away from the x;- and x,-axes, i.e. for mirfj X1j; jx2jg su ciently

large, the dynamics ofT is governed by the matrix g (2) , and since the latter is

Benford regular, one may reasonably expect that x> T"(y) should be Benford.
It can be shown that this is indeed the case. More precisely, by meanof a
multi-dimensional shadowing argument, the following statement canbe proved,
see Ber2, Thm.4.1]: Let T : RY I RY be of the form T(x) = Ax + f(x)
with A 2 RY ¢ and a bounded continuousf : R4 ! RY. If A is Benford
regular and has no eigenvalues inside the unit disc, that isj j > 1 holds for
every eigenvalue of A, then the sequence x> T"(y) is Benford whenever it is
unbounded. Notice that the provision concerning boundedness isli@ady needed
in the present simple example: For instance, iff j % and x> = 0 then
T"(x) is eventually 2-periodic and hence x> T"(x) is not Benford.

Example 5.40. Consider the non-linear mapT : R?! R? de ned as
" #
3x3x3 + 4x
T: o7 A,
X2 5x{X5 2x5+1
Unlike in the previous example, the mapT is now genuinely non-linear and
cannot be considered a perturbation of a linear map. RatherT may be thought
of as a 2-dimensional analogue of the polynomial max 7! 1+ x2. Clearly,
if jx1j or jxzj is small, then the behavior of T"(x) may be complicated. For
instance, on the x,-axis, i.e. for x; = 0, the map T reduces tox, 7! 1 2x3
which, up to a change of coordinates, is nothing else but the chaoticnap Q4
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studied in Example 5.26 If, however, jx1j and jx,j are su ciently large then
a two-dimensional version of Theorem5.12 asserts that, for (Lebesgue) almost
every X, each component ofOr (x) is Benford, see BS, Thm.16]; at the same
time, there is also an abundance of exceptional pointsHS, Cor.17].

5.3. Di erential equations

By presenting a few results on, and examples of di erential equatias, i.e. de-
terministic continuous-time processes, this short section aims atanvincing the
reader that the emergence of BL is not at all restricted to discree-time dynam-
ics. Rather, solutions of ordinary or partial di erential equations often turn out
to be Benford as well. Recall that a (Borel measurable) functiorf : [0;+1 )! R
is Benford if and only if logjf j is u.d. mod 1.

Consider the initial value problem (IVP )

x=FX); x(0)= Xo; (5.8)

whereF : R! R is continuously di erentiable with F(0) = 0, and xo 2 R. In
the simplest caseF (x) x with some 2 R. In this case, the unique solution
of (5.8) is x(t) = xge! . Unless x o = 0, therefore, every solution of (5.8) is
Benford, by Example 4.5(i). As in the discrete-time setting, this feature persists
for arbitrary C?-functions F with FY0) < 0. The direct analog of Theorem5.8is

Theorem 5.41 ([BBH]). Let F : R! R be C? with F(0) = 0. Assume that
FY0) < 0. Then, for every xo 6 0 su ciently close to 0, the unique solution of
(5.8) is Benford.

Proof. Pick > 0 so small that xF (x) < 0 for all 0 < jxj . As F is C?,
the IVP (5.8) has a unique local solution wheneverjXgj , see Wa]. Since
the interval [ ; ] is forward invariant, this solution exists for all t 0. Fix
any Xo with 0 < jXgj and denote the unique solution of §.8) as x = x(t).
Clearly, limy +1 x(t) =0. With y:[0;+1)! Rdenedasy= x ! therefore
y(0) = X, b= yoandlimy +1 jy(t)j=+ 1 .Let := FY0)> 0and note that
there exists a continuous functiong : R! R such that F(x) = x + x?g(x).
From

X

==Y 9y

L:
it follows via the variation of constants formula that, for all t 0,
Z t
y(t) = e’ yo e Jgy() td:
0

As > 0 andg is continuous, the number
z +1
o=y e gy() td
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is well de ned. (Note that yp is simply the continuous-time analogue of the
auxiliary point X in Lemma 5.5.) Moreover, for all t > 0,

Z+l
y(t) e'yg = e Jgy()*td

Zt
+1
e gyt+ )l d Ko,

0

wherekgks =maxjy; jg(x)j, and Lemma5.7(ii) shows that y is Benford if and
only if t 7! e' yg is. An application of Corollary 4.7(ii), together with Example
4.5(i) therefore completes the proof. O

Example 5.42. (i) The function F(x) = x+ x%e x* satis es the assumptions
of Theorem25.4l Thus except for the trivial x = 0, every solution of x =
x + x*e X" is Benford.

(i) The function F(x) = x3+ x% ** is also smooth with xF (x) < 0 for
all x 6 0. Hence for everyxp 2 R, the IVP (5.8) has a unique solution with
limg +1 x(t) =0. However, FY0) = 0, and as will be shown now, this prevents
x from being Benford. To see this, x X 6 0 and integrate
2

=1 xe X

%l

from O to t to obtain the implicit representation

2

0
t 2

1+2tx3 2x3  x( )e *()'d
0

N

x2(t) = (5.9)

Note that limy 41 x(t) = 0 implies limy +1 %RS x( )e X()*d =0. Hence it
follows from (5.9) that lim {, .1 2tx(t)? = 1. Consequently, t 7! j logxj=logt is
bounded ast! +1 , and (the continuous-time version of) Proposition 4.8(iv)
shows that x is not Benford.

Informally, the fact that F%0) = O causes the solutions ofx_= F(x) to
approach the equilibrium x = 0 too slowly in order to be Benford. It is not
hard to see that this is true in general: If F is C? and xF (x) < 0 for all x 6 0
in a neighborhood of 0, and hence (0) = 0, yet F%0) = 0 then, for all jxqj
su ciently small the solution of ( 5.8) is not Benford.

(i) As the previous example showed, for solutions ofH.8) with F(0) =
FY0) = 0 to be Benford for all xo 6 0 suciently close to 0, it is necessary
that F not be C?. (In fact, F must not even beC**" for any "> 0, see BBH,
Thm.6.7].) For an example of this type, consider

X

F(X)= s x60:
1+ (log x)*
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With F(0) := 0, the function F is C! with F%0) = 0, and every non-trivial
solution of x = F(x) is Benford. To see this, x xo 6 0 and let y = logx.

Then
1

Yo Tyt

from which it is straightforward to deduce that jy(t) B 3t=In10j ! O as
t! +1 , which in turn shows that y is u.d. mod 1, i.e.,x is Benford.

(iv) Theorem5.41applies to the smooth functionF (x) =  x+ x log(1+ x?).
In this case, x = F(x) has three equilibria, namelyx = 0 and x = 3, and
consequently the solution of £.8) is Benford whenever 0< jxpj < 3.

To analyze the behavior of solutions outside of [ 3;3], X Xo > 3 and let
y:=logx 1. Then

y= 2y , log(1+10 * ZV);
In10 In10

and hence, for allt 0,

Z,
- -in1o log(1+10 * ()

t)y= e2t=In10y, 2(t  )=In10 .
y(t) Yo . e 10

1 2y( ))

R
With the usual auxiliary point Vg := yo + 0+1 e 2)=in10 g0 :

z +1
_ -1 log(1+10 t ()
t =10y — g2t )=In10
y(t) Yo ¢ 10
+le 2=m1olog(l+10 t &+ D)
0 0 In10
log 1+10 * M 1 0 ast! +1 :

By the same reasoning as in Exampld.X(iii), the function y is u.d. mod 1. Thus
by Theorem 4.2, x is Benford for jxoj > 3 as well. Note that jxj goes to +1
faster than exponentially in this case, i.e. lim, +1 jx(t)e 'j=+ 1 for every
> 0.
Also, note that the casejxpj > 3 could be rephrased in the setting of Theorem
5.41as well. Indeed, withz := x ! one nds

z=1zlog(z?)+ z zlog(l+ z%) =: B(2):

With E(0) := 0, the function B : R ! R is continuous but not C!, as
lim, ¢F(z)=z= 1 . Thus Theorem5.41does not apply. The lack of smooth-
ness offf corresponds to the fact that solutions of the IVP z = B(z), z(0) = zo,
though still unique and globally de ned, approach z = 0 faster than exponen-
tially whenever jzpj < % For a result in the spirit of Theorem 5.41 that does

apply to z = B(z) directly, see BBH, Thm.6.9].
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Just as their discrete-time counterparts, linear di erential equations in higher
dimensions are also a rich source of Benford behavior. Consider farstance the
IVP

x x=0; x(0)= xp; x(0)= vp; (5.10)
with given numbers Xo; Vo 2 R. The unique solution of (5.10) is

Xo *+ Vo Xo Vo
e+ e

XM= — 2

which clearly is Benford unlessxg = vo = 0. Using matrix-vector notation,
(5.10 can be written as

1 X X Xo
0 x X t=0 Vo

d x 0
1

Much more generally, therefore, consider the linead-dimensional ordinary dif-
ferential equation
X = AX; (5.11)

where A is areald d-matrix. Recall that every solution of (5.11) is given by
x 1t 71 e xq for somexg 2 RY, in fact xo = x(0), with the matrix exponential
e” de ned as

_X1ﬂ|.

tA
R
To ensure that every component ofx, or that, more generally, for any x;y 2 R¢
the function t 7! x> ey is either Benford or trivial, a condition reminiscent of
Benford regularity has to be imposed onA.

