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1. Introduction

Benford's Law, or BL for short, is the observation that in many collections
of numbers, be they e.g. mathematical tables, real-life data, or combinations
thereof, the leading signi�cant digits are not uniformly distributed, as might be
expected, but are heavily skewed toward the smaller digits. More speci�cally,
BL says that the signi�cant digits in many datasets follow a very part icular
logarithmic distribution. In its most common formulation, namely the s pecial
case of �rst signi�cant decimal (i.e. base-10) digits, BL is also known as the
First-Digit Phenomenon and reads

Prob (D1 = d1) = log 10

�
1 + d� 1

1

�
for all d1 = 1 ; 2; : : : ; 9 ; (1.1)

here D1 denotes the �rst signi�cant decimal digit, e.g.

D1(
p

2) = D1(1:414: : :) = 1 ;

D1(� � 1) = D1(0:3183: : :) = 3 ;

D1(e� ) = D1(23:14: : :) = 2 :

Thus, for example, (1.1) asserts that

Prob (D1 =1) = log 10 2 = 0:3010: : : ; Prob (D1 =2) = log 10
3
2

= 0 :1760: : : ;

hence the two smallest digits occur with a combined probability close to50
percent, whereas the two largest digits together have a probability of less than
10 percent,

Prob (D1 =8) = log 10
9
8

= 0 :05115: : : ; Prob (D1 =9) = log 10
10
9

= 0 :04575: : : :
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A crucial part of the content of ( 1.1), of course, is an appropriate formulation or
interpretation of \Prob". In practice, this can take several for ms. For sequences
of real numbers (xn ), for example, Prob usually refers to the proportion (or
relative frequency) of times n for which an event such asD1 = 1 occurs. Thus
Prob (D1 =1) is the limiting proportion, as N ! 1 , of timesn � N that the �rst
signi�cant digit of xn equals 1. Implicit in this usage of Prob is the assumption
that all limiting proportions of interest actually exist. Similarly, for re al-valued
functions f : [0; + 1 ) ! R, Prob (D1 = 1) refers to the limiting proportion, as
T ! 1 , of the total length of time t < T for which the �rst signi�cant digit of
f (t) is 1. For a random variable or probability distribution, on the other h and,
Prob simply denotes the underlying probability, e.g. if X a random variable
then Prob (D1(X ) = 1) is the probability that the �rst signi�cant digit of X
equals 1. Finite datasets of real numbers can also be dealt with this way, with
Prob being the empirical distribution of the dataset.

All of these approaches to (1.1) will be studied in detail in subsequent chap-
ters. Fig 1 illustrates several of the possible settings, including simple sequences
such as the Fibonacci numbers (Fn ) = (1 ; 1; 2; 3; 5; 8; 13; : : :), and real-life data
from [Ben] as well as recent census statistics; in addition, it previews some ofthe
many scenarios, also to be discussed later, that lead toexact conformance with
BL. In Fig 1 and throughout, # A denotes the cardinality (number of elements)
of the �nite set A.

In a form more complete than (1.1), BL is a statement about the joint dis-
tribution of all decimal digits: For every positive integerm,

Prob
�
(D1; D2; : : : ; Dm ) = ( d1; d2; : : : ; dm )

�
= log 10

�
1 +

� X m

j =1
10m � j dj

� � 1
�

(1.2)
holds for all m-tuples (d1; d2; : : : ; dm ), where d1 is an integer in f 1; 2; : : : ; 9g and
for j � 2, dj is an integer in f 0; 1; : : : ; 9g; here D2; D3; D4 etc. represent the
second, third, forth etc. signi�cant decimal digit, e.g.

D2(
p

2) = 4 ; D3(� � 1) = 8 ; D4(e� ) = 4 :

Thus, for example, (1.2) implies that

Prob
�
(D1; D2; D3) = (3 ; 1; 4)

�
= log 10

315
314

= 0 :001380: : : :

A perhaps surprising corollary of the general form of BL is that the signi�cant
digits are dependent, and not independent as one might expect [Hi2]. Indeed,
from (1.2) it follows for instance that the (unconditional) probability that the
second digit equals 1 is

Prob (D2 = 1) =
X 9

j =1
log10

�
1 +

1
10j + 1

�
= log 10

6029312
4638501

= 0 :1138: : : ;

whereas, given that the �rst digit equals 1, the (conditional) probability that
the second digit equals 1 as well is

Prob (D2 = 1 jD1 = 1) =
log10 12� log10 11

log10 2
= 0 :1255: : : :
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(# X = 3 ; 141) exact BL

Example: ( xn ) = ( Fn ) Fn +2 = Fn +1 + Fn (n 2 N), F1 = F2 = 1

N = 10 N = 10 2

� (d) = log 10 (1 + d� 1 )

Finite dataset X � X (d) :=
# f x 2 X : D 1(x) = dg

# X

Random variable X � X (d) := P(D 1 (X ) = d)

Sequence (xn ) � N (d) :=
# f 1 � n � N : D 1 (xn ) = dg

N

Fig 1 . Di�erent interpretations of (1.1) for sequences, datasets, and random variables, re-
spectively, and scenarios that may lead to exact conformanc e with BL.

This dependence among signi�cant digits decreases rapidly, in fact exponentially,
as the distance between the digits increases. For example, it followseasily from
(1.2) that

Prob (Dm = 1 jD1 = 1) = Prob ( Dm = 1) + O(10� m ) as m ! 1 :

(Here and throughout, the order symbol O is used as usual: If (an ) and (bn )
are sequences of real numbers thenan = O(bn ) as n ! 1 simply means that
jan j � cjbn j for all n, with some constant c > 0.)
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A related consequence of (1.2) is that the distribution of the m-th signi�cant
digit approaches the uniform distribution on f 0; 1; : : : ; 9g exponentially fast also,
e.g.

Prob (Dm = 1) =
1
10

+
63

20 ln 10
10� m + O(10� 2m ) as m ! 1 :

Apparently �rst discovered by polymath S. Newcomb [Ne] in the 1880's, (1.1)
and (1.2) were rediscovered by physicist F. Benford [Ben] and, Newcomb's ar-
ticle having been forgotten at the time, came to be known asBenford's Law.
Today, BL appears in a broad spectrum of mathematics, ranging from di�eren-
tial equations to number theory to statistics. Simultaneously, the applications
of BL are mushrooming | from diagnostic tests for mathematical mo dels in
biology and �nance to fraud detection. For instance, the U.S. Internal Revenue
Service uses BL to ferret out suspicious tax returns, political scientists use it to
identify voter fraud, and engineers to detect altered digital images. As R. Raimi
already observed some 35 years ago [Ra1, p.512], \This particular logarithmic
distribution of the �rst digits, while not universal, is so common and yet so
surprising at �rst glance that it has given rise to a varied literature, among
the authors of which are mathematicians, statisticians, economists, engineers,
physicists, and amateurs." At the time of writing, the online database [BH2]
contains more than 600 articles on the subject.

It is the purpose of this article to explain the basic terminology, mathematical
concepts and results concerning BL in an elementary and accessiblemanner.
Having read this survey, the reader will �nd it all the more enjoyable to browse
the multifarious literature where a wide range of extensions and re�nements as
well as applications are discussed.

Note. Throughout this overview of the basic theory of BL, attention will m ore
or less exclusively be restricted to signi�cantdecimal (i.e. base-10) digits. From
now on, therefore, logx will always denote the logarithm base 10 ofx, while ln x
is the natural logarithm of x. For convenience, the convention log 0 := 0 will be
adopted. All results stated here only with respect to base 10 carry over easily to
arbitrary integer basesb � 2, and the interested reader may �nd some pertinent
details e.g. in [BBH]. The general form of (1.2) with respect to any such baseb
is

Prob
� �

D (b)
1 ; D (b)

2 ; : : : ; D (b)
m

�
= ( d1; d2; : : : ; dm )

�
= log b

�
1+

� X m

j =1
bm � j dj

� � 1
�

;

(1.3)
where logb denotes the base-b logarithm and D (b)

1 , D (b)
2 , D (b)

3 etc. are, respec-
tively, the �rst, second, third etc. signi�cant digits base b; in particular, there-
fore, d1 is an integer in f 1; 2; : : : ; b � 1g, and for j � 2, dj is an integer in
f 0; 1; : : : ; b � 1g. Note that in the case m = 1 and b = 2, ( 1.3) reduces to
Prob

�
D (2)

1 = 1
�

= 1, which trivially is true because the �rst signi�cant digit
base 2 of every non-zero number equals 1. |
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2. Signi�cant digits and the signi�cand

Benford's Law is a statement about the statistical distribution of signi�cant
(decimal) digits or, equivalently, about signi�cands viz. fraction par ts in oating-
point arithmetic. Thus a natural starting point for any study of BL is the formal
de�nition of signi�cant digits and the signi�cand (function).

2.1. Signi�cant digits

De�nition 2.1. For every non-zero real numberx, the �rst signi�cant decimal
digit of x, denoted by D1(x), is the unique integer j 2 f 1; 2; : : : ; 9g satisfying
10k j � j xj < 10k (j + 1) for some (necessarily unique)k 2 Z.

Similarly, for every m � 2, m 2 N, the m-th signi�cant decimal digit of x,
denoted by Dm (x), is de�ned inductively as the unique integer j 2 f 0; 1; : : : ; 9g
such that

10k
� X m � 1

i =1
D i (x)10m � i + j

�
� j xj < 10k

� X m � 1

i =1
D i (x)10m � i + j + 1

�

for some (necessarily unique)k 2 Z; for convenience,Dm (0) := 0 for all m 2 N.

Note that, by de�nition, the �rst signi�cant digit D1(x) of x 6= 0 is never
zero, whereas the second, third, etc. signi�cant digits may be anyintegers in
f 0; 1; : : : ; 9g.

Example 2.2.

D1(
p

2) = D1(�
p

2) = D1(10
p

2) = 1 ; D2(
p

2) = 4 ; D3(
p

2) = 1 ;

D1(� � 1) = D1(10� � 1) = 3 ; D2(� � 1) = 1 ; D3(� � 1) = 8 :

2.2. The signi�cand

The signi�cand of a real number is its coe�cient when it is expressed in oating-
point (\scienti�c notation") form, more precisely

De�nition 2.3. The (decimal) signi�cand function S : R ! [1; 10) is de�ned
as follows: If x 6= 0 then S(x) = t, where t is the unique number in [1; 10) with
jxj = 10k t for some (necessarily unique)k 2 Z; if x = 0 then, for convenience,
S(0) := 0.

Observe that, for all x 2 R,

S(10k x) = S(x) for every k 2 Z ;

and alsoS
�
S(x)

�
= S(x). Explicitly, S is given by

S(x) = 10 log jx j�b log jx jc for all x 6= 0 ;

herebtc denotes, for any real numbert, the largest integer less than or equal to
t. (The function t 7! btc is often referred to as the \oor function".)
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1

11 2 3

10

10 � 1� 1 � 2� 3� 10

S(x) log S(x)

x log jxj

Fig 2 . Graphing the (decimal) signi�cand function S.

Note. The original word used in American English to describe the coe�cient
of oating-point numbers in computer hardware seems to have been mantissa,
and this usage remains common in computing and among computer scientists.
However, this use of the word mantissa is discouraged by the IEEE oating-
point standard committee and by some professionals such as W. Kahan and
D. Knuth because it conicts with the pre-existing usage of mantissa for the
fractional part of a logarithm. In accordance with the IEEE standard, only the
term signi�cand will be used henceforth. (With the signi�cand as in De�nition
2.3, the (traditional) mantissa would simply be log S.) The reader should also
note that in some places in the literature, the signi�cand is taken to have values
in [0:1; 1) rather than in [1; 10). |

Example 2.4.
S(

p
2) = S(10

p
2) =

p
2 = 1:414: : : ;

S(� � 1) = S(10� � 1) = 10 � � 1 = 3 :183: : : :

The signi�cand uniquely determines the signi�cant digits, and vice versa.
This relationship is recorded in the following proposition which immediately
follows from De�nitions 2.1 and 2.3.

Proposition 2.5. For every real numberx:

(i) S(x) =
P

m 2 N 101� m Dm (x);

(ii) Dm (x) = b10m � 1S(x)c � 10b10m � 2S(x)c for every m 2 N.

Thus, Proposition 2.5(i) expresses the signi�cand of a number as an explicit
function of the signi�cant digits of that number, and (ii) expresses the signi�cant
digits as a function of the signi�cand.

It is important to note that the de�nition of signi�cand and signi�can t digits
per se does not involve any decimalexpansion of x. However, it is clear from
Proposition 2.5(i) that the signi�cant digits provide a decimal expansion of S(x),
and that a sequence (dm ) in f 0; 1; : : : ; 9g is the sequence of signi�cant digits of
some positive real number if and only ifd1 6= 0 and dm 6= 9 for in�nitely many m.
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Example 2.6. It follows from Proposition 2.5, together with Examples 2.2 and
2.4, that

S(
p

2) = D1(
p

2) + 10 � 1D2(
p

2) + 10 � 2D3(
p

2) + : : : = 1 :414: : : =
p

2;

as well as
D1(

p
2) = b

p
2c = 1 ;

D2(
p

2) = b10
p

2c � 10b
p

2c = 4 ;

D3(
p

2) = b100
p

2c � 10b10
p

2c = 1 ; etc :

As the signi�cant digits determine the signi�cand, and are in turn det ermined
by it, the informal version ( 1.2) of BL in the Introduction has an immediate and
very concise counterpart in terms of the signi�cand function, namely

Prob (S � t) = log t for all 1 � t < 10: (2.1)

(Recall that log denotes the base-10 logarithm throughout.) As noted earlier,
the formal versions of (1.2) and (2.1) will be developed in detail below.

2.3. The signi�cand � -algebra

The informal statements (1.1), (1.2) and (2.1) of BL involve probabilities. Hence
to formulate mathematically precise versions of these statements, it is necessary
to re-formulate them in the setting of rigorous probability theory.

The fundamental concept of standard modern probability theory is that of a
probability space(
 ; A; P); here 
, A and P are, respectively, a non-empty set, a
� -algebra on 
, and a probability measure on (
 ; A). Recall that a � -algebraA
on 
 is simply a family of subsets of 
 such that ? 2 A, and A is closed under
taking complements and countable unions, that is,

A 2 A =) Ac := f ! 2 
 : ! 62Ag 2 A ;

as well as
An 2 A for all n 2 N =)

[

n 2 N
An 2 A :

Given any collectionE of subsets of 
, there exists a (unique) smallest� -algebra
on 
 containing E, referred to as the� -algebra generated byE and denoted by
� (E). Perhaps the most important example is the so-calledBorel � -algebra B
on R: By de�nition, B is the � -algebra generated by all intervals. If C � R
then B(C) is understood to be the � -algebra C \ B := f C \ B : B 2 Bg on C;
for brevity, write B[a; b) instead of B

�
[a; b)

�
and B+ instead of B(R+ ), where

R+ = f t 2 R : t > 0g.
In general, given any function f : 
 ! R, recall that, for every C � R, the

set f � 1(C) � 
, called the pre-image of C under f , is de�ned as

f � 1(C) = f ! 2 
 : f (! ) 2 Cg:
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The � -algebra on 
 generated by

E = f f � 1(I ) : I � R an intervalg

is also referred to as the� -algebra generated byf ; it will be denoted by � (f ).
Thus � (f ) is the smallest � -algebra on 
 that contains all sets of the form
f ! 2 
 : a � f (! ) � bg, for every a; b 2 R. It is easy to check that in fact
� (f ) = f f � 1(B ) : B 2 Bg. Similarly, a whole family F of functions f : 
 ! R
may be considered, and

� (F) := �
� [

f 2 F
� (f )

�
= �

�
f � 1(I ) : I � R an interval; f 2 F

�

is then simply the smallest � -algebra on 
 containing all sets f ! 2 
 : a �
f (! ) � bg for all a; b2 R and all f 2 F.

In probability theory, the elements of a � -algebraA on 
 are often referred to
as events, and functions f : 
 ! R with � (f ) � A are calledrandom variables.
Probability textbooks typically use symbols X , Y etc., rather than f , g etc., to
denote random variables, and this practice will be adhered to here also. Thus,
for example, for a Bernoulli random variableX on (R; B) taking only the values
0 and 1, � (X ) is the sub-� -algebra ofB given by

� (X ) =
�

? ; f 0g; f 1g; f 0; 1g; R; Rnf 0g; Rnf 1g; Rnf 0; 1g
	

;

here, and throughout, AnB = A \ B c is the set of all elements ofA that are not
in B .

As the third ingredient in the concept of a probability space, a probability
measure on (
 ; A) is a function P : A ! [0; 1] such that P(? ) = 0, P(
) = 1,
and

P
� [

n 2 N
An

�
=

X

n 2 N
P(An )

holds whenever the setsAn 2 A are disjoint. The obvious probabilistic interpre-
tation of P is that, for every A 2 A, the number P(A) 2 [0; 1] is the probability
that the event f ! 2 Ag occurs. Two of the most important examples of proba-
bility measures are thediscrete uniform distribution on a non-empty �nite set
A, where the probability of any set B � A is simply

#( B \ A)
# A

;

and its continuous counterpart the uniform distribution � a;b with a < b, more
technically referred to as (normalized) Lebesgue measureon [a; b), or more pre-
cisely on

�
[a; b); B[a; b)

�
, given by

� a;b
�
[c; d]

�
:=

d � c
b� a

for every [c; d] � [a; b) : (2.2)

In advanced analysis courses, it is shown that (2.2) does indeed entail a unique,
consistent de�nition of � a;b (B ) for every B 2 B[a; b); in particular � a;b

�
[a; b)

�
=
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1. Another example of a probability measure, on any (
 ; A), is the Dirac mea-
sure (or point mass) concentrated at some! 2 
, symbolized by � ! . In this
case,� ! (A) = 1 if ! 2 A, and � ! (A) = 0 otherwise. Throughout, unspeci�ed
probability measures on (
 ; A) with 
 � R and A � B will typically be denoted
by capital Roman letters P, Q etc.

In view of the above, the key step in formulating BL precisely is identifying
the appropriate probability space, and hence in particular the correct � -algebra.
As it turns out, in the signi�cant digit framework there is only one nat ural
candidate which, although di�erent from B, is nevertheless both intuitive and
easy to describe.

De�nition 2.7. The signi�cand � -algebra S is the � -algebra onR+ generated
by the signi�cand function S, i.e. S = R+ \ � (S).

The importance of the � -algebra S comes from the fact that for every event
A 2 S and every x > 0, knowing S(x) is enough to decide whetherx 2 A or
x 62A. Worded slightly more formally, this observation reads as follows.

Lemma 2.8. For every function f : R+ ! R the following statements are
equivalent:

(i) f can be described completely in terms ofS, that is, f (x) = '
�
S(x)

�
holds

for all x 2 R+ , with some function ' : [1; 10) ! R satisfying � (' ) �
B[1; 10).

(ii) � (f ) � S.

Proof. First assume (i) and let I � R be any interval. Then B = ' � 1(I ) 2 B
and f � 1(I ) = S� 1

�
' � 1(I )

�
= S� 1(B ) 2 S, showing that � (f ) � S.

Conversely, if � (f ) � S then f (10x) = f (x) holds for all x > 0. Indeed,
assuming by way of contradiction that, say, f (x0) < f (10x0) for some x0 > 0,
let

A := f � 1
��

f (x0) � 1;
f (x0) + f (10x0)

2

��
2 � (f ) � S

and note that x0 2 A while 10x0 62A. SinceA = S� 1(B ) for someB 2 B, this
leads to the contradiction that S(x0) 2 B and S(x0) = S(10x0) 62B . Hence
f (10x) = f (x) for all x > 0, and by induction also f (10k x) = f (x) for all k 2 Z.
Given x 2 [1; 10), pick any y > 0 with S(y) = x and de�ne ' (x) := f (y). Since
any two choices ofy di�er by a factor 10 k for somek 2 Z, ' : [1; 10) ! R is well-
de�ned, and '

�
S(y)

�
= f (y) holds for all y > 0. Moreover, for any interval I � R

and x > 0, ' (x) 2 I holds if and only if x 2
S

k2 Z 10k f � 1(I ). By assumption,
the latter set belongs to S, which in turn shows that � (' ) � B[1; 10).

Informally put, Lemma 2.8 states that the signi�cand � -algebra S is the
family of all events A � R+ that can be described completely in terms of their
signi�cands, or equivalently (by Theorem 2.9 below) in terms of their signi�cant
digits. For example, the setA1 of positive numbers whose �rst signi�cant digit
is 1 and whose third signi�cant digit is not 7, i.e.

A1 = f x > 0 : D1(x) = 1 ; D3(x) 6= 7 g;
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belongs toS, as does the setA2 of all x > 0 whose signi�cant digits are all 5 or
6, i.e.

A2 = f x > 0 : Dm (x) 2 f 5; 6g for all m 2 Ng;

or the set A3 of numbers whose signi�cand is rational,

A3 = f x > 0 : S(x) 2 Qg:

On the other hand, the interval [1; 2], for instance, does not belong toS. This
follows from the next theorem which provides a useful characterization of the
signi�cand sets, i.e. the members of the familyS. For its formulation, for every
t 2 R and every setC � R, let tC := f tc : c 2 Cg.

Theorem 2.9 ([Hi2]). For every A 2 S,

A =
[

k2 Z
10k S(A) (2.3)

holds, whereS(A) = f S(x) : x 2 Ag � [1; 10). Moreover,

S = R+ \ � (D1; D2; D3; : : :) =
n [

k2 Z
10k B : B 2 B[1; 10)

o
: (2.4)

Proof. By de�nition,

S = R+ \ � (S) = R+ \ f S� 1(B ) : B 2 Bg = R+ \ f S� 1(B ) : B 2 B[1; 10)g :

Thus, given any A 2 S, there exists a setB 2 B[1; 10) with A = R+ \ S� 1(B ) =S
k2 Z 10k B . SinceS(A) = B , it follows that ( 2.3) holds for all A 2 S.
To prove (2.4), �rst observe that by Proposition 2.5(i) the signi�cand func-

tion S is completely determined by the signi�cant digits D1; D2; D3; : : : , so
� (S) � � (D1; D2; D3; : : :) and henceS � R+ \ � (D1; D2; D3; : : :). Conversely, ac-
cording to Proposition 2.5(ii), every Dm is determined byS, thus � (Dm ) � � (S)
for all m 2 N, showing that � (D1; D2; D3; : : :) � � (S) as well. To verify the re-
maining equality in ( 2.4), note that for every A 2 S, S(A) 2 B[1; 10) and hence
A =

S
k2 Z 10k B for B = S(A), by (2.3). Conversely, every set of the formS

k2 Z 10k B = R+ \ S� 1(B ) with B 2 B[1; 10) obviously belongs toS.

Note that for every A 2 S there is a unique B 2 B[1; 10) such that A =S
k2 Z 10k B , and (2.3) shows that in fact B = S(A).

Example 2.10. The set A4 of positive numbers with

A4 = f 10k : k 2 Zg = f : : : ; 0:01; 0:1; 1; 10; 100; : : :g

belongs toS. This can be seen either by observing thatA4 is the set of positive
reals with signi�cand exactly equal to 1, i.e. A4 = R+ \ S� 1(f 1g), or by noting
that A4 = f x > 0 : D1(x) = 1 ; Dm (x) = 0 for all m � 2g, or by using (2.4) and
the fact that A4 =

S
k2 Z 10k f 1g and f 1g 2 B[1; 10).
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Example 2.11. The singleton set f 1g and the interval [1; 2] do not belong to
S, since the number 1 cannot be distinguished from the number 10, for instance,
using only signi�cant digits. Nor can the interval [1 ; 2] be distinguished from
[10; 20]. Formally, neither of these sets is of the form

S
k2 Z 10k B for any B 2

B[1; 10).

Although the signi�cand function and � -algebra above were de�ned in the
setting of real numbers, the same concepts carry over immediately to the most
fundamental setting of all, the set of positive integers. In this case, the induced
� -algebra is interesting in its own right.

Example 2.12. The restriction SN of Sto subsets ofN, i.e. SN = f N\ A : A 2 Sg
is a � -algebra on N. A characterization of SN analogous to that of S given in
Theorem 2.9 is as follows: Denote byN�10 the set of all positive integers not
divisible by 10, i.e. N�10 = Nn10N. Then

SN =
n

A � N : A =
[

l 2 N0
10l B for someB � N�10

o
:

A typical member of SN is

f 271; 2710; 3141; 27100; 31410; 271000; 314100; : : :g :

Note that for instance the set f 31410; 314100; 3141000; : : :g doesnot belong to
SN since 31410 is indistinguishable from 3141 in terms of signi�cant digits,so
if the former number were to belong toA 2 SN then the latter would too. Note
also that the corresponding signi�cand function on N still only takes values in
[1; 10), as before, but may never be an irrational number. In fact, the possible
values ofS on N are even more restricted:S(n) = t for somen 2 N if and only
if t 2 [1; 10) and 10l t 2 N for some integerl � 0.

The next lemma establishes some basic closure properties of the signi�cand
� -algebra that will be essential later in studying characteristic aspects of BL
such as scale- and base-invariance. To concisely formulate these properties, for
every C � R+ and n 2 N, let C1=n := f t > 0 : tn 2 Cg.

Lemma 2.13. The following properties hold for the signi�cand � -algebra S:

(i) S is self-similar with respect to multiplication by integer powers of10, i.e.

10k A = A for every A 2 Sand k 2 Z :

(ii) S is closed under multiplication by a scalar, i.e.

�A 2 S for every A 2 Sand � > 0:

(iii) S is closed under integral roots, i.e.

A1=n 2 S for every A 2 Sand n 2 N :
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Informally, property (i) says that every signi�cand set remains unchanged when
multiplied by an integer power of 10 | reecting the simple fact that sh ifting the
decimal point keeps all the signi�cant digits, and hence the set itself, unchanged;
(ii) asserts that if every element of a set expressible solely in terms of signi�cant
digits is multiplied by a positive constant, then the new set is also expressible by
signi�cant digits; correspondingly, (iii) states that the collection of square (cubic,
fourth etc.) roots of the elements of every signi�cand set is also expressible in
terms of its signi�cant digits alone.

Proof. (i) This is obvious from (2.3) since S(10k A) = S(A) for every k.
(ii) Given A 2 S, by (2.4) there existsB 2 B[1; 10) such that A =

S
k2 Z 10k B .

In view of (i), assume without loss of generality that 1< � < 10. Then

�A =
[

k2 Z
10k �B =

[

k2 Z
10k

� �
�B \ [�; 10)

�
[

� �
10

B \ [1; � )
� �

=
[

k2 Z
10k C ;

with C =
�
�B \ [�; 10)

�
[

�
�
10 B \ [1; � )

�
2 B[1; 10), showing that �A 2 S.

(iii) Since intervals of the form [1; t] generateB[1; 10), i.e. sinceB[1; 10) =
�

�
f [1; t] : 1 < t < 10g

�
, it is enough to verify the claim for the special case

A =
S

k2 Z 10k [1; 10s] for every 0< s < 1. In this case

A1=n =
[

k2 Z
10k=n [1; 10s=n ] =

[

k2 Z
10k

[ n � 1

j =0
[10j=n ; 10( j + s)=n ] =

[

k2 Z
10k C ;

with C =
S n � 1

j =0 [10j=n ; 10( j + s)=n ] 2 B[1; 10). HenceA1=n 2 S.

Remark. Note that S is not closed under taking integer powers: IfA 2 S and
n 2 N, then An 2 S if and only if

S(A)n = B [ 10B [ : : : [ 10n � 1B for someB 2 B[1; 10) :

For example, consider

A5 =
[

k2 Z
10k f 1;

p
10g 2 S;

for which S(A5)2 = f 1; 10g = f 1g [ 10f 1g and henceA2
5 2 S, whereas choosing

A6 =
[

k2 Z
10k f 2;

p
10g

leads to S(A6)2 = f 4; 10g, and correspondinglyA2
6 62S. |

Since, by Theorem2.9, the signi�cand � -algebra S is the same as the sig-
ni�cant digit � -algebra � (D1; D2; D3; : : :), the closure properties established in
Lemma 2.13carry over to sets determined by signi�cant digits. The next exam-
ple illustrates closure under multiplication by a scalar and integral roots.

Example 2.14. Let A7 be the set of positive real numbers with �rst signi�cant
digit 1, i.e.

A7 = f x > 0 : D1(x) = 1 g = f x > 0 : 1 � S(x) < 2g =
[

k2 Z
10k [1; 2) :
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0

0

0

0

:1

:01

:2
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1
p

2
1p
10

1p
5

p
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p
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p
2

R+

R+

R+

R+

A 7 = f D 1 = 1 g

= f 1 � S < 2g 2 S

2A 7 2 S

p
A 7 2 S

A 2
7 62S

Fig 3 . The � -algebra S is closed under multiplication by a scalar and integral root s but not
under integer powers (bottom), see Example 2.14.

Then

2A7 =
�

x > 0 : D1(x) 2 f 2; 3g
	

= f x > 0 : 2 � S(x) < 3g =
[

k2 Z
10k [2; 4) 2 S;

and also

A1=2
7 =

�
x > 0 : S(x) 2 [1;

p
2)[ [

p
10;

p
20)

	
=

[

k2 Z
10k �

[1;
p

2)[ [
p

10; 2
p

5)
�

2 S;

whereas on the other hand clearly

A2
7 =

[

k2 Z
102k [1; 4) 62S;

since e.g. [1; 4) � A2
7 but [10; 40) 6� A2

7; seeFig 3.

Example 2.15. Recall the signi�cand � -algebra SN on the positive integers
de�ned in Example 2.12. Unlike its continuous counterpart S, the family SN is
not even closed under multiplication by a positive integer, since for example

A8 = N \ f x > 0 : S(x) = 2 g = f 2; 20; 200; : : :g 2 SN ;
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but
5A8 = f 10; 100; 1000; : : :g 62SN :

Of course, this does not rule out that some events determined by signi�cant
digits, i.e. some members ofSN, still belong to SN after multiplication by an
integer. For example, if

A9 = f n 2 N : D1(n) = 1 g = f 1; 10; 11; : : : ; 19; 100; 101; : : :g 2 SN

then
3A9 = f 3; 30; 33; : : : ; 57; 300; 303; : : :g 2 SN :

It is easy to see that, more generally,SN is closed under multiplication by m 2 N
precisely if gcd (m; 10) = 1, that is, whenever m and 10 have no non-trivial
common factor. Moreover, likeS, the � -algebraSN is closed under integral roots:
If A =

S
l 2 N0

10l bA with bA � N�10 then A1=n =
S

l 2 N0
10l bA1=n 2 SN. With A9

from above, for instance,

A1=2
9 =

�
n 2 N : S(n) 2 [1;

p
2) [ [

p
10;

p
20)

	

= f 1; 4; 10; 11; 12; 13; 14; 32; 33; : : : ; 44; 100; 101; : : :g 2 SN :

Thus many of the conclusions drawn later for positive real numberscarry over
to positive integers in a straightforward way.

The next lemma provides a very convenient framework for studyingprobabil-
ities on the signi�cand � -algebra by translating them into probability measures
on the classical space of Borel subsets of [0; 1), that is, on

�
[0; 1); B[0; 1)

�
. For

a proper formulation, observe that for every function f : 
 ! R with A � � (f )
and every probability measureP on (
 ; A), f and P together induce a probability
measuref � P on (R; B) in a natural way, namely by setting

f � P(B ) = P
�
f � 1(B )

�
for all B 2 B : (2.5)

Other symbols commonly used in textbooks to denotef � P include P � f � 1 and
Pf . In the case of a linear function f , i.e. for f (t) � �t with some � 2 R,
instead of f � P simply write � � P. The special case of interest for signi�cands is
(
 ; A) = ( R+ ; S) and f = log S.

Lemma 2.16. The function ` : R+ ! [0; 1) de�ned by `(x) = log S(x) es-
tablishes a one-to-one and onto correspondence (measure isomorphism) between
probability measures on(R+ ; S) and on

�
[0; 1); B[0; 1)

�
, respectively.

Proof. From ` � 1
�
[a; b]

�
= S� 1

�
[10a ; 10b]

�
for all 0 � a < b < 1, it follows

that � (`) = R+ \ � (S) = S, and hence` � P according to (2.5) is a well-de�ned
probability measure on

�
[0; 1); B[0; 1)

�
.

Conversely, given any probability measureP on
�
[0; 1); B[0; 1)

�
and any A

in S, let B 2 B[0; 1) be the unique set for which A =
S

k2 Z 10k 10B , where
10B = f 10s : s 2 B g, and de�ne

PP (A) := P(B ) :
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It is readily con�rmed that `(A) = B , ` � 1(B ) = A, and PP is a well-de�ned
probability measure on (R+ ; S). Moreover

` � PP (B ) = PP
�
` � 1(B )

�
= PP (A) = P(B ) for all B 2 B[0; 1) ;

showing that ` � PP = P, and henceevery probability measure on
�
[0; 1); B[0; 1)

�

is of the form ` � P with the appropriate P. On the other hand,

P` � P(A) = ` � P(B ) = P
�
` � 1(B )

�
= P(A) for all A 2 S;

and hence the correspondenceP 7! ` � P is one-to-one as well. OverallP $ ` � P
is bijective.

From the proof of Lemma 2.16 it is clear that a bijective correspondence
between probability measures on (R+ ; S) and on

�
[0; 1); B[0; 1)

�
, respectively,

could have been established in many other ways as well, e.g. by using the func-
tion è(x) = 1

9 (S(x) � 1) instead of `. The special role of ` according to that
lemma only becomes apparent through its relation to BL. To see this,denote
by B the (unique) probability measure on (R+ ; S) with

B
�
f x > 0 : S(x) � tg

�
= B

� [

k2 Z
10k [1; t]

�
= log t for all 1 � t < 10:

In view of (2.1), the probability measure B on (R+ ; S) is the most natural for-
malization of BL. On the other hand, it will become clear in subsequentchapters
that on

�
[0; 1); B[0; 1)

�
the uniform distribution � 0;1 has many special properties

and hence plays a very distinguished role. The relevance of the speci�c choice for
` in Lemma 2.16, therefore, is that ` � B = � 0;1. The reader will learn shortly why,
for a deeper understanding of BL, the latter relation is very bene�cial indeed.

3. The Benford property

In order to translate the informal versions (1.1), (1.2) and (2.1) of BL into more
precise statements about various types of mathematical objects, it is necessary to
specify exactly what the Benford property means for any one of these objects.
For the purpose of the present chapter, the objects of interest fall into three
categories: sequences of real numbers, real-valued functions de�ned on [0; + 1 );
and probability distributions and random variables. (Recall also Fig 1.)

3.1. Benford sequences

A sequence (xn ) = ( x1; x2; x3; : : :) of real numbers is a (base-10)Benford se-
quence, or simply Benford, if, as N ! 1 , the limiting proportion of indices
n � N for which xn has �rst signi�cant digit d1 exists and equals log(1 +d� 1

1 )
for all d1 2 f 1; 2; : : : ; 9g, and similarly for the limiting proportions of the occur-
rences of all other �nite blocks of initial signi�cant digits. The forma l de�nition
is as follows.
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De�nition 3.1. A sequence (xn ) of real numbers is a Benford sequence, or
Benford for short, if

limN !1
# f 1 � n � N : S(xn ) � tg

N
= log t for all t 2 [1; 10) ;

or equivalently, if for all m 2 N, all d1 2 f 1; 2; : : : ; 9g and all dj 2 f 0; 1; : : : ; 9g,
j � 2,

lim N !1
#

�
1 � n � N : D j (xn ) = dj for j = 1 ; 2; : : : ; m

	

N

= log
�

1+
� X m

j =1
10m � j dj

� � 1
�

:

As will be shown below, the sequence of powers of 2, namely (2n )=(2 ; 4; 8; : : :)
is Benford. However, it is not Benford base 2 since the second signi�cant digit
base 2 of 2n is 0 for everyn, whereas the generalized version (1.3) of BL requires
that 0 < Prob

�
D (2)

2 = 0
�

= 1 � Prob
�
D (2)

2 = 1
�

= log 2 3 � 1 < 1. Similarly,
(3n ), the sequence of powers of 3 is Benford, and so is the sequence of factorials
(n!) as well as the sequence (Fn ) of Fibonacci numbers. Simple examples of
sequences that are not Benford are the positive integers (n), the powers of 10
and the sequence of logarithms (logn).

The notion of Benford sequence according to De�nition3.1 o�ers a natural
interpretation of Prob in the informal expressions (1.1){( 1.3): A sequence (xn )
is Benford if, when one of the �rst N entries in (xn ) is chosen (uniformly) at
random, the probability that this entry's �rst signi�cant digit is d approaches
the Benford probability log(1 + d� 1) as N ! 1 , for every d 2 f 1; 2; : : : ; 9g, and
similarly for all other blocks of signi�cant digits.

Example 3.2. Two speci�c sequences of positive integers will be used repeat-
edly to illustrate key concepts concerning BL: the Fibonacci numbers and the
prime numbers. Both sequences play prominent roles in many areas of mathe-
matics.

(i) As will be seen in Example4.12, the sequences of Fibonacci numbers
(Fn ) = (1 ; 1; 2; 3; 5; 8; 13; : : :), where every entry is simply the sum of its two
predecessors, andF1 = F2 = 1, is Benford. Already the �rst N = 102 elements
of the sequence conform very well to the �rst-digit version (1.1) of BL, with
Prob being interpreted as relative frequency, seeFig 4. The conformance gets
even better if the �rst N = 104 elements are considered, seeFig 5.

(ii) In Example 4.11(v), it will become apparent that the sequence of prime
numbers (pn ) = (2 ; 3; 5; 7; 11; 13; 17; : : :) is not Benford. Fig 4 shows how, ac-
cordingly, the �rst hundred prime numbers do not conform well to ( 1.1). More-
over, the conformance gets even worse if the �rst ten thousandprimes are con-
sidered (Fig 5).
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12200160415121876738
19740274219868223167
31940434634990099905
51680708854858323072
83621143489848422977

135301852344706746049
218922995834555169026
354224848179261915075

2
3
5
7

11
13
17
19
23
29

31
37
41
43
47
53
59
61
67
71

73
79
83
89
97

101
103
107
109
113

127
131
137
139
149
151
157
163
167
173

179
181
191
193
197
199
211
223
227
229

233
239
241
251
257
263
269
271
277
281

283
293
307
311
313
317
331
337
347
349

353
359
367
373
379
383
389
397
401
409

419
421
431
433
439
443
449
457
461
463

467
479
487
491
499
503
509
521
523
541

1 2 3 4 5 6 7 8 9

30 18 13 9 8 6 5 7 4

25 19 19 20 8 2 4 2 1
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102 � log(1+ d� 1 )

d

Fig 4 . The �rst one-hundred Fibonacci numbers conform to the �rst digit law (1.1) quite
well (top and bottom), while the �rst one-hundred prime numb ers clearly do not (center and
bottom).

Remark. Based on discrete density and summability de�nitions, many alterna-
tive notions of Benford sequences have been proposed, utilizing e.g. reiteration
of Ces�aro averaging [Fl], and logarithmic density methods. The reader is referred
to [Ra1, Ra2] for an excellent summary of those approaches. Those methods,
however, do not o�er as natural an interpretation of \Prob" as D e�nition 3.1.
On this, Raimi [Ra1, p.529] remarks that \[t]he discrete summability schemes
[. . . ] can also be tortured into probability interpretations, though none of the
authors [. . . ] (except Diaconis) does so".
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30 18 13 9 8 6 5 7 4

3011 1762 1250 968 792 668 580 513 456

25 19 19 20 8 2 4 2 1

1601 1129 1097 1069 1055 1013 1027 1003 1006
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104 � log(1+ d� 1 ) 3010: 1760: 1249: 969:1 791:8 669:4 579:9 511:5 457:5

Fig 5 . Increasing the sample size from N = 10 2 to N = 10 4 entails an even better
conformance with (1.1) for the Fibonacci numbers, as measured by means of the quanti ty
R = max 9

d=1

�
� � N (d) � log(1 + d� 1 )

�
� . For the primes, on the other hand, the rather poor con-

formance does not improve at all.

Only the notion according to De�nition 3.1 will be used henceforth. How-
ever, to get an impression how alternative concepts may relate to De�nition 3.1
analytically, denote, for any set C � R, by 1C the indicator function of C, i.e.
1C : R ! f 0; 1g with

1C (t) =
�

1 if t 2 C ;
0 otherwise:

Given any sequence (xn ) and any number t 2 [1; 10), consider the sequence�
1[1;t ) (S(xn ))

�
. Clearly, since the latter contains only zeros and ones, it will

usually not converge. It may, however, converge in some averaged sense, to a
limit that may depend on t. Speci�cally, ( xn ) is Benford if and only if

limN !1

P N
n =1 1[1;t )

�
S(xn )

�

N
= log t for all t 2 [1; 10) : (3.1)

Instead of (3.1), one could more generally consider the convergence of

X N

n =1
an 1[1;t )

�
S(xn )

�

X N

n =1
an

; (3.2)

where the an can be virtually any non-negative numbers with
P N

n =1 an ! + 1
as N ! 1 . With this, ( 3.1) corresponds to the special casean = 1 for all
n. Another popular choice in (3.2), related to the number-theoretic concept
of logarithmic (or analytic) density [Se], is an = n� 1 for all n, in which case
(ln N )� 1 P N

n =1 an ! 1. Utilizing the latter, a sequence (xn ) of real numbers
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might be (and has been, see [Ra1]) called weakly Benford if

limN !1
1

ln N

X N

n =1

1[1;t )
�
S(xn )

�

n
= log t for all t 2 [1; 10) :

It is easy to check that every Benford sequence is weakly Benford. To see that
the converse does not hold in general, take for instance (xn ) = ( n). A short
calculation con�rms that, for every t 2 [1; 10),

lim inf N !1

P N
n =1 1[1;t )

�
S(n)

�

N
=

t � 1
9

;

whereas

lim supN !1

P N
n =1 1[1;t )

�
S(n)

�

N
=

10
9

�
t � 1

t
;

showing that (n) is not Benford. (Recall that the limit inferior and limit superior
of a sequence (an ), denoted by lim inf n !1 an and lim supn !1 an , are de�ned,
respectively, as the smallest and largest accumulation value of (an ).) On the
other hand, (n) turns out to be weakly Benford: Indeed, given N , let L N :=
blogN c. For any t 2 [1; 10), it follows from the elementary estimate

1
ln 10L N +1

X L N � 1

i =0

X b10i t c

j =10 i

1
j

�
1

ln N

X N

n =1

1[1;t )
�
S(n)

�

n

�
1

lnb10L N tc

X L N

i =0

X b10i t c

j =10 i

1
j

;

together with

X b10i t c

j =10 i

1
j

= 10 � i
X b10i t c� 10i

j =0

1
1 + 10� i j

!
Z t � 1

0

d�
1 + �

= ln t ; as i ! 1 ;

as well as

lim L !1
ln 10L +1

L
= lim L !1

lnb10L tc
L

= ln 10

and the Cauchy Limit Theorem that

limN !1
1

ln N

X N

n =1

1[1;t )
�
S(n)

�

n
=

ln t
ln 10

= log t ;

i.e., (n) is weakly Benford. In a similar manner, the sequence (pn ) can be shown
to be weakly Benford without being Benford, see [GG, Wh]. |

3.2. Benford functions

BL also appears frequently in real-valued functions such as e.g. those arising
as solutions of initial value problems for di�erential equations (see Section 5.3
below). Thus, the starting point is to de�ne what it means for a func tion to
follow BL.
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Recall that a function f : R ! R is (Borel ) measurableif f � 1(I ) is a Borel
set, i.e. f � 1(I ) 2 B, for every interval I � R. With the terminology introduced
in Section 2.3, this is equivalent to saying that � (f ) � B. Slightly more gener-
ally, for any set 
 and any � -algebra A on 
, a function f : 
 ! R is (Borel )
measurableif � (f ) � A. The collection of Borel measurable functionsf : R ! R
contains all functions of practical interest. For example, every piecewise contin-
uous function (meaning that f has at most countably many discontinuities) is
measurable. Thus every polynomial, trigonometric and exponentialfunction is
measurable, and so is every probability density function of any relevance. In
fact, it is a di�cult exercise to produce a function that is not measurable, or
a set C � R that is not a member ofB, and this can be done only in a non-
constructive way. For all practical purposes, therefore, the reader may simply
read \set" for \Borel set", and \function" for \Borel measura ble function".

Recall that given a set 
 and a � -algebra A on 
, a measure � on (
 ; A) is
a function � : A ! [0; + 1 ] that has all the properties of a probability measure,
except that � (A) may also be bigger than 1, and even in�nite. By far the most
important example is the so-called Lebesgue measureon (R; B), denoted by
� here and throughout. The basic, and in fact de�ning property of � is that
�

�
[a; b]

�
= b� a for every interval [a; b] � R. The relation between the measure

� and the probability measures� a;b considered earlier is such that, for instance,

� (B ) = lim N !1 2N� � N;N
�
B \ [� N; N ]

�
for every B 2 B :

It is customary to also use the symbol � , often without a subscript etc., to
denote the restriction of Lebesgue measure to

�
C; B(C)

�
with the Borel set C

being clear from the context.
In analogy to the terminology for sequences, a functionf is a (base-10) Ben-

ford function, or simply Benford, if the limiting proportion of the time � < T
that the �rst digit of f (� ) equals d1 is exactly log(1 + d� 1

1 ), and similarly for
the other signi�cant digits, and in fact the signi�cand. The formal d e�nition is
as follows.

De�nition 3.3. A (Borel measurable) function f : [0; + 1 ) ! R is Benford if

limT ! + 1
�

��
� 2 [0; T) : S

�
f (� )

�
� t

	�

T
= log t for all t 2 [1; 10) ;

or equivalently, if for all m 2 N, all d1 2 f 1; 2; : : : ; 9g and all dj 2 f 0; 1; : : : ; 9g,
j � 2,

limT ! + 1
�

��
� 2 [0; T) : D j

�
f (� )

�
= dj for j = 1 ; 2; : : : ; m

	�

T

= log
�

1+
� X m

j =1
10m � j dj

� � 1
�

:

Directly analogous to the probabilistic interpretation of a Benford sequence,
the de�nition of a Benford function given in De�nition 3.3 also o�ers a natural
probabilistic interpretation: A function f : [0; + 1 ) ! R is Benford if, when a
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time � is chosen (uniformly) at random in [0; T), the probability that the �rst
digit of f (� ) is d approaches log(1+d� 1) as T ! + 1 , for every d 2 f 1; 2; : : : ; 9g,
and similarly for all other blocks of signi�cant digits.

As will be seen in Example4.5 below, the function f (t) = e�t is Benford
whenever� 6= 0, but f (t) = t and f (t) = sin 2 t, for instance, are not.

3.3. Benford distributions and random variables

BL appears prominently in a wide variety of statistics and probability settings,
such as e.g. in products of independent, identically distributed random variables,
mixtures of random samples, and stochastic models like geometric Brownian
motion that are of great importance for the stochastic modelling ofreal-world
processes. This section lays the foundations for analyzing the Benford prop-
erty for probability distributions and random variables. The term independent,
identically distributed will henceforth be abbreviated i.i.d. , in accordance with
standard stochastic terminology.

Recall from Section2.3 that a probability space is a triple (
 ; A; P) where 

is a set, often referred to as theset of outcomes, A is a � -algebra (the family of
events), and P is a probability measure. A (real-valued) random variable X on
(
 ; A; P) is simply a Borel measurable functionX : 
 ! R, and its distribution
PX is the probability measure on (R; B) de�ned by

PX
�
(�1 ; t]

�
= P(X � t) for all t 2 R :

Thus with the notation introduced in ( 2.5), simply PX = X � P. The expectation,
or expected(or mean) value of X is

EX =
Z



X dP =

Z

R
t dPX (t) ;

provided that this integral exists. More generally, for every measurable function
g : R ! R, the expectation of the random variableg(X ) is

Eg(X ) =
Z



g(X ) dP =

Z

R
g(t) dPX (t) :

In particular, if EX exists, then varX := E(X � EX )2 is the variance of X .
Any probability measure on (R; B) will be referred to as a Borel probability

measureon R. Again, since all subsets ofR of any practical interest are Borel
sets, the speci�er \Borel" will be suppressed unless there is a potential for confu-
sion, i.e., the reader may read \probability measure onR" for \Borel probability
measure onR". Any probability measure P on R is uniquely determined by its
distribution function FP , de�ned as

FP (t) = P
�
(�1 ; t]

�
for all t 2 R :

It is easy to check that the function FP is right-continuous and non-decreasing,
with lim t !�1 FP (t) = 0 and lim t ! + 1 FP (t) = 1. For the sake of notational
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simplicity, write FX instead ofFPX for every random variableX . The probability
measureP, or any random variable X with PX = P, is continuous (or atomless)
if P(f tg) = 0 for every t 2 R, or equivalently if the function FP is continuous.
It is absolutely continuous(a.c.) if, for any B 2 B, P(B ) = 0 holds whenever
� (B ) = 0. By the Radon{Nikodym Theorem, this is equivalent to P having a
density, i.e. to the existence of a measurable functionf P : R ! [0; + 1 ) such
that

P
�
[a; b]

�
=

Z b

a
f P (t) dt for all [a; b] � R : (3.3)

Again, for simplicity write f X instead of f PX for every a.c. random variableX .
Note that ( 3.3) implies

R+ 1
�1 f P (t) dt = 1. Every a.c. probability measure on

(R; B) is continuous but not vice versa, see e.g. [CT]. Given any probability P
on (R; B), denote j � j � P simply by jP j, that is,

jP j(B ) = P
�
f t 2 R : jt j 2 B g

�
for all B 2 B :

Clearly, jP j is concentrated on [0; + 1 ), i.e. jP j
�
[0; + 1 )

�
= 1, and

FjP j (t) =

(
0 if t < 0 ;

FP (t) � FP (� t) + P(f� tg) if t � 0 ;

in particular, therefore, if P is continuous or a.c. then so isjP j, its density in
the latter case being

�
f P (t) + f P (� t)

�
� 1[0;+ 1 ) , where f P is the density of P.

De�nition 3.4. A Borel probability measure P on R is Benford if

P
�
f x 2 R : S(x) � tg

�
= S� P

�
f 0g [ [1; t]

�
= log t for all t 2 [1; 10) :

A random variable X on a probability space (
 ; A; P) is Benford if PX is Ben-
ford, i.e. if

P
�
S(X ) � t

�
= PX

�
f x 2 R : S(x) � tg

�
= log t for all t 2 [1; 10) ;

or equivalently, if for all m 2 N, all d1 2 f 1; 2; : : : ; 9g and all dj 2 f 0; 1; : : : ; 9g,
j � 2,

P
�
D j (X ) = dj for j = 1 ; 2; : : : ; m

�
= log

�
1 +

� X m

j =1
10m � j dj

� � 1
�

:

Example 3.5. If X is a Benford random variable on some probability space
(
 ; A; P), then from (1.1) and the numerical values given in Chapter1,

P(D1(X ) = 1) = P(1 � S(X ) < 2) = log 2 = 0 :3010: : : ;

P(D1(X ) = 9) = log
10
9

= 0 :04575: : : ;

P
��

D1(X ); D2(X ); D3(X )
�

= (3 ; 1; 4)
�

= log
315
314

= 0 :001380: : : :
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P(S(X ) < t )

f S ( X ) f log S ( X )

P(log S(X ) < s )
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1 [1 ;10)

t ln 10

Fig 6 . The distribution functions (top) and densities of S(X ) and log S(X ), respectively, for
a Benford random variable X .

As the following example shows, there are many probability measureson the
positive real numbers, and correspondingly many positive random variables that
are Benford.

Example 3.6. For every integer k, the probability measure Pk with density
f k (x) = 1

x ln 10 on [10k ; 10k+1 ) is Benford, and so is e.g.12 (Pk + Pk+1 ). In fact, ev-
ery convex combination of the (Pk )k2 Z , i.e. every probability measure

P
k2 Z qk Pk

with 0 � qk � 1 for all k and
P

k2 Z qk = 1, is Benford.

As will be seen in Example6.4 below, if U is a random variable uniformly
distributed on [0; 1), then the random variable X = 10U is Benford, but the
random variable X log 2 = 2 U is not.

De�nition 3.7. The Benford distribution B is the unique probability measure
on (R+ ; S) with

B(S � t) = B
� [

k2 Z
10k [1; t]

�
= log t for all t 2 [1; 10) ;

or equivalently, for all m 2 N, all d1 2 f 1; 2; : : : ; 9g and all dj 2 f 0; 1; : : : ; 9g,
j � 2,

B
�
D j = dj for j = 1 ; 2; : : : ; m

�
= log

�
1 +

� X m

j =1
10m � j dj

� � 1
�

:

The combination of De�nitions 3.4 and 3.7 gives
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Proposition 3.8. A Borel probability measure P on R is Benford if and only
if

jP j(A) = B(A) for all A 2 S:

In particular, if P(R+ ) = 1 then P is Benford precisely if P(A) = B(A) for all
A 2 S.

Note that the Benford distribution B is a probability distribution on the
signi�cant digits, or the signi�cand, of the underlying data, and not on the raw
data themselves. That is,B is a probability measure on the family of sets de�ned
by the base-10 signi�cand, i.e. on (R+ ; S), but not on the bigger (R+ ; B+ ) or the
still bigger (R; B). For example, the probability B(f 1g) is not de�ned, simply
because the setf 1g cannot be de�ned in terms of signi�cant digits or signi�cands
alone, and hence does not belong to the domain ofB.

Example 3.9. In the framework of the Examples2.12and 2.15, it is tempting
to call a probability P on (N; SN) a Benford distribution on N if

P
�
f n 2 N : S(n) � tg

�
= log t for all t 2 [1; 10) :

However, no such probability exists! To see this, for everyn 2 N�10 let An =S
l 2 N0

10l f ng 2 SN and note that N equals the disjoint union of the setsAn , and
S(An ) = f 10hlog n i g; here hlogni 2 [0; 1) denotes the fractional part of logn,
that is, hlogni = log n � b lognc. With qn := P(An ) therefore

P
n 2 N�10

qn = 1

and S� P =
P

n 2 N�10
qn � 10hlog n i . Since the set of discontinuities oft 7! FS� P (t)

is
�

10hlog n i : qn 6= 0
	

6= ? , it is impossible to have FS� P (t) = log t for all
t 2 [1; 10). Note that, as a consequence, a Borel probability measureP on
R concentrated onN, i.e. with P(N) = 1, cannot be Benford.

On the other hand, given " > 0 it is not hard to �nd a probability P" on
(N; SN) with

�
�P"

�
f n 2 N : S(n) � tg

�
� log t

�
� < " for all t 2 [1; 10) : (3.4)

For a concrete example, for anyN 2 N consider the probability measure

QN := c� 1
N

X 10N +1 � 1

j =10 N
j � 1� j ;

where cN =
P 10N +1 � 1

j =10 N j � 1. Note that QN may be thought of as a discrete
approximation of the Benford probability PN in Example 3.6. From

S� QN = c� 1
N

X 10N +1 � 1

j =10 N
j � 1� S( j ) = c� 1

N

X 10N +1 � 10N

j =1

1
10N + j � 1

� 1+10 � N ( j � 1) ;

together with the elementary estimate ln M +1
L <

P M
j = L j � 1 < ln M

L � 1 , valid for
all L; M 2 N with 2 � L < M , it is straightforward to deduce that, for all
1 � t < 10,

�
�S� QN

�
[1; t]

�
� log t

�
� < � log(1 � 10� N ) =

10� N

ln 10
+ O(10� 2N ) as N ! 1 :
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Thus (3.4) is guaranteed by taking P" = QN with N su�ciently large. A short
calculation con�rms that it su�ces to choose N > 1 + j log" j.

Example 3.10. (i) If X is distributed according to U(0; 1), the uniform dis-
tribution on [0 ; 1), i.e. PX = � 0;1, then for every 1 � t < 10,

P
�
S(X ) � t

�
= � 0;1

� [

k2 Z
10k [1; t]

�
=

X

n 2 N
10� n (t � 1) =

t � 1
9

6� log t ;

showing that S(X ) is uniform on [1; 10), and hence� 0;1 is not Benford.

(ii) If X is distributed according to exp(1), the exponential distribution with
mean 1, whose distribution function is given by Fexp(1) (t) = max(0 ; 1 � e� t ),
then

P(D1(X ) = 1) = P
�

X 2
[

k2 Z
10k [1; 2)

�
=

X

k2 Z

�
e� 10k

� e� 2�10k
�

>
�

e� 1=10 � e� 2=10
�

+
�
e� 1 � e� 2�

+
�
e� 10 � e� 20�

= 0 :3186: : : > log 2;

and hence exp(1) is not Benford either. (See [EL, LSE, MN] for a detailed
analysis of the exponential distribution's relation to BL.)

(iii) Let X be distributed according to the Beta
�

1
2 ; 1

2

�
- or arcsin-distribution,

meaning that P(X � s) = 2
� arcsin

p
s for all 0 � s < 1. It follows that, for every

1 � t < 10,

FS(X ) (t) = P(S(X ) � t) = P
�

X 2
[

n 2 N
10� n [1; t]

�

=
2
�

X 1

n =1

�
arcsin(10� n= 2

p
t) � arcsin(10� n= 2)

�

=
2
�

X 1

l =0

(2l )!
22l (l !)2(2l + 1)

�
t l +1 =2 � 1

10l +1 =2 � 1
;

and hence in particular

FS(X ) (
p

10) =
2
�

X 1

l =0

(2l )!
22l (l !)2(2l + 1)

�
1

10l= 2+1 =4 + 1

<
2
�

X 1

l =0

(2l )!
22l (l !)2(2l + 1)

10� ( l= 2+1 =4)

=
2
�

arcsin(10� 1=4) = 0 :3801: : : <
2
5

;

which in turn shows that X is not Benford, as FB(
p

10) = 1
2 . Alternatively,

FS(X ) is easily seen to be strictlyconvexon [1; 10) and thereforeFS(X ) (t) � log t
cannot possibly hold.
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4. Characterizations of Benford's Law

The purpose of this chapter is to establish and illustrate four useful charac-
terizations of the Benford property in the context of sequences, functions, dis-
tributions and random variables, respectively. These characterizations will be
instrumental in demonstrating that certain datasets are, or are not, Benford,
and helpful for predicting which empirical data are likely to follow BL clo sely.

4.1. The uniform distribution characterization

The uniform distribution characterization is undoubtedly the most b asic and
powerful of all characterizations, mainly because the mathematical theory of
uniform distribution mod 1 is very well developed, see e.g. [DT , KN] for author-
itative surveys of the theory.

Here and throughout, denote byhti the fractional part of any real number t,
that is hti = t � b tc. For example,h� i = h3:1415: : :i = 0 :1415: : : = � � 3. Recall
that � 0;1 denotes Lebesgue measure on

�
[0; 1); B[0; 1)

�
.

De�nition 4.1. A sequence (xn ) of real numbers isuniformly distributed mod-
ulo 1, abbreviated henceforth asu.d. mod 1, if

lim N !1
# f 1 � n � N : hxn i � sg

N
= s for all s 2 [0; 1) ;

a (Borel measurable) function f : [0; + 1 ) ! R is u.d. mod 1 if

limT ! + 1
� f � 2 [0; T) : hf (� )i � sg

T
= s for all s 2 [0; 1) ;

a random variable X on a probability space (
 ; A; P) is u.d. mod 1 if

P(hX i � s) = s for all s 2 [0; 1) ;

and a probability measureP on (R; B) is u.d. mod 1 if

P(f x : hxi � sg) = P
� [

k2 Z
[k; k + s]

�
= s for all s 2 [0; 1) :

The next simple theorem (cf. [Di ]) is one of the main tools in the theory of
BL because it allows application of the powerful theory of uniform distribution
mod 1. (Recall the convention log 0 := 0.)

Theorem 4.2 (Uniform distribution characterization) . A sequence of real num-
bers (respectively, a Borel measurable function, a random variable, a Borel prob-
ability measure) is Benford if and only if the decimal logarithm of its absolute
value is uniformly distributed modulo 1.
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Proof. Let X be a random variable and, without loss of generality, assume that
P(X = 0) = 0. Then, for all s 2 [0; 1),

P(hlog jX ji � s) = P
�

log jX j 2
[

k2 Z
[k; k + s]

�
= P

�
jX j 2

[

k2 Z
[10k ; 10k+ s]

�

= P(S(X ) � 10s) :

Hence, by De�nitions 3.4 and 4.1, X is Benford if and only if P(S(X ) � 10s) =
log 10s = s for all s 2 [0; 1), i.e., if and only if log jX j is u.d. mod 1.

The proofs for sequences, functions, and probability distributions are com-
pletely analogous.

Next, several tools from the basic theory of uniform distribution mod 1 will
be recorded that will be useful, via Theorem4.2, in establishing the Benford
property for many sequences, functions, and random variables.

Lemma 4.3. (i) The sequence(xn ) is u.d. mod 1 if and only if the sequence
(kxn + b) is u.d. mod 1 for every k 2 Znf 0g and everyb 2 R. Also, (xn ) is
u.d. mod 1 if and only if (yn ) is u.d. mod 1 wheneverlim n !1 jyn � xn j = 0 .

(ii) The function f is u.d. mod 1 if and only if t 7! kf (t) + b is u.d. mod 1
for every non-zero integerk and everyb 2 R.

(iii) The random variable X is u.d. mod 1 if and only if kX + b is u.d. mod 1
for every non-zero integerk and everyb 2 R.

Proof. (i) The \if" part is obvious with k = 1, b = 0. For the \only if" part,
assume that (xn ) is u.d. mod 1. Note �rst that

lim N !1
# f 1 � n � N : hxn i 2 Cg

N
= � 0;1(C)

holds wheneverC is a �nite union of intervals. Let k 2 Z be non-zero and
observe that, for any 0< s < 1,

�
x : hkxi � s

	
=

8
><

>:

n
x : hxi 2

S k � 1
j =0

h
j
k ; j + s

k

io
if k > 0;

n
x : hxi 2

S j k j� 1
j =0

h
j +1 � s

jk j ; j +1
jk j

io
if k < 0:

Consequently,

lim N !1
# f 1 � n � N : hkxn i � sg

N
=

8
><

>:

� 0;1

� S k � 1
j =0

h
j
k ; j + s

k

i�
if k > 0;

� 0;1

� S j k j� 1
j =0

h
j +1 � s

jk j ; j +1
jk j

i�
if k < 0;

=

(
k � s

k if k > 0

jkj � s
jk j if k < 0

= s ;



A basic theory of Benford's Law 29

showing that (kxn ) is u.d. mod 1. Similarly, note that, for any b; s2 (0; 1),

�
x : hx + bi � s

	
=

(
f x : hxi 2 [0; s � b] [ [1 � b;1)g if s � b ;

f x : hxi 2 [1 � b;1 + s � b]g if s < b :

Thus, assuming without loss of generality that 0< b < 1,

limN !1
# f 1 � n � N : hxn + bi � sg

N
=

(
� 0;1

�
[0; s � b] [ [1 � b;1)

�
if s � b

� 0;1
�
[1 � b;1 + s � b]

�
if s < b

= s ;

and hence (xn + b) is also u.d. mod 1. The second assertion is clear from the
de�nition.