De nition 5.43. A matrix A 2 RY 9 is exponentially Benford regular (base
10) if e” is Benford regular for some > 0.

Note that in the simplest case, i.e. ford = 1, the matrix A = [a] is ex-
ponentially Benford regular if and only if a 6 0. Moreover, every exponen-
tially Benford regular matrix is regular. It is easily checked that a matrix A

fails to be exponentially Benford regular exactly if there exist 1; 2;:::; | in
(A)* with < ;= < ,=:::= < | such that < ;=In10 and the elements of
f= 1;2= 2:11;524= gn3Z are rationally dependent. Also, it is not hard

to see that if A is exponentially Benford regular then the set
ft 2 R:e” is not Benford regularg

actually is at most countable, i.e. nite (possibly empty) or countable. With
this, the continuous-time analog of Theorem5.32is

Theorem 5.44. Assume thatA 2 R 9 is exponentially Benford regular. Then,
for every x;y 2 RY, the function t 7! x> ey is either Benford or identically
equal zero. Also,t 7! ke"* xk is Benford for every x 6 0.
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Proof. Given x;y 2 RY, dene f : R! R according to f (t) := x> e”y. As
observed above, for almost everyr > 0 the matrix € is Benford regular and,
by Theorem 5.32, the sequenceX” (€")"y) = f (nh) is either terminating or
Benford. In the former case,f = 0 due to the fact that f is real-analytic. In the
latter case, logjf (nh)j is u.d. mod 1 for almost allh > 0, and [KN, Thm.9.6]
shows that logjf j is u.d. mod 1, i.e.,f is Benford. The function t 7! ke” xk is
dealt with similarly. O

Example 5.45. (i) The matrix A 93

nentially Benford regular, as (A)* = f 1;1g, and hence, as seen earlier, the
solution of (5.10 is Benford unlessxg = v = 0.

(i) ForA= 2 1 recall from Example5.31that (A)* =f ' ;' gwith

= %(1 +  5). HenceA is exponentially Benford regular, and every function
of the form t 7! x> €y is either Benford or vanishes identically. This is also
evident from the explicit formula

associated with 6.10 is expo-

dA = e 1 ' e’ )
T2+t 1+ 2+ ' 1

which shows that the latter is the case if and only ifx and y are proportional to

1 “and ' 1~ (or vice versa), i.e. to the two perpendicular eigendi-
rections of A.

(i) ConsiderA= _ L~ ="™° with (A)" =fl+{=In10g. In this

case A fails to be exponentially Benford regular because, with =1+ {=In10,

< =

o 22 -0

As a matter of fact, no function t 7! x> ey is Benford. Indeed,

A = o cos(t= In10) sin(t= In10) |
- sin(t= In10)  cos(t= In10)

and picking for instancex> = 0 1 andy= 1 O i’ yields

. t t
+log sin —— = ;

> AA L — t qj Th 10
logjx™ €” yj = log € sin im0 Y 1o

t
In10 ~ In10
whereg(s) = s+log jsin(s)j. As in Example 5.27iii), it can be shown that g
is not u.d. mod 1.

This example suggests that exponential Benford regularity oA may (not only
be su cient but) also be necessary in Theorem5.44 In analogy to Example 5.36
and Theorem5.37, one can show that this is indeed true ifd < 4, but generally
false otherwise; details are left to the interested reader.

Finally, it should be mentioned that at present little seems to be known
about the Benford property for solutions of partial di erential equations or more
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general functional equations such as e.g. delay or integro-di engtial equations.
Quite likely, it will be very hard to decide in any generality whether many, or
even most solutions of such systems exhibit the Benford propertyn one form
or another.

Example 5.46. A fundamental example of a partial di erential equation is the
so-called one-dimensionaheat (or di usion ) equation

@u_ Gu.
@t @3’
a linear second-order equation foru = u(t; x). Physically, (5.12) describes e.g.

the di usion over time of heat in a homogeneous one-dimensional medm. With-
out further conditions, (5.12 has many solutions of which for instance

(5.12)

u(t;x) = ox® +2ct;

with any constant ¢ 6 0, is neither Benford in t (\time") nor in x (\space"),
whereas

ct

u(t;x) = e ° " sin(cx)

is Benford (or identically zero) in t but not in x, and
u(t; x) = ec2t+ cx

is Benford in both t and x. Usually, to specify a unique solution an equation
like (5.12) has to be supplemented with initial and/or boundary conditions. A
prototypical example of an Initial-boundary Value Problem (IBVP) ¢ onsists of
(5.12 together with

u(0; x) = up(x) forall 0 <x< 1;
(5.13)

u(t;0)=u(t;1)=0 forall t> 0O:
Physically, the conditions (5.13 may be interpreted as the ends of the medium,
at x =0 and x = 1, being kept at a reference temperatureu = 0 while the initial
distribution of heat (or temperature etc.) is given by the function ug : [0;1]! R.
It turns out that, under very mild assumptions on ugp, the IBVP consisting of
(5.12 and (5.13 has a unique solution which, for anyt > 0, can be written as

X 1 2024 .
u(t;x) = Ly Une "tsin(nx );
Rl . L
where up = 2 uo(s)sin( ns )ds. From this it is easy to see that, for every
0 x 1, thefunctiont 7! u(t;x) either vanishes identically or else is Benford.
Another possible set of initial and boundary data is

u(0; x) = up(x) forall x> 0;

5.14
u(t;0)=0 forall t> O; ( )
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corresponding to a semi-in nite one-dimensional medium kept at zeo temper-
ature at its left end x = 0, with an initial heat distribution given by the (in-
tegrable) function ug : [0;+1 ) ! R. Again, (5.12 together with (5.14) has a
unigue solution, for anyt > 0 given by

Z .,
u(t;x) = p— uo(y) e (x y)?=(41) e (x+y)?=(4t) dy:
2t o
. R+1 . . .
Assuming , © yjuo(y)jdy < +1 , itis not hard to see that, for every x 0,
X Z+l
limy +1 9720t x) = Sp= . yuo(y)dy;

and hence, for any xedx 0, the function u is not Benford in time. On the
other hand, if for example up(x) = xe * then a short calculation con rms that,

for everyt> 0,
limy: +1 gultx) e
X
showing that u is Benford in space. Similarly, if ug(x) = 1j0.1)(X) then
r_
limy, 1 xe D=@0yy)y= L

holds for everyt > 0, and againu is Benford in space.

6. Benford's Law for random processes

The purpose of this chapter is to show how BL arises naturally in a vaiety of
stochastic settings, including products of independent random veables, mix-
tures of random samples from di erent distributions, and iteration s of random
maps. Perhaps not surprisingly, BL arises in many other important elds of
stochastics as well, such as geometric Brownian motion, order statics, ran-
dom matrices, levy processes, and Bayesian models. The predechapter may
also serve as a preparation for the specialized literature on thesedganced topics
[EL, LSE, MN, Schul].

6.1. Independent random variables

The analysis of sequences of random variables, notably the specizdse of (sums
or products of) independent, identically distributed (i.i.d.) sequences of ran-
dom variables, constitutes an important classical topic in probability theory.
Within this context, the present section studies general scenaris that lead to
BL emerging as an \attracting” distribution. The results nicely comp lement the
observations made in previous chapters.
Recall from Chapter 3 that a (real-valued) random variable X by de nition

is Benford if P(S(X) t)=logt forall t 2 [1;10). Also, recall that a sequence
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(Xn) of random variables convergesn distribution to a random variable X,
symbolically X P X, iflimpn  P(Xp t) = P(X t) holds for every
t 2 R for which P(X = t) = 0. By a slight abuse of terminology, say that (X,)

converges in distribution to BL if S(X ) P S(X), where X is a Benford random
variable, or equivalently if

limar  P(S(X,) t)=logt forallt?2][1;10):

Another important concept is almost sure convergence. Speci clly, the se-
quence K,) converges to X almost surely (a.s), in symbols X, > X, if

P(iman  Xn = X) = 1. It is easy to check that X, 3% 1 implies X, P X.