The proofs of (ii) and (iii) are completely analogous.

Example 4.4. (i) The sequence (n� ) = ( �; 2�; 3�; : : : ) is u.d. mod 1, by Weyl's
Equidistribution Theorem, see Proposition 4.8(i) below. Similarly, the sequence
(xn ) = ( n

p
2) is u.d. mod 1, whereas (xn

p
2) = (2 n) = (2 ; 4; 6; : : :) clearly is

not, as h2ni = 0 for all n. Thus the requirement in Lemma 4.3(i) that k be an
integer cannot be dropped.

For an analogous example using random variables, letX be uniform on [0; 2),
that is PX = � 0;2. Then X is u.d. mod 1, but X

p
2 is not because

P
�
hX

p
2i � s

�
=

8
<

:

3
2

p
2
s if s 2 [0; 2

p
2 � 2) ;

1p
2
s +

p
2� 1p

2
if s 2 [2

p
2 � 2; 1) :

(ii) The sequence (logn) is not u.d. mod 1. A straightforward calculation
shows that

�
N � 1# f 1 � n � N : hlogni � sg

�
N 2 N

has, for everys 2 [0; 1),

1
9

(10s � 1) and
10
9

(1 � 10� s)

as its limit inferior and limit superior, respectively.

Example 4.5. (i) The function f (t) = at + b with real a; b is u.d. mod 1 if and
only if a 6= 0. Clearly, if a = 0 then f is constant and hence not u.d. mod 1. On
the other hand, if a > 0 then ha� + bi � s if and only if � 2

�
k � b

a ; k � b+ s
a

�
for

somek 2 Z. Note that each of the intervals
�

k � b
a ; k � b+ s

a

�
has the same length

s
a . Thus, given T > 0 and s 2 [0; 1),

s
a

(baTc � 2) � �
�
f � 2 [0; T) : ha� + bi � sg

�
�

s
a

(baTc + 2) ;

and since limT ! + 1
s

aT (baTc � 2) = s, the function f is u.d. mod 1. The argu-
ment for the casea < 0 is similar.

As a consequence, although the functionf (t) = �t is not Benford for any
� , the function f (t) = e�t is Benford whenever� 6= 0, via Theorem 4.2, since
logf (t) = �t= ln 10 is u.d. mod 1, seeFig 7.
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(ii) The function f (t) = log jat + bj is not u.d. mod 1 for any a; b2 R. Indeed,
if a = 0 then f is constant and hence not u.d. mod 1. On the other hand, for
a 6= 0 essentially the same calculation as in Example4.4(ii) above shows that,
for every s 2 [0; 1),

lim inf T ! + 1
� (f � 2 [0; T) : hlog ja� + bji � sg)

T
=

1
9

(10s � 1) ;

and

lim supT ! + 1
� (f � 2 [0; T) : hlog ja� + bji � sg)

T
=

10
9

(1 � 10� s) :

Again, this implies that f (t) = at + b is not Benford for any a; b.
Similarly, f (t) = � log(1 + t2) is not u.d. mod 1, and hencef (t) = (1 + t2)� 1

is not Benford, seeFig 7.

(iii) The function f (t) = et is u.d. mod 1. To see this, letT > 0 and N :=
beT c, and recall that t � 1

2 t2 � ln(1 + t) � t for all t � 0. Given 0 � s < 1, it
follows from

� (f � 2 [0; T) : he� i � sg) =
X N � 1

n =1
ln

�
1 +

s
n

�
+ ( T � ln N )

that

s
P N � 1

n =1 n� 1 � 1
2 s2 P N � 1

n =1 n� 2

ln(N + 1)
�

� (f � 2 [0; T) : he� i � sg)
T

�
s

P N � 1
n =1 n� 1 + ln(1 + N � 1)

ln N
;

and hence indeed limT ! + 1 T � 1� (f � 2 [0; T) : he� i � sg) = s.
As a consequence, the super-exponential functionf (t) = ee�t

is also Benford
if � 6= 0.

(iv) For the function f (t) = sin 2 t, it is straightforward to check that, given
any 0 � s < 1,

limT ! + 1
� (f � 2 [0; T) : hsin2 � i � sg)

T
=

2
�

arcsin
p

s :

Thus, asymptotically hf i is not uniform on [0; 1) but rather arcsin-distributed,
see Example3.10(iii).

(v) For the function f (t) = log(sin 2 t), it follows from (iv) that the asymptotic
distribution of hf i has the density

d
ds

�
2
�

X 1

n =1

�
arcsin 10(s� n )=2 � arcsin 10� n= 2

� �
=

ln 10
�

X 1

n =1

1
p

10n � s � 1

>
ln 10

�
�

10s=2

101=2 � 1
;
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1

1

1

0

0

0
0

0

0

10

10

10

10

10

10

t

t

t

f 1(t ) = e� t

S(f 1)
f 2(t ) = (1 + t2) � 1

S(f 2)

f 3(t ) = sin 2 t

S(f 3)

Fig 7 . While the function f 1 is Benford, the functions f 2 ; f 3 are not, see Example 4.5.

for 0 � s < 1. Thus clearly f is not u.d. mod 1, showing that t 7! sin2 t is not
Benford, seeFig 7.

Example 4.6. (i) If the random variable X is uniformly distributed on [0 ; 2)
then it is clearly u.d. mod 1. However, if X is uniform on, say, [0; � ) then X is
not u.d. mod 1.

(ii) No exponential random variable is u.d. mod 1. Speci�cally, letX be an
exponential random variable with mean � , i.e.

FX (t) = max(0 ; 1 � e� t=� ) ; t 2 R :

Hence varX = � 2. For every l � 0,

P(l � X < l + 1
2 ) = FX (l + 1

2 ) � FX (l )

> F X (l + 1) � FX (l + 1
2 ) = P(l + 1

2 � X < l + 1) ;

and since
P 1

l =0 P(l � X < l + 1) = 1, this implies that

P(hX i < 1
2 ) =

X 1

l =0
P(l � X < l + 1

2 ) > 1
2 ;

showing that X is not u.d. mod 1. To obtain more explicit information, observe
that, for every 0 � s < 1,

FhX i (s) = P(hX i � s) =
X 1

l =0

�
FX (l + s) � FX (l )

�
=

1 � e� s=�

1 � e� 1=�
;
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from which it follows via a straightforward calculation that

max0� s< 1
�
�FhX i (s) � s

�
� =

1
e1=� � 1

� � + � ln( �e 1=� � � ) =: Rii (� ) :

Note that Rii (1) = ln( e � 1) � e� 2
e� 1 = 0 :1233: : : < 1

8 . Moreover,

Rii (� ) =
1

8�
+ O(� � 2) as � ! + 1 ;

which shows that even thoughX is not u.d. mod 1, the deviation of hX i from
uniform is small for large � . As a consequence, 10X resembles a Benford random
variable ever more closely as� ! + 1 .

(iii) If X is a normal random variable thenX is not u.d. mod 1, and neither
is jX j or max(0; X ). While this is easily checked by a direct calculation as in (ii),
it is again illuminating to obtain more quantitative information. To this en d,
assume thatX is a normal variable with mean 0 and variance� 2. By means of
Fourier series [Pi], it can be shown that, for every 0� s < 1,

FhX i (s) � s =
X 1

n =1

sin(2�ns )
�n

e� 2� 2 � 2 n 2
:

From this, it follows that

Riii (� ) := max 0� s< 1
�
�FhX i (s) � s

�
� �

1
�

X 1

n =1
n� 1e� 2� 2 � 2 n 2

;

and hence in particular

Riii (� ) =
e� 2� 2 � 2

�
+ O(e� 8� 2 � 2

) as � ! + 1 ;

showing that Riii (� ), the deviation of hX i from uniformity, goes to zero very
rapidly as � ! + 1 . Already for � = 1 one �nds that Riii (1) < 8:516� 10� 10.
Thus even though a standard normal random variableX is not u.d. mod 1, the
distribution of hX i is extremely close to uniform. Consequently, alog-normal
random variable with large variance is practically indistinguishable from a Ben-
ford random variable.

Corollary 4.7. (i) A sequence(xn ) is Benford if and only if, for all � 2 R
and k 2 Z with �k 6= 0 , the sequence(�x k

n ) is also Benford.

(ii) A function f : [0; + 1 ) ! R is Benford if and only if 1=f is Benford.

(iii) A random variable X is Benford if and only if 1=X is Benford.

The next two statements, recorded here for ease of reference, list several key
tools concerning uniform distribution mod 1, which via Theorem4.2will be used
to determine Benford properties of sequences, functions, and random variables.
Conclusion (i) in Proposition 4.8 is Weyl's classical uniform distribution result
[KN , Thm.3.3], conclusion (ii) is an immediate consequence of Weyl's criterion
[KN, Thm.2.1], conclusion (iii) is [Ber2, Lem.2.8], and conclusion (iv) is [BBH,
Lem.2.4.(i)].
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Proposition 4.8. Let (xn ) be a sequence of real numbers.

(i) If limn !1 (xn +1 � xn ) = � for some irrational � , then (xn ) is u.d. mod 1.

(ii) If (xn ) is periodic, i.e. xn + p = xn for somep 2 N and all n, then (n� + xn )
is u.d. mod 1 if and only if � is irrational.

(iii) The sequence(xn ) is u.d. mod 1 if and only if (xn + � logn) is u.d. mod
1 for all � 2 R.

(iv) If (xn ) is u.d. mod 1 and non-decreasing, then(xn =logn) is unbounded.

The converse of (i) is not true in general: (xn ) may be u.d. mod 1 even if
(xn +1 � xn ) has a rational limit. Also, in (ii) the sequence (n� ) cannot be
replaced by an arbitrary uniformly distributed sequence (� n ), i.e. (� n + xn ) may
not be u.d. mod 1 even though (� n ) is u.d. mod 1 and (xn ) is periodic.

Another very useful result is Koksma's metric theorem [KN, Thm.4.3]. For
its formulation, recall that a property of real numbers is said to hold for almost
every (a.e.) x 2 [a; b) if there exists a set N 2 B[a; b) with � a;b(N ) = 0 such
that the property holds for every x 62N . The probabilistic interpretation of a
given property of real numbers holding for a.e.x is that this property holds
almost surely (a.s.), i.e. with probability one, for every random variable that
has a density(i.e., is absolutely continuous).

Proposition 4.9. Let f n be continuously di�erentiable on [a; b] for all n 2 N.
If f 0

m � f 0
n is monotone and jf 0

m (x) � f 0
n (x)j � � > 0 for all m 6= n, where �

does not depend onx, m and n, then
�
f n (x)

�
is u.d. mod 1 for almost every

x 2 [a; b].

Theorem 4.10 ([BHKR ]). If a; b; �; � are real numbers witha 6= 0 and j� j > j� j
then (� n a + � n b) is Benford if and only if log j� j is irrational.

Proof. Sincea 6= 0 and j� j > j� j, limn !1
� n b
� n a = 0, and therefore

log j� n a + � n bj � log j� n aj = log

�
�
�
�1 +

� n b
� n a

�
�
�
� ! 0 ;

showing that (log j� n a+ � n bj) is u.d. mod 1 if and only if (log j� n aj) = (log jaj +
n logj� j) is. According to Proposition 4.8(i), this is the case whenever logj� j is
irrational. On the other hand, if log j� j is rational then hlog jaj+ n log j� ji attains
only �nitely many values and hence (logjaj + n log j� j) is not u.d. mod 1. An
application of Theorem 4.2 therefore completes the proof.

Example 4.11. (i) By Theorem 4.10 the sequence (2n ) is Benford since log 2
is irrational, but (10 n ) is not Benford since log 10 = 1 2 Q. Similarly, (0 :2n ),
(3n ), (0:3n ),

�
0:01 � 0:2n + 0 :2 � 0:01n

�
are Benford, whereas (0:1n ),

� p
10

n �
,�

0:1 � 0:02n + 0 :02� 0:1n
�

are not.

(ii) The sequence
�
0:2n + ( � 0:2)n

�
is not Benford, since all odd terms are

zero, but
�
0:2n + ( � 0:2)n + 0 :03n

�
is Benford | although this does not follow

directly from Theorem 4.10.



34 A. Berger and T.P. Hill

(iii) By Proposition 4.9, the sequence (x; 2x; 3x; : : :) = ( nx) is u.d. mod 1 for
almost every real x, but clearly not for every x, as for examplex = 1 shows.
Consequently, by Theorem4.2, (10nx ) is Benford for almost all real x, but not
e.g. for x = 1 or, more generally, wheneverx is rational.

(iv) By Proposition 4.8(iv) or Example 4.4(ii), the sequence (logn) is not
u.d. mod 1, so the sequence (n) of positive integers is not Benford, and neither
is (�n ) for any � 2 R, see alsoFig 8.

(v) Consider the sequence (pn ) of prime numbers. By the Prime Number
Theorem, pn = O(n logn) as n ! 1 . Hence it follows from Proposition 4.8(iv)
that ( pn ) is not Benford, seeFig 8

Example 4.12. Consider the sequence (Fn ) = (1 ; 1; 2; 3; 5; 8; 13; : : :) of Fi-
bonacci numbers, de�ned inductively as Fn +2 = Fn +1 + Fn for all n 2 N,
with F1 = F2 = 1. It is well known (and easy to check) that

Fn =
1

p
5

  
1 +

p
5

2

! n

�

 
1 �

p
5

2

! n !

=
1

p
5

�
' n � (� ' � 1)n �

for all n 2 N ;

where ' = 1
2 (1 +

p
5) � 1:618. Since' > 1 and log' is irrational, ( Fn ) is

Benford, by Theorem 4.10, see alsoFig 8. Sequences such as (Fn ) which are
generated by linear recurrence relations will be studied in detail in Section 5.2.

Theorem 4.13. Let X; Y be random variables. Then:

(i) If X is u.d. mod 1 and Y is independent ofX , then X + Y is u.d. mod 1.

(ii) If hX i and hX + � i have the same distribution for some irrational� then
X is u.d. mod 1.

(iii) If (X n ) is an i.i.d. sequence of random variables andX 1 is not purely
atomic (i.e. P(X 1 2 C) < 1 for every countable setC � R), then

limn !1 P
�D X n

j =1
X j

E
� s

�
= s for every 0 � s < 1; (4.1)

that is,

 P n

j =1 X j
�

! U(0; 1) in distribution as n ! 1 .

Proof. The proof is most transparently done by means of some elementary
Fourier analysis. To this end, for any random variableZ with values in [0; 1), or
equivalently for the associated probability measurePZ on

�
[0; 1); B[0; 1)

�
, let

cPZ (k) = E(e2�{kZ ) =
Z 1

0
e2�{ks dPZ (s)

=
Z 1

0
cos(2�ks ) dPZ (s) + {

Z 1

0
sin(2�ks ) dPZ (s) ; k 2 Z :

The bi-in�nite sequence
� cPZ (k)

�
k2 Z , referred to as the Fourier (or Fourier{

Stieltjes) coe�cients of Z or PZ , is a bounded sequence of complex numbers,
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(Fn ) = (1 ; 1; 2; 3; 5; 8; 13; : : : )
�
S(Fn )

�
= (1 ; 1; 2; 3; 5; 8; 1:3; : : : )

(2n) = (2 ; 4; 6; 8; 10; 12; 14; : : : )
�
S(2n)

�
= (2 ; 4; 6; 8; 1; 1:2; 1:4; : : : )

(xn ) = ( b10( n +2) =5c)
= (3 ; 6; 10; 15; 25; 39; 63; : : : )

�
S(xn )

�
= (3 ; 6; 1; 1:5; 2:5; 3:9; 6:3; : : : )

(pn ) = (2 ; 3; 5; 7; 11; 13; 17; : : :)
�
S(pn )

�
= (2 ; 3; 5; 7; 1:1; 1:3; 1:7; : : :)

� N (1) =
# f 1 � n � N : D 1 = 1 g

N

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

0:1

0:1

0:1

0:2

0:2

0:2

0:2

0:3

0:3

0:3

0:4

0:4

0:4

0:4

0:5

0:5

0:5

0:6

0:8

1:0

log 10 N

log 10 N

log 10 N

log 10 N

� N (1)

� N (1)

� N (1)

Fig 8 . For a Benford sequence, lim N !1 � N (1) = log 2 . Thus if
�
� N (1)

�
N 2 N does not con-

verge (center) or has a di�erent limit (bottom), then the seq uence in question is not Benford,
see also Example 4.11.

with j cPZ (k)j � 1 for all k 2 Z, and cPZ (0) = 1. The three single most important
properties of Fourier coe�cients are that

� cPZ (k)
�

k2 Z uniquely determinesPZ ,

i.e. PZ 1 = PZ 2 whenever dPZ 1 (k) = dPZ 2 (k) for all k 2 Z; that \PhZ 1 + Z 2 i (k) =
dPZ 1 (k) � dPZ 2 (k) for all k, provided that Z1 and Z2 are independent; and that
Zn ! Z in distribution if and only if lim n !1 dPZ n (k) = cPZ (k) for every k,
see e.g. [CT] for an authoritative discussion of this material. Also note that
the sequence of Fourier coe�cients is extremely simple ifZ is uniform, i.e. for
Z = U(0; 1), namely

\PU (0 ;1) (k) = d� 0;1(k) =
�

1 if k = 0 ;
0 otherwise:
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With these preparations, the proof of the theorem is very short indeed.
(i) Since [PhX i (k) = 0 for all k 6= 0,

\PhX + Y i (k) = cPX (k) � cPY (k) = 0 ;

which in turn shows that hX + Y i = U(0; 1), i.e. X + Y is u.d. mod 1.
(ii) Note that if Z = � with probability one then cPZ (k) = e2�{k� for every

k 2 Z. Consequently, if hX i and hX + � i have the same distribution then

[PhX i (k) = \PhX + � i (k) = e2�{k� [PhX i (k)

for every k 2 Z. If � is irrational then e2�{k� 6= 1 for all k 6= 0, implying that
[PhX i (k) = 0. Thus [PhX i = d� 0;1 and hencePhX i = � 0;1, i.e. hX i = U(0; 1).

(iii) Assume that X 1; X 2; : : : are independent and all have the same distribu-
tion. Then, for every k 2 Z and n 2 N,

\PhX 1 + ::: + X n i (k) =
�

\PhX 1 i (k)
� n

:

Recall that j\PhX 1 i (k)j � 1. Thus \PhX 1 + ::: + X n i (k) ! 0 as n ! 1 , and hence

hX 1 + : : : + X n i ! U(0; 1) in distribution, unless j\PhX 1 i (k0)j = 1 for some non-

zero integer k0. In the latter case, let \PhX 1 i (k0) = e2�{� with the appropriate
� 2 [0; 1). It follows from

0 = 1 � e� 2�{� \PhX 1 i (k0) = 1 � \PhX 1 � �=k 0 i (k0)

=
Z 1

0

�
1 � cos(2�k 0s)

�
dPhX 1 � �=k 0 i (s) � 0 ;

that cos(2�k 0hX 1 � �=k 0i ) = cos
�
2� (k0X � � )

�
= 1 with probability one. Hence

P(k0X 1 2 � + Z) = 1, and X 1 is purely atomic. (In fact, X 1 is concentrated on
a lattice f a + k=jk0j : k 2 Zg with the appropriate a > 0.)

Example 4.14. (i) Let (X n ) be an i.i.d. sequence of Cauchy random variables,
i.e.

f X 1 (t) =
1

� (1 + t2)
; t 2 R :

It is well known, or readily checked by a direct calculation, that 1
n

P n
j =1 X j is

again Cauchy. Thus

f h
P n

j =1 X j i (s) =
1
�

X

k2 Z

n
n2 + ( s + k)2 ; 0 � s < 1;

from which it follows that, uniformly in s,

f h
P n

j =1 X j i (s) =
1

�n

X

k2 Z

1

1 +
�
(s + k)=n

� 2 !
1
�

Z + 1

�1

dt
1 + t2 = 1 as n ! 1 :
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As asserted by Theorem4.13, therefore, for every 0� s < 1,

limn !1 P
�D X n

j =1
X j

E
� s

�
= lim n !1

Z s

0
f h

P n
j =1 X j i (� ) d� =

Z s

0
1 d� = s :

(ii) Consider an i.i.d. sequence (X n ) where P(X 1 = 0) = P(X 1 =
p

2) = 1
2 .

In this case

dPX 1 (k) = 1
2

�
1 + e2�{k

p
2
�

= e�{k
p

2 cos(�k
p

2) ; k 2 Z :

Note that j dPX 1 (k)j = j cos(�k
p

2)j < 1 for all k 6= 0. Hence \Ph
P n

j =1 X j i (k) =
\PhX 1 i (k)n ! 0 as n ! 1 , which in turn shows that ( 4.1) holds, even though
X 1 is purely atomic.

On the other hand, if P(X 1 = 0) = P(X 1 = 1
2 ) = 1

2 then X 1 is also purely
atomic, but

P
� X n

j =1
X j = 1

2 l
�

= 2 � n
�

n
l

�
for all n 2 N; l = 0 ; 1; : : : ; n ;

and consequently, for everyn,

P
�D X n

j =1
X j

E
= 0

�
=

X n

l =0 ; l even
2� n

�
n
l

�
=

1
2

;

showing that (4.1) does not hold in this case. Correspondingly,dPX 1 (k) = 1
2

�
1 +

(� 1)k
�
, and so dPX 1 (k) = 1 whenever k is even.

A careful inspection of the above proof shows that, in the settingof Theorem
4.13(iii), ( 4.1) holds if and only if P(X 1 2 a + 1

m Z) < 1 for every a 2 R and
m 2 N. While the \if" part has been proved above, for the \only if" part
simply note that if P(X 1 2 a + 1

m Z) = 1 for some a 2 R and m 2 N then
hX 1 + : : : + X n i is, for every n 2 N and possibly up to a rotation, concentrated
on the set f 0; 1

m ; : : : ; m � 1
m g = h1

m Zi and hence does not converge in distribution
to U(0; 1).

None of the familiar classical probability distributions or random variables,
such as e.g. normal, uniform, exponential, beta, binomial, or gamma distribu-
tions are Benford. Speci�cally, no uniform distribution is even close to BL, no
matter how large its range or how it is centered. This statement canbe quanti-
�ed explicitly as follows.

Proposition 4.15 ([Ber5, BH3]). For every uniformly distributed random vari-
able X ,

max0� s< 1
�
�Fhlog X i (s) � s

�
� �

� 9 + ln 10 + 9 ln 9 � 9 ln ln 10
18 ln 10

= 0 :1334: : : ;

and this bound is sharp.
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Similarly, all exponential and normal random variables are uniformly bound-
ed away from BL, as is explained in detail in [BH3]. However, as the following
example shows, some distributions do come fairly close to being Benford.

Example 4.16. (i) Let X be exponential with mean 1, that is

FX (t) = max(0 ; 1 � e� t ) ; t 2 R :

An explicit calculation shows that, for every 1 � t < 10,

P(S(X ) � t) =
X

k2 Z

�
FX (10k t) � FX (10k )

�
=

X

k2 Z

�
e� 10k

� e� 10k t
�

:

SinceP(S(X ) � t) 6� log t, the random variable X is not Benford. Numerically,
one �nds max1� t< 10 jP(S(X ) < t ) � log tj < 3:054� 10� 2, see alsoFig 9. Thus
even thoughX is not exactly Benford, it is close to being Benford in the sense
that jP(S(X ) � t) � log tj is small for all t 2 [1; 10).

(ii) Let X be standard normal. Then, for everyt 2 [1; 10),

P(S(X ) � t) =
X

k2 Z

�
�(10 k t) � �(10 k )

�
;

where � is the distribution function of X , that is

�( t) = FX (t) = P(X � t) =
1

p
2�

Z t

�1
e� 1

2 � 2
d� ; t 2 R :

Numerically, one �nds max1� t � 10 jP(S(X ) < t ) � log tj < 6:052� 10� 2. Though
larger than in the exponential case, the deviation ofX from BL is still rather
small.

0:040:04

� 0:04 � 0:04

10 101 1
tt

X standard normalX exponential, EX = 1

FS ( X ) ( t ) � log tFS ( X ) ( t ) � log t

kFS ( X ) ( t ) � log t k1 � 6:052� 10� 2

kFS ( X ) ( t ) � log t k1 � 3:054� 10� 2

Fig 9 . For standard exponential (left) and normal random variabl es X , the distribution of
S(X ) deviates from BL only slightly. Note, however, that non-standard normal variables can
be far from BL, e.g., if EX = 75 and var X = 1 then D 1 (X ) = 7 with very high probability.
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The next result says that every random variableX with a density is asymp-
totically uniformly distributed on lattices of intervals as the size of th e intervals
goes to zero. Equivalently,hnX i is asymptotically uniform, as n ! 1 . This
result has been the basis for several recent fallacious argumentsclaiming that if
a random variable X has a density with a very large \spread" then logX must
also have a density with large spread and thus, by the theorem, must be close to
u.d. mod 1, implying in turn that X must be close to Benford (cf. [Fel, Few]).
The error in those arguments is that, regardless of which notion of\spread" is
used, the variableX may have large spread and at the same time the variable
logX may have small spread; for details, the reader is referred to [BH3].

Theorem 4.17. If X has a density then

lim n !1 P(hnX i � s) = s for all 0 � s < 1; (4.2)

that is, hnX i ! U(0; 1) in distribution as n ! 1 .

Proof. Since hnX i =


nhX i

�
, it can be assumed thatX only takes values in

[0; 1). Let f be the density ofX , i.e. f : [0; 1] ! R is a non-negative measurable
function with P(X � s) =

Rs
0 f (� ) d� for all s 2 [0; 1). From

P(hnX i � s) = P
�

X 2
[ n � 1

l =0

�
l
n

;
l + s

n

��
=

X n � 1

l =0

Z ( l + s)=n

l=n
f (� ) d�

=
Z s

0

1
n

X n � 1

l =0
f

�
l + �

n

�
d� ;

it follows that the density of hnX i is given by

f hnX i (s) =
1
n

X n � 1

l =0
f

�
l + s

n

�
; 0 � s < 1:

Note that if f is continuous, or merely Riemann integrable, then, asn ! 1 ,

f hnX i (s) !
Z 1

0
f (� ) d� = 1 for all s 2 [0; 1) :

In general, given any " > 0 there exists a continuous densityg" such thatR1
0 jf (� ) � g" (� )j d� < " and hence
Z 1

0
jf hnX i (� ) � 1j d� �

Z 1

0

�
�
�
�
1
n

X n � 1

l =0
f

�
l + �

n

�
�

1
n

X n � 1

l =0
g"

�
l + �

n

� �
�
�
� d�

+
Z 1

0

�
�
�
�
1
n

X n � 1

l =0
g"

�
l + �

n

�
� 1

�
�
�
� d�

�
Z 1

0
jf (� ) � g" (� )j d� +

Z 1

0

�
�
�
�
1
n

X n � 1

l =0
g"

�
l + �

n

�
�

Z 1

0
g(� ) d�

�
�
�
� d� ;

which in turn shows that

lim supn !1

Z 1

0
jf hnX i (� ) � 1j d� � " ;
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and since" > 0 was arbitrary,
R1

0 jf hnX i (� ) � 1j d� ! 0 as n ! 1 . From this,
the claim follows immediately because, for every 0� s < 1,

�
�P(hnX i � s) � s

�
� =

�
�
�
�

Z s

0
(f hnX i (� ) � 1) d�

�
�
�
� �

Z 1

0
jf hnX i (� ) � 1j d� ! 0 :

Remark. If X does not have a density, then (4.2) may not hold. Trivially, if
X is an integer with probability one then P(hnX i � s) = 1 for every n and
0 � s < 1. Hence (4.2) fails. For a simple continuous example, letX be uniformly
distributed on the classical Cantor middle thirds set. In more probabilistic terms,
X = 2

P 1
j =1 3� j X j where the X j are i.i.d. with P(X 1 = 0) = P(X 1 = 1) = 1

2 .
Then PX 6= � 0;1 but h3X i has the same distribution asX , and so hash3n X i
for every n 2 N. Thus (4.2) fails again.

In fact, using the Fourier analysis tools introduced in the proof of Theorem
4.13, together with the observation that

\PhnX i (k) = [PhX i (nk) for all n 2 N; k 2 Z ;

it is clear that ( 4.2) holds if and only if X has the property that [PhX i (k) ! 0 as
jkj ! 1 , i.e. precisely if PhX i is a so-calledRajchman probability. As Theorem
4.17shows, a probability on [0; 1) is Rajchman whenever it is a.c. (In advanced
calculus, this fact is usually referred to as theRiemann{Lebesgue Lemma.) The
converse is not true, i.e., there exist Rajchman probabilities on [0; 1) that are
not a.c., see [Ly]. |

4.2. The scale-invariance characterization

One popular hypothesis often related to BL is that of scale-invariance. Infor-
mally put, scale-invariance captures the intuitively attractive notio n that any
universal law should be independent of units. For instance, if a su�ciently large
aggregation of data is converted from meters to feet, US$ toe etc., then while
the individual numbers change, the statements about the overalldistribution
of signi�cant digits should not be a�ected by this change. R. Pinkham [Pi]
credits R. Hamming with the idea of scale-invariance, and attempts to prove
that the Benford distribution is the only scale-invariant distribution . Pinkham's
argument has subsequently been used by numerous authors to explain the ap-
pearance of BL in many real-life data, by arguing that the data in question
should be invariant under changes of scale and thus must be Benford.

Although this scale-invariance conclusion is correct in the proper setting,
see Theorem4.20 below, Pinkham's argument contains a fatal error. As Knuth
[Kn] observes, the error is Pinkham's implicit assumption that there is a scale-
invariant Borel probability measure on R+ , when in fact such a probability
measure does not exist, cf. [Ra1]. Indeed, the only real-valued random variable
X that is scale-invariant, i.e., X and �X have the same distribution for all
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scaling factors � > 0, is the random variable that is constant equal to zero,
that is P(X = 0) = 1. Clearly, any such random variable is scale-invariant
sinceX = �X with probability one. To see that this is the only scale-invariant
random variable, suppose that P(jX j > c ) = � > 0 for some c > 0. Then
P(j�X j > c ) = P(jX j > c=� ) & 0 as � & 0, so for su�ciently small positive � ,
P(j�X j > c ) < � = P(jX j > c ), contradicting scale-invariance. Thus no non-zero
random variable is scale-invariant. Note, however, that the measure on (R+ ; B+ )
de�ned as

�
�
[a; b]

�
:=

Z b

a

dt
t

= log
b
a

for all [a; b] � R+ ;

is scale invariant because, for every� > 0,

� � �
�
[a; b]

�
=

Z b=�

a=�

dt
t

= log
b
a

= �
�
[a; b]

�
:

Obviously, � is not �nite, i.e. � (R+ ) = + 1 , but is still � -�nite . (Generally, a
measure� on (
 ; A) is � -�nite if 
 =

S
n 2 N An for some sequence (An ) in A,

and � (An ) < + 1 for all n.)
In a similar spirit, a sequence (xn ) of real numbers may be calledscale-

invariant if

limN !1
# f 1 � n � N : �x n 2 [a; b]g

N
= lim N !1

# f 1 � n � N : xn 2 [a; b]g
N

holds for all � > 0 and [a; b] � R. For example, the sequence
�
2; 2� 1; 2; 3; 2� 1; 3� 1; 2; 3; 4; 2� 1; 3� 1; 4� 1; : : : ; 2; 3; : : : ; n; 2� 1; 3� 1; : : : ; n� 1; 2 : : :

�

is scale-invariant. As above, it is not hard to see that

lim N !1
# f 1 � n � N : xn 2 [a; b]g

N
= 0 for all [ a; b] � Rnf 0g;

holds whenever (xn ) is scale-invariant. Most elements of a scale-invariant se-
quence of real numbers, therefore, are very close to either 0 or�1 .

While a positive random variable X cannot be scale-invariant, as shown
above, it may nevertheless havescale-invariant signi�cant digits . For this, how-
ever,X has to be Benford. In fact, Theorem4.20below shows that being Benford
is (not only necessary but) also su�cient for X to have scale-invariant signi�cant
digits. The result will �rst be stated in terms of probability distributio ns.

De�nition 4.18. Let A � S be a � -algebra on R+ . A probability measure P
on (R+ ; A) has scale-invariant signi�cant digits if

P(�A ) = P(A) for all � > 0 and A 2 S;

or equivalently if for all m 2 N, all d1 2 f 1; 2; : : : ; 9g and all dj 2 f 0; 1; : : : ; 9g,
j � 2,

P
��

x :D j (�x ) = dj for j = 1 ; 2; : : : m
	�

= P
��

x :D j (x) = dj for j = 1 ; 2; : : : ; m
	�

holds for every � > 0.
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Example 4.19. (i) The Benford probability measure B on (R+ ; S) has scale-
invariant signi�cant digits. This follows from Theorem 4.20below but can also be
seen from a direct calculation. Indeed, ifA =

S
k2 Z 10k [a; b] with 1 � a < b < 10,

then, given any � > 0,

�A =
[

k2 Z
10k+log � [a; b] =

[

k2 Z
10k+ hlog � i [a; b] =

[

k2 Z
10k B ;

where the setB is given by

B =

8
>><

>>:

�
10hlog � i a; 10hlog � i b

�
if 0 � h log � i < 1 � logb ;

�
1; 10hlog � i� 1b

�
[

�
10hlog � i a; 10

�
if 1 � logb � h log � i < 1 � loga ;

�
10hlog � i� 1a; 10hlog � i� 1b

�
if 1 � loga � h log � i < 1 :

From this, it follows that

B(�A ) =

8
>><

>>:

log 10hlog � i b� log 10hlog � i a

log 10hlog � i� 1b+ 1 � log 10hlog � i a

log 10hlog � i� 1b� log 10hlog � i� 1a

= log b� loga = B(A) ;

showing that B has scale-invariant digits.

(ii) The Dirac probability measure � 1 concentrated at the constant 1 does
not have scale-invariant signi�cant digits, since � 2 = 2 � � 1 yet � 1(D1 = 1) = 1 6=
0 = � 2(D1 = 1).

(iii) The uniform distribution on [0 ; 1) does not have scale-invariant digits,
since if X is distributed according to � 0;1 then, for example

P(D1(X ) = 1) =
1
9

<
11
27

= P
�

D1

�
3
2

X
�

= 1
�

:

As mentioned earlier, the Benford distribution is the only probability m easure
(on the signi�cand � -algebra) having scale-invariant signi�cant digits.

Theorem 4.20 (Scale-invariance characterization [Hi1]). A probability measure
P on (R+ ; A) with A � S has scale-invariant signi�cant digits if and only if
P(A) = B(A) for every A 2 S, i.e., if and only if P is Benford.

Proof. Fix any probability measure P on (R+ ; A), denote by P0 its restriction
to (R+ ; S), and let Q := ` � P0 with ` given by Lemma2.16. According to Lemma
2.16, Q is a probability measure on

�
[0; 1); B[0; 1)

�
. Moreover, under the corre-

spondence established bỳ,

P0(�A ) = P0(A) for all � > 0; A 2 S (4.3)
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A = f D 1 = 2 g

log A

= f 2 � S < 3g
3A

log 3A

S log S

B(3A) = B(A) � 0;1 (log 3A) = � 0;1 (log A)

1
2

3

4

56

7

8

9
0

0:1

0:2

0:3

0:4
0:5

0:6

0:7

0:8

0:9

Fig 10 . Visualizing the scale-invariant signi�cant digits of BL.

is equivalent to

Q(ht + B i ) = Q(B ) for all t 2 R; B 2 B[0; 1) ; (4.4)

where ht + B i = fht + xi : x 2 B g. Pick a random variable X such that the
distribution of X is given by Q. With this, ( 4.4) simply means that, for every
t 2 R, the distributions of hX i and ht + X i coincide. By Theorem4.13(i) and (ii)
this is the case if and only if X is u.d. mod 1, i.e.Q = � 0;1. (For the \if" part,
note that a constant random variable is independent from every other random
variable.) Hence (4.3) is equivalent to P0 = ( ` � 1)� � 0;1 = B.

Example 4.21. For every integer k, let qk > 0 and

f k (t) =

8
><

>:

1
t ln 10

if 10k � t < 10k+1 ;

0 otherwise:

If
P

k2 Z qk = 1 then, according to Example 3.6,
P

k2 Z qk f k is the density of
a Benford probability measure P on (R+ ; B+ ). By Theorem 4.20, P has scale-
invariant signi�cant digits. Note that, in full agreement with earlier o bservations,
P is not scale-invariant, as for instance

qk = P
�
[10k ; 10k+1 )

�
= P

�
10k � l [10l ; 10l +1 )

�
= P

�
[10l ; 10l +1 )

�
= ql

cannot possibly hold for all pairs (k; l ) of integers.

In analogy to De�nition 4.18, a sequence (xn ) of real numbers is said to have
scale-invariant signi�cant digits if

limN !1
# f 1 � n � N : S(�x n ) < t g

N
= lim N !1

# f 1 � n � N : S(xn ) < t g
N

for all � > 0; t 2 [1; 10) : (4.5)
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Implicit in ( 4.5) is the assumption that the limits on either side exit for all t.
A similar de�nition can be considered for real-valued functions. To formulate
an analog of Theorem4.20 using this terminology, recall that a set A � N has
density � 2 [0; 1] if the limit lim N !1 # f 1 � n � N : n 2 Ag=N exists and
equals� . For example, � (f n : n eveng) = 1

2 and � (f n : n prime g) = 0, whereas
f n : D1(n) = 1 g does not have a density.

Theorem 4.22. (i) For any sequence(xn ) of real numbers, let f n : xn 6= 0 g
= f n1 < n 2 < : : : g. Then (xn ) has scale-invariant signi�cant digits if
and only if f n : xn 6= 0 g has a density and either� (f n : xn = 0 g) = 1
or else (xn j ) j 2 N is Benford. In particular, if � (f n : xn = 0 g) = 0 then
the sequence(xn ) has scale-invariant signi�cant digits if and only if it is
Benford.

(ii) A (Borel measurable) function f : [0; + 1 ) ! R with �
�
f t � 0 : f (t) = 0 g

�

< + 1 has scale-invariant signi�cant digits if and only if it is Be nford.
Moreover, f is Benford precisely if �f is Benford for every � 6= 0 .

Proof. (i) Assume �rst that ( xn ) has scale-invariant signi�cant digits. According
to (4.5),

G(s) := lim N !1
# f 1 � n � N : S(xn ) < 10sg

N
exists for every 0� s < 1. In particular, f n : xn = 0 g has a densityG(0). For
G(0) = 1 there is nothing else to show. Thus, assumeG(0) < 1 from now on,
and de�ne a non-decreasing functionH : [0; 1) ! R as

H (s) =
G(s) � G(0)

1 � G(0)
; 0 � s < 1:

Note that

H (s) = lim N !1
# f 1 � n � N : S(xn ) < 10s; xn 6= 0 g

# f 1 � n � N : xn 6= 0 g

= lim N !1
# f 1 � j � N : S(xn j ) < 10sg

N
;

so H takes into account only the non-zero entries in (xn ). De�ne h : R ! R as

h(s) = H (hsi ) � h si for all s 2 R :

Clearly, h is 1-periodic, with h(0) = 0 and jh(s)j � 1 for all s 2 R. In terms of
the function H , the invariance property (4.5) simply reads

H (s) =

(
H (1 + s � h log � i ) � H (1 � h log � i ) if s < hlog � i ;

1 � H (1 � h log � i ) + H (s � h log � i ) if s � h log � i ;

provided that log � 62Z. In terms of h, this is equivalent to

h(s) = h(1 + s � h log � i ) � h(1 � h log � i ) for all s 2 R; � > 0 : (4.6)
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As a consequence,s 7! h(1 + s � h log � i ) � h(s) is constant for every � > 0.
Since the function h is bounded and 1-periodic, it can be represented (at least
in the L 2-sense) by a Fourier series

h(s) =
X

k2 Z
ck e2�{ks ;

from which it follows that

h(1 + s � h log � i ) � h(s) =
X

k2 Z
ck

�
e2�{k (1+ s�h log � i ) � e2�{ks

�

=
X

k2 Z
ck

�
e� 2�{k hlog � i � 1

�
e2�{ks :

Pick � > 0 such that hlog � i is irrational, e.g. � = 2. Then e� 2�{k hlog � i 6= 1
whenever k 6= 0, which in turn implies that ck = 0 for all k 6= 0, i.e. h is
constant almost everywhere. ThusH (s) = s + c0 for a.e. s 2 [0; 1), and in fact
H (s) � s becauseH is non-decreasing withH (0) = 0. Overall, therefore,

limN !1
# f 1 � j � N : S(xn j ) < 10sg

N
= s for all s 2 [0; 1) ;

showing that (xn j ) is Benford.
Conversely, if � (f n : xn = 0 g) = 1 then ( 4.5) holds with both sides being

equal to 1 for all t 2 [1; 10). Assume, therefore, that � (f n : xn = 0 g) < 1 and
(xn j ) is Benford. By the above,h(s) � 0, so (4.6) and hence also (4.5) hold, i.e.,
(xn ) has scale-invariant signi�cant digits.

The proof of (ii) is completely analogous, utilizing

G(s) := lim T ! + 1
�

��
� 2 [0; T) : S

�
f (� )

�
< 10s

	�

T
; 0 � s < 1:

Note that the assumption �
�
f t � 0 : f (t) = 0 g

�
< + 1 implies G(0) = 0.

Example 4.23. Let (xn ) equal either the sequence of Fibonacci or prime num-
bers. In both cases,xn 6= 0 for all n, and hence by Theorem4.22(i) ( xn ) has
scale-invariant signi�cant digits if and only if it is Benford. Thus ( Fn ) does
have scale-invariant signi�cant digits, and (pn ) does not. These facts are illus-
trated empirically in Fig 11 to 13 which show the relevant data for, respectively,
the �rst 10 2 (Fig 11 and 12) and 104 (Fig 13) entries of either sequence, and
compare them with the respective expected values for BL.

The next example is an elegant and entertaining application of the ideas
underlying Theorems 4.20 and 4.22 to the mathematical theory of games. The
game may be easily understood by a schoolchild, yet it has proven a challenge
for game theorists not familiar with BL.
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1
1
2
3
5
8

13
21
34
55
89

144
233
377
610
987

1597
2584
4181
6765

10946
17711
28657
46368
75025

121393
196418
317811
514229
832040

1346269
2178309
3524578
5702887
9227465

14930352
24157817
39088169
63245986

165580141

165580141
267914296
433494437
701408733

1134903170
1836311903
2971215073
4807526976
7778742049

12586269025
20365011074
32951280099
53316291173
86267571272

139583862445
225851433717
365435296162
591286729879
956722026041

1548008755920

2504730781961
4052739537881
6557470319842

10610209857723
17167680177565
27777890035288
44945570212853
72723460248141

117669030460994
190392490709135
308061521170129
498454011879264
806515533049393

1304969544928657
2111485077978050
3416454622906707
5527939700884757
8944394323791464

14472334024676221
23416728348467685

37889062373143906
61305790721611591
99194853094755497

160500643816367088
259695496911122585
420196140727489673
679891637638612258

1100087778366101931
1779979416004714189
2880067194370816120
4660046610375530309
7540113804746346429

12200160415121876738
19740274219868223167
31940434634990099905
51680708854858323072
83621143489848422977

135301852344706746049
218922995834555169026
354224848179261915075

2
2
4
6

10
16
26
42
68

110
178
288
466
754

1220
1974
3194
5168
8362

13530

21892
35422
57314
92736

150050
242786
392836
635622

1028458
1664080
2692538
4356618
7049156

11405774
18454930
29860704
48315634
78176338

126491972
204668310

331160282
535828592
866988874

1402817466
2269806340
3672623806
5942430146
9615053952

15557484098
25172538050
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Fig 11 . Illustrating the (approximate) scale-invariance of the � rst one-hundred Fibonacci
numbers, cf. Fig 5.
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Fig 12 . Illustrating the lack of scale-invariance for the �rst one -hundred prime numbers.

Example 4.24 ([Mo]). Consider a two-person game where Player A and Player
B each independently choose a (real) number greater than or equal to 1, and
Player A wins if the product of their two numbers starts with a 1, 2, or 3;
otherwise, Player B wins. Using the tools presented in this section, itmay easily
be seen that there is a strategy for Player A to choose her numbers so that she
wins with probability at least log 4 �= 60:2%, no matter what strategy Player B
uses. Conversely, there is a strategy for Player B so that Player Awill win no
more than log 4 of the time, no matter what strategy Player A uses.

The idea is simple, using the scale-invariance property of BL discussed above.
If Player A chooses her numberX randomly according to BL, then since BL is
scale-invariant, it follows from Theorem 4.13(i) and Example 4.19(i) that X � y
is still Benford no matter what number y Player B chooses, so Player A will win
with the probability that a Benford random variable has �rst signi�ca nt digit
less than 4, i.e. with probability exactly log 4. Conversely, if Player B chooses his
number Y according to BL then, using scale-invariance again,x � Y is Benford,
so Player A will again win with the probability exactly log 4. In fact, as will now
be shown, BL is the only optimal strategy for each player.
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1 2 3 4 5 6 7 8 9

104� log(1+ d� 1 ) 3010: 1760: 1249: 969:1 791:8 669:4 579:9 511:5 457:5

3011 1762 1250 968 792 668 580 513 456

3009 1763 1248 970 792 670 580 511 457

3009 1762 1249 969 791 668 583 511 458

1601 1129 1097 1069 1055 1013 1027 1003 1006

1653 1572 1504 1469 1445 1434 584 174 165

5104 1016 585 573 556 556 541 543 526
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Fig 13 . When the sample size is increased from N = 10 2 to N = 10 4 the Fibonacci numbers
are even closer to scale-invariance. For the primes, this is not the case at all, see also Fig 5.

To prepare for the formal argument, model thestrategy of Player A, i.e. the
way this player chooses a number, by a probability measureP on (R+ ; B+ ).
For example, if Player A chooses the same numbera all the time, then P = � a .
(Game theorists refer to this as apure strategy.) Similarly, Q represents the
strategy of Player B. Denote by M + the set of all probability measures on
(R+ ; B+ ) and, given P; Q 2 M + , let p(P; Q) 2 [0; 1] be the probability that
Player A wins, i.e., the product of the chosen numbers begins with 1, 2, or 3,
assuming Players A and B choose their numbers independently and according to
the strategiesP and Q, respectively. It is natural for Player A to try to maximize
inf Q2 M + p(P; Q), whereas Player B aims at minimizing supP 2 M + p(P; Q). Which
strategies should the players choose, and what probabilities of winning/losing
are achievable/unavoidable?

In view of the informal discussion above, it may not come as a complete
surprise that these questions ultimately have very simple answers.A little pre-
paratory work is required though. To this end, for every 0� s < 1 and P 2 M + ,
let

GP (s) := P
�
f x > 0 : S(x) � 10sg

�
;

and note that s 7! GP (s) is non-decreasing, right-continuous, with GP (0) � 0
as well as lims" 1 GP (s) = 1. (With the terminology and notation introduced
in Sections 2.3 and 3.3 simply GP (s) = FS� P (10s).) Extend GP to a (non-
decreasing, right-continuous) functionGP : R ! R by setting

GP (s) := GP (hsi ) + bsc for all s 2 R ;
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and let gP (s) := GP (s) � s. Since

gP (s + 1) = GP (s + 1) � (s + 1) = GP (hsi ) � h si = gP (s) ;

the function gP is 1-periodic with gP (0) = 0. Also, gP is Riemann integrable,
and jgP (s)j � 1 for all s 2 R. With these preliminary de�nitions, observe now
that, given any a > 0,

p(P; � a) =

(
GP (log 4 � h logai ) + 1 � GP (1 � h logai ) if hlogai < log 4

GP (1 + log 4 � h logai ) � GP (1 � h logai ) if hlogai � log 4

= gP (1 + log 4 � h logai ) � gP (1 � h logai ) + log 4

= log 4 + hP (hlogai ) ;

where the 1-periodic, Riemann integrable functionhP : R ! R is given by

hP (s) = gP (1 + log 4 � s) � gP (1 � s) ; s 2 R :

From
R1

0 hP (s) ds = 0, it follows that cP := inf s2 R hP (s) � 0. Consequently, if
cP < 0 then

inf Q2 M + p(P; Q) � inf a> 0 p(P; � a) = log 4 + cP < log 4:

On the other hand, if cP = 0 then necessarilyhP (s) = 0 for a.e. s and hence,
as gP is right-continuous,

gP (� s + log 4) = gP (� s) for all s 2 R :

This in turn implies that gP (hn log 4i ) = gP (0) for all n 2 N. Recall now that gP

has at most countably many discontinuities and that (hn log 4i ) is u.d. mod 1
and hence dense in the interval [0; 1). Thus, if 0 < s 0 < 1 is a point of continuity
of gP , then choosing a sequence 1� n1 < n 2 < : : : with lim j !1 hnj log 4i = s0

shows that
gP (s0) = lim j !1 gP (hnj log 4i ) = gP (0) :

With the possible exception of at most countably many s therefore, GP (s) =
s + gP (0) whenever 0 � s < 1. But since s 7! GP (s) is non-decreasing with
GP (s) � 0 and lims" 1 GP (s) = 1, gP (0) = 0 and GP (s) = s must in fact hold
for all s, i.e.

P
�
f x > 0 : S(x) � 10sg

�
� s :

In other words, P is Benford. Overall therefore

inf Q2 M + p(P; Q) � log 4 = 0:6020: : : ;

with equality holding if and only if P is Benford. Thus the unique optimal
strategy for Player A is to choose her numbers according to BL.

A completely analogous argument shows that

supP 2 M + p(P; Q) � log 4;
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with equality holding if and only if Q is Benford. Hence the unique optimal
strategy for Player B to minimize the probability of loosing is also to choose
numbers obeying BL. Overall,

supP 2 M + inf Q2 M + p(P; Q) = log 4 = inf Q2 M + supP 2 M + p(P; Q)

holds, and the value (expected gain) of one game for Player A is givenby
log 4� (1 � log 4) = 0:2041: : : > 1

5 .
If both players are required to choosepositive integers then their strategies

are probabilities on (N; N \ B). Denote by M N the set of all such probabilities.
Sincefhlogni : n 2 Ng is dense in [0; 1), the above argument shows that

inf Q2 M N p(P; Q) < log 4

for every P 2 M N, and similarly

supP 2 M N
p(P; Q) > log 4

for every Q 2 M N. On the other hand, given " > 0, it is not hard to �nd
P" ; Q" 2 M N such that

log 4� " < inf Q2 M N p(P" ; Q) < log 4 < supP 2 M N
p(P; Q" ) < log 4 + " :

Indeed, it is enough to chooseP" ; Q" such that these probabilities approximate
BL su�ciently well. (Recall Example 3.9 which also showed that noP 2 M N is
Benford.) When played with positive integers only, therefore, the game has no
optimal strategy for either player, but there are " -optimal strategies for every
" > 0, and

supP 2 M N
inf Q2 M N p(P; Q) = log 4 = inf Q2 M N supP 2 M N

p(P; Q)

still holds.

Theorem 4.20showed that for a probability measureP on (R+ ; B+ ) to have
scale-invariant signi�cant digits it is necessary (and su�cient) that P be Ben-
ford. In fact, as noted in [Sm], this conclusion already follows from a much weaker
assumption: It is enough to require that the probability of a single signi�cant
digit remain unchanged under scaling.

Theorem 4.25. For every random variableX with P(X = 0) = 0 the following
statements are equivalent:

(i) X is Benford.

(ii) There exists a numberd 2 f 1; 2; : : : ; 9g such that

P(D1(�X ) = d) = P(D1(X ) = d) for all � > 0 :

In particular, (ii) implies that P(D1(X ) = d) = log(1 + d� 1).
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Proof. Assume �rst that X is Benford. By Theorem 4.20, X has scale-invariant
signi�cant digits. Thus for every � > 0,

P(D1(�X ) = d) = log(1 + d� 1) = P(D1(X ) = d) for all d = 1 ; 2; : : : ; 9 :

Conversely, assume that (ii) holds. Similarly as in the proof of Theorem 4.22(i),
for every 0 � s < 1 let

GX (s) := P(S(X ) < 10s) :

HenceGX is non-decreasing and left-continuous, withGX (0) = 0, and

P(D1(X ) = d) = GX
�
log(1 + d)

�
� GX (log d) :

Extend GX to a (non-decreasing, left-continuous) function GX : R ! R by
setting GX (s) := GX (hsi ) + bsc, and let gX (s) := GX (s) � s. Hence gX is
1-periodic, Riemann-integrable, with gX (0) = 0 and jgX (s)j � 1. Speci�cally,

P(D1(X ) = d) = gX
�
log(1 + d)

�
� gX (log d) + log(1 + d� 1) ;

and essentially the same calculation as in Example4.24 shows that

P(D1(�X ) = d) = gX (log(1 + d) � h log � i ) � gX (log d � h log � i ) + log(1 + d� 1) :

With the 1-periodic, Riemann-integrable hX : R ! R given by

hX (s) = gX (log(1 + d) � s) � gX (log d � s) ;

the assumption that P(D1(�X ) = d) = P(D1(X ) = d) for all � > 0 simply
means that hX (s) � hX (0), i.e., hX is constant, and so is the functions 7!
gX (log(1 + d) � s) � gX (log d � s). The same Fourier series argument as in the
proof of Theorem 4.22 now applies: From

gX (s) =
X

k2 Z
ck e2�{ks ;

it follows that

gX (log(1 + d) � s) � gX (log d � s) =
X

k2 Z
ck

�
e2�{k log(1+ d) � e2�{k log d

�
e2�{ks

=
X

k2 Z
ck e2�{k log d

�
e2�{k log(1+ d� 1 ) � 1

�
e2�{ks ;

and since log(1 +d� 1) is irrational for every d 2 N, necessarilyck = 0 for all
k 6= 0, i.e., gX is constant almost everywhere, andGX (s) = s + c0 for a.e.
s 2 [0; 1). As GX is non-decreasing withGX (0) = 0, overall, GX (s) � s, which
in turn shows that X is Benford.

Remark. A close inspection of the above proof shows that Theorem4.25can still
be strengthened in di�erent ways. On the one hand, other signi�cant digits can
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be considered. For example, the theorem (and its proof also) remain virtually
unchanged if in (ii) it is assumed that, for somem � 2 and somed 2 f 0; 1; : : : ; 9g,

P(Dm (�X ) = d) = P(Dm (X ) = d) for all � > 0 :

On the other hand, it is enough to assume in (ii) that, for somed 2 f 1; 2; : : : ; 9g,

P(D1(� n X ) = d) = P(D1(X ) = d) for all n 2 N ;

with the sequence (� n ) of positive numbers being such thatfhlog � n i : n 2 Ng
is dense in [0; 1). Possible choices for such a sequence include (2n ), (n2), and the
sequence of prime numbers. For example, therefore,X is Benford if and only if

P(D1(2n X ) = 1) = P(D1(X ) = 1) for all n 2 N : |

Example 4.26 ([Sm]). (\Ones-scaling-test") In view of the last remark, to in-
formally test whether a sample of data comes from a Benford distribution, sim-
ply compare the proportion of the sample that has �rst signi�cant d igit 1 with
the proportion after the data has been re-scaled, i.e. multiplied by�; � 2; � 3; : : :,
where log� is irrational, e.g. � = 2. In fact, it is enough to consider only re-
scalings by� n 2

, n = 1 ; 2; 3; : : :. On the other hand, note that merely assuming

P(D1(2X ) = d) = P(D1(X ) = d) for all d = 1 ; 2; : : : ; 9 ; (4.7)

is not su�cient to guarantee that X is Benford. Indeed, (4.7) holds for instance
if X attains each of the four values 1; 2; 4; 8 with equal probability 1

4 .

4.3. The base-invariance characterization

One possible drawback to the hypothesis of scale-invariance in sometables is
the special role played by the constant 1. For example, consider two physical
laws, namely Newton's lex secundaF = ma and Einstein's famousE = mc2.
Both laws involve universal constants. In Newton's law, the constant is usually
made equal to 1 by the choice of units of measurement, and this 1 is then not
recorded in most tables of universal constants. On the other hand, the speed of
light c in Einstein's equation is typically recorded as a fundamental constant. If
a \complete" list of universal physical constants also included the 1s, it seems
plausible that this special constant might occur with strictly positive frequency.
But that would clearly violate scale-invariance, since then the constant 2, and in
fact every other constant as well would occur with this same positive probability,
which is impossible.

Instead, suppose it is assumed that any reasonable universal signi�cant-digit
law should have base-invariant signi�cant digits , that is, the law should be
equally valid when rewritten in terms of bases other than 10. In fact, all of the
classical arguments supporting BL carry overmutatis mutandis [Ra1] to other
bases. As will be seen shortly, a hypothesis of base-invariant signi�cant digits
characterizes mixtures of BL and a Dirac probability measure concentrated on
the special constant 1 which may occur with positive probability.
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Just as the only scale-invariant real-valued random variable is 0 with prob-
ability one, the only positive random variable X that is base-invariant, i.e.
X = 10Y with some random variable Y for which Y;2Y;3Y; : : : all have the
same distribution, is the random variable which almost surely equals 1,that is,
P(X = 1) = 1. This follows from the fact that all nY have the same distribution
for n = 1 ; 2; 3 : : :, and henceP(Y = 0) = 1, as shown in the previous section.

On the other hand, a positive random variable (or sequence, function, dis-
tribution) can have base-invariant signi�cant digits . The idea behind base-
invariance of signi�cant digits is simply this: A base-10 signi�cand event A
corresponds to the base-100 eventA1=2, since the new baseb = 100 is the
square of the original baseb = 10. As a concrete example, denote byA the set
of positive reals with �rst signi�cant digit 1, i.e.

A = f x > 0 : D1(x) = 1 g = f x > 0 : S(x) 2 [1; 2)g :

It is easy to see thatA1=2 is the set

A1=2 = f x > 0 : S(x) 2 [1;
p

2) [ [
p

10;
p

20)g :

Consider now the base-100 signi�cand functionS100, i.e., for any x 6= 0, S100(x)
is the unique number in [1; 100) such that jxj = 100k S100(x) for some, necessarily
unique k 2 Z. (To emphasize that the usual signi�cand function S is taken
relative to base 10, it will be denotedS10 throughout this section.) Clearly,

A = f x > 0 : S100(x) 2 [1; 2) [ [10; 20)g :

Hence, letting a = log 2,

�
x > 0 : Sb(x) 2 [1; ba=2) [ [b1=2; b(1+ a)=2)

	
=

(
A1=2 if b = 10 ;

A if b = 100 :

Thus, if a distribution P on the signi�cand � -algebra S has base-invariant sig-
ni�cant digits, then P(A) and P(A1=2) should be the same, and similarly for
other integral roots (corresponding to other integral powers of the original base
b = 10). Thus P(A) = P(A1=n ) should hold for all n. (Recall from Lemma
2.13(iii) that A1=n 2 S for all A 2 S and n 2 N, so those probabilities are
well-de�ned.) This motivates the following de�nition.

De�nition 4.27. Let A � S be a � -algebra on R+ . A probability measure P
on (R+ ; A) has base-invariant signi�cant digits if P(A) = P(A1=n ) holds for all
A 2 S and n 2 N.

Example 4.28. (i) Recall that � a denotes the Dirac measure concentrated at
the point a, that is, � a(A) = 1 if a 2 A, and � a(A) = 0 if a 62A. The probability
measure� 1 clearly has base-invariant signi�cant digits since 12 A if and only
if 1 2 A1=n . Similarly, � 10k has base-invariant signi�cant digits for every k 2 Z.
On the other hand, � 2 does not have base-invariant signi�cant digits since, with
A = f x > 0 : S10(x) 2 [1; 3)g, � 2(A) = 1 yet � 2(A1=2) = 0.
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A = f D 1 = 2 g

log A

= f 2 � S < 3g

p
A log

p
A

S log S

B(
p

A) = B(A) � 0;1 (log
p

A) = � 0;1 (log A)

1
2

3

4

56
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9
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Fig 14 . Visualizing the base-invariant signi�cant digits of BL.