The reverse implication does not hold in general, as is evident from any.i.d.

sequence X ) for which X is not constant: In this case, all X, have the same
distribution, so trivially Xp P X1, yet P(limny X, exists) =0.

An especially simple way of generating a sequence of random variablés
this: Fix a random variable X, and set X, := X" for every n 2 N. While the
sequence X ) thus generated is clearly not i.i.d. unlessX =0 a.s.or X =1
a.s., Theorems4.10and 4.17 imply

Theorem 6.1. Assume that the random variableX has a density. Then:
(i) (X ™) converges in distribution to BL.
(i) With probability one, (X ") is Benford.

Proof. To prove (i), note that the random variable log jX j has a density as well.
Hence, by Theorem4.17

P(S(Xn) t)= P(HogjX"ji logt)
= P(nlogjXiji logt) ! logt asn!l

holds for all t 2 [1;10), i.e. (X,) converges in distribution to BL.
To see (ii), simply note that logjXj is irrational with probability one. By
Theorem 4.10, therefore, P (X ") is Benford = 1. O

Example 6.2. (i) Let X be uniformly distributed on [0;1). For every n 2 N,

t=n 1
Fs(xn)(t)z W, 1 t< 10,

and a short calculation, together with the elementary estimate etet 11t < % for

all t> 0 shows that

o= 1 "% In10
100 1 2n

Fsxxn)(t) logt ! 0 asn!l ;

and hence X ") converges in distribution to BL. Since P(log X is rational) = 0,
the sequence X ") is Benford with probability one.
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(i) Assume that X =2 a.s. Thus Px = », and X does not have a density.
For everyn, S(X ") = 10M092i with probability one, so (X ") does not converge
in distribution to BL. On the other hand, ( X") is Benford a.s.

Remarks. (i) In the spirit of Theorem 6.1, several results from Chapter5 can
be extended to a stochastic context. For a prototypical result, consider the
map T : x 7! 1+ x? from Example 5.13ii). If X has a density, then so has
Y :=log jXj. Recall from the proof of Theorem5.12 that

logjT"(X)j 2"Y ¥ 0 asn!1 ;

with a uniquely de ned Y = h(Y), and a close inspection of the maph shows
that Y has a density as well. Hence by Theoremg.2 and 4.17, O (X) =

T" 1(X) converges in distribution to BL, whereas Theorem5.12implies that
P(Or (X)is Benford) = 1.

(i) For any random variable, it is not hard to see that assertion (ii) in T he-
orem 6.1 holds whenever (i) does. In the case of an i.i.d. sequenc&y), the
convergence of X,,) in distribution to BL also implies that ( X ) is Benford for
all n, so by independence it is easy to see thatX) is Benford with proba-
bility one. In general, however, these two properties are indepenght. For one
implication see Example6.2(ii). For the other implication consider the constant
sequence X; X; X;::: ) which is evidently not Benford, but if X is a Benford
random variable then (X) trivially converges in distribution to BL. |

The sequence of random variables considered in Theoref1l is very special
in that X " is the product of n quantities that are identical, and hence dependent
in extremis. Note that X " is Benford for all n if and only if X is Benford. This
invariance property of BL persists if, unlike the case in Theorem6.1, products
of independent factors are considered.

Theorem 6.3. Let X, Y be two independent random variables withP(XY =
0)=0. Then:

(i) If X is Benford then so isXY .

@iy If S(X) and S(XY ) have the same distribution, then eitherlogS(Y) is
rational with probability one, or X is Benford.

Proof. As in the proof of Theorem4.13 the argument becomes short and trans-
parent through the usage of Fourier coe cients. Note rst that logS(XY) =
HogS(X) + log S(Y)i and, since the random variablesX := log S(X) and
Yo :=log S(Y) are independent,

Pioysxy ) = Pixosvoi = Bxo By, : (6.1)

To prove (i), simply recall that X being Benford is equivalent toPx, = o¢.1,

and henceldxo(k) = 0 for every integer k 6 0. Consequently, P.O\g s(xy (k) =0
as well, i.e., XY is Benford.
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To see (ii), assume thatS(X ) and S(XY ) have the same distribution. In this
case, 6.1) implies that

B, (k) 1 By, (k) =0 forall k2 Z:

If ﬁYo(k) 6 1 for all non-zero k, then ﬁxo = do;l, i.e., X is Benford. Alterna-

tively, if Flyo(ko) = 1 for some ko 6 0 then, as seen in the proof of Theorem
4.13ii), PYO(“%O].Z) =1, hence jkojYo = jkojlogS(Y) is an integer with proba-
bility one. O
Example 6.4. Let V, W be independent random variables distributed accord-
ing to U(0;1). Then X :=10Y and Y := W are independent and, by Theorem
6.3(), XY is Benford even thoughY is not. If, on the other hand, X := 10V
and Y := 10! V then X and Y are both Benford, yet XY is not. Hence the
independence ofX and Y is crucial in Theorem 6.3(i). It is essential in asser-
tion (i) as well, as can be seen by lettingX equal either 10 2 * or 10> 2 with
probability 1 each, and choosing’ := X 2. Then S(X) and S(XY )= S(X 1)
have the same distribution, but neither X is Benford nor logS(Y) is rational
with probability one.

Corollary 6.5. Let X be a random variable withP(X =0) =0, and let be
an irrational number. If S(X) and S( X ) have the same distribution, i.e., ifX
and X have the same distribution of signi cant digits, then X is Benford.

Now consider asequence(X ) of inde@endent random variables. From The-
orem 6.3 it is clear that if the product j“:1 Xj is Benford for all su ciently
large n then one of the factorsX; is necessarily Benford. Clearly, this is a very
restrictive assumption, especially in the i.i.d. case, whereall X; would have
to be Benford. Much greater applicability is achieved by requiring j":l X; to
conform to BL only asymptotically. As the foy?wing theorem, an i.i.d. counter-
part of Theorem 6.1, shows, convergence of ?:1 X; in distribution to BL is
a very widespread phenomenon. The result may help explain why BL ¢&n ap-
pears in mathematical models that describe e.g. the evolution of stk prices by
regarding the future price as a product of the current price timesa large number
of successive, multiplicative changes in price, with the latter being mdeled as
independent continuous random variables.

Theorem 6.6. Let (X,) be an i.i.d. sequence of random variables that are not
purely atomic, i.e. P(X1 2 C) < 1 for every countable setC R. Then:

® anzl Xj converges in distribution to BL.

(i) With probability one, an=1 X;j is Benford.

Proof. Let Y, =log jXnj. Then (Y,) is an i.i.d. sequence of ranqgm variables
that a6> not purely atomic. By Theorem 4.13iii), the sequegce of j”:1 Y, =
. n n

logj i=1 X;jj converges in distribution to U(0; 1). Thus j=1 Xj converges
in distribution to BL.
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To prove (i), let Yo be u.d. mod 1 and independent of ¥, )n2n, and de ne
Sp=hYo+ Yo+ i+ Yi; j2No:

Recall from Theorem 4.13() that S; is uniform on [0; 1) for everyj 0. Also
note that, by de nition, the random variables Yj.1;Yj+2;::: are independent
of §j. The following argument is most transparent when formulated in ergodic
theory terminology. (For an alternative approach see e.g. RRo].) To this end,
endow

T1 =[0;1)™ = f(xj)j2n, 1 Xj 2 [0;1)forall j g

with the -algebra
@]
B: = j2NOB[O;l)
= fBo B1 ::: By [0;1) [0;1) ::::j 2 No; Bo;By1;:::;Bj2B[0;1)g :