(ii) It is easy to see that the Benford distribution B has base-invariant sig-
ni�cant digits. Indeed, for any 0 � s < 1, let

A = f x > 0 : S10(x) 2 [1; 10s)g =
[

k2 Z
10k [1; 10s) 2 S:

Then, as seen in the proof of Lemma2.13(iii),

A1=n =
[

k2 Z
10k

[ n � 1

j =0
[10j=n ; 10( j + s)=n )

and therefore

B(A1=n ) =
X n � 1

j =0

�
log 10( j + s)=n � log 10j=n

�
=

X n � 1

j =0

�
j + s

n
�

j
n

�

= s = B(A) :

(iii) The uniform distribution � 0;1 on [0; 1) does not have base-invariant
signi�cant digits. For instance, again taking A = f x > 0 : D1(x) = 1 g leads to

� 0;1(A1=2) =
X

n 2 N
10� n (

p
2 � 1 +

p
20�

p
10) =

1
9

+
(
p

5 � 1)(2 �
p

2)
9

>
1
9

= � 0;1(A) :

(iv) The probability measure 1
2 � 1 + 1

2 B has base-invariant signi�cant digits
since both � 1 and B do.

Example 4.29. Completely analogously to the case of scale-invariance, it is
possible to introduce a notion of a sequence or function havingbase-invariant
signi�cant digits and to formulate an analoge of Theorem4.22 in the context of
Theorem 4.30below. With this, the sequence (Fn ) has base-invariant signi�cant
digits, whereas the sequence (pn ) does not. As in Example4.23, this is illustrated
empirically in Fig 15 to 17.
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1
1
2
3
5
8

13
21
34
55
89

144
233
377
610
987

1597
2584
4181
6765

10946
17711
28657
46368
75025

121393
196418
317811
514229
832040

1346269
2178309
3524578
5702887
9227465

14930352
24157817
39088169
63245986

165580141

165580141
267914296
433494437
701408733

1134903170
1836311903
2971215073
4807526976
7778742049

12586269025
20365011074
32951280099
53316291173
86267571272

139583862445
225851433717
365435296162
591286729879
956722026041

1548008755920

2504730781961
4052739537881
6557470319842

10610209857723
17167680177565
27777890035288
44945570212853
72723460248141

117669030460994
190392490709135
308061521170129
498454011879264
806515533049393

1304969544928657
2111485077978050
3416454622906707
5527939700884757
8944394323791464

14472334024676221
23416728348467685

37889062373143906
61305790721611591
99194853094755497

160500643816367088
259695496911122585
420196140727489673
679891637638612258

1100087778366101931
1779979416004714189
2880067194370816120
4660046610375530309
7540113804746346429

12200160415121876738
19740274219868223167
31940434634990099905
51680708854858323072
83621143489848422977

135301852344706746049
218922995834555169026
354224848179261915075

1: 000
1: 000
4: 000
9: 000
2: 500
6: 400
1: 690
4: 410
1: 156
3: 025
7: 921
2: 073
5: 428
1: 421
3: 721
9: 741
2: 550
6: 677
1: 748
4: 576

1: 198
3: 136
8: 212
2: 149
5: 628
1: 473
3: 858
1: 010
2: 644
6: 922
1: 812
4: 745
1: 242
3: 252
8: 514
2: 229
5: 836
1: 527
4: 000
1: 047

2: 741
7: 177
1: 879
4: 919
1: 288
3: 372
8: 828
2: 311
6: 050
1: 584
4: 147
1: 085
2: 842
7: 442
1: 948
5: 100
1: 335
3: 496
9: 153
2: 396

6: 273
1: 642
4: 300
1: 125
2: 947
7: 716
2: 020
5: 288
1: 384
3: 624
9: 490
2: 484
6: 504
1: 702
4: 458
1: 167
3: 055
8: 000
2: 094
5: 483

1: 435
3: 758
9: 839
2: 576
6: 744
1: 765
4: 622
1: 210
3: 168
8: 294
2: 171
5: 685
1: 488
3: 896
1: 020
2: 670
6: 992
1: 830
4: 792
1: 254

1: 000
1: 000
1: 280
2: 187
7: 812
2: 097
6: 274
1: 801
5: 252
1: 522
4: 423
1: 283
3: 728
1: 082
3: 142
9: 124
2: 649
7: 692
2: 233
6: 484

1: 882
5: 466
1: 587
4: 608
1: 337
3: 884
1: 127
3: 274
9: 508
2: 760
8: 015
2: 327
6: 756
1: 961
5: 696
1: 653
4: 801
1: 394
4: 047
1: 175

3: 412
9: 907
2: 876
8: 352
2: 424
7: 040
2: 044
5: 935
1: 723
5: 003
1: 452
4: 217
1: 224
3: 555
1: 032
2: 997
8: 703
2: 526
7: 336
2: 130

6: 184
1: 795
5: 213
1: 513
4: 395
1: 276
3: 705
1: 075
3: 123
9: 068
2: 633
7: 644
2: 219
6: 444
1: 871
5: 432
1: 577
4: 579
1: 329
3: 860

1: 120
3: 254
9: 449
2: 743
7: 966
2: 312
6: 715
1: 949
5: 661
1: 643
4: 772
1: 385
4: 023
1: 168
3: 391
9: 846
2: 858
8: 300
2: 410
6: 997

1 2 3 4 5 6 7 8 9

30 18 13 9 8 6 5 7 4

31 17 12 11 7 8 4 5 5

31 18 11 9 8 7 6 4 6

30:10 17:60 12:49 9:691 7:918 6:694 5:799 5:115 4:575

or
ig

in
al

da
ta

ba
se

7!
ba

se
2

ba
se

7!
ba

se
7

(Fn )100
n =1

(F 2
n )100

n =1

(F 7
n )100

n =1

103 � R

18:84

17:99

14:93

102 � log(1 + d� 1 )

d

#
fD

1
=

dg

Fig 15 . Illustrating the (approximate) base-invariance of the �r st one-hundred Fibonacci num-
bers. (In the two middle tables, the values of S(F 2

n ) and S(F 7
n ), respectively, are shown to

four correct digits.)
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2
3
5
7

11
13
17
19
23
29

31
37
41
43
47
53
59
61
67
71

73
79
83
89
97

101
103
107
109
113

127
131
137
139
149
151
157
163
167
173

179
181
191
193
197
199
211
223
227
229

233
239
241
251
257
263
269
271
277
281

283
293
307
311
313
317
331
337
347
349

353
359
367
373
379
383
389
397
401
409

419
421
431
433
439
443
449
457
461
463

467
479
487
491
499
503
509
521
523
541

4: 000
9: 000
2: 500
4: 900
1: 210
1: 690
2: 890
3: 610
5: 290
8: 410

9: 610
1: 369
1: 681
1: 849
2: 209
2: 809
3: 481
3: 721
4: 489
5: 041

5: 329
6: 241
6: 889
7: 921
9: 409
1: 020
1: 060
1: 144
1: 188
1: 276

1: 612
1: 716
1: 876
1: 932
2: 220
2: 280
2: 464
2: 656
2: 788
2: 992

3: 204
3: 276
3: 648
3: 724
3: 880
3: 960
4: 452
4: 972
5: 152
5: 244

5: 428
5: 712
5: 808
6: 300
6: 604
6: 916
7: 236
7: 344
7: 672
7: 896

8: 008
8: 584
9: 424
9: 672
9: 796
1: 004
1: 095
1: 135
1: 204
1: 218

1: 246
1: 288
1: 346
1: 391
1: 436
1: 466
1: 513
1: 576
1: 608
1: 672

1: 755
1: 772
1: 857
1: 874
1: 927
1: 962
2: 016
2: 088
2: 125
2: 143

2: 180
2: 294
2: 371
2: 410
2: 490
2: 530
2: 590
2: 714
2: 735
2: 926

1: 280
2: 187
7: 812
8: 235
1: 948
6: 274
4: 103
8: 938
3: 404
1: 724

2: 751
9: 493
1: 947
2: 718
5: 066
1: 174
2: 488
3: 142
6: 060
9: 095

1: 104
1: 920
2: 713
4: 423
8: 079
1: 072
1: 229
1: 605
1: 828
2: 352

5: 328
6: 620
9: 058
1: 002
1: 630
1: 789
2: 351
3: 057
3: 622
4: 637

5: 888
6: 364
9: 273
9: 974
1: 151
1: 235
1: 861
2: 742
3: 105
3: 302

3: 728
4: 454
4: 721
6: 276
7: 405
8: 703
1: 019
1: 073
1: 251
1: 383

1: 453
1: 853
2: 570
2: 813
2: 943
3: 216
4: 353
4: 936
6: 057
6: 306

6: 830
7: 685
8: 967
1: 004
1: 123
1: 208
1: 347
1: 554
1: 667
1: 914

2: 267
2: 344
2: 762
2: 853
3: 142
3: 348
3: 678
4: 163
4: 424
4: 561

4: 844
5: 785
6: 496
6: 879
7: 703
8: 146
8: 851
1: 041
1: 070
1: 356

1 2 3 4 5 6 7 8 9

25 19 19 20 8 2 4 2 1

35 24 9 5 8 5 5 3 6

d

33 15 11 11 4 10 4 7 5

30:10 17:60 12:49 9:691 7:918 6:694 5:799 5:115 4:575

or
ig

in
al

da
ta

ba
se

7!
ba

se
2

ba
se

7!
ba

se
7

(pn )100
n =1

(p2
n )100

n =1

(p7
n )100

n =1#
fD

1
=

dg

103 � R

103:0

63:90

39:18

102 � log(1 + d� 1 )

Fig 16 . Illustrating the lack of base-invariance for the �rst one- hundred prime numbers. (In
the two middle tables, the values of S(p2

n ) and S(p7
n ), respectively, are shown to four correct

digits.)

The next theorem is the main result for base-invariant signi�cant digits. It
shows that convex combinations as in Example4.28(iv) are the only probability
distributions with base-invariant signi�cant digits. To put the argum ent in per-
spective, recall that the proof of the scale-invariance theorem (Theorem 4.20)
ultimately depended on Theorem4.13(i,ii) which in turn was proved analyti-
cally using Fourier analysis. The situation here is similar: An analytical result
(Lemma 4.32 below) identi�es all probability measures on

�
[0; 1); B[0; 1)

�
that

are invariant under every map x 7! hnx i on [0; 1). Once this tool is available, it
is straightforward to prove

Theorem 4.30 (Base-invariance characterization [Hi1]). A probability measure
P on (R+ ; A) with A � S has base-invariant signi�cant digits if and only if, for
someq 2 [0; 1],

P(A) = q�1(A) + (1 � q)B(A) for every A 2 S: (4.8)
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1 2 3 4 5 6 7 8 9

104� log(1+ d� 1 ) 3010: 1760: 1249: 969:1 791:8 669:4 579:9 511:5 457:5

3011 1762 1250 968 792 668 580 513 456

3012 1760 1248 971 791 672 577 513 456

3011 1762 1248 969 791 671 579 511 458

1601 1129 1097 1069 1055 1013 1027 1003 1006

3012 1626 1200 987 798 716 609 536 516

2340 1437 1195 1036 944 844 775 745 684

103 � R

0:1574

0:2919

0:1532

140:9

67:02

36:85

F
ib

on
ac

ci
P

rim
e

d

original

original

b 7! b2

b 7! b2

b 7! b7

b 7! b7

Fig 17 . Increasing the sample size from N = 10 2 to N = 10 4 makes the Fibonacci numbers'
leading digits even more closely base-invariant. As in the c ase of scale-invariance, this is not
at all true for the primes, cf. Fig 13.

Corollary 4.31. A continuous probability measureP on R+ has base-invariant
signi�cant digits if and only if P(A) = B(A) for all A 2 S, i.e., if and only if P
is Benford.

Recall that � 0;1 denotes Lebesgue measure on
�
[0; 1); B[0; 1)

�
. For eachn 2 N,

denote the mapx 7! hnx i of [0; 1) into itself by Tn . Generally, if T : [0; 1) ! R
is measurable, andT

�
[0; 1)

�
� [0; 1), a probability measureP on

�
[0; 1); B[0; 1)

�

is said to be T-invariant , or T is P-preserving, if T� P = P. Which probability
measures areTn -invariant for all n 2 N? A complete answer to this question is
provided by

Lemma 4.32. A probability measure P on
�
[0; 1); B[0; 1)

�
is Tn -invariant for

all n 2 N if and only if P = q�0 + (1 � q)� 0;1 for some q 2 [0; 1].

Proof. From the proof of Theorem 4.13recall the de�nition of the Fourier coef-
�cients of P,

bP(k) =
Z 1

0
e2�{ks dP(s) ; k 2 Z ;

and observe that

dTn P(k) = bP(nk) for all k 2 Z; n 2 N :

Assume �rst that P = q�0 + (1 � q)� 0;1 for someq 2 [0; 1]. From b� 0(k) � 1 and
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d� 0;1(k) = 0 for all k 6= 0, it follows that

bP(k) =
�

1 if k = 0 ;
q if k 6= 0 :

For every n 2 N and k 2 Znf 0g, therefore, dTn P(k) = q, and clearly dTn P(0) = 1.
Thus dTn P = bP and since the Fourier coe�cients of P determine P uniquely,
Tn � P = P for all n 2 N.

Conversely, assume thatP is Tn -invariant for all n 2 N. In this case, bP(n) =
dTn P(1) = bP(1), and similarly bP(� n) = dTn P(� 1) = bP(� 1). Since generally
bP(� k) = bP(k), there exists q 2 C such that

bP(k) =

8
><

>:

q if k > 0;

1 if k = 0 ;

q if k < 0:

Also, observe that for everyt 2 R

limn !1
1
n

X n

j =1
e2�{tj =

(
1 if t 2 Z ;

0 if t 62Z :

Using this and the Dominated Convergence Theorem, it follows from

P(f 0g) =
Z 1

0
limn !1

1
n

X n

j =1
e2�{sj dP(s) = lim n !1

1
n

X n

j =1
bP(j ) = q ;

that q is real, and in fact q 2 [0; 1]. Hence the Fourier coe�cients of P are
exactly the same as those ofq�0 + (1 � q)� 0;1. By uniqueness, therefore,P =
q�0 + (1 � q)� 0;1.

Remark. Note that P is Tmn -invariant if it is both Tm - and Tn -invariant. Thus,
in Lemma 4.32 it is enough to require that P be Tn -invariant whenever n is a
prime number.

It is natural to ask how small the set M of natural numbersn can be chosen for
which Tn -invariance really has to be required in Lemma4.32. By the observation
just made, it can be assumed thatM is closed under multiplication, hence a
(multiplicative) semi-group. If M is lacunary, i.e. M � f pm : m 2 Ng for some
p 2 N, then probability measuresP satisfying Tn � P = P for all n 2 M exist in
abundance, and hence an analogue of Lemma4.32cannot hold. If, on the other
hand, M is not lacunary, then it is not known in general whether an appropriate
analogue of Lemma4.32may hold. For example, ifM = f 2m 1 3m 2 : m1; m2 2 N0g
then the probability measure P = 1

4

P 4
j =1 � j= 5 is Tn -invariant for every n 2 M,

but it is a famous open question of H. Furstenberg [Ei] whether any continuous
probability measure with this property exists | except, of course, for P = � 0;1.

|
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Proof of Theorem 4.30. As in the proof of Theorem 4.20, �x a probability mea-
sure P on (R+ ; A), denote by P0 its restriction to ( R+ ; S), and let Q = ` � P0.
Observe that P0 has base-invariant signi�cant digits if and only if Q is Tn -
invariant for all n 2 N. Indeed, with 0 � s < 1 and A = f x > 0 : S10(x) < 10sg,

Tn � Q
�
[0; s)

�
= Q

� [ n � 1

j =0

hj
n

;
j + s

n

� �

= P0

� [

k2 Z
10k

[ n � 1

j =0
[10j=n ; 10( j + s)=n )

�
= P0(A1=n )

and henceTn � Q = Q for all n precisely if P0 has base-invariant signi�cant digits.
In this case, by Lemma4.32, Q = q�0 + (1 � q)� 0;1 for someq 2 [0; 1], which in
turn implies that P0(A) = q�1(A) + (1 � q)B(A) for every A 2 S.

Corollary 4.33. If a probability measure onR+ has scale-invariant signi�cant
digits then it also has base-invariant signi�cant digits.

4.4. The sum-invariance characterization

No �nite data set can obey BL exactly, since the Benford probabilities of sets
with m given signi�cant digits become arbitrarily small as m goes to in�nity, and
no discrete probability measure with �nitely many atoms can take arbitrarily
small positive values. But, as �rst observed by M. Nigrini [Ni], if a table of real
data approximately follows BL, then the sum of the signi�cands of all entries in
the table with �rst signi�cant digit 1 is very close to the sum of the sign i�cands
of all entries with �rst signi�cant digit 2, and to the sum of the signi�c ands
of entries with the other possible �rst signi�cant digits as well. This cle arly
implies that the table must contain more entries starting with 1 than w ith 2,
more entries starting with 2 than with 3, and so forth. Similarly, the sums of
signi�cands of entries with D1 = d1; : : : ; Dm = dm are approximately equal for
all tuples (d1; : : : ; dm ) of a �xed length m. In fact, even the sum-invariance of
�rst or �rst and second digits yields a distribution close to BL, see Fig 18 and
19. Nigrini conjectured, and partially proved, that this sum-invariance property
also characterizes BL. Note that it is the signi�cands of the data, rather than
the data themselves, that are summed up. Simply summing up the rawdata will
not lead to any meaningful conclusion, as the resulting sums may be dominated
by a few very large numbers. It is only through considering signi�cands that the
magnitude of the individual numbers becomes irrelevant.

To motivate a precise de�nition of sum-invariance, note that if ( xn ) is Benford
then the set f xn : n 2 Ng is necessarily in�nite, and consequently, for every
d 2 f 1; 2; : : : ; 9g, the sum

P
n :D 1 (x n )= d S(xn ) is in�nite as well. To compare

such sums, it is natural to normalise them by considering limiting averages. To
this end, for every m 2 N, d1 2 f 1; 2; : : : ; 9g and dj 2 f 0; 1; : : : ; 9g, j � 2, de�ne

Sd1 ;:::;d m (x) :=
�

S(x) if
�
D1(x); : : : ; Dm (x)

�
= ( d1; : : : ; dm ) ;

0 otherwise:
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d

Nd = # f xn = dg

dNd

Nd =N

log(1+ d� 1)

1

2520

2520

0:3535

0:3010

2

1260

2520

0:1767

0:1761

3

840

2520

0:1178

0:1240

4

630

2520

0:0884

0:0969

5

504

2520

0:0707

0:0792

6

620

2520

0:0589

0:0669

7

360

2520

0:0505

0:0580

8

315

2520

0:0442

0:0512

9

280

2520

0:0393

0:0458

N =
P

d Nd = 7129

Fig 18 . A (hypothetical) sample x1 ; x2 ; : : : x N containing N = 7129 numbers from f 1; 2; : : : ; 9g
and showing exact sum-invariance for the �rst digit. Note that the relative fr equencies Nd =N
are quite close to the Benford probabilities log(1 + d� 1 ).

(d1 ; d2 ) N d 1 ;d 2 = # f x n =10 d1 + d2 g N d 1 ;d 2 =N
P

d 2
N d 1 ;d 2 =N log(1+ d� 1

1 )

...
...

...

0:30607 0:30102

0:04510 0:04575

(1 ; 0) 6972037522971247716453380893531230355680 0 :04258
(1 ; 1) 6338215929973861560412164448664754868800 0 :03871
(1 ; 2) 5810031269142706430377817411276025296400 0:03549
(1 ; 3) 5363105786900959781887216071947100273600 0 :03276
(1 ; 4) 4980026802122319797466700638236593111200 0:03042
(1 ; 5) 4648025015314165144302253929020820237120 0 :02839
(1 ; 6) 4357523451857029822783363058457018972300 0 :02661
(1 ; 7) 4101198542924263362619635819724253150400 0 :02505
(1 ; 8) 3873354179428470953585211607517350197600 0 :02366
(1 ; 9) 3669493433142761956028095207121700187200 0 :02241
(2 ; 0) 3486018761485623858226690446765615177840 0:02129

(8 ; 9) 783375002581039069264424819497891051200 0 :00478
(9 ; 0) 774670835885694190717042321503470039520 0 :00473
(9 ; 1) 766157969557279968841030867421014324800 0 :00468
(9 ; 2) 757830165540353012657976184079481560400 0 :00463
(9 ; 3) 749681454082929861984234504680777457600 0:00458
(9 ; 4) 741706119465026352814189456758641527200 0 :00453
(9 ; 5) 733898686628552391205619041424340037440 0:00448
(9 ; 6) 726253908642838303797227176409503162050 0 :00444
(9 ; 7) 718766754945489455304472257065075294400 0 :00439
(9 ; 8) 711432400303188542495242948319513301600 0 :00434
(9 ; 9) 704246214441540173379129383184972763200 0 :00430

N =
P

d 1 ;d 2
N d 1 ;d 2 = 163731975056100444033114230488313094880847 � 1:637� 1041

(10d1 + d2 )N d 1 ;d 2 � 69720375229712477164533808935312303556800 � 6:972� 1040

Fig 19 . An (even more hypothetical) sample x1 ; x2 ; : : : x N containing N � 1:637 � 1041 num-
bers from f 10; 11; : : : ; 99g and showing exact sum-invariance for the �rst two digits. When
compared with the values in Fig 18, the relative frequencies

P
d2

Nd1 ;d 2 =N of the �rst digits

are even closer to the Benford values log(1 + d� 1
1 ).
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1 2 3 4 5 6 7 8 9

42:71 43:82 44:75 40:35 43:28 38:67 37:10 59:21 38:58

37:67 47:68 65:92 89:59 42:17 12:80 29:30 17:20 9:700

Fibonacci

Prime

d

N = 10 2 Exact sum-invariance: 102 �ESd =
100
ln 10

� 43:43 for d = 1 ; 2; : : : ; 9

Fig 20 . Except for d = 8 , the value of
P

D 1 = d S does not vary much with d for the �rst
one-hundred Fibonacci numbers, but it varies wildly for the �rst one-hundred primes.

De�nition 4.34. A sequence (xn ) of real numbers hassum-invariant signi�cant
digits if, for every m 2 N, the limit

lim N !1

P N
n =1 Sd1 ;:::;d m (xn )

N

exists and is independent ofd1; : : : ; dm .

In particular, therefore, if ( xn ) has sum-invariant signi�cant digits then there
exists c > 0 such that

lim N !1

P N
n =1 Sd1 (xn )

N
= c

for all d1 = 1 ; 2; : : : ; 9.
As will follow from Theorem 4.37below, the sequence (2n ) and the Fibonacci

sequence (Fn ) have sum-invariant signi�cant digits. Clearly, (10 n ) does not have
sum-invariant signi�cant digits since all the �rst digits are 1, i.e. for a ll N ,

P N
n =1 Sd1 (10n )

N
=

(
1 if d1 = 1 ;

0 if d1 � 2:

Not too surprisingly, the sequence (pn ) of prime numbers does not have sum-
invariant signi�cant digits either, see Fig 20.

The de�nitions of sum-invariance of signi�cant digits for functions, distribu-
tions and random variables are similar, and it is in the context of distributions
and random variables that the sum-invariance characterization ofBL will be
established. Informally, a probability distribution has sum-invariant signi�cant
digits if in a collection of numbers with that distribution, the sums of (t he sig-
ni�cands of) all entries with �rst signi�cant digit 1 is the same as each of the
sums of all entries with the other �rst signi�cant digits; and the sum of all the
entries with, say, �rst two signi�cant digits 1 and 3, respectively, is the same as
the sum of all entries with any other combination of �rst two signi�ca nt digits,
etc; and similarly for all other �nite initial sequences of signi�cant dig its. In
complete analogy to De�nition 4.34, this is put more formally by

De�nition 4.35. A random variable X has sum-invariant signi�cant digits if,
for every m 2 N, the value of ESd1 ;:::;d m (X ) is independent ofd1; : : : ; dm .



62 A. Berger and T.P. Hill

Example 4.36. (i) If X is uniformly distributed on [0 ; 1), then X does not have
sum-invariant signi�cant digits. This follows from Theorem 4.37 below but can
also be seen by a simple direct calculation. Indeed, for everyd1 2 f 1; 2; : : : ; 9g,

ESd1 (X ) =
X

n 2 N
10n

Z 10� n (d1 +1)

10� n d1

t dt =
2d1 + 1

18
;

which obviously depends ond1.

(ii) Similarly, if P(X = 1) = 1 then X does not have sum-invariant signi�cant
digits, as

ESd1 (X ) =

(
1 if d1 = 1 ;

0 if d1 � 2 :

(iii) Assume that X is Benford. For every m 2 N, d1 2 f 1; 2; : : : ; 9g and
dj 2 f 0; 1; : : : ; 9g, j � 2,

ESd1 ;:::;d m (X ) =
Z d1 +10 � 1 d2 + ::: +10 1� m (dm +1)

d1 +10 � 1 d2 + ::: +10 1� m dm

t �
1

t ln 10
dt =

101� m

ln 10
:

Thus X has sum-invariant signi�cant digits. Note, however, that even in th is
example the higher moments ofSd1 ;:::;d m (X ) generally depend ond1; : : : ; dm , as
for instance

ESd1 (X )2 =
2d1 + 1
2 ln 10

; d1 = 1 ; 2; : : : ; 9 :

This example shows that it would be too restrictive to require in De�nit ion
4.35 that the distribution of the random variable Sd1 ;:::;d m (X ), rather than its
expectation, be independent ofd1; : : : ; dm .

According to Example 4.36(iii) every Benford random variable has sum-
invariant signi�cant digits. As hinted at earlier, the converse is also true, i.e.,
sum-invariant signi�cant digits characterize BL.

Theorem 4.37 (Sum-invariance characterization [Al ]). A random variable X
with P(X = 0) = 0 has sum-invariant signi�cant digits if and only if it is
Benford.

Proof. The \if"-part has been veri�ed in Example 4.36(iii). To prove the \only
if"-part, assume that X has sum-invariant signi�cant digits. For every m 2 N,
d1 2 f 1; 2; : : : ; 9g and dj 2 f 0; 1; : : : ; 9g, j � 2, let

Jd1 ;:::;d m :=
�
d1+10 � 1d2 + : : : + 101� m dm ; d1 + 10 � 1d2 + : : : + 101� m (dm + 1)

�

=
�

1 � x < 10 :
�
D1(x); D2(x); : : : ; Dm (x)

�
= ( d1; d2; : : : dm )

	
:

With this,
Sd1 ;:::;d m (X ) = S(X )1J d 1 ;:::;d m

�
S(X )

�
;



A basic theory of Benford's Law 63

and by assumption ESd1 ;:::;d m (X ) is independent ofd1; : : : ; dm . Note that each
of the 9 � 10m � 1 intervals Jd1 ;:::;d m has the same length� (Jd1 ;:::;d m ) = 10 1� m .
Consequently,

ESd1 ;:::;d m (X ) =
1

9 � 10m � 1 ES(X ) =
� (Jd1 ;:::;d m )

9
ES(X ) ;

and since the family
�

Jd1 ;:::;d m : m 2 N; d1 2 f 1; 2; : : : ; 9g and dj 2 f 0; 1; : : : ; 9g; j � 2
	

generatesB[1; 10),

E
�
S(X )1[a;b)

�
S(X )

��
=

b� a
9

ES(X ) (4.9)

holds for every 1� a < b < 10. Given any 1< t < 10, consider the sequence of
functions (f n ), where f n : R ! R is given by

f n =
X n

j =1

n
n + ( t � 1)j

1�
1+( t � 1) j � 1

n ;1+( t � 1) j
n

� :

Note that f n (� ) "
1 [1 ;t ) ( � )

� as n ! 1 , uniformly in � . Hence by the Monotone
Convergence Theorem and (4.9),

P(1 � S(X ) < t ) = E1[1;t )
�
S(X )

�
= E

�
S(X )

1
S(X )

1[1;t )
�
S(X )

�
�

= lim n !1 E
�
S(X )f n

�
S(X )

��

= lim n !1

X n

j =1

n
n + ( t � 1)j

E
�

S(X )1�
1+( t � 1) j � 1

n ;1+( t � 1) j
n

� �
S(X )

�
�

= lim n !1

X n

j =1

n
n + ( t � 1)j

�
t � 1
9n

ES(X )

=
ES(X )

9
limn !1

t � 1
n

X n

j =1

1
1 + ( t � 1)j=n

=
ES(X )

9

Z 1

0

t � 1
1 + ( t � 1)�

d�

=
ES(X )

9
ln t :

From P(1 � S(X ) < 10) = P(X 6= 0) = 1, it follows that ES(X ) = 9
ln 10 and

hence

P(S(X ) < t ) =
ln t

ln 10
= log t for all t 2 [1; 10) ;

i.e., X is Benford.
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Remarks. (i) As shown by Example 4.36(iii) and Theorem 4.37, a random vari-
able X has sum-invariant signi�cant digits if and only if

ESd1 ;:::;d m (X ) =
101� m

ln 10
P(X 6= 0)

holds for all m 2 N, d1 2 f 1; 2; : : : ; 9g and dj 2 f 0; 1; : : : ; 9g, j � 2.
(ii) Theorem 4.37 provides another informal test for goodness-of-�t to BL:

Simply calculate the di�erences between the sums of the signi�candsof the data
corresponding to the same initial sequence of signi�cant digits, see[Ni]. |

5. Benford's Law for deterministic processes

The goal of this chapter is to present the basic theory of BL in the context
of deterministic processes, such as iterates of maps, powers of matrices, and
solutions of di�erential equations. Except for somewhat arti�cial examples, pro-
cesses with linear growth are not Benford, and among the others,there is a clear
distinction between those with exponential growth or decay, and those with
super-exponential growth or decay. In the exponential case, processes typically
are Benford for all starting points in a region, but are not Benford with respect
to other bases. In contrast, super-exponential processes typically are Benford
for all bases, but have small sets (of measure zero) of exceptional points whose
orbits or trajectories are not Benford.

5.1. One-dimensional discrete-time processes

This section presents some elementary facts about BL for one-dimensional dis-
crete-time processes. The focus is �rst on processes with exponential growth
or decay, then on processes with doubly-exponential or more general growth
or decay. Finally, some possible applications such as Newton's method, and
extensions to nonautonomous and chaotic systems are discussedbriey.

Processes with exponential growth or decay

Many classical integer sequences exhibiting exponential growth are known to be
Benford.

Example 5.1. (i) Recall from Examples 4.11(i) and 4.12 that (2 n ) and the
Fibonacci sequence (Fn ) are Benford. Similarly, (n!) is Benford [BBH, Di], see
also Fig 21.

(ii) Recall from the remark on p.18 that ( n) is not Benford, but weakly
Benford in the sense explained there, and the same is true for the sequence of
prime numbers.
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(2n )

(n!)

(Fn )

103� log(1+ d� 1)

d
#

fD
1

=
dg

1

301

293

301

301:0

2

176

176

177

176:0

3

125

124

125

124:9

4

97

102

96

96:91

5

79

69

80

79:18

6

69

87

67

66:94

7

56

51

56

57:99

8

52

51

53

51:15

9

45

47

45

45:75

Fig 21 . Empirical frequencies of D 1 for the �rst 103 terms of the sequences (2n ), (n!) and
the Fibonacci numbers (Fn ), as compared with the Benford probabilities.

Let T : C ! C be a measurable map that mapsC � R into itself, and for
every n 2 N denote by T n the n-fold iterate of T , i.e. T 1 := T and T n +1 :=
T n � T ; also let T 0 be the identity map id C on C, that is, T 0(x) = x for all
x 2 C. The orbit of x0 2 C is the sequence

OT (x0) :=
�
T n � 1(x0)

�
n 2 N =

�
x0; T (x0); T 2(x0); : : :

�
:

Note that this interpretation of the orbit as a sequencedi�ers from terminology
sometimes used in dynamical systems theory (e.g. [KH]) according to which the
orbit of x0 is the mereset f T n � 1(x0) : n 2 Ng.

Example 5.2. (i) If T (x) = 2 x then OT (x0) = ( x0; 2x0; 22x0; : : :) = (2 n � 1x0)
for all x0. Hence limn !1 jxn j = + 1 wheneverx0 6= 0.

(ii) If T (x) = x2 then OT (x0) = ( x0; x2
0; x22

0 ; : : :) =
�
x2n � 1

0

�
for all x0. Here

xn approaches 0 or +1 depending on whetherjx0 j < 1 or jx0 j > 1. Moreover,
OT (� 1) = ( � 1; 1; 1; : : :).

(iii) If T (x) = 1 + x2 then OT (x0) = ( x0; 1 + x2
0; 2 + 2x2

0 + x4
0; : : :). Since

xn � n for all x0 and n 2 N, limn !1 xn = + 1 for every x0.

Recall from Example 4.11(i) that (2 n ) is Benford, and in fact (2n x0) is Ben-
ford for every x0 6= 0, by Theorem 4.22. In other words, Example 5.2(i) says
that with T(x) = 2 x, the orbit OT (x0) is Benford wheneverx0 6= 0. The goal
of the present sub-section is to extend this observation to a muchwider class of
maps T. The main result (Theorem 5.8) rests upon three simple lemmas.

Lemma 5.3. Let T(x) = ax with a 2 R. Then OT (x0) is Benford for every
x0 6= 0 or for no x0 at all, depending on whetherlog jaj is irrational or rational,
respectively.

Proof. By Theorem 4.10, OT (x0) = ( an � 1x0) is Benford for every x0 6= 0 or
none, depending on whether logjaj is irrational or not.

Example 5.4. (i) Let T(x) = 4 x. Since log 4 is irrational,OT (x0) = (4 n � 1x0) is
Benford for every x0 6= 0; in particular OT (4) = (4 n ) is Benford. Note, however,
that (4 n ) is not base-2 Benford since log2 4 = 2 is rational, and correspond-
ingly the second binary digit of 4n is identically equal to zero, whereas for a
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5
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1

Fig 22 . With T (x) = 2 x, OT (x0 ) is Benford for all x0 6= 0 .

2-Benford sequence the second binary digit is zero only with a relative frequency
of log2(3=2) � 0:5850.

(ii) Since log� is irrational, every orbit of T (x) = �x is Benford, unless
x0 = 0. Here OT (x0) is actually base-b Benford for every b 2 Nnf 1g.

Clearly, the simple proof of Lemma5.3 works only for maps that are exactly
linear. The same argument would for instance not work forT(x) = 2 x + e� x

even though T(x) � 2x for large x. To establish the Benford behavior of maps
like this, a simple version ofshadowing will be used. While the argument em-
ployed here is elementary, note that in dynamical systems theory,shadowing is
a powerful and sophisticated tool, see e.g. [Pa].

To explain the basic idea, �x T as above, i.e. letT (x) = 2 x + e� x and note
�rst that T(x) � max(0; x + 1) for all x, and hence limn !1 T n (x0) = + 1 for
every x0. While no explicit analytical expression is available for T n (x0), it is
certainly plausible to expect that, for large n, the orbit OT (x0) should resemble
an orbit of the linear map x 7! 2x. Fortunately, this is easily made rigorous. To
this end, note that

T n (x0) = 2 n x0 +
X n

j =1
2n � j e� T j � 1 (x 0 )

holds for everyn 2 N and x0 2 R. SinceT n (x0) � 0 for all n and x0, the number

x0 := x0 +
X 1

j =1
2� j e� T j � 1 (x 0 ) > x 0 +

e� x 0

2
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is well-de�ned and positive, and a short calculation using the fact that T n (x) �
x + n con�rms that

�
�T n (x0) � 2n x0

�
� =

X 1

j = n +1
2n � j e� T j � 1 (x 0 )

�
X 1

j =1
2� j e� (x 0 + j + n � 1) =

e1� n � x 0

2e � 1
; (5.1)

and hencejT n (x0) � 2n x0 j ! 0 exponentially fast asn ! 1 . As will be seen
shortly, this implies that OT (x0) is Benford for all x0 2 R. Note also that even
if jT n (x0) � 2n yj were merely required to remainboundedas n ! 1 , the only
choice fory would still be y = x0. Moreover, x0 depends continuously onx0. As
the following lemma shows, these observations hold in greater generality.

Lemma 5.5 (Shadowing Lemma). Let T : R ! R be a map, and� a real
number with j� j > 1. If supx 2 R jT (x) � �x j < + 1 then there exists, for every
x 2 R, one and only one pointx such that the sequence(T n (x)� � n x) is bounded.

Proof. Let �( x) := T(x) � �x and note that D := supx 2 R j�( x)j < + 1 by
assumption. With this, for all x 2 R and n 2 N0,

T n (x) = � n x +
X n

j =1
� n � j � � T j � 1(x) :

Using this expression, together with the well-de�ned number

x := x +
X 1

j =1
� � j � � T j � 1(x) ;

it follows that

jT n (x) � � n xj =
�
�
�
X 1

j = n +1
� n � j � � T j � 1(x)

�
�
�

�
X 1

j =1
j� j � j j� � T j + n � 1(x)j �

D
j� j � 1

;

and hence (T n (x) � � n x) is bounded. Moreover, the identity

T n (x) � � n y = T n (x) � � n x � � n (y � x)

shows that (T n (x) � � n y) is bounded only if y = x.

Remarks. (i) From the proof of Lemma 5.5 it can be seen that the maph : x 7! x
is continuous wheneverT is continuous. In general,h need not be one-to-one.
For example, h(x) = 0 for every x for which OT (x) is bounded. Also note that
if lim j x j! + 1 j�( x)j = 0 then lim j x j! + 1 jh(x) � xj = 0 as well. This is often the
case in applications and may be used to improve the bounds onjT n (x) � � n xj.
For example, for the mapT(x) = 2 x + e� x considered above, the rough estimate

T n (x0) � 2n x0 �
e� x 0

2e � 1
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obtained from (5.1) can be substituted into (5.1) again, leading to the much
more accurate

jT n (x0) � 2n x0j = O
�

e� 2n x 0

�
as n ! 1 :

(ii) Stronger, quantitative versions of the Shadowing Lemma have been estab-
lished. They are very useful for an analysis of BL in more complicatedsystems,
see e.g. [BBH] or [Ber3]. |

Example 5.6. (i) Let T(x) = 2 x +1. For this simple map, T n can be computed
explicitly, and it is illuminating to compare the explicit �ndings with Lemma
5.5. From

T n (x) = 2 n x + 2 n � 1 ;

it is clear that ( T n (x) � 2n x) is unbounded for every x 2 R. However, using
x := x + 1, one obtains

T n (x) � 2n x � � 1 ;

and hence (T n (x) � 2n x) is bounded.

(ii) Strictly speaking, the map T(x) = 2 x + e� x studied above does not meet
the assumptions of Lemma5.5, as �( x) = e� x is not bounded forx ! �1 . The
conclusion of the lemma, however, does hold nevertheless because� is bounded
on R+ and T mapsR into R+ . Put di�erently, x is well-de�ned for every x 2 R.

(iii) Let T(x) = 2 x � e� x . Note that T has a unique �xed point x � , i.e.
T (x � ) = x � ; numerically, x � � 0:5671. Lemma5.5 applies to T for x > x � . To
see this formally, replaceT(x) by x � + 2( x � x � ) wheneverx � x � and note that
this modi�cation of T does not a�ect OT (x0) for x0 � x � . Thus for every x � x �

there exists anx such that (T n (x) � 2n x) is bounded. Lemma5.7 below implies
that OT (x0) is Benford for all x0 > x � . Clearly, OT (x � ) = ( x � ; x � ; x � ; : : :) is not
Benford. If x0 < x � then T n (x0) ! �1 super-exponentially fast. The Benford
properties of OT (x0) in this case will be analyzed in the next sub-section.

The next lemma enables application of Lemma5.5 to establish the Benford
property for orbits of a wide class of maps.

Lemma 5.7. (i) Assume that (an ) and (bn ) are sequences of real numbers
with jan j ! + 1 and supn 2 N jan � bn j < + 1 . Then (bn ) is Benford if and
only if (an ) is Benford.

(ii) Suppose that the measurable functionsf; g : [0; + 1 ) ! R are such that
jf (t)j ! + 1 as t ! + 1 , and supt � 0 jf (t) � g(t)j < + 1 . Then f is
Benford if and only if g is Benford.

Proof. To prove (i), let c := supn 2 N jan � bn j + 1. By discarding �nitely many
terms if necessary, it can be assumed thatjan j; jbn j � 2c for all n. From
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� log
�

1 +
c

jan j � c

�
� log

jbn j
jbn j + c

� log
jbn j
jan j

� log
jan j + c

jan j
� log

�
1 +

c
jan j � c

�
;

it follows that

�
� log jbn j � log jan j

�
� =

�
�
�
� log

jbn j
jan j

�
�
�
� � log

�
1 +

c
jan j � c

�
! 0 asn ! 1 :

Lemma 4.3(i) now shows that (log jbn j) is u.d. mod 1 if and only (log jan j) is.
The proof of (ii) is completely analogous.

Lemmas5.5 and 5.7 can now easily be combined to produce the desired gen-
eral result. The theorem is formulated for orbits converging to zero. As explained
in the subsequent Example5.9, a reciprocal version holds for orbits converging
to �1 .

Theorem 5.8 ([BBH]). Let T : R ! R be a C2-map with T(0) = 0 . Assume
that 0 < jT 0(0)j < 1. Then OT (x0) is Benford for all x0 6= 0 su�ciently close to
0 if and only if log jT 0(0)j is irrational. If log jT 0(0)j is rational then OT (x0) is
not Benford for any x0 su�ciently close to 0.

Proof. Let � := T 0(0) and observe that there exists a continuous functionf :
R ! R such that T(x) = �x

�
1 � xf (x)

�
. In particular, T (x) 6= 0 for all x 6= 0

su�ciently close to 0. De�ne

eT(x) := T(x � 1)� 1 =
x2

�
�
x � f (x � 1)

� ;

and note that

eT(x) � � � 1x =
x
�

�
f (x � 1)

x � f (x � 1)
=

f (x � 1)
�

+
f (x � 1)2

�
�
x � f (x � 1)

� :

From this it is clear that sup j x j� � j eT(x) � � � 1xj is �nite, provided that � is
su�ciently large. Hence Lemma 5.5 shows that for every x with jxj su�ciently
large,

�
j eT n (x) � � � n xj

�
is bounded with an appropriate x 6= 0. Lemma 5.7

implies that OeT (x0) is Benford if and only if ( � 1� n x0) is, which in turn is the
case precisely if logj� j is irrational. The result then follows from noting that,
for all x0 6= 0 with jx0 j su�ciently small, OT (x0) =

� eT n � 1(x � 1
0 )� 1

�
n 2 N, and

Corollary 4.7(i) which shows that (x � 1
n ) is Benford whenever (xn ) is.

Example 5.9. (i) For T(x) = 1
2 x + 1

4 x2, the orbit OT (x0) is Benford for
every x0 6= 0 su�ciently close to 0. A simple graphical analysis shows that
limn !1 T n (x) = 0 if and only if � 4 < x < 2. Thus for every x0 2 (� 4; 2)nf 0g,
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OT (x0) is Benford. Clearly, OT (� 4) = ( � 4; 2; 2; : : :) and OT (2) = (2 ; 2; 2; : : :)
are not Benford. For x0 < � 4 or x0 > 2, one might try to mimic the proof of
Theorem 5.8 and consider

eT(x) := T(x � 1)� 1 =
4x2

1 + 2x

nearx = 0. Note that indeed eT is a smooth (C1 ) map nearx = 0, and eT(0) = 0.
However, eT 0(0) = 0 as well, and Theorem 5.8 does not apply. It will follow from
the main result of the next subsection (Theorem5.12) that for almost every point
x0 2 Rn[� 4; 2] the orbit OT (x0) is Benford. However,Rn[� 4; 2] also contains a
large set of exceptional points, i.e. points whose orbit isnot Benford.

(ii) To see that Theorem5.8 applies to the map T(x) = 2 x + e� x considered
in Example 5.6(ii), let

eT(x) := T(x � 2)� 1=2 =
x

p
2 + x2e� 1=x 2

; x 6= 0 :

With eT(0) := 0, the map eT : R ! R is smooth, and eT 0(0) = 1p
2
. Moreover,

limn !1 eT n (x) = 0 for every x 2 R. By Theorem 5.8, OeT (x0) is Benford for
every x0 6= 0, and hence OT (x0) is Benford for every x0 6= 0 as well, because
T n (x) = eT n (jxj � 1=2)� 2 for all n.

(iii) As in (ii), Theorem 5.8 applies to the map T(x) = 10 x + e2� x . Note
that again lim n !1 T n (x) = + 1 for every x 2 R, but since log 10 is rational,
no T-orbit is Benford. In fact, it is not hard to see that for every m 2 N and
x 2 R, the sequence ofm-th signi�cant digits of T n (x), i.e.

�
Dm (T n (x))

�
n 2 N is

eventually constant.

Remark. Theorem 5.8 remains essentially unchanged if the casejT 0(0)j = 1 is
also allowed, the conclusion being that in this caseOT (x0) is not Benford for any
x near 0. However, this extension requires the explicitassumption that x = 0
be attracting, see [Ber4]. (If jT 0(0)j < 1 then x = 0 is automatically attracting.)

For a simple example, consider the smooth mapT(x) =
p

1 + x2. While
limn !1 T n (x) = + 1 for every x 2 R, it follows from the explicit formula
T n (x) =

p
n + x2 that OT (x0) is not Benford, as (log

p
n + x2

0) is not u.d. mod
1, by Proposition 4.8(iv). The extended version of Theorem5.8 just mentioned
easily leads to the same conclusion because

eT(x) := T(x � 1)� 1 =
x

p
x2 + 1

is smooth, with eT(0) = 0 and eT 0(0) = 1, and x = 0 is an attracting �xed point
for eT.

To see that the situation can be more complicated ifjT 0(0)j = 1 yet x = 0 is
not attracting, �x � > 1 and consider the map

T� (x) = �x �
(� � 1)x
1 + x2 ;
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for which T� (0) = 0, T 0
� (0) = 1, and x = 0 is repelling. As far as the dynamics

near x = 0 is concerned, all mapsT� are the same. However,

eT� (x) = T� (x � 1)� 1 = x
1 + x2

� + x2

is smooth with eT 0
� (0) = � � 1. Hence it is clear from Theorem5.8 that OT � (x0)

is Benford for all x0 6= 0 or for none, depending on whether log� is irrational
or not. |

Processes with super-exponential growth or decay

As was seen in the previous subsection, for the maps

T : x 7! � (x + e� x )

with � > 1, either all orbits are Benford (if log � is irrational) or else none are
(if log � is rational). This all-or-nothing behavior is linked to the exponential
growth of orbits since, by the Shadowing Lemma5.5,

T n (x) = � n x + O(e� n ) as n ! 1 :

For an altogether di�erent scenario, consider the smooth map

T : x 7!
p

30 + 12x2 + x4 :

As before, limn !1 T n (x) = + 1 for every x 2 R. However, it follows from
T(x)2 + 6 = ( x2 + 6) 2 that

T n (x) =
p

(x2 + 6) 2n � 6 = ( x2 + 6) 2n � 1
+ O

�
6� 2n � 1 �

as n ! 1 ;

showing that every T-orbit grows at a doubly-exponential rate. Is OT (x0) Ben-
ford for some or even allx0 2 R? The main result of this subsection, Theorem
5.12 below, shows that indeedOT (x0) is Benford for most x0. While it is dif-
�cult to explicitly produce even a single x0 with this property, it is very easy
to see that OT (x0) cannot be Benford for every x0. Indeed, taking for example
x0 = 2, one obtains

OT (2) = (2 ;
p

94;
p

9994;
p

999994; : : :) ;

and it is clear that D1
�
T n (2)

�
= 9 for every n 2 N. HenceOT (2) is not Benford.

For another example, choosex0 =
p

104=3 � 6 = 3:943: : : for which the sequence
of �rst signi�cant digits is eventually 2-periodic,

�
D1(T n � 1(x0))

�
= (3 ; 2; 4; 2; 4; 2; 4; : : :) :

As also shown by Theorem5.12, for maps like T there are alwaysmany excep-
tional points.

The following is an analog of Lemma5.3 in the doubly-exponential setting.
Recall that a statement holds for almost every x if there is a set of Lebesgue
measure zero that contains allx for which the statement doesnot hold.
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Lemma 5.10. Let T(x) = �x � for some � > 0 and � > 1. Then OT (x0)
is Benford for almost every x0 > 0, but there also exist uncountably many
exceptional points, i.e. x0 > 0 for which OT (x0) is not Benford.

Proof. Note �rst that letting eT(x) = cT(c� 1x) for any c > 0 implies OT (x) =
c� 1OeT (cx), and with c = � ( � � 1) � 1

one �nds eT(x) = x � . Without loss of general-
ity, it can therefore be assumed that� = 1, i.e. T (x) = x � . De�ne R : R ! R as
R(y) = log T(10y ) = �y . Sincex 7! logx establishes a bijective correspondence
between both the points and the nullsets inR+ and R, respectively, all that has
to be shown is that OR (y) is u.d. mod 1 for a.e. y 2 R, but also that OR (y)
fails to be u.d. mod 1 for at least uncountably manyy. To see the former, let
f n (y) = Rn (y) = � n y. Clearly, f 0

n (y) � f 0
m (y) = � n � m (� m � 1) is monotone, and

jf 0
n � f 0

m j � � � 1 > 0 wheneverm 6= n. By Proposition 4.9, therefore, OR (y) is
u.d. mod 1 for a.e.y 2 R.

The statement concerning exceptional points will be proved here only under
the additional assumption that � is an integer, see [Ber4] for the remaining
cases. Given an integer� � 2, let (� n ) be any sequence of 0s and 1s such that
� n � n +1 = 0 for all n 2 N, that is, ( � n ) does not contain two consecutive 1s.
With this, consider

y0 :=
X 1

j =1
� j � � j

and observe that, for everyn 2 N,

0 � h � n y0i =
X 1

j = n +1
� j � n � j �

1
�

+
1

� 2(� � 1)
< 1;

from which it is clear that ( � n y0) is not u.d. mod 1. The proof is completed
by noting that there are uncountably many di�erent sequences (� n ), and each
sequence de�nes a di�erent point y0.

Example 5.11. Let T(x) = x2. By Lemma 5.10, OT (x0) is Benford for almost
every but not for every x0 2 R, as for instanceT n (x) = x2n

always has �rst
signi�cant digit D1 = 1 if x = 10k for somek 2 Z.

To study maps like T(x) =
p

30 + 12x2 + x4 mentioned above, Lemma5.10
has to be extended. Note that

eT(x) = T(x � 1)� 1 =
x2

p
1 + 12x2 + 30x4

;

so eT(x) � x2 near x = 0. Again the technique of shadowing can be applied to
relate the dynamics of eT to the one of x 7! x2 covered by Lemma5.10. The
following is an analog of Theorem5.8 for the case whenT is dominated by
power-like terms.

Theorem 5.12 ([BBH]). Let T be a smooth map withT(0) = 0 , and assume
that T 0(0) = 0 but T (p) (0) 6= 0 for some p 2 Nnf 1g. Then OT (x0) is Benford
for almost every x0 su�ciently close to 0, but there are also uncountably many
exceptional points.
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Fig 23 . With T (x) = x2 , OT (x0 ) is Benford for almost every, but not every x0 2 R.

Proof. Without loss of generality, assume that p = min f j 2 N : T ( j ) (0) 6= 0 g.
The map T can be written in the form T(x) = �x p

�
1 + f (x)

�
where f is a

C1 -function with f (0) = 0, and � 6= 0. As in the proof of Lemma 5.10, it may
be assumed that� = 1. Let R(y) = � logT(10� y ) = py � log

�
1 + f (10� y )

�
, so

that OT (x0) is Benford if and only if OR (� logx0) is u.d. mod 1. As the proof
of Lemma 5.10has shown, (pn y) is u.d. mod 1 for a.e.y 2 R. Moreover, Lemma
5.5 applies to R, and it can be checked by term-by-term di�erentiation that the
shadowing map

h : y 7! y = y �
X 1

j =1
p� j log

�
1 + f

�
10� R j (y ) �

�

is a C1 -di�eomorphism on [y0; + 1 ) for y0 su�ciently large. For a.e. su�ciently
large y, therefore, OR (y) is u.d. mod 1. As explained earlier, this means that
OT (x0) is Benford for a.e.x0 su�ciently close to 0. The existence of exceptional
points follows similarly as in the proof of Lemma5.10.

Example 5.13. (i) Consider the map T(x) = 1
2 (x2 + x4) and note that

limn !1 T n (x) = 0 if and only if jxj < 1. Theorem 5.12 shows that OT (x0)
is Benford for a.e.x0 2 (� 1; 1). If jxj > 1 then limn !1 T n (x) = + 1 , and the
reciprocal version of Theorem5.12 applies to

eT(x) := T(x � 1)� 1 =
2x4

1 + x2

near x = 0. Overall, therefore, OT (x0) is Benford for a.e. x0 2 R.
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(ii) For T(x) =
p

30 + 12x2 + x4, Theorem 5.12 applied to

eT(x) := T(x � 1)� 1 =
x2

p
1 + 12x2 + 30x4

shows that OT (x0) is Benford for a.e. x0 2 R.

(iii) Let T(x) = 1 + x2. Again Theorem 5.12 applied to

eT(x) = T(x � 1)� 1 =
x2

1 + x2 ;

shows that OT (x0) is Benford for a.e.x0 2 R. As also asserted by that theorem,
there are many exceptional points as well. For example, it can be shown that
with

x0 = lim n !1

r

: : :
q p

102n � 1 � 1: : : = 9 :949: : : ;

the �rst signi�cant digit of T n � 1(x0) always equals 9, i.e.D1
�
T n � 1(x0)

�
= 9

for all n 2 N. (In fact, x0 is the only point with this property, see [BBH] for
details.)

Remarks. (i) Note that while in Lemma 5.3 and Theorem5.8 OT (x0) is Benford
either for all x0 or for none at all, Lemma 5.10 and Theorem 5.12 guarantee
the coexistence of manyx0 for which OT (x0) is Benford and many exceptional
points. The latter form an uncountable set of Lebesgue measure zero. From a
measure-theoretic point of view, therefore, exceptional pointsare extremely rare.
It can be shown, however, that the pointsx0 for which OT (x0) is Benford form
a set of �rst category, i.e. a countable union of nowhere dense sets. In particular,
the exceptional points aredensein a neighbourhood ofx = 0. (Recall that a set
M is dense inC � R if, given any c 2 C and " > 0, there exists anm 2 M with
jm � cj < " .) Thus from a topological point of view, most points are exceptional.
This discrepancy between the measure-theoretic and the topological point of
view is not uncommon in ergodic theory and may explain why it is di�cult
to explicitly �nd even a single point x0 for which OT (x0) is Benford for, say,
T(x) = 1 + x2 | despite the fact that Theorem 5.12 guarantees the existence
of such points in abundance.

(ii) Theorem 5.12 covers for instance all polynomial or rational functions of
degree at least two, forjxj su�ciently large. An example not covered by that
theorem is T(x) = ex or, more precisely, its reciprocal eT(x) = e� 1=x . In this
case,OT (x0) grows even faster than doubly-exponential. Theorem5.21 below
shows that neverthelessOT (x0) is Benford for a.e. x0 2 R. Again, there is also
a (measure-theoretically small yet topologically large) set of exceptional points.

(iii) In the context of Lemma 5.10 and Theorem 5.12, and in view of (i),
many interesting questions may be asked. For instance,OT (x0) is Benford for
a.e. x0 2 R if T (x) = x2. What if x0 = 2, i.e., is OT (2) = (2 2n � 1

) Benford?
More generally, let T be any polynomial with integer coe�cients and degree at
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least two. Then OT (x0) is Benford for almost all su�ciently large jx0j. Is OT (k)
Benford for some, or even many integersk? In the case ofT(x) = x2, this is
equivalent to asking whether (2n log jkj) is u.d. mod 1 or, in number-theoretic
terminology, whether logjkj is 2-normal. At present, 2-normality of common
mathematical constants such as log 2,� or e is a well-known open problem,
considered to be exceedingly di�cult. Similarly, one may ask whether (F2n ) is
Benford. Again, this may be a very hard problem, contrasting the simple fact
that ( FjP (n ) j ) is Benford wheneverP is a non-constant polynomial with integer
coe�cients. |

To conclude the present section on one-dimensional processes, afew possible
applications and extensions of the results above will be discussed. The presenta-
tion is very brief and mostly based on examples; for any details, the interested
reader may wish to consult the references mentioned in the text.

An application: Newton's method and related algorithms

In scienti�c calculations using digital computers and oating point ar ithmetic,
roundo� errors are inevitable, and as Knuth points out in his classic text The
Art of Computer Programming [Kn, pp.253{255]

In order to analyze the average behavior of oating-point ar ithmetic algorithms
(and in particular to determine their average running time) , we need some statis-
tical information that allows us to determine how often vari ous cases arise . . . [If,
for example, the] leading digits tend to be small [that] make s the most obvious
techniques of \average error" estimation for oating-poin t calculations invalid.
The relative error due to rounding is usually . . . more than ex pected.

Thus for the problem of �nding numerically the root of a function by m eans of
Newton's Method (NM), it is important to study the distribution of signi�cant
digits (or signi�cands) of the approximations generated by the method. As will
be seen shortly, the di�erences between successive Newton approximations, and
the di�erences between the successive approximations and the unknown root
often exhibit exactly the type of non-uniformity of signi�cant digits alluded to
by Knuth | they typically follow BL.

Throughout this subsection, let f : I ! R be a di�erentiable function de�ned
on some open intervalI � R, and denote by N f the map associated withf by
NM, that is

N f (x) := x �
f (x)
f 0(x)

for all x 2 I with f 0(x) 6= 0 :

For N f to be de�ned wherever f is, set N f (x) := x if f 0(x) = 0. Using NM for
�nding roots of f (i.e. real numbersx � with f (x � ) = 0) amounts to picking an
initial point x0 2 I and iterating N f . Henceforth, (xn ) will denote the sequence
of iterates of N f starting at x0, that is ( xn ) = ON f (x0).

Clearly, if ( xn ) converges to x � , say, and if N f is continuous at x � , then
N f (x � ) = x � , so x � is a �xed point of N f , and f (x � ) = 0. (Note that according
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to the de�nition of N f used here,N f (x � ) = x � could also mean thatf 0(x � ) = 0.
If, however, f 0(x � ) = 0 yet f (x � ) 6= 0 then N f is not continuous at x � unless
f is constant.) It is this correspondence between the roots off and the �xed
points of N f that makes NM work locally. Often, every �xed point x � of N f is
attracting, i.e. limn !1 N n

f (x0) = x � for all x0 su�ciently close to x � . (Observe
that if f is linear near x � , i.e. f (x) = c(x � x � ) for somec 6= 0, then N f (x) = x �

for all x near x � .)
To formulate a result about BL for NM, it will be assumed that f : I ! R

is real-analytic. Recall that this means that f can, in a neighbourhood of every
point of I , be represented by its Taylor series. Although real-analyticity is a
strong assumption indeed, the class of real-analytic functions covers most prac-
tically relevant cases, including all polynomials, and all rational, exponential,
and trigonometric functions, and compositions thereof.

If f : I ! R is real-analytic and x � 2 I a root of f , i.e. if f (x � ) = 0, then
f (x) = ( x � x � )m g(x) for some m 2 N and some real-analyticg : I ! R with
g(x � ) 6= 0. The number m is the multiplicity of the root x � ; if m = 1 then
x � is referred to as asimple root. The following theorem becomes plausible
upon observing that f (x) = ( x � x � )m g(x) implies that N f is real-analytic in a
neighbourhood ofx � , and

N 0
f (x) =

f (x)f 00(x)
f 0(x)2

=
m(m � 1)g(x)2 + 2 m(x � x � )g0(x)g(x) + ( x � x � )2g00(x)g(x)

m2g(x)2 + 2 m(x � x � )g0(x)g(x) + ( x � x � )2g0(x)2 ;

so that in particular N 0
f (x � ) = 1 � m� 1.

Theorem 5.14 ([BH1]). Let f : I ! R be real-analytic with f (x � ) = 0 , and
assume thatf is not linear.

(i) If x � is a simple root, then (xn � x � ) and (xn +1 � xn ) are both Benford
for (Lebesgue) almost every, but not everyx0 in a neighbourhood ofx � .

(ii) If x � is a root of multiplicity at least two, then (xn � x � ) and (xn +1 � xn )
are Benford for all x0 6= x � su�ciently close to x � .

The full proof of Theorem 5.14 can be found in [BH1]. It uses the following
lemma which may be of independent interest for studying BL in other numerical
approximation procedures. Part (i) is an analog of Lemma5.7, and (ii) and (iii)
follow directly from Theorem 5.12 and 5.8, respectively.

Lemma 5.15. Let T : I ! I be C1 with T(y� ) = y� for some y� 2 I .

(i) If T 0(y� ) 6= 1 , then for all y0 such that limn !1 T n (y0) = y� , the sequence
(T n (y0) � y� ) is Benford precisely when

�
T n +1 (y0) � T n (y0)

�
is Benford.

(ii) If T 0(y� ) = 0 but T (p) (y� ) 6= 0 for some p 2 Nnf 1g, then (T n (y0) � y� ) is
Benford for (Lebesgue) almost every, but not everyy0 in a neighbourhood
of y� .
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(iii) If 0 < jT 0(y� )j < 1, then (T n (y0) � y� ) is Benford for all y0 6= y� su�-
ciently close to y� precisely whenlog jT 0(y� )j is irrational.

Example 5.16. (i) Let f (x) = x=(1 � x) for x < 1. Then f has a simple
root at x � = 0, and N f (x) = x2. By Theorem 5.14(i), the sequences (xn ) and
(xn +1 � xn ) are both Benford sequences for (Lebesgue) almost everyx0 in a
neighbourhood of 0.

(ii) Let f (x) = x2. Then f has a double root atx � = 0 and N f (x) = x=2, so
by Theorem 5.14(ii), the sequence of iterates (xn ) of N f as well as (xn +1 � xn ) are
both Benford for all starting points x0 6= 0. (They are not, however, 2-Benford.)

Utilizing Lemma 5.15, an analog of Theorem5.14can be established for other
root-�nding algorithms as well.

Example 5.17. Let f (x) = x + x3 and consider the successive approximations
(yn ) generated by the Jacobi-Ste�ensen method,

yn +1 = yn �
f (yn )2

f (yn ) � f
�
yn � f (yn )

� ; n 2 N0 :

For almost every, but not every y0 near 0, (yn ) is Benford. This follows from
Lemma 5.15(ii), since yn = J n

f (y0) with the Jacobi-Ste�ensen transformation

J n
f (x) = � y5 1 � y2

1 + y2 � y4 + y6 ;

and Jf (y) � � y5 near y = 0. Alternatively, Jf = N ~f with the real-analytic

function ~f (x) = ( x + x3)e
1
4 x 4 � x 2

, so Theorem5.14(i) applies directly as well.

If f fails to be real-analytic, then N f may not be well-behaved analytically.
For instance, N f may have discontinuities even iff is C1 . Pathologies like this
can cause NM to fail for a variety of reasons, of which the reader can gain an
impression from [BH1, Sec.4]. Even ifN f is smooth, (xn ) may not be Benford.

Example 5.18. Let f be the C1 -function

f (x) =
�

e� 1=x 2
if x 6= 0 ;

0 if x = 0 ;

for which N f (x) = x(1 � 1
2 x2) is C1 as well. Note that limn !1 N n

f (x) = 0 if
and only if jxj < 2. In this case, however,ON f (x) is not Benford. This follows
from the extended version of Theorem5.8 mentioned in the remark on p.70 but
can also be seen directly. Indeed, letT (x) = x

1+ jx j and note that N 0
f (x) > 0,

T 0(x) > 0 and jT(x)j � j N f (x)j holds wheneverjxj � 1
2 . From this it follows

that

jN n
f (x)j � j T n (x)j =

jxj
1 + njxj

for all n 2 N ;
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and consequently (logjN n
f (x)j) is not u.d. mod 1 by Proposition 4.8(iv), i.e.,

ON f (x) is not Benford. On the other hand, if jx0 j > 2 then limn !1 jN n
f (x0)j =

+ 1 , and Theorem 5.12, applied to

eT(x) := N f (x � 1)� 1 = �
2x3

1 � 2x2

near x = 0, shows that ON f (x0) is Benford for almost every, but not every x0

in this case.

Theorem 5.14 has important practical implications for estimating roots of a
function via NM using oating-point arithmetic. One type of error in s cienti�c
computations is overow (or underow), which occurs when the running compu-
tations exceed the largest (or smallest, in absolute value) oating-point number
allowed by the computer. Feldstein and Turner [FT , p.241] show that under \the
assumption of the logarithmic distribution of numbers [i.e. BL] oating -point
addition and subtraction can result in overow and underow with ala rming
frequency . . . " Together with Theorem 5.14, this suggests that special attention
should be given to overow and underow errors in any computer algorithm
used to estimate roots by means of NM.