A probability measure P; is uniquely de ned on (T1 ;B; ) by setting
P: (Bo B1 ::: Bj [0;1) [0;1) ::)= P(So2 Bo;S12By1;:::;5 2 Bj)

for all j 2 No and Bg;By;:::;B;j 2 B[0;1). The map 1 : Ty ! Ti with

1 (Xj) = (Xj+1), often referred to as the (ne-sided left shift on T, (cf.
Example 5.25), is clearly measurable, i.e. ; 1(A) 2 By for every A 2 B; . As
a consequence, (1 ) P; is a well-de ned probability measure on (T1 ;B3 ). In
fact, since S; is u.d. mod 1 and (Y,) is an i.i.d. sequence,

(1)P1(Bo B1 ::: Bj [0;1) [0;1) ::2)
=P; ([0;1) Bo By ::: Bj [0;1) [0;1) ::2)

=Py (Bo By ::: By [0;1) [0;1) ::2);

showingthat( 1) P1 = Py ,i.e., 1 isP; -preserving. (In probabilistic terms,
this is equivalent to saying that the random process §;);2n, is stationary, see
[Sh, Def.V.1.1].) It will now be shown that 1 is evenergodic with respect to
P1 . Recall that this simply means that every invariant set A 2 B; has measure
zero or one, or, more formally, thatP; ( ; 1(A) A) =0implies Py (A) 2 f 0;1g;
here the symbol denotes the symmetric di erence of two sets, i.e A B =
AnB [ BnA. Assume, therefore, thatP; ( ; 1(A) A) =0 for some A 2 B; .

such that
Pr A ( Bo By ::: By [0;1) [0;1) ::2) <™:

For notational convenience, IetAu =Bg B:1 ::: By [0;1) [0;1) :::2B1,
and note that P ;!(A) 1(A) <" for all j 2 Npo. Recall now from
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in distribution to  U(0; 1). Thus, for all su ciently large M,
Pr AS\ [ M(A)  Pp (ASP (A) <" (6.2)

and similarly P; A-\ ;M (Af) P; (A-)P1 (Af) <".(Note that ( 6.2) may
not hold if X1, and hence alsoYs, is purely atomic, see for instance Example
4.14(ii).) Overall, therefore,

2Py (Ar) 1 Py (A)  2'+P; A M(AY)
2'+ Py (A A)+ Pt A M(A) P M(A) M(AY)
< 4"

and consequentlyP; (A) 1 P; (A) < 3"+ "2. Since" > 0 was arbitrary,
P1 (A) 2 f 0;1g, which in turn shows that ; is ergodic. (Again, this is equiv-
alent to saying, in probabilistic parlance, that the random process §j)j2n, is
ergodic, see Bh, Def.V.3.2].) By the Bij{kho Ergodic Theorem, for every (mea-

surable) function f : [0;1)! C with Oljf (x)jdx < +1,

1X n Za
= . | |
- j:01‘(x,). . f(x)dx asn!l

holds for all (x;)j2n, 2 T1 , with the possible exception of a set ofP; -measure
zero. In probabilistic terms, this means that

. 1X n Z1
limn o J_zof(S,-): , f(x)dx a.s. (6.3)

Assume from now on thatf is actually continuous with lim s+, f (x) = f (0), e.g.
f(x) = €™ . For any suchf, as well as anyt 2 [0;1) and m 2 N, denote the
set
: 1X n 4 1
12 :limsup ,p, =  f H+Y (1)+ o0+ Y(0)i f(x)dx < —
’ n j=1 0 m

R
simply by  +tm . According to (6.3), 1 = 01 P( ttm )dt,and henceP( ttm )=
1 for a.e.t 2 [0;1). Sincef is uniformly continuous, for everym 2 there exists
tm > OsuchthatP( ¢, m)=1and ¢, m f: 0:bm=2¢c- From

\ \

1=P Lo P . 0:bm= 1;
m 2 fit m;m m 2 f; 0;bm=2c

it is clear that

z
X 1

liman % ,"1f Wi+ i+ Yii = f(x)dx as. (6.4)
0
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As the intersection of countably many sets of full measure has itdéfull measure,
choosingf (x) = €2 | k 2 Z in (6.4) shows that, with probability one,

X Z,
. 1A n Y
lim g Toa 2k (YatimeY)) o e dx=0 forall k2Z;k60:
- 0
(6.5)
By Weyl's criterion [ KN, Thm.2.1], (6.5) is equivalent to
X n
P ~Y; isud.mod1l =1:
j=1
In other words, (Qj":1 Xj) is Benford with probability one. O

Remarks. (i) As has essentially been observed already in Exampld.14(ii), for
Theorem 6.6(i) to hold it is necessary and su cient that

PlogjX1j2 a+ +Z)< 1 foralla2 Rym 2 N: (6.6)
On the other hand, it is not hard to see that (ii) holds if and only if
P(ogjXij2 1z)< 1 forallm2N; (6.7)

which is a strictly weaker assumption than (6.6). Clearly, if X, is not purely
atomic then (6.6), and hence also 6.7) hold. However, if eg. X1 = 2 with
n

probability one then (6.6) does not hold, and correspondingly i=1 XQ =(2")
does not converge in distribution to BL, whereas 6.7) does hold, and j”:1 X
is Benford with probability one, cf. Example 6.2(ii).

(ii) For more general results in the spirit of Theorem 6.6 the reader is referred
to [Schal, Sche2]. |

Example 6.7. (i) Let(Xp) be ani.i.d. sequence withX ; distributed according
to U(0;a), the uniform distribution on [0 ;a) with a > 0. The k-th Fourier
coe cient of Prg x,i IS

In10
\ ) — 2{ loga___ 'Y . .
Phlogxll(k) € In10+2{k ’ kZZ,
so that, for every k 6 0,
In10
P i(K) = pP—~—7"ro—
>’||OgX1I( ) | (In 10)2+4 2k2
As seen in the proof of Theorem4.13iii), this implies that an=1 Xj converges
in distribution to BL, a fact apparently rst re@orded in [ AS]. Note also that
ElogXy =log &. Thus with probability one, 1-”21 Xj convergesto O or +1 ,

depending on whethera < e or a > e. In fact, by the Strong Law of Large
Numbers [CT], r
N X; gs: a

i=1 e
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holds for everya > 0. If a= e then

o n . Yo
P liminf nip i=1 Xj =0 and limsup, i1

Qn

showing that in this case the product =1 Xj does not converge but rather
attains, with probability one, arbitrarily smau?as well as arbitrarily lar ge positive

values. By Theorem®6.6(ii), the sequence 1-”:1 X; s a.s. Benford, regardless
of the value of a.

(i) Consider an i.i.d. sequence X,) with X distributed according to a
log-normal distr@ution such that log 351 is standaf;i normal. Denote byf, the
density of log */_; Xj . Since log™~_; Xj = = [, logX; is normal with
mean zero and variancen,

fn(s)= pl—x e (k+9’=@n . o gs<1;
n 5n k2z ’ ’

from which it is straightforward to deduce that
limpy fa(s)=1; wuniformlyin0 s<1:

Consequently, for allt 2 [1;10),

Y n D Y n E
P S X t =P log = X logt
j=1 j=1
z log t z log t
= fn(s)ds ! 1lds = logt;
0 0
ie., an=1 X; converges in distribution to BL. By Theorem 6.6(ii) also
Y n
_Xj isBenford =1;
Qn _Pa _ : .

even thoughElog ~;_; X; = ;_; ElogX; =0, and hence, as in the previous

example, the sequence jn=1 X;j a.s. oscillates forever between 0 and % .

Having seen Theorem6.6, the reader may wonder whether there is an anal-
ogous result forsums of i.i.d. random variables. After all, the focus in classical
probability theory is on sums much more than on products. Unfortunately, the
statistical behavior of the signi cands is much more complex for suns than for
products. The main basic reason is that the signi cand of the sum oftwo or
more numbers depends not only on the signi cand of each each nundp (as in
the case of products), but also on theirexponents For example, observe that

S310°+2 10° =3:265= S 3 10 +2 107 ;
while clearly

S310° 2 10 =6= S 3 10* 2 10 :
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Practically, this di culty is re ected in the fact that for positive rea | numbersu,
v, the value of log(u + v), relevant for conformance with BL via Theorem 4.2, is
not easily expressed in terms of log and logv, whereas log(iv) = log u +log v.

In view of these di culties, it is perhaps not surprising that the analo g of
Theorem 6.6 for sums arrives at a radically di erent conclusion.

Theorem 6.8. Let (X,) be an i.i.d. sequence of random variables with nite
variance, that is EX? < +1 . Then:

P
(i) Not even a subsequence of j”:1 X; converges in distribution to BL.
P
(i) With probability one, jn_l Xj is not Benford.

Prqgf Assume rst that EX; 6 0. By the Strong Law of Large Numbers,
nj=L Xj converges as., and hence also in distribution, to the constant
JEX1]. Since
X n D X n E 1 X n
n

logS (=1 XJ = log i1 XJ = log

L X; +logn ;

P, . e
any subsequence ofS =1 X either does not converge in distribution
at all or else converges to a constant; in neither case, g;erefo;res the I|m|t a
Benford random variable. Since, with probability one, ~ ;_; Xj ! +1,
follows from

X n X n g
log X Iogn:Iog% o X i EX4j;

together with Lemma 4.3(i) and Proposition 4.§(iii) that P j”:1 Xj) is, with
probability one, not Benford.

It remains to consider the caseEX; = 0. Without loss of gqurallty it can
be assumed thatEX? = 1. By the Central Limit Theorem p% j=1 Xj con-
verges in distribution to the standard normal distribution. Thus fo r su ciently
large n, and up to a rotation (i.e. an addition mod 1) of [0;1), the distri-
bution of Hogj j”:l Xiji diers by arbitrarily little from the distribution of
Y := HogjZji, whereZ is standard normal. Intuitively, it is clear that Py 6 .1,
i.e., Y is not uniform on [0; 1). To see this more formally, note that

X
Frv(®=2 10°* K 10¢ ; 0 s<1; (6.8)

with (= Fz) denoting the standard normal distribution function, see Example
4.1€(ii). Thus

jFy(s) si Fy(s) s>2 (10°% (1) s=:R(s); 0 s<1;

and sinceR is concave on [01) with R(0) = 0 and RY0) = %'g—%o 1=
0:1143:::> %, it follows that

maxo s<1jFy(S) Sj> maxo s<1R(S)> 0;
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showing that indeed Py 6 .1, and hence P j”:1 Xj does not converge in
distribution to BL.

The veri cation of (ii) in the case EX; = 0 uses an almost sure version
of the Central Limit Theorem, see [LP]. With the random variables X, de-
rll_;ed on some (abstract) probability space ( ;A;P), let , == | 2

=1 Xj j(!) isBenford . By Theorem 4.2 and Proposition 4.8(iii), the se-

quence xn(') with
1 X on
xn(!):logp—ﬁ _lX,-(!); n2N;
]:

isu.d. mod 1forall! 2 ;. Foreveryinterval [a;b) [O; 1), therefore,

1 XN Lpapy Xa(!)

— I b a asN!1
InN n=1 n

(Recall the remark on p.18) However, as a consequence of P, Thm.2], for
every fa;b)  [0;1),

1 X N 1pp Xn

gs: .
o T R ) Fy(a)

with Fy given by (§, ) As shown above,Fy (s) 6 s, and thereforeP( 1) =0
In other words, P ( le Xj)is Benford = 0. O

Example 6.9. (i) Let (X,) be an i.i.d. sequence withP(X; = I9) = P(X1 =
1) = 1. Then EX; = EX? = 1, and by Theorem 6.8(i) neither jnpl Xj nor
any of its subsequences converges in distribution to BL. Note that 1-”:1 X is
binomial with parameters n and %, i.e. foralln 2 N,

X
) r|1 ;o 1=05L:0n
The Law of the Iterated Logarithm [ CT] asserts that

X n

p—
j:lXj:%+Yn nininn foralln 3; (6.9)

where the sequence,) of random variables is bounded, in factjY, | Pl a.s. for
all n. From (6.9) it is clear that, with probability one, the sequence i=1 Xj
is not Benford.

(i) Let (Xp) be an i.i.d. sequence of Cauchy random variables. AEjX;j is
even irpnite, Theorem 6.8 does not apply. However, recall from Exag1p|e4.14(i)
that 2 ', X; is again Cauchy, and hence the distribution oflogj(" [; X;)ji
is but a rotated version of Pyqq i, ji » the density of which is given by

In10 X 1

Fhiog i () = —— k2z cosh (s+ k)In10 0 s< L
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The density fogjx,ji IS @ smooth function, and

In10 X 2 In10 40 2
frogixi @ = — | Ig710 ¥ > 101 7Y 1o

showing that logj P [s1 Xjj is notu.d. mod 1. Hence the sequenceP e

does not converge in distribution to BL, and nor does any of its subsquences.
This example shows that the conclusions of Theoren6.8 may hold, at least

in parts, even if the X, do not have nite rst, let alone nite second moments.

Remark. Recall from the remark on p.18 that a sequence failing to be Benford
may conform to a Welgker form of BL. As seen above, under mild coritions the
stochastic sequence j”:1 Xj is not Benford. Under the appropriate assump-
tions, however, it does obey a weaker form of BL, seeSgha3. |

6.2. Mixtures of distributions

The characterizations of the Benford distribution via scale-, base and sum-
invariance, given in Chapter 4, although perhaps mathematically satisfying,
hardly help explain the appearance of BL empirically in real-life data. Applica-
tion of those theorems requires explaining why the underlying data isscale- or
base-invariant in the rst place. BL nevertheless does appear in may real-life
datasets. Thus the question arises: What do the population data bthree thou-
sand U.S. counties according to the 1990 census have in common withe usage
of logarithm tables during the 1880s, numerical data from newspagr articles
of the 1930's collected by Benford, or universal physical constaa examined
by Knuth in the 1960's? Why should these data exhibit a logarithmically dis-
tributed signi cand or equivalently, why should they be scale- or base-invariant?

As a matter of fact, most data-sets do not follow BL closely. Benfod already
observed that while some of his tables conformed to BL reasonably eill, many
others did not. But, as Raimi [Ral] points out, \what came closest of all, how-
ever, was the union of all his tables." Combine the molecular weight takes with
baseball statistics and drainage areas of rivers, anthen there is a very good t.
Many of the previous explanations of BL have rst hypothesized sane universal
table of constants, such as Raimi's IRal] \stock of tabular data in the world's
libraries", or Knuth's [ Kn] \imagined set of real numbers", and then tried to
prove why certain speci ¢ sets of real observations were represitative of either
this mysterious universal table or the set of all real numbers. Wha seems more
natural though is to think of data as coming from many di erent dist ributions.
This was clearly the case in Benford's original study. After all, he hadmade
an e ort \to collect data from as many elds as possible and to include a wide
variety of types", noting that \the range of subjects studied and tabulated was
as wide as time and energy permitted".

The main goal of this section is to provide a statistical derivation of BL, in
the form of a central-limit-like theorem that says that if random samples are
taken from di erent distributions, and the results combined, then | provided
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the sampling is \unbiased" as to scale or base | the resulting combined samples
will converge to the Benford distribution.

Denote by M the set of all probability measures on R;B). Recall that a
(real Borel) random probability measurg abbreviated henceforth asr.p.m., is a
function P : | M, de ned on some underlying probability space ( ;A;P),
such that for every B 2 B the function ! 7! P(! )(B) is a random variable.
Thus, for every! 2 , P(!)is a probability measure on (R;B), and, given any
real numbersa; b and any Borel setB,

fl :a P()B) bg2A:

see e.g.Ka] for an authoritative account on random probability measures. In
more abstract conceptual terms, an r.p.m. can be interpreted agollows: When
endowed with the topology of convergence in distribution, the setM becomes
a complete and separable metrizable space. Denote (B, its Borel -algebra,
de ned as the smallest -algebra containing all open subsets oM. Then P P
simply is a probability measure on (M;By ).

Example 6.10. (i) Let P be an r.p.m. that is U(0; 1) with probability % and
otherwise isexp(1), i.e. exponential with mean 1, henceP(X >t )=min(1 ;e !)
forall t 2 R, see Example3.1Q(i,ii). Thus, for every ! 2 , the probability mea-
sureP is either U(0; 1) or exp(1), and P P=U(0;1) = P P=exp(1) = % For
a practical realization of P simply ip a fair coin | if it comes up heads, P(!)is
a U(0; 1)-distribution, and if it comes up tails, then P is anexp(1)-distribution.

(i) Let X be distributed according to exp(1), and let P be an r.p.m. where,
for each! 2 , P(!) is the normal distribution with mean X (! ) and variance
1. In contrast to the example in (i), here P is continuous, i.e.,P(P = Q) =0
for each probability measureQ 2 M.

The following example of an r.p.m. is a variant of a classical constructia due
to L. Dubins and D. Freedman which, as will be seen below, is an r.p.m. leding
to BL.