Another important type of error in scienti�c computing arises due t o round-
o�. In estimating a root from its Newton approximations, for examp le, a rule for
stopping the algorithm must be speci�ed, such as \stop whenn = 106" or \stop
when the di�erences between successive approximations are less than 10� 6".
Every stopping rule will result in some round-o� error, and Theorem 5.14shows
that this di�erence is generally Benford. In fact, justi�ed by heur istics and by
the extensive empirical evidence of BL in other numerical procedures, analysis
of roundo� errors has often been carried out under thehypothesisof a statistical
logarithmic distribution of signi�cant digits or signi�cands [ BB]. Therefore, as
Knuth points out, a naive assumption of uniformly distributed signi�c ant digits
in the calculations tends to underestimate the average relative roundo� error in
cases where the actual statistical distribution is skewed toward smaller leading
signi�cant digits, as is the case for BL. To obtain a rough idea of the magnitude
of this underestimate when the true statistical distribution is BL, le t X denote
the absolute round-o� error at the time of stopping the algorithm, and let Y
denote the fraction part of the approximation at the time of stopping. Then the
relative error is X=Y , and assuming thatX and Y are independent random vari-
ables, the average (i.e., expected) relative error is simplyEX �E(1=Y). As shown
in [BH1], the assumption that Y is uniform while its true distribution is BL leads
to an averageunderestimation of the relative error by more than one third.

The relevance of BL for scienti�c computing does not end here. Forexample,
Hamming gives \a number of applications to hardware, software, and general
computing which show that this distribution is not merely an amusing curiosity"
[Ha, p.1609], and Schatte analyzes the speed of multiplication and divisionin
digital computers when the statistical distribution of oating-poin t numbers is
logarithmic and proves that, for design of computers, \[t]he baseb = 8 is optimal
with respect to [minimizing expected] storage use" [Scha1, p.453].
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Extension I: Time-dependent systems

So far, the sequences considered in this chapter have been generated by the iter-
ation of a single mapT or, in dynamical systems terminology, by anautonomous
dynamical system. Autonomous systems constitute a classical and well-studied
�eld. Beyond this �eld there has been, in the recent past, an increased interest
in systems that are nonautonomous, i.e. explicitly time-dependent in one way
or the other. This development is motivated and driven by important practical
applications as well as pure mathematical questions. In this context, it is inter-
esting to study how the results discussed previously extend to systems with the
map T explicitly depending on n. In full generality, this is a very wide topic
with many open problems, both conceptual and computational. Only a small
number of pertinent results (without proofs) and examples will be mentioned
here, and the interested reader is referred e.g. to [Ber4] for a fuller account and
references as well as to [KM , LS] for an intriguing speci�c problem.

Throughout, let ( Tn ) be a sequence of maps that mapR or parts thereof into
itself, and for everyn 2 N denote byT n the n-fold compositionT n := Tn � : : :� T1;
also let T 0 be the identity map on R. Given x0, it makes sense to consider the
sequenceOT (x0) :=

�
T n � 1(x0)

�
n 2 N =

�
x0; T1(x0); T2

�
T1(x0)

�
; : : :

�
. As in the

autonomous case (which corresponds toTn being independent ofn) the sequence
OT (x0) is referred to as the (nonautonomous)orbit of x0.

The following is a nonautonomous variant of Theorem5.8. A proof (of a
substantially more general version) can be found in [BBH]. It relies heavily on
a nonautonomous version of the Shadowing Lemma.

Theorem 5.19 ([BBH]). Let Tj : R ! R be C2-maps with Tj (0) = 0 and
T 0

j (0) 6= 0 for all j 2 N, and set � j := T 0
j (0). Assume that supj maxj x j� 1 jT 00

j (x)j
and

P 1
n =1

Q n
j =1 j� j j are both �nite. If lim j !1 log j� j j exists and is irrational,

then OT (x0) is Benford for all x0 6= 0 su�ciently close to 0.

Example 5.20. (i) Let Rj (x) = (2 + j � 1)x for j = 1 ; 2; : : :. It is easy to see
that all assumptions of Theorem5.19 are met for

Tj (x) = Rj (x � 1)� 1 =
j

2j + 1
x

with lim j !1 log j� j j = � log 2. HenceOR (x0) is Benford for all x0 6= 0.

(ii) Let Tj (x) = Fj +1 =Fj x for all j 2 N, whereFj denotes thej -th Fibonacci
number. Since limj !1 log(Fj +1 =Fj ) = log 1+

p
5

2 is irrational, and by taking
reciprocals as in (i), Theorem5.19shows that OT (x0) is Benford for all x0 6= 0.
In particular, OT (F1) = ( Fn ) is Benford, as was already seen in Example4.12.
Note that the same argument wouldnot work to show that (n!) is Benford.

(iii) Consider the family of linear maps Tj (x) = 10 � 1+
p

j +1 �
p

j x for j =
1; 2; : : :. Here

Q n
j =1 � j = 10 � n +

p
n +1 � 1, so

P + 1
n =1

Q n
j =1 j� j j < + 1 . However,
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Theorem 5.19 does not apply since limj !1 log j� j j = � 1 is rational. Neverthe-
less, as (

p
n) is u.d. mod 1 by [KN, Ex.3.9] and

log jT n (x)j = � n +
p

n + 1 � 1 + log jxj ;

the sequenceOT (x0) is Benford for every x0 6= 0.

In situations where most of the mapsTj are power-like or even more strongly
expanding, the following generalization of Lemma5.10 may be useful. (In its
fully developed form, the result also extends Theorem5.12, see [BBH, Thm.5.5]
and [Ber3, Thm.3.7].) Again the reader is referred to [Ber4] for a proof.

Theorem 5.21 ([Ber4]). Assume the mapsTj : R+ ! R+ satisfy, for some
� > 0 and all j 2 N, the following conditions:

(i) x 7! ln Tj (ex ) is convex on[�; + 1 );

(ii) xT 0
j (x)=Tj (x) � � j > 0 for all x � � .

If lim inf j !1 � j > 1 then OT (x0) is Benford for almost every su�ciently large
x0, but there are also uncountably many exceptional points.

Example 5.22. (i) To see that Theorem5.21 does indeed generalize Lemma
5.10, let Tj (x) = �x � for all j 2 N. Then x 7! ln Tj (ex ) = �x + ln � clearly is
convex, andxT 0

j (x)=Tj (x) = � > 1 for all x > 0.

(ii) As mentioned already in (ii) of the remark on p.74, Theorem 5.21 also
shows that OT (x0) with T(x) = ex is Benford for almost every, but not every
x0 2 R, as x 7! ln T(ex ) = ex is convex, and xT 0(x)=T(x) = x as well as
T 3(x) > e holds for all x 2 R. Similarly, the theorem applies to T(x) = 1 + x2.

(iii) For a truly nonautonomous example consider

Tj (x) =
�

x2 if j is even;
2x if j is odd;

or Tj (x) = ( j + 1) x :

In both cases,OT (x0) is Benford for almost every, but not every x0 2 R.

(iv) Finally, it is important to note that Theorem 5.21 may fail if one of its
hypotheses is violated even for a singlej . For example

Tj (x) =
�

10 if j = 1 ;
x2 if j � 2 ;

satis�es (i) and (ii) for all j > 1, but does not satisfy assumption (ii) for j = 1.
Clearly, OT (x0) is not Benford for any x0 2 R, since D1

�
T n (x0)

�
= 1 for all

n 2 N.

Using slightly more sophisticated tools, Theorem5.21can be extended so as
to provide the following corollary for polynomial maps.
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Corollary 5.23. Let the mapsTj be polynomials,

Tj (x) = xn j + aj;n j � 1xn j � 1 + : : : + aj; 1x + aj; 0 ;

with nj 2 Nnf 1g and aj;l 2 R for all j 2 N, 0 � l < n j . If supj 2 N maxn j � 1
l =0 jaj;l j <

+ 1 then OT (x0) is Benford for almost every x0 2 Rn[� �; � ] with some � � 0.
However,Rn[� �; � ] also contains an uncountable dense set of exceptional points.

Example 5.24. Let Tj (x) = x j � 1 for all j � 1 . Then even though (Tj )
do not satisfy the hypothesis (i) of Theorem5.21, by Corollary 5.23, the orbit
OT (x0) = ( x0; x0 � 1; x2

0 � 2x0; : : :) is Benford for almost all jx0 j � 3, but that
region also contains uncountably many points for whichOT (x0) is not Benford.

Extension II: Chaotic dynamical systems

The dynamical scenarios studied so far for their conformance withBL have all
been very simple indeed: In Theorems5.8, 5.12 and 5.19 lim n !1 T n (x) = 0
holds automatically for all relevant initial values x, whereas limn !1 T n (x) =
+ 1 in Theorem 5.21. While this dynamical simplicity does not necessarily force
the behavior of

�
S

�
T n (x)

��
to be equally simple (recall e.g. Example5.13(iii)), it

makes one wonder what might be observed under more general circumstances.
The present subsection presents two simple examples in this regard. Among
other things, they illustrate that, as a rule, Benford sequences may be rare in
more general dynamical systems.

Example 5.25. Consider the tent-map T : R ! R given by T(x) = 1 � j 2x � 1j.
Using Theorem 5.8, it is not hard to see that OT (x0) is Benford wheneverx0

lies outside [0; 1]. Clearly, OT (0) = (0 ; 0; 0; : : :) and OT (1) = (1 ; 0; 0; : : :) are not
Benford. As far as BL is concerned, therefore, it remains to analyze OT (x0) for
0 < x 0 < 1. De�ne two maps � L ; � R : [0; 1] ! [0; 1] as

� L (x) =
x
2

; � R (x) = 1 �
x
2

:

Then T � � L (x) = T � � R (x) = x for all x 2 [0; 1], and � L , � R can be used for a
symbolic description of the dynamics ofT . To this end, recall that the set � of
all sequences consisting of the two symbolsL and R, that is � = f L; R gN, is a
compact metric space when endowed with the metric

d(!; e! ) :=
�

2� min f n : ! n 6= e! n g if ! 6= e! ;
0 if ! = e! :

Moreover, the (left) shift map � on �, given by � (! ) = ( ! n +1 ) is a continuous
map. With these ingredients, de�ne a map h : � ! [0; 1] as

h(! ) := lim n !1 � ! 1 � � ! 2 � : : : � � ! n

�
1
2

�
:

It is easy to see that h is well de�ned, continuous and onto, and h � � (! ) =
T � h(! ) for all ! 2 �. In particular, therefore, T n � 1 � h(! ) 2 I ! n holds for all



82 A. Berger and T.P. Hill

! 2 � and n 2 N, where I L = � L ([0; 1]) = [0 ; 1
2 ] and I R = � R ([0; 1]) = [ 1

2 ; 1].
Thus it is reasonable to think of ! as the \symbolic itinerary" of h(! ) under
the iteration of T . (Note that h is not one-to-one, however #h� 1(f xg) = 1
unlessx is a dyadic rational, i.e. unless 2l x is an integer for somel 2 N0.) By
means of this symbolic coding, some dynamical properties ofT are very easy
to understand. For example, the set ofx0 for which OT (x0) is periodic is dense
in [0; 1]. To see this simply observe thath(! ) is periodic (under T) whenever
! 2 � is periodic (under � ), and periodic sequences are dense in �. On the
other hand, T is topologically transitive. Informally, this means that there is
no non-trivial way of breaking the dynamics of T on [0; 1] into non-interacting
pieces. In the present example, this property (de�ned and studied thoroughly
e.g. in [KH ]) simply means that OT (x0) is dense for at least one, but in fact
many x0 2 [0; 1]. Overall, therefore, the map T : [0; 1] ! [0; 1] is chaotic in
the sense of [Ber1, Def.2.21]. In particular, it exhibits the hallmark property of
chaos, namelysensitive dependence on initial conditions. The latter means that,
for every 0 < x < 1 and every" > 0, a point x can be found such that

jx � xj < " yet lim supn !1 jT n (x) � T n (x)j �
1
2

:

This follows e.g. from [Ber1, Thm.2.18] but can also be seen directly by noticing
that T n is piecewise linear with slope 2n .

While the above analysis clearly reveals the complexity of the dynamicsof
T on [0; 1], the reader may still wonder how all this is related to BL. Is OT (x0)
Benford for many, or even mostx0 2 [0; 1]? The chaotic nature of T suggests
a negative answer. For a more de�nitive understanding, note that, for every
0 < a < 1,

T� � 0;1
�
[0; a]

�
= � 0;1

� �
0; � L (a)

�
[

�
� R (a); 1

� �
= a = � 0;1

�
[0; a]

�
;

showing that T� � 0;1 = � 0;1, i.e. T preserves� 0;1. In fact, T is known to even be
ergodic with respect to � 0;1. As a consequence of the Birkho� Ergodic Theorem,
OT (x0) is distributed according to � 0;1 for Lebesgue almost everyx0 2 [0; 1].
By Example 3.10(i), for every such x0 the sequence

�
S(T n (x0))

�
is uniformly

distributed on [1; 10). Thus for a.e.x0 2 [0; 1], the orbit OT (x0) is not Benford.
It remains to investigate whether OT (x0) is Benford for any x0 2 [0; 1] at

all. To this end �rst note that while OT (x0) is guaranteed to be uniformly
distributed for a.e. x0 2 [0; 1], there are plenty of exceptions. In fact, given any
sequence! 2 � whose asymptotic relative frequencies

lim N !1
# f 1 � n � N : ! n = Lg

N
and limN !1

# f 1 � n � N : ! n = Rg
N

do not both equal 1
2 , or perhaps do not even exist at all, the orbit ofh(! ) is not

uniformly distributed. For instance, if

! =
�
L; L; : : : ; L
| {z }

N times

; R; R; R; : : :
�
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for some N 2 N0, then h(! ) = 21� N

3 , and T n
�
h(! )

�
= 2

3 for all n � N . In
view of this abundance of exceptional points, one may hope to identify some
x0 2 [0; 1] for which OT (x0) is Benford. Using the symbolic encoding of the
dynamics, this can indeed be done as follows: Observe thatT(x) = 2 x whenever
x � 1

2 , i.e. wheneverx 2 I L , in which case

logS
�
T(x)

�
= hlog 2 + log S(x)i :

Thus if T n (x0) 2 I L held for all n, then OT (x0) would be Benford. This is
impossible sinceT n (x0) 2 I L for all n implies that x0 = 0, and x0 is a �xed
point for T . However, since being Benford is an asymptotic property ofOT (x0),
it is enough for T n (x0) 2 I L to hold for most n and along arbitrarily long
sequences. Concretely, let

! � =
�
L; L; : : : ; L
| {z }

N 1 times

; R; L; L; : : : ; L
| {z }

N 2 times

; R; L; L; : : : ; L
| {z }

N 3 times

; R; L; : : :
�

; (5.2)

where (Nn ) is any sequence inN with Nn ! 1 , and set x � = h(! � ). According
to (5.2), the orbit OT (x � ) stays in I L for the �rst N1 steps, then makes a one-
step excursion toI R , then remains in I L for N2 steps, etc. It follows from [Ber4,
Lem.2.7(i)], but can also be veri�ed directly, that OT (x � ) is Benford. For a
concrete example, choose e.g.Nn � 2n, then

! � =
�
L; L; R; L; L; L; L; R; L; L; L; L; L; L; R; L; : : :

�

as well as

x � = h(! � ) =
X 1

n =1
21+2 n � n 2

(� 1)n +1 = 0 :2422: : : ;

and OT (x � ) is Benford. Notice �nally that ( 5.2) provides uncountably many
di�erent points x � , and hence the set

f x0 2 [0; 1] : OT (x0) is Benfordg

is uncountable; as initial segments of! � do not matter, this set is also dense in
[0; 1]. To put this fact into perspective, note that with the points x � constructed
above, OT (x � ) is actually also Benford baseb wheneverb is not a power of 2,
i.e. wheneverb 62 f2n : n 2 Ng. On the other hand, OT (x0) is not Benford base
2, 4, 8 etc. forany x0 2 R, see [Ber4, Ex.2.11].

Example 5.26. The family of quadratic polynomials Q� : x 7! �x (1 � x), with
� 2 R, often referred to as thelogistic family, plays a pivotal role in dynamical
systems theory, see e.g. [Ber1, KH]. Arguably the most prominent member of
this family is the map Q4 which has many features in common with the tent
map T from the previous example. Unlike the latter, however,Q4 is smooth,
and it is this smoothness which makes the dynamics ofQ4, or generally the
logistic family, a much richer yet also more subtle topic.
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To understand the dynamics of Q4 with regards to BL, note �rst that near
x = 0,

Q4(x � 1)� 1 = �
x2

4(1 � x)
= �

x2

4
+ O(x3) :

Hence Theorem5.12 applies, showing that OQ4 (x0) is Benford for almost ev-
ery, but not every x0 2 Rn[0; 1]. As in Example 5.25, it remains to study the
dynamics within the interval [0 ; 1]. A similar symbolic coding can be applied to
demonstrate that on this interval Q4 is, in any respect, as chaotic as the tent
map T. This is somewhat hard to do directly, but it becomes very simple upon
introducing the homeomorphism H : [0; 1] ! [0; 1] with H (x) = sin 2( 1

2 �x ) and
noting that, for all x 2 [0; 1],

Q4 � H (x) = sin 2(�x ) = H � T(x) : (5.3)

Thus Q4 and T di�er only by a change of coordinates, and all topological prop-
erties of T (such as e.g. the existence of a dense set of periodic orbits, and
topological transitivity) carry over to Q4. Together with T� � 0;1 = � 0;1 it follows
from (5.3) that

Q4� (H � � 0;1) = ( Q4 � H )� � 0;1 = ( H � T) � � 0;1 = H � (T� � 0;1) = H � � 0;1 ;

henceQ4 preserves the probability measureH � � 0;1, and is in fact ergodic with
respect to it. Note that

d
dx

H � � 0;1
�
[0; x]

�
=

d
dx

�
� 0;1

�
[0;

2
�

arcsin
p

x]
� �

=
1

�
p

x(1 � x)
; 0 < x < 1;

showing that H � � 0;1 is simply the arcsin- or Beta( 1
2 ; 1

2 )-distribution, and there-
fore H � � 0;1(B ) = 0 if and only if � 0;1(B ) = 0. Again, the Birkho� Ergodic
Theorem implies that OQ4 (x0) is, for almost every x0 2 [0; 1], distributed ac-
cording to H � � 0;1, and consequently not Benford, see Example3.10(iii). As in
Example 5.25, one may wonder whetherOQ4 (x0) is Benford for any x0 2 [0; 1]
at all. Essentially the same argument shows that the answer is, again, positive.
With ! � as in (5.2), the orbit of H � h(! � ) spends most of its time arbitrarily
close to the (unstable) �xed point at x = 0, and

logS
�
Q4(x)

�
= hlog 4 + log S(x) + log(1 � x)i � h log 4 + log S(x)i

wheneverx > 0 is very small. A careful analysis in the spirit of Lemma4.3(i)
then shows that OQ4

�
H � h(! � )

�
is indeed Benford. As in the previous example,

it follows that

f x0 2 [0; 1] : OQ4 (x0) is Benfordg

is uncountable and dense in [0; 1].
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5.2. Multi-dimensional discrete-time processes

The purpose of this section is to extend the basic results of the previous section
to multi-dimensional systems, notably to linear, as well as some non-linear re-
currence relations. Recall from Example4.12 that the Fibonacci sequence (Fn )
is Benford. Hence the linear recurrence relationxn +1 = xn + xn � 1 generates a
Benford sequence when started fromx0 = x1 = 1. As will be seen shortly, many,
but not all linear recurrence relations generate Benford sequences.

Under a BL perspective, an obvious di�culty when dealing with multi-di-
mensional systems is the potential for more or less cyclic behavior,either of the
orbits themselves or of their signi�cands.

Example 5.27. (i) Let the sequence (xn ) be de�ned recursively as

xn +1 = xn � xn � 1 ; n = 1 ; 2; : : : ; (5.4)

with given x0, x1 2 R. By using the matrix
�

0 1
� 1 1

�
associated with (5.4), it is

straightforward to derive an explicit representation for (xn ),

xn = x0 cos
�

1
3 �n

�
+

2x1 � x0p
3

sin
�

1
3 �n

�
; n = 0 ; 1; : : : :

From this it is clear that xn +6 = xn for all n, i.e., (xn ) is 6-periodic. This oscilla-
tory behavior of (xn ) corresponds to the fact that the roots of the characteristic
equation � 2 = � � 1 associated with (5.4) are � = e� {�= 3 and hence lie on the
unit circle. For no choice of x0, x1, therefore, is (xn ) Benford.

(ii) Consider the linear 3-step recursion

xn +1 = 2 xn + 10xn � 1 � 20xn � 2 ; n = 2 ; 3; : : : :

Again it is easy to con�rm that, for any x0, x1, x2 2 R, the value of xn is given
explicitly by

xn = c12n + c210n= 2 + c3(� 1)n 10n= 2 ;

where

c1 =
10x0 � x2

6
; c2;3 =

x2 � 4x0

12
�

x2 + 3 x1 � 10x0

6
p

10
:

Clearly, lim n !1 jxn j = + 1 unless x0 = x1 = x2 = 0, so unlike in (i) the
sequence (xn ) is not bounded or oscillatory. However, if jc2j 6= jc3j then

log jxn j =
n
2

+ log
�
�
�c110� n ( 1

2 � log 2) + c2 + ( � 1)n c3

�
�
� �

n
2

+ log jc2 + ( � 1)n c3j ;

showing that
�
S(xn )

�
is asymptotically 2-periodic and hence (xn ) is not Benford.

Similarly, if jc2 j = jc3 j 6= 0 then
�
S(xn )

�
is convergent along even (ifc2 = c3) or

odd (if c2 = � c3) indices n, and again (xn ) is not Benford. Only if c2 = c3 = 0
yet c1 6= 0, or equivalently if 1

4 x2 = 1
2 x1 = x0 6= 0 is ( xn ) Benford. Obviously,
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the oscillatory behavior of
�
S(xn )

�
in this example is due to the characteristic

equation � 3 = 2 � 2 + 10� � 20 having two roots with the same modulus but
opposite signs, namely� = �

p
10 and � =

p
10.

(iii) Let  = cos(� log 2) � 0:5852 and consider the sequence (xn ) de�ned
recursively as

xn +1 = 4 x n � 4xn � 1 ; n = 1 ; 2 : : : ; (5.5)

with given x0, x1 2 R. As before, an explicit formula for xn is easily derived as

xn = 2 n x0 cos(�n log 2) + 2n � 1 x1 � 2x 0p
1 �  2

sin(�n log 2) :

Although somewhat oscillatory, the sequence (xn ) is clearly unbounded. As
will be shown now, however, it is not Benford. While the argument is es-
sentially the same for any (x0; x1) 6= (0 ; 0), for convenience letx0 = 0 and
x1 = 2 sin( � log 2) � 1:622, so that

log jxn j = log 2n j sin(�n log 2)j = n log 2 + log j sin(�n log 2)j ; n = 1 ; 2; : : : :

With the (measurable) map T : [0; 1) ! [0; 1) de�ned as

T(s) = hs + log j sin(�s )ji ; 0 � s < 1;

therefore simply hlog jxn ji = T(hn log 2i ). Recall that ( n log 2) is u.d. mod 1,
and hence (hlog jxn ji ) is distributed according to the probability measure T� � 0;1.
Consequently, (xn ) is Benford if and only if T� � 0;1 equals� 0;1. The latter, how-
ever, is not the case. While this is clear intuitively, an easy way to see this
formally is to observe that T is piecewise smooth and has a unique local max-
imum at some 0 < s 0 < 1. (Concretely, s0 = 1 � 1

� arctan �
ln 10 � 0:7013 and

T(s0) � 0:6080.) Thus if T� � 0;1 = � 0;1, then for all su�ciently small " > 0,

T(s0) � T (s0 � " )
"

=
� 0;1

��
T (s0 � " ); T (s0)

��

"
=

T� � 0;1
��

T (s0 � " ); T (s0)
��

"

�
� 0;1

�
[s0 � "; s0)

�

"
= 1 ;

which is impossible sinceT 0(s0) = 0. Hence (xn ) is not Benford. The reason
for this can be seen in the fact that, while logj� j = log 2 is irrational for the
characteristic roots � = 2 e� {� log 2 associated with (5.5), there obviously is a
rational dependence between the two real numbers logj� j and 1

2� arg� , namely
log j� j � 2( 1

2� arg� ) = 0.

The above recurrence relations are linear and have constant coe�cients.
Hence they can be rewritten and analyzed using matrix-vector notation. For
instance, in Example 5.27(i)

�
xn

xn +1

�
=

�
0 1

� 1 1

� �
xn � 1

xn

�
;
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so that, with A =
�

0 1
� 1 1

�
2 R2� 2, the sequence (xn ) is simply given by

xn =
�

1 0
�

An
�

x0

x1

�
; n = 0 ; 1; : : : :

It is natural, therefore, to study the Benford property of more general sequences
(x> An y) for any A 2 Rd� d and x; y 2 Rd. Linear recurrence relations like
the ones in Example5.27 are then merely special cases. As suggested by that
example, in order to guarantee the Benford property for (x> An y), conditions
have to be imposed onA so as to rule out cyclic behavior of orbits or their
signi�cands. To prepare for these conditions, denote the real part, imaginary
part, complex conjugate, and modulus (absolute value) ofz 2 C by <z, =z, z,
and jzj, respectively. For z 6= 0, de�ne arg z as the unique number in [� �; � )
that satis�es z = jzje{ arg z ; for notational convenience, let arg 0 := 0. Recall
that real or complex numbers z1; z2; : : : ; zn are rationally independent (or Q-
independent) if

P n
j =1 qj zj = 0 with q1; q2; : : : ; qn 2 Q implies that qj = 0 for

all j = 1 ; 2; : : : ; n. A set Z � C is rationally independent if every of its �nite
subsets is, andrationally dependent otherwise.

Let Z � C be any set such that all elements ofZ have the same modulus
� , i.e., Z is contained in the periphery of a circle with radius � centered at the
origin of the complex plain. Call the set Z resonant if either #( Z \ R) = 2
or the numbers 1; log � and the elements of 1

2� argZ are rationally dependent,
where 1

2� argZ =
�

1
2� argz : z 2 Z

	
nf� 1

2 ; 0g.
Given A 2 Rd� d, recall that the spectrum � (A) � C of A is simply the set of

all eigenvalues ofA. Denote by � (A)+ the \upper half" of the spectrum, i.e., let
� (A)+ = f � 2 � (A) : = � � 0g. Usage of� (A)+ refers to the fact that non-real
eigenvalues of real matrices always occur in conjugate pairs, and hence� (A)+

only contains one of the conjugates.
With the above preparations, what will shortly turn out to be an app ropriate

condition on A reads as follows.

De�nition 5.28. A matrix A 2 Rd� d is Benford regular (base 10) if � (A)+

contains no resonant set.

Note that in the simplest case, i.e. ford = 1, the matrix A = [ a] is Benford
regular if and only if log jaj is irrational. Hence Benford regularity may be con-
sidered a generalization of this irrationality property. Also note that A is regular
(invertible) whenever it is Benford regular.

Example 5.29. None of the matrices associated with the recurrence rela-
tions in Example 5.27 is Benford regular. Indeed, in (i), A =

�
0 1

� 1 1

�
, hence

� (A)+ = f e{�= 3g, and clearly logje{�= 3j = 0 is rational. Similarly, in (ii),

A =
2

4
0 1 0
0 0 1

� 10 10 2

3

5 , and � (A)+ = f�
p

10; 2;
p

10g contains the resonant set

f�
p

10;
p

10g. Finally, for (iii), A =
�

0 1
� 4 4

�
, and � (A)+ = f 2e{� log 2 g is res-

onant.
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Example 5.30. Let A =
�

1 � 1
1 1

�
2 R2� 2, with characteristic polynomial

pA (� ) = � 2 � 2� +2, and hence� (A)+ = f
p

2e{�= 4g. As 1; log
p

2 and 1
2� � �

4 = 1
8

are rationally dependent, the matrix A is not Benford regular.

Example 5.31. Consider A =
�

0 1
1 1

�
2 R2� 2. The characteristic polynomial

of A is pA (� ) = � 2 � � � 1, and so, with ' = 1
2 (1 +

p
5), the eigenvalues ofA

are ' and � ' � 1. SincepA is irreducible and has two roots of di�erent absolute
value, it follows that log ' is irrational (in fact, even transcendental). Thus A is
Benford regular.

With the one-dimensional result (Lemma 5.3), as well as Example5.27 and
De�nition 5.28 in mind, it seems realistic to hope that iterating (i.e. taking
powers of) any matrix A 2 Rd� d produces many Benford sequences, provided
that A is Benford regular. This is indeed the case. To concisely formulate the
pertinent result, call a sequence (zn ) of complex numbersterminating if zn = 0
for all su�ciently large n.

Theorem 5.32 ([Ber2]). Assume that A 2 Rd� d is Benford regular. Then, for
every x; y 2 Rd, the sequence(x> An y) is either Benford or terminating. Also,
(kAn xk) is Benford for every x 6= 0 .

The proof of Theorem 5.32 will make use of the following variant of [Ber2,
Lem.2.9].

Proposition 5.33. Assume that the real numbers1; � 0; � 1; : : : ; � m are Q-inde-
pendent. Let (zn ) be a convergent sequence inC, and at least one of the numbers
c1; c2; : : : ; cm 2 C non-zero. Then (xn ) given by

xn = n� 0 + log
�
�<

�
c1e2�{n� 1 + : : : + cm e2�{n� m + zn

� �
�

is u.d. mod 1.

Proof of Theorem 5.32. Given A 2 Rd� d, let � (A)+ = f � 1; � 2; : : : ; � sg, where
s � d and, without loss of generality, j� 1 j � j � 2 j � : : : � j � s j. Fix x; y 2 Rd and
recall that there exist (possibly non-real) polynomials p1; p2; : : : ; ps of degrees
at most d � 1 such that

x> An y = <
�
p1(n)� n

1 + : : : + ps(n)� n
s

�
; n = 0 ; 1; : : : : (5.6)

(This follows e.g. from the Jordan Normal Form Theorem.) If (x> An y) is not
terminating, then it can be assumed that p1 6= 0. (Otherwise relabel the pj and
� j , and reduces accordingly.) Now distinguish two cases.

Case 1:j� 1 j > j� 2 j

In this case, � 1 is a dominant eigenvalue. Denote byk the degree ofp1 and let
c := lim n !1 n� k p1(n). Note that c is a non-zero number that is real whenever
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� 1 is real. From

jx> An yj = j� 1jn nk

�
�
�
�<

�
n� k p1(n)

�
� 1

j� 1j

� n

+ n� k p2(n)
�

� 2

j� 1 j

� n

+ : : :

+ n� k ps(n)
�

� s

j� 1 j

� n � �
�
�
�

= j� 1jn nk j< (ce{n arg � 1 + zn )j ;

with zn = ( n� k p1(n) � c)
�

� 1
j � 1 j

� n
+

P s
j =2 n� k pj (n)

�
� j

j � 1 j

� n
! 0, it follows that

log jx> An yj = n log j� 1j + k logn + log j< (ce2�{n arg � 1
2 � + zn )j :

In view of Proposition 4.8(iii), no generality is lost by assuming that k = 0. If
� 1 is real then, by Lemma 4.3(i) and the irrationality of log j� 1 j, the sequence
(log jx> An yj) is u.d. mod 1. If � 1 is not real, then apply Proposition 5.33 with
m = 1, � 0 = log j� 1 j, and � 1 = 1

2� arg� 1. In either case, (x> An y) is Benford.