Example 6.11. Let P be the r.p.m. with support on [1;10), i.e.P [1;10) =1
with probability one, de ned by its (random) cumulative distribution f unction
Fp, i.e.

Fp(t):= Feqy(= P(1) [Lt] 5 1 t< 10;

as follows: SetFp (1) = 0 and Fp(10) = 1. Next pick Fp (10?) according
to the uniform distribution on [0 ;1). Then pick Fp (104 and Fp (10%4) in-
dependently, uniformly on O;Fp (10*72) and Fp (10'72);1 , respectively, and
continue in this manner. This construction is known to generate an rp.m. a.s.
[DF, Lem.9.28], and as can easily be seen, is dense in the set of all probalyilit
measures on [1;10); B[1;10) , i.e., it generates probability measures that are
arbitrarily close to any Borel probability measure on [1; 10).

The next de nition formalizes the notion of combining data from dier ent
distributions. Essentially, it mimics what Benford did in combining baseball
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statistics with square-root tables and numbers taken from newsppers, etc. This
de nition is key to everything that follows. It rests upon using an r.p.m. to

generate a random sequence of probability distributions, and thersuccessively
selecting random samples from each of those distributions.

De nition 6.12.  Let m be a positive integer andP an r.p.m. A sequence of
P -random m-samplesis a sequenceX,) of random variables on ( ; A;P) such
that, for all j 2 N and some i.i.d. sequenceR,) of r.p.m.s with P; = P, the
following two properties hold:

Given P; = Q; the random variables X 1ym+1:X( nm+2:::5 Xjm  (6.10)

The variables X(j; 1ym+1;X(j 1ym+2::::;Xjm are independent of  (6.11)

Thus for any sequence X,) of P-random m-samples, for eachl 2 in the
underlying probability space, the rst m random variables are a random sample
(i.e., i.i.d.) from Py(!), a random probability distribution chosen according to
the r.p.m. P; the secondm-tuple of random variables is a random sample from
P>(! ) and so on. Note the two levels of randomness here: First a probdlty is
selected at random, and then a random sample is drawn from this distbution,
and this two-tiered process is continued.

Example 6.13. Let P be the r.p.m. in Example 6.1((i), and let m = 3. Then

a sequence ofP-random 3-samples is a sequenceX() of random variables
such that with probability % X1;X2; X3, are i.i.d. and distributed according
to U(0;1), and otherwise they are i.i.d. but distributed according to exp(1);
the random variables X 4; X5; X are again equally likely to be i.i.d. U(0;1) or
exp(1), and they are independent of X 1; X ,; X3, etc. Clearly the (X,) are all
identically distributed as they are all generated by exactly the sameprocess.
Note, however, that for instance X ; and X, are dependent: Given thatX; > 1,
for example, the random variableX ; is exp(1)-distributed with probability one,

whereas the unconditional probability that X, is exp(1)-distributed is only %

Remark. If (X,) is a sequence oP-random m-samples for soman and some
r.p.m. P, then the X, are a.s. identically distributed according to the distri-
bution that is the average (expected) distribution of P (see Proposition6.15
below), but they are not in general independent (see Examplé.13. On the
other hand, given (P1; P2;:::), the (X,) are a.s. independent, but clearly are
not in general identically distributed. |

Although sequences ofP -random m-samples have a fairly simple structure,
they do not t into any of the familiar categories of sequences of radom vari-
ables. For example, they are not in general independent, exchaegble, Markov,
martingale, or stationary sequences.

Example 6.14. Assume that the r.p.m. P is, with equal probability, the Dirac
measure concentrated at 1 and the probability measure}( 1+ 2), respectively,
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ie.P(P= 1)=PP=1(1+ ) = 1. Let(Xy)be a sequence oP-random
3-samples. Then the random variablesX 1; X,;::: are
not independent as

P(X2=2)=} but P(X,;=2jX1=2)=

[

5 ;

N

not exchangeableas

9_3
P (X1:X2:X3:X4)=(1:1,12) = 278 7= P (X1:X2: X5 X4)=(2:221)

not Markov as

= P(X3=1jX2=1);

ol o

. 9
P(X3=1JX1= X2=1)= 1—06

not martingale as

E(X2jX1=2) = but EX; =

NN

not stationary as

9

P (X1;X2;X3)=(1;L1) = 16

6 20= P (XpiX5iXa) = (1 11)

Recall that, given an r.p.m. P and any Borel setB, the quantity P(B) is
a random variable with values between 0 and 1. The following propertyof the
expectation of P(B), as a function of B, is easy to check.

Proposition 6.15. Let P be an r.p.m. Then EP, de ned as
z

(EP)(B):= EP(B)= P(!)(B)dP(') forall B2B;

is a probability measure on(R;B).

Example 6.16. (i) Let P be the r.p.m. of Example 6.1Q()). Then EP is the
Borel probability measure with density

8 9
>0 ift< 0; >
. B 1 1
fep(t) = S %"' %e t ifo t< 1; S = 51[0;1)(t)+ ée t1[0;+1); t2R:

let ift 1; :

(i) Consider the r.p.m. P of Example 6.1Q(ii), that is, P (! ) is normal with
mean X (! ) and variance 1, whereX is distributed according to exp(1). In this
case,EP is also a.c., with density

p 2t

fer () = P= et Ve d =er'1 (1 t); t2R:
0
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(i) Even if P is a.c. only with probability zero, it is possible for EP to be
a.c. As a simple example, letX be exp(1)-distributed and P = %( x * x).
Then P(P is purely atomic) = 1, yet EP is the standard Laplace (or double-
exponential) distribution; i.e., EP is a.c. with density

el ti
2

pr (t) = o t2R:

The next lemma shows that the limiting proportion of times that a sequence
of P-random m-sample falls in a (Borel) setB is, with probability one, the
averageP-value of the setB, i.e., the limiting proportion equals EP (B). Note
that this is not simply a direct corollary of the classical Strong Law of Large
Numbers as the random variables in the sequence are not in geneiiadependent
(see Examples6.13and 6.14).

Lemma 6.17. Let P be an r.p.m., and let (X,) be a sequence oP-random
m-samples for somem 2 N. Then, for every B 2 B,

#f1 n N :X,2Bg gs:

EP(B) asN !1

N
Proof. Fix B2 B andj 2 N,andletY; =#f1l i m:X;j pym+i 2 Bg. It
is clear that
_ #f1 n N:X,2Bg 1. 1X n
limn 1 N g = plim = Y (6.12)

whenever the limit on the right exists. By (6.10), given P;, the random variable
Y; is binomially distributed with parameters m and E P; (B) , hence a.s.

EY, = E E(Y;jP;) = E mP;(B) = mEP(B) (6.13)

sinceP; has the same distribution asP. By (6.11), the Y ase independent. They
are also uniformly bounded, as0 Y; mforall j, hence j1:1 E\(J-Z:j2 < +1.
Moreover, by (6.13 all Y; have the same mean valuenEP (B). Thus by [CT,
Cor.5.1]

1x n s
F( ¥ mEP(B) asn!l ; (6.14)
]:
and the conclusion follows by 6.12) and (6.14). O

Remark. The assumption that eachP; is sampled exactlym times is not essen-
tial: The above argument can easily be modi ed to show that the samecon-
clusion holds if the j -th r.p.m. is sampled M; times where (M;) is a sequence
of independent, uniformly bounded N-valued random variables which are also
independent of the rest of the process. |

The stage is now set to give a statistical limit law (Theorem6.20 below) that
is a central-limit-like theorem for signi cant digits mentioned above. Roughly
speaking, this law says that if probability distributions are selected & random,
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and random samples are then taken from each of these distributionin such a
way that the overall process is scale- or base-neutral, then theigni cant digit
frequencies of the combined sample will converge to the logarithmicistribution.
This theorem may help explain and predict the appearance of BL in sighcant
digits in mixtures of tabulated data such as the combined data from Benford's
individual datasets, and also his individual dataset of nhumbers gleaad from
newspapers.

In order to draw any conclusions concerning BL for the process afampling
from di erent distributions, clearly there must be some restriction on the un-
derlying r.p.m. that generates the sampling procedure. Otherwiseif the r.p.m.
is, say, U(0; 1) with probability one, for example, then any resulting sequence
of P-random m-samples will be i.i.d. U(0;1), and hence a.s. not Benford, by
Example 3.1Q(i). Similarly, it can easily be checked that sequences dP -random
m-samples from the r.p.m.s in Example6.10(i) and (ii) will not generate Benford
sequences. A natural assumption to make concerning an r.p.m. in B context
is that on averagethe r.p.m. is unbiased (i.e. invariant) with respect to changes
in scale or base.

De nition 6.18.  Anr.p.m. P hasscale-unbiased (decimal) signi cant digitsif,
for every signi cand event A, i.e. for every A 2 S, the expected value ofP (A)
is the same as the expected valu®( A ) for every > 0, that s, if

EP(A) =EP(A) forall > 0;A2S:
Equivalently, the Borel probability measure EP has scale-invariant signi cant
digits.
Similarly, P has base-unbiased signi cant (decimal) digitsif, for every A 2 S

the expected value ofP (A) is the same as the expected value oP (A™") for
everyn 2 N, that is, if

EPAY™) =EP(A) foraln2N;A2S;

i.e., if EP has base-invariant signi cant digits.
An immediate consequence of Theorem4.20and 4.30is

Proposition 6.19. Let P be an r.p.m. with EP(f0g) = 0. Then the following
statements are equivalent:

(i) P has scale-unbiased signi cant digits.

(i) P(f 10¢:k2 Zg) =0, or equivalently S P(f 1g) = 0 holds with probabil-
ity one, and P has base-unbiased signi cant digits.

(i) EP(A)= B(A) forall A2 S, i.e., EP is Benford.

Random probability measures with scale- or base-unbiased signi candigits
are easy to construct mathematically (see Example6.22 below). In real-life
examples, however, scale- or base-unbiased signi cant digits shiounot be taken
for granted. For instance, picking beverage-producing compang&in Europe at
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random, and looking at the metric volumes of samples ofm products from each
company, is not likely to produce data with scale-unbiased signi cant digits,
since the volumes in this case are probably closely related to liters. Gwersion
of the data to another unit such as gallons would likely yield a radically di erent
set of rst-digit frequencies. On the other hand, if species of marmals in Europe
are selected at random and their metric volumes sampled, it seems mm likely
that the latter process is unrelated to the choice of human units.

The question of base-unbiasedness of signi cant digits is most intesting
when the units in question are universally agreed upon, such as theumbers of
things, as opposed to sizes. For example, picking cities at random anlooking
at the number of leaves ofm-samples of trees from those cities is certainly less
base-dependent than looking at the number of ngers ofm-samples of people
from those cities.

As will be seen in the next theorem, scale- or base-unbiasednessaof r.p.m.
imply that sequence ofP -random samples are Benford a.s. A crucial point in the
de nition of an r.p.m. P with scale- or base-unbiased signi cant digits is that
it does not require individual realizations of P to have scale- or base-invariant
signi cant digits. In fact, it is often the case (see Benford's origind data in [Ben]
and Example 6.22 below) that a.s. none of the random probabilities has either
of these properties, and it is only on average that the sampling proess does not
favor one scale or base over another. Recall from the notation imbduced above
that S P(flg)=0istheeventf! 2 : P(1)(S=1)=0g.

Theorem 6.20 ([Hi2]). Let P be an r.p.m. AssumeP either has scale-unbiased
signi cant digits, or else has base-unbiased signi cant djits and S P(f1g) =0
with probability one. Then, for everym 2 N, every sequencéX ) of P-random
m-samples is Benford with probability one, that is, for allt 2 [1; 10),

#f1 n N:S(Xn)<tg gs:
N 1

Proof. Assume rst that P has scale-unbiased signi cant digits, i.e., the proba-
bility measure EP has scale-invariant signi cant digits. According to Theorem
4.20 EP is Benford. Consequently, Lemma6.17 implies that for every sequence
(Xp) of P-random m-samples and evenyt 2 [1; 10),

logt asN !'1

S
#f1 n N:S(Xp,)<tg_# 1 n N:Xp2 ,,,106( t 1][ [L1)
N [ - N
> EP kzz1ok( t 1][ [L;t) =logt asN!1

Assume in turn that S P(f1g) = O with probability one, and that P has base-
unbiased signi cant digits. Then
z

SEP(flg)= EP S Yflg) = S P(!)(flg)dP(!)=0:

Henceq = 0 holds in (4.8) with P replaced byEP, proving that EP is Benford,
and the remaining argument is the same as before. O
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Corollary 6.21. If an r.p.m. P has scale-unbiased signi cant digits, then for
every m 2 N, every sequencgX,) of P-random m-samples, and everyd 2
f1;2;:::;90,

#f1 n N :Di(X,)=dg gs:
N f

A main point of Theorem 6.20is that there are many natural sampling pro-
cedures that lead to the same logarithmic distribution. This helps exgain how
the di erent empirical evidence of Newcomb, Benford, Knuth and Nigrini all
led to the same law. It may also help explain why sampling the numbers fsm
newspaper front pages or almanac8en]|, or accumulating extensive accounting
data [Ni], often tends toward BL, since in each of these cases various di#hu-
tions are being sampled in a presumably unbiased way. In a newspapegverhaps
the rst article contains statistics about population growth, the s econd arti-
cle about stock prices, the third about forest acreage. None oftiese individual
distributions itself may be unbiased, but the mixture may well be.

Justi cation of the hypothesis of scale- or base-unbiasedness dfigni cant
digits in practice is akin to justi cation of the hypothesis of independence (and
identical distribution) when applying the Strong Law of Large Numbers or the
Central Limit Theorem to real-life processes: Neither hypothesis an be formally
proved, yet in many real-life sampling procedures, they appear to b reasonable
assumptions.

Many standard constructions of r.p.m. automatically have scale- anl base-
unbiased signi cant digits, and thus satisfy BL in the sense of Theoem 6.20

logl+d ') asN!1

Example 6.22. Recall the classical Dubins{Freedman construction of an r.p.m.
P described in Example6.11. It follows from [ DF, Lem.9.28] that EP is Benford.
HenceP has scale- and base-unbiased signi cant digits. Note, however, &t with
probability one P will not have scale- or base-invariant signi cant digits. It is
only on averagethat these properties hold but, as demonstrated by Theorem
6.20Q, this is enough to guarantee that random sampling fromP will generate
Benford sequences a.s.

In the Dubins{Freedman construction, the fact that Fp (10%72), Fp (10%7%),
Fp (10%7%), etc. are chosenuniformly from the appropriate intervals is not cru-
cial: If Q is any probability measure on (Q 1), and the values ofFp (10'7?) etc.
are chosen independently according to an appropriately scaled vsion on Q,
then, for the r.p.m. thus generated, EP will still be Benford, provided that Q
is symmetric about % see PF, Thm.9.29]. As a matter of fact, real-world pro-
cesses often exhibit this symmetry in a natural way: Many data maybe equally
well recorded using certain units or their reciprocals, e.g. in miles pegallon vs.
gallons per mile, or Benford's \candles per watt" vs. \watts per candle". This
suggests that the distribution of logS should be symmetric about%.

Data having scale- or base-unbiased signi cant digits may be produed in
many ways other than through random samples. If such data are @mbined
with unbiased randomm-samples then the result will again conform to BL in the
sense of Theoren®.20 (Presumably, this is what Benford did when combining
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mathematical tables with data from newspaper statistics.) For exanple, consider
the sequence (2) which may be thought of as the result of a periodic sampling
from a (deterministic) geometric process. As (2) is Benford, any mixture of this
sequence with a sequence of unbiased random-samples will again be Benford.

Finally, it is important to note that many r.p.m. and sampling processes do
not conform to BL, and hence necessarily are scale- and base-béis

Example 6.23. (i) Let P be the constant r.p.m. P 1. SinceEP = ; has
base-invariant signi cant digits, P has base-unbiased signi cant digits. Never-
theless, for every sequenceX(,) of P-random m-samples, the sequence of rst
signi cant digits is constant, namely D1(X,) 1.

Similarly, if P = .1 with probability one, then EP = 4.1 does not have
scale- or base-invariant signi cant digits. Consequently, every squence ofP-
random m-samples is an i.i.d.U(0; 1)-sequence and hence not Benford, by Ex-
ample 3.10(i).

(i) The r.p.m. considered in Example 6.10 do not have scale- or base-
unbiased signi cant digits, simply becauseEP is not Benford.

(i) As a another variant of the classical construction in DF], consider the
following way of generating an r.p.m. on [110): First let X -, be uniformly
distributed on [1;10) and setFp (X 1=p) = % Next let X1-4 and X 3-4 be inde-
pendent and uniformly distributed on [1; X 1=,) and [X 1=5; 10), respectively, and
setFp (X124) = % and Fp (X3-4) = 3, etc. It follows from [DF, Thm.9.21] that

Fep () = Earcsinlogt; 1 t< 10;

and henceEP is not Benford. The r.p.m. P thus constructed, therefore, has
scale- and base-biased signi cant digits.

6.3. Random maps

The purpose of this brief concluding section is to illustrate and proveone simple
basic theorem that combines the deterministic aspects of BL studi¢ in Chapter
5 with the stochastic considerations of the present chapter. Specally, it is
shown how applying randomly selected maps successively may gengx@8enford
sequences with probability one. Random maps constitute a wide and tensely
studied eld, and for stronger results than the one discussed her the interested
reader is referred e.g. to Ber3]. p__

For a simple example, rst consider the mapT : R! R with T(x) = = jX].
SinceT"(x) = jxj2 " ! 1asn!1l wheneverx 8 0, the orbit Ot (Xo) is not
Benford for any xo. More generally, consider the randomized map

(

p . . g .
T(x) = 1X] with probability p;

. - (6.15)
x3 with probability 1 p;
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and assume that, at each step, the iteration ofT is independent of the entire
past process. Ifp = 1, this is simply the map studied before, and hence for
every Xg 2 R, the orbit Ot (X() is not Benford. On the other hand, if p=0

then Theorem 5.12implies that, for almost every xo 2 R, Ot (Xo) is Benford. It

is plausible to expect that the latter situation persists for small p > 0. As the
foIIoang_theorem shows, this is indeed that case even when the noBenford

map  jxj occurs more than half of the time: If

log3

———— =0:6131:::; 6.16
log2+log3 ' (6.16)

p <
then, for a.e.xp 2 R, the (random) orbit Ot (Xg) is Benford with probability one.
To concisely formulate this result, recall that for any (deterministic or random)
sequence ) of maps mapping R or parts thereof into itself, the orbit Ot (Xo)
of Xo 2 R simply denotes the sequenceT, 1 ::: Ti(Xo) NN

Theorem 6.24 ([Ber3]). Let ( ) be an i.i.d. sequence of positive random vari-
ables, and assume thatog ; has nite variance, i.e. E(log 1)°> < +1 . For
the sequenceg(T,) of random maps given byT, : x 7! x » and a.e. Xy 2 R,
the orbit Ot (Xo) is Benford with probability one or zero, depending on whethe
Elog 1> 0or Elog ;1 0.

Proof. Foreveryx 2 Randn 2 N,

Y
log Tn ::: Ta(x) = j"_l i logjxj = 108" logjx;;
where B, = P log ; i Bo §%
n= - log j- Assume rst that Elog 1 > 0. In this case, =~ 1

log 1 asn!1l , and it can be deduced from KN, Thm.4.2] that, with proba-
bility one, the sequence (18"y) is u.d. for a.e.y 2 R. Sincex 7! logjxj maps the
family of (Lebesgue) nullsets into itself, with probability one O+ (X() is Benford
for a.e.xp 2 R. More formally, with ( ; A; P) denoting the underlying probabil-
ity space, there exists 1 2 A with P( 1) = 1 such that for every ! 2 ; the
sequenceOr (Xo) is Benford for all xo 2 RnB, , whereB, 2 B with (B, )=0.
Denote by N R the set of all ( xp;!) for which Ot (xg) is not Benford,
and let

Nx
N!

fl 2 :(x!')2Ng; x2R;
fxX2R:(x;')2Ng; ! 2

ThenN, 2 AandN' 2 B forall x2 Rand! 2 ,respectively,and (N')=0
forall ! 2 ;. By Fubini's Theorem,
Z Z Z
0= (N')dP(!) = Ind(  P)=  P(N)d (x);
R R

showing that P(Ny) = 0 for a.e. x 2 R. Equivalently P(Or(xo) is Benford) = 1
holds for a.e.xp 2 R.
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Next assume thatElog ;< 0. ThenT, ::: Ti(x) ¥ 1asn!1 forevery
X 6 0, and henceOr (x) is not Benford. (Note, however, that (T, ::: Ti(x) 1)
may be Benford in this case.)

Finally, it remains to consider the caseElog ; = 0. It follows from the Law
of the lterated Logarithm that, for every t 2 R,

limsupy #f1 n NN :Bn 19 % with probability one :
Clearly, this implies P(O+ (Xo) is Benford) = 0 for every xp 2 R. O
Example 6.25. (i) For the random map given by (6.15),
1
P =35 =p=1 P( =3);
and the condition Elog = plog2+ (1 p)log3> 0 is equivalent to (6.16).

Note that Elog > 0 is not generally equivalent to the equally plausible (yet

incorrect) condition E > 1. In the present example, the latter reduces tq < g.

(i) Consider the sequenceT;) of random maps Ty : x 7! jxj*®"" " where
( n)is ani.i.d. sequence of Cauchy random varialgles. Sindgj 1j =+ 1, Theo-
rem 6.24does not apply. HoweverB, = n(n+1)+ 1-”:1 j,and [CT, Thm.5.22]

shows that 23 9% 1 asn ! 1 . The latter is enough to deduce from KN,
Thm.4.2] that (108ny) is u.d. mod 1 for a.e.y 2 R. The same argument as in
the above proof shows thatP(Or (X) is Benford) = 1 for a.e. Xg 2 R. Thus the
conclusions of Theorem6.24 may hold under weaker assumptions.

(i) Statements in the spirit of Theorem 6.24 are true also for more general
random maps, not just monomials Ber3].

List of symbols

N;No; Z; Q; set of positive integer, non-negative integer, integer, rational,
R";R;C positive real, real, complex numbers

(Fn) sequence of Fibonacci numbers,K,) =(1;1;2;3;5;8;13;::2)
(pn) sequence of prime numbers,fi,) =(2;3;5;7;11,13;17;::)
bxc largest integer not larger thanx 2 R

hxi fractional part of x 2 R, i.e. hxi = x b xc

<z,=2 real, imaginary part of z2 C

Z, jzj conjugate, absolute value (modulus) ofz 2 C

c! set of all | times continuously di erentiable functions, | 2 Ng
ct set of fxll smooth (i.e. in nitely di erentiable) functions, i.e.

ct =, ,C
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S

D1;D,; D3 etc.

D&Y
logx
In x
#A
O

( ;A;P)
AC

AnB
A B
(f)
fP

1A

a;b
ii.d.

a.e.
a.s.

u.d. mod 1
XY,
EX

var X

Px

A. Berger and T.P. Hill

signi cand function (De nition 2.3

rst, second, third etc. signi cant decimal digit (De nition  2.1)

m-th signi cant digit base b
base 10 logarithm ofx 2 R*
natural logarithm of x 2 R*
cardinality (number of elements) of the nite set A

order symbol;a, = O(b,)asn!1 provided that jasj cjbyj
for somec > 0 and all n

probability space

complement of A in some ambient space clear from the con-
text, i.e. A¢=fl 2 : | 62Ag

set of elements ofA notin B, i.e. AnB = A\ B®
symmetric di erence of A and B,i.e.A B = AnB[ BnA
-algebra generated by the functionf : ! R

probability measure on R induced by P and the measurable
functon f : | R,viaf P():=Pf ()

Dirac probability measure concentrated ata 2
Borel -algebra onR or parts thereof
Lebesgue measure onR;B) or parts thereof
signi cand -algebra (De nition 2.7)
indicator function of the set A

normalized Lebesgue measure (uniform distribution)
on [a;b);B[a;b

independent, identically distributed (sequence or family of ran-
dom variables)

(Lebesgue) almost every

almost surely, i.e. with probability one

uniformly distributed modulo one (De nition 4.1)
(real-valued) random variable ! R

expected (or mean) value of the random variableX

variance of the random variable with EjXj < +1 ;
varX = E(X EX)?

probability measure on (R; B), possibly random

distribution of the random variable X
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Fp, Fx distribution function of P, X

B Benford distribution on (R*;S)

Ot (Xo)  orbit of xo under the map T, possibly nonautonomous
N¢ Newton map associated with di erentiable function f

(A) spectrum (set of eigenvalues) ol  d-matrix A

Xn P x (X ) converges in distribution to X

Xn ¥ X (X,) converges toX almost surely

EP expectation of r.p.m. P (Proposition 6.15
end of Proof

[ end of Note and Remark(s)
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