Case 2:j� 1j = : : : = j� l j > j� l +1 j for somel � s.

Here severaldi�erent eigenvalues of the same magnitude occur. Letk be the
maximal degree ofp1; p2; : : : pl and cj := lim n !1 n� k pj (n) for j = 1 ; 2; : : : ; l .
Note that if x> An y 6= 0 in�nitely often then at least one of the numbers
c1; c2; : : : ; cl is non-zero. As before,

jx> An yj = j� 1jn nk

�
�
�
�<

�
n� k p1(n)

�
� 1

j� 1j

� n

+ n� k p2(n)
�

� 2

j� 1 j

� n

+ : : :

+ n� k ps(n)
�

� s

j� 1 j

� n � �
�
�
�

= j� 1jn nk j< (c1e{n arg � 1 + : : : + cl e{n arg � l + zn )j ;

where

zn =
X l

j =1
(n� k pj (n) � cj )

�
� j

j� 1 j

� n

+
X s

j = l +1
n� k pj (n)

�
� j

j� 1j

� n

! 0 :

Propositions 4.8(iii) and 5.33with m = l and � 0 = log j� 1 j, � 1 = 1
2� arg � 1, : : : ,

� l = 1
2� arg � l imply that

log jx> An yj = n log j� 1j + k logn + log j< (c1e{n arg � 1 + : : : + cl e{n arg � l + zn )j

is u.d. mod 1, hence (x> An y) is Benford.
The assertion concerning (kAn xk) is proved in a completely analogous man-

ner.

Example 5.34. According to Example 5.31, the matrix
�

0 1
1 1

�
is Benford

regular. By Theorem 5.32, every solution of the di�erence equation xn +1 =
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xn + xn � 1 is Benford, except for the trivial solution xn � 0 resulting from x0 =
x1 = 0. In particular, therefore, the sequences of Fibonacci and Lucas numbers,
(Fn ) = (1 ; 1; 2; 3; 5; : : :) and (L n ) = ( � 1; 2; 1; 3; 4; : : :), generated respectively
from the initial values

�
x0 x1

�
=

�
1 1

�
and

�
x0 x1

�
=

�
� 1 2

�
, are

Benford. For the former sequence, this has already been seen in Example 4.12.
Note that ( F 2

n ), for instance, is Benford as well by Corollary4.7(i), see Fig 24.

Example 5.35. Recall from Example 5.30 that A =
�

1 � 1
1 1

�
is not Benford

regular. Hence Theorem5.32 does not apply, and the sequence (x> An y) may,
for somex; y 2 R2, be neither Benford nor terminating. Indeed, pick for example
x = y =

�
1 0

� >
and note that

x> An y =
�

1 0
�

2n= 2

"
cos(14 �n ) � sin( 1

4 �n )

sin( 1
4 �n ) cos(1

4 �n )

# �
1
0

�
= 2 n= 2 cos

�
1
4 �n

�
:

Hence (x> An y) is clearly not Benford as x> An y = 0 whenever n = 2 + 4 l for
somel 2 N0. It will be seen later (in Theorem 5.37) that in the case of a 2� 2-
matrix A, the Benford regularity of A is actually necessary forevery sequence
of the form (x> An y) to be either Benford or terminating. Note, however, that
this does of course not rule out the possibility that some sequencesderived from
iterating A may be Benford nevertheless. For a concrete example, �x anyx 6= 0
and, for eachn 2 N, denote by En the area of the triangle with vertices at An x,
An � 1x, and the origin. Then

En =
1
2

�
� det(An x; A n � 1x)

�
� = 2 n � 2kxk2 ; n = 1 ; 2; : : : ;

so (En ) is Benford, seeFig 24.

Remark. According to Theorem 5.32, Benford regularity of a matrix A is a
simple condition guaranteeing the widespread generation of Benford sequences of
the form (x> An y). Most d� d-matrices are Benford regular, under a topological
as well as a measure-theoretic perspective. To put this more formally, let

Bd := f A 2 Rd� d : A is Benford regularg :

While the complement of Bd is dense inRd� d, it is a topologically small set:
Rd� dnBd is of �rst category , i.e. a countable union of nowhere dense sets. A
(topologically) typical (\generic") d � d-matrix therefore belongs to Bd, i.e. is
Benford regular. Similarly, if A is an Rd� d-valued random variable, that is, a
random matrix, whose distribution is a.c. with respect to the d2-dimensional
Lebesgue measure onRd� d, then P(A 2 Bd) = 1, i.e., A is Benford regular
with probability one. Similar statements hold for instance within the fa mily of
stochastic matrices, see [BHKR ]. |

While Benford regularity of A is a property su�cient for all sequences (x>An y)
to be either Benford or terminating, the following example shows that this
property is not in general necessary.
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1

1

2

3

4
4

5

8

8

8

16

16

A =
�

1 � 1
1 1

�

A9

�
1
0

�

A8

�
1
0

�

F 2
6

F 2
5F 2

4

F 2
3

E9

E8

E7

E6

Fig 24 . Two Benford sequences derived from linear 2-dimensional systems, see Examples 5.34
and 5.35. Note that the matrix A associated with (En ) is not Benford regular.

Example 5.36. Consider the 4� 4-matrix

A = 10
p

2

2

6
6
4

cos(2�
p

3) � sin(2�
p

3) 0 0
sin(2�

p
3) cos(2�

p
3) 0 0

0 0 cos(4�
p

3) � sin(4�
p

3)
0 0 sin(4�

p
3) cos(4�

p
3)

3

7
7
5 ;

for which � (A)+ = f 10
p

2e� 2�{
p

3; 10
p

2e4�{
p

3g =: f � 1; � 2g. Since 2 arg� 1 +
arg� 2 = 0, the matrix A is not Benford regular. It will now be shown that
nevertheless for anyx; y 2 R4 the sequence (x> An y) is either Benford or termi-
nating. Indeed, with x> =

�
x1 x2 x3 x4

�
and y =

�
y1 y2 y3 y4

� >
, a

straightforward calculation con�rms that

x>An y = 10n
p

2<
�

(x1+ {x2)(y1 � {y2)e� 2�{n
p

3+( x3+ {x4)(y3 � {y4)e� 4�{n
p

3
�

:

Unless (x2
1 + x2

2)(y2
1 + y2

2) + ( x2
3 + x2

4)(y2
3 + y2

4) = 0, therefore, (x> An y) is not
terminating, and

log jx> An yj = n
p

2 + f (n
p

3) ;

with the function f : [0; 1) ! R given by

f (s) = log
�
�<

�
(x1 + {x2)(y1 � {y2)e� 2�{s + ( x3 + {x4)(y3 � {y4)e� 4�{s � �

� :
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Note that f has at most �nitely many discontinuities. Moreover, 1;
p

2;
p

3 are
Q-independent, and hence [Ber2, Cor.2.6] implies that (x> An y) is Benford.

The dimensiond = 4 in Example 5.36 is smallest possible. Indeed, as the fol-
lowing result shows, Benford regularity is (not only su�cient but also ) necessary
in Theorem 5.32 wheneverd < 4.

Theorem 5.37. Assume d < 4, and let A 2 Rd� d be invertible. Then the
following statements are equivalent:

(i) A is Benford regular.

(ii) For every x; y 2 Rd the sequence(x> An y) is either Benford or terminat-
ing.

Proof. As demonstrated by Theorem5.32, assumption (i) implies (ii) even with-
out any restrictions on d.

Conversely, assume that (ii) holds. Notice that wheneverA has a real eigen-
value � 6= 0, with a corresponding eigenvectore� 6= 0, then choosingx = y = e�

results in x> An y = � n ke� k2. Hence logj� j must be irrational. For d = 1, this
shows that A is Benford regular.

Next let d = 2. In this case, two di�erent eigenvalues of the same modulus can
occur either in the form � � with � > 0, i.e. as non-zero eigenvalues of opposite
sign, or in the form � = j� je� 2�{� with j� j > 0 and 0< � < 1

2 , i.e. as a pair of
conjugate non-real eigenvalues. In the former case, lete� and e+ be normalized
eigenvectors corresponding to� � and � , respectively. Note that 1 + e>

+ e� > 0,
by the Cauchy{Schwarz inequality. Then

(e+ + e� )> An (e+ + e� ) =
�

2� n (1 + e>
+ e� ) if n is even;

0 if n is odd;

showing that (x> An y) is not Benford for x = y = e+ + e� . Assuming (ii),
therefore, implies that A does not have real eigenvalues of opposite sign. On the
other hand, if � (A)+ = fj � je2�{� g then there exists a regular matrix P 2 R2� 2

such that

P � 1AP = j� j
�

cos(2�� ) � sin(2�� )
sin(2�� ) cos(2�� )

�
:

Speci�cally choosing x> =
�

0 1
�

P � 1 and y = P
�

1 0
� >

yields

x> An y = j� jn sin(2�n� ) ; n = 0 ; 1; : : : : (5.7)

If log j� j is rational, say logj� j = p
q , then the sequence

hqlog jx> An yji = hqlog j sin(2�n� )ji

is either periodic (if � is rational) or else distributed according to T� � 0;1, with
T : [0; 1) ! [0; 1) given by T(s) = hqlog j sin(2�s )ji . As in Example 5.27(iii), it
can be shown thatT� � 0;1 6= � 0;1. Thus, as before, rationality of logj� j is ruled
out by assumption (ii). If � is rational then x> An y = 0 holds for in�nitely many
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but not all n, and hence (x> An y) is neither Benford nor terminating. Again,
this possibility is ruled out by assumption (ii). To conclude the case d = 2,
assume that logj� j and � are both irrational, yet 1, log j� j and � are rationally
dependent, i.e., there exist integersk1, k2, k3 with k2k3 6= 0 such that

k1 + k2 log j� j + k3� = 0 :

Without loss of generality, assumek3 > 0. For every j 2 f 1; 2; : : : ; k3g and
n 2 N0 therefore

log jx>Ank 3 + j yj = ( nk3+ j ) log j� j+log

�
�
�
�sin

�
2�j

k1

k3
+ 2 �

�
j

k2

k3
+ nk2

�
log j� j

� �
�
�
� ;

so (logjx> Ank 3 + j yj) is distributed according to Tj � � 0;1, with Tj : [0; 1) ! [0; 1)
given by

Tj (s) =
�

k3s + j log j� j + log

�
�
�
�sin

�
2�j

k1

k3
+ 2 �

k2

k3
j log j� j + 2 �k 2s

� �
�
�
�

�
;

and (hlog jx> An yji ) is distributed according to 1
k3

P k3
j =1 Tj � � 0;1. Again it can be

shown that the latter probability measure on
�
[0; 1); B[0; 1)

�
doesnot equal � 0;1.

Overall, therefore, for d = 2 and � (A)+ = fj � je2�{� g, assumption (ii) implies
that 1, log j� j, and 1

2� arg � are rationally independent. In other words, A is
Benford regular.

Finally, consider the cased = 3. The only eigenvalue con�guration not cov-
ered by the preceding arguments is that of three di�erent eigenvalues with the
same modulus, i.e. withj� j > 0 and 0< � < 1

2 either � (A)+ = fj � j; j� je2�{� g or
� (A)+ = f�j � j; j� je2�{� g. In both cases, there exists a regular matrixP 2 R3� 3

such that

P � 1AP = j� j

2

4
� 1 0 0

0 cos(2�� ) � sin(2�� )
0 sin(2�� ) cos(2�� )

3

5 ;

and choosingx> =
�

0 0 1
�

P � 1 and y = P
�

0 1 0
� >

again yields (5.7).
As before, assumption (i) implies that 1, logj� j, and � are rationally indepen-
dent.

Finally, it is worth noting that even if A is not Benford regular, many or even
most sequences of the form (x> An y) may nevertheless be Benford.

Example 5.38. Recall from Example 5.30 that A =
�

1 � 1
1 1

�
is not Benford

regular because� (A)+ = f
p

2e{�= 4g is resonant. However, a short calculation
with x> =

�
x1 x2

�
, y =

�
y1 y2

� >
con�rms that

x> An y = 2 n= 2kxk kyk cos
�

1
4 �n +  

�
; n = 0 ; 1; : : : ;

here  2 [� �; � ) is the angle of a counter-clockwise rotation movingx=kxk
into y=kyk. (Note that  is unique unlesskxk kyk = 0 in which case x> An y � 0
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anyway.) By virtue of Proposition 4.8(ii), if  62[� �; � )\ 1
4 � Z then (log jx> An yj)

is u.d. mod 1. Thus, if  is not an integer multiple of 1
4 � , or equivalently if

�
(x2

1 � x2
2)y1y2 � x1x2(y2

1 � y2
2)

��
(x2

1 � x2
2)(y2

1 � y2
2) + 4 x1x2y1y2

�
6= 0 ;

then (x> An y) is Benford.

The present section closes with two examples of non-linear systems. The sole
purpose of these examples is to hint at possible extensions of the results pre-
sented earlier; for more details the interested reader is referredto the references
provided.

Example 5.39. Consider the non-linear mapT : R2 ! R2 given by

T :
�

x1

x2

�
7!

�
2 0
0 2

� �
x1

x2

�
+

�
f (x1)
f (x2)

�
;

with the bounded continuous function

f (t) =
3
2

jt + 2 j � 3jt + 1 j + 3 jt � 1j �
3
2

jt � 2j =

8
>><

>>:

0 if jt j � 2 ;
3t + 6 if � 2 < t < � 1 ;
� 3t if � 1 � t < 1 ;
3t � 6 if 1 � t < 2 :

Su�ciently far away from the x1- and x2-axes, i.e. for minfj x1j; jx2 jg su�ciently
large, the dynamics ofT is governed by the matrix

�
2 0
0 2

�
, and since the latter is

Benford regular, one may reasonably expect that
�
x> T n (y)

�
should be Benford.

It can be shown that this is indeed the case. More precisely, by means of a
multi-dimensional shadowing argument, the following statement canbe proved,
see [Ber2, Thm.4.1]: Let T : Rd ! Rd be of the form T(x) = Ax + f (x)
with A 2 Rd� d and a bounded continuousf : Rd ! Rd. If A is Benford
regular and has no eigenvalues inside the unit disc, that is,j� j > 1 holds for
every eigenvalue� of A, then the sequence

�
x> T n (y)

�
is Benford whenever it is

unbounded. Notice that the provision concerning boundedness is already needed
in the present simple example: For instance, ifj� j � 3

2 and x> =
�

� 0
�

then�
T n (x)

�
is eventually 2-periodic and hence

�
x> T n (x)

�
is not Benford.

Example 5.40. Consider the non-linear mapT : R2 ! R2 de�ned as

T :
�

x1

x2

�
7!

"
3x3

1x2
2 + 4 x1

5x2
1x4

2 � 2x2
2 + 1

#

:

Unlike in the previous example, the map T is now genuinely non-linear and
cannot be considered a perturbation of a linear map. Rather,T may be thought
of as a 2-dimensional analogue of the polynomial mapx 7! 1 + x2. Clearly,
if jx1 j or jx2 j is small, then the behavior of

�
T n (x)

�
may be complicated. For

instance, on the x2-axis, i.e. for x1 = 0, the map T reduces tox2 7! 1 � 2x2
2

which, up to a change of coordinates, is nothing else but the chaoticmap Q4
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studied in Example 5.26. If, however, jx1 j and jx2 j are su�ciently large then
a two-dimensional version of Theorem5.12 asserts that, for (Lebesgue) almost
every x, each component ofOT (x) is Benford, see [BS, Thm.16]; at the same
time, there is also an abundance of exceptional points [BS, Cor.17].

5.3. Di�erential equations

By presenting a few results on, and examples of di�erential equations, i.e. de-
terministic continuous-time processes, this short section aims at convincing the
reader that the emergence of BL is not at all restricted to discrete-time dynam-
ics. Rather, solutions of ordinary or partial di�erential equations often turn out
to be Benford as well. Recall that a (Borel measurable) functionf : [0; + 1 ) ! R
is Benford if and only if log jf j is u.d. mod 1.

Consider the initial value problem (IVP )

_x = F (x) ; x(0) = x0 ; (5.8)

where F : R ! R is continuously di�erentiable with F (0) = 0, and x0 2 R. In
the simplest case,F (x) � �x with some � 2 R. In this case, the unique solution
of (5.8) is x(t) = x0e�t . Unless �x 0 = 0, therefore, every solution of (5.8) is
Benford, by Example 4.5(i). As in the discrete-time setting, this feature persists
for arbitrary C2-functions F with F 0(0) < 0. The direct analog of Theorem5.8 is

Theorem 5.41 ([BBH]). Let F : R ! R be C2 with F (0) = 0 . Assume that
F 0(0) < 0. Then, for every x0 6= 0 su�ciently close to 0, the unique solution of
(5.8) is Benford.

Proof. Pick � > 0 so small that xF (x) < 0 for all 0 < jxj � � . As F is C2,
the IVP ( 5.8) has a unique local solution wheneverjx0 j � � , see [Wa]. Since
the interval [ � �; � ] is forward invariant, this solution exists for all t � 0. Fix
any x0 with 0 < jx0 j � � and denote the unique solution of (5.8) as x = x(t).
Clearly, lim t ! + 1 x(t) = 0. With y : [0; + 1 ) ! R de�ned as y = x � 1 therefore
y(0) = x � 1

0 =: y0 and limt ! + 1 jy(t)j = + 1 . Let � := � F 0(0) > 0 and note that
there exists a continuous functiong : R ! R such that F (x) = � �x + x2g(x).
From

_y = �
_x

x2 = �y � g(y� 1) ;

it follows via the variation of constants formula that, for all t � 0,

y(t) = e�t y0 �
Z t

0
e� ( t � � )g

�
y(� )� 1�

d� :

As � > 0 and g is continuous, the number

y0 := y0 �
Z + 1

0
e� �� g

�
y(� )� 1�

d�
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is well de�ned. (Note that y0 is simply the continuous-time analogue of the
auxiliary point x in Lemma 5.5.) Moreover, for all t > 0,

�
�y(t) � e�t y0

�
� =

�
�
�
�

Z + 1

t
e� ( t � � )g

�
y(� )� 1�

d�

�
�
�
�

�
Z + 1

0
e� ��

�
�g

�
y(t + � )� 1� �

� d� �
kgk1

�
;

wherekgk1 = max j x j� � jg(x)j, and Lemma5.7(ii) shows that y is Benford if and
only if t 7! e�t y0 is. An application of Corollary 4.7(ii), together with Example
4.5(i) therefore completes the proof.

Example 5.42. (i) The function F (x) = � x + x4e� x 2
satis�es the assumptions

of Theorem 5.41. Thus except for the trivial x = 0, every solution of _x =
� x + x4e� x 2

is Benford.

(ii) The function F (x) = � x3 + x4e� x 2
is also smooth with xF (x) < 0 for

all x 6= 0. Hence for every x0 2 R, the IVP ( 5.8) has a unique solution with
lim t ! + 1 x(t) = 0. However, F 0(0) = 0, and as will be shown now, this prevents
x from being Benford. To see this, �x x0 6= 0 and integrate

�
_x

x3 = 1 � xe� x 2

from 0 to t to obtain the implicit representation

x2(t) =
x2

0

1 + 2tx 2
0 � 2x2

0

Z t

0
x(� )e� x ( � )2

d�
: (5.9)

Note that lim t ! + 1 x(t) = 0 implies lim t ! + 1
1
t

Rt
0 x(� )e� x ( � )2

d� = 0. Hence it
follows from (5.9) that lim t ! + 1 2tx (t)2 = 1. Consequently, t 7! j logxj=log t is
bounded ast ! + 1 , and (the continuous-time version of) Proposition 4.8(iv)
shows that x is not Benford.

Informally, the fact that F 0(0) = 0 causes the solutions of _x = F (x) to
approach the equilibrium x = 0 too slowly in order to be Benford. It is not
hard to see that this is true in general: If F is C2 and xF (x) < 0 for all x 6= 0
in a neighborhood of 0, and henceF (0) = 0, yet F 0(0) = 0 then, for all jx0 j
su�ciently small the solution of ( 5.8) is not Benford.

(iii) As the previous example showed, for solutions of (5.8) with F (0) =
F 0(0) = 0 to be Benford for all x0 6= 0 su�ciently close to 0, it is necessary
that F not be C2. (In fact, F must not even beC1+ " for any " > 0, see [BBH,
Thm.6.7].) For an example of this type, consider

F (x) = �
x

p
1 + (log x)4

; x 6= 0 :
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With F (0) := 0, the function F is C1 with F 0(0) = 0, and every non-trivial
solution of _x = F (x) is Benford. To see this, �x x0 6= 0 and let y = � logx.
Then

_y =
1

ln 10
p

1 + y4
;

from which it is straightforward to deduce that jy(t) � 3
p

3t= ln 10j ! 0 as
t ! + 1 , which in turn shows that y is u.d. mod 1, i.e.,x is Benford.

(iv) Theorem 5.41applies to the smooth function F (x) = � x + x log(1+ x2).
In this case, _x = F (x) has three equilibria, namely x = 0 and x = � 3, and
consequently the solution of (5.8) is Benford whenever 0< jx0j < 3.

To analyze the behavior of solutions outside of [� 3; 3], �x x0 > 3 and let
y := log x � 1

2 . Then

_y =
2y

ln 10
+

log(1 + 10� 1� 2y )
ln 10

;

and hence, for allt � 0,

y(t) = e2t= ln 10 y0 +
Z t

0
e2( t � � )= ln 10 log(1 + 10� 1� 2y( � ) )

ln 10
d� :

With the usual auxiliary point y0 := y0 +
R+ 1

0 e� 2� )= ln 10 log(1+10 � 1 � 2y ( � ) )
ln 10 d� ,

�
�
�y(t) � e2t= ln 10 y0

�
�
� =

�
�
�
�

Z + 1

t
e2( t � � )= ln 10 log(1 + 10� 1� 2y( � ) )

ln 10
d�

�
�
�
�

�
Z + 1

0
e� 2�= ln 10 log(1 + 10� 1� 2y( t + � ) )

ln 10
d�

� log
p

1 + 10� 1� 2y( t ) ! 0 ast ! + 1 :

By the same reasoning as in Example4.5(iii), the function y is u.d. mod 1. Thus
by Theorem 4.2, x is Benford for jx0j > 3 as well. Note that jxj goes to +1
faster than exponentially in this case, i.e. limt ! + 1 jx(t)e� �t j = + 1 for every
� > 0.

Also, note that the casejx0j > 3 could be rephrased in the setting of Theorem
5.41 as well. Indeed, with z := x � 1 one �nds

_z = z log(z2) + z � z log(1 + z2) =: eF (z) :

With eF (0) := 0, the function eF : R ! R is continuous but not C1, as
lim z! 0 eF (z)=z = �1 . Thus Theorem 5.41does not apply. The lack of smooth-
ness ofeF corresponds to the fact that solutions of the IVP _z = eF (z), z(0) = z0,
though still unique and globally de�ned, approach z = 0 faster than exponen-
tially whenever jz0j < 1

3 . For a result in the spirit of Theorem 5.41 that does
apply to _z = eF (z) directly, see [BBH, Thm.6.9].
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Just as their discrete-time counterparts, linear di�erential equations in higher
dimensions are also a rich source of Benford behavior. Consider forinstance the
IVP

•x � x = 0 ; x(0) = x0; _x(0) = v0 ; (5.10)

with given numbers x0; v0 2 R. The unique solution of (5.10) is

x(t) =
x0 + v0

2
et +

x0 � v0

2
e� t

which clearly is Benford unlessx0 = v0 = 0. Using matrix-vector notation,
(5.10) can be written as

d
dt

�
x
_x

�
=

�
0 1
1 0

� �
x
_x

�
;

�
x
_x

� �
�
�
t =0

=
�

x0

v0

�
:

Much more generally, therefore, consider the lineard-dimensional ordinary dif-
ferential equation

_x = Ax ; (5.11)

where A is a real d � d-matrix. Recall that every solution of ( 5.11) is given by
x : t 7! etA x0 for somex0 2 Rd, in fact x0 = x(0), with the matrix exponential
etA de�ned as

etA =
X 1

l =0

t l

l !
A l :

To ensure that every component ofx, or that, more generally, for any x; y 2 Rd

the function t 7! x> etA y is either Benford or trivial, a condition reminiscent of
Benford regularity has to be imposed onA.

De�nition 5.43. A matrix A 2 Rd� d is exponentially Benford regular (base
10) if e�A is Benford regular for some� > 0.

Note that in the simplest case, i.e. for d = 1, the matrix A = [ a] is ex-
ponentially Benford regular if and only if a 6= 0. Moreover, every exponen-
tially Benford regular matrix is regular. It is easily checked that a matrix A
fails to be exponentially Benford regular exactly if there exist � 1; � 2; : : : ; � l in
� (A)+ with < � 1 = < � 2 = : : : = < � l such that < � 1=ln 10 and the elements of
f 1

2� = � 1; 1
2� = � 2; : : : ; 1

2� = � l gn1
2 Z are rationally dependent. Also, it is not hard

to see that if A is exponentially Benford regular then the set

f t 2 R : etA is not Benford regularg

actually is at most countable, i.e. �nite (possibly empty) or countable. With
this, the continuous-time analog of Theorem5.32 is

Theorem 5.44. Assume thatA 2 Rd� d is exponentially Benford regular. Then,
for every x; y 2 Rd, the function t 7! x> etA y is either Benford or identically
equal zero. Also,t 7! k etA xk is Benford for every x 6= 0 .
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Proof. Given x; y 2 Rd, de�ne f : R ! R according to f (t) := x> etA y. As
observed above, for almost everyh > 0 the matrix ehA is Benford regular and,
by Theorem 5.32, the sequence (x> (ehA )n y) =

�
f (nh)

�
is either terminating or

Benford. In the former case,f = 0 due to the fact that f is real-analytic. In the
latter case,

�
log jf (nh)j

�
is u.d. mod 1 for almost all h > 0, and [KN, Thm.9.6]

shows that logjf j is u.d. mod 1, i.e., f is Benford. The function t 7! k etA xk is
dealt with similarly.

Example 5.45. (i) The matrix A =
�

0 1
1 0

�
associated with (5.10) is expo-

nentially Benford regular, as � (A)+ = f� 1; 1g, and hence, as seen earlier, the
solution of (5.10) is Benford unlessx0 = v0 = 0.

(ii) For A =
�

0 1
1 1

�
recall from Example 5.31that � (A)+ = f� ' � 1; ' g with

' = 1
2 (1 +

p
5). HenceA is exponentially Benford regular, and every function

of the form t 7! x> etA y is either Benford or vanishes identically. This is also
evident from the explicit formula

etA =
et'

2 + '

�
1 '
' 1 + '

�
+

e� t' � 1

2 + '

�
' + 1 � '
� ' 1

�
;

which shows that the latter is the case if and only ifx and y are proportional to�
1 '

� >
and

�
� ' 1

� >
(or vice versa), i.e. to the two perpendicular eigendi-

rections of A.
(iii) Consider A =

�
1 � �= ln 10

�= ln 10 1

�
with � (A)+ = f 1 + {�= ln 10g. In this

case,A fails to be exponentially Benford regular because, with� = 1+ {�= ln 10,

< �
ln 10

� 2
= �
2�

= 0 :

As a matter of fact, no function t 7! x> etA y is Benford. Indeed,

etA = et
�

cos(�t= ln 10) � sin(�t= ln 10)
sin(�t= ln 10) cos(�t= ln 10)

�
;

and picking for instance x> =
�

0 1
�

and y =
�

1 0
� >

yields

log jx> etA yj = log

�
�
�
�e

t sin
�

�t
ln 10

� �
�
�
� =

t
ln 10

+ log

�
�
�
�sin

�
�t

ln 10

� �
�
�
� = g

�
t

ln 10

�
;

where g(s) = s + log j sin(�s )j. As in Example 5.27(iii), it can be shown that g
is not u.d. mod 1.

This example suggests that exponential Benford regularity ofA may (not only
be su�cient but) also be necessary in Theorem5.44. In analogy to Example 5.36
and Theorem5.37, one can show that this is indeed true ifd < 4, but generally
false otherwise; details are left to the interested reader.

Finally, it should be mentioned that at present little seems to be known
about the Benford property for solutions of partial di�erential equations or more
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general functional equations such as e.g. delay or integro-di�erential equations.
Quite likely, it will be very hard to decide in any generality whether many, or
even most solutions of such systems exhibit the Benford propertyin one form
or another.

Example 5.46. A fundamental example of a partial di�erential equation is the
so-called one-dimensionalheat (or di�usion ) equation

@u
@t

=
@2u
@x2

; (5.12)

a linear second-order equation foru = u(t; x ). Physically, (5.12) describes e.g.
the di�usion over time of heat in a homogeneous one-dimensional medium. With-
out further conditions, ( 5.12) has many solutions of which for instance

u(t; x ) = cx2 + 2 ct ;

with any constant c 6= 0, is neither Benford in t (\time") nor in x (\space"),
whereas

u(t; x ) = e� c2 t sin(cx)

is Benford (or identically zero) in t but not in x, and

u(t; x ) = ec2 t + cx

is Benford in both t and x. Usually, to specify a unique solution an equation
like (5.12) has to be supplemented with initial and/or boundary conditions. A
prototypical example of an Initial-boundary Value Problem (IBVP) c onsists of
(5.12) together with

u(0; x) = u0(x) for all 0 < x < 1;

u(t; 0) = u(t; 1) = 0 for all t > 0 :
(5.13)

Physically, the conditions (5.13) may be interpreted as the ends of the medium,
at x = 0 and x = 1, being kept at a reference temperatureu = 0 while the initial
distribution of heat (or temperature etc.) is given by the function u0 : [0; 1] ! R.
It turns out that, under very mild assumptions on u0, the IBVP consisting of
(5.12) and (5.13) has a unique solution which, for anyt > 0, can be written as

u(t; x ) =
X 1

n =1
un e� � 2 n 2 t sin(�nx ) ;

where un = 2
R1

0 u0(s) sin(�ns ) ds. From this it is easy to see that, for every
0 � x � 1, the function t 7! u(t; x ) either vanishes identically or else is Benford.

Another possible set of initial and boundary data is

u(0; x) = u0(x) for all x > 0;

u(t; 0) = 0 for all t > 0 ;
(5.14)
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corresponding to a semi-in�nite one-dimensional medium kept at zero temper-
ature at its left end x = 0, with an initial heat distribution given by the (in-
tegrable) function u0 : [0; + 1 ) ! R. Again, (5.12) together with ( 5.14) has a
unique solution, for any t > 0 given by

u(t; x ) =
1

2
p

�t

Z + 1

0
u0(y)

�
e� (x � y )2 =(4 t ) � e� (x + y)2 =(4 t )

�
dy :

Assuming
R+ 1

0 yju0(y)j dy < + 1 , it is not hard to see that, for every x � 0,

lim t ! + 1 t3=2u(t; x ) =
x

2
p

�

Z + 1

0
yu0(y) dy ;

and hence, for any �xed x � 0, the function u is not Benford in time. On the
other hand, if for example u0(x) = xe� x then a short calculation con�rms that,
for every t > 0,

lim x ! + 1
ex u(t; x )

x
= et ;

showing that u is Benford in space. Similarly, if u0(x) = 1[0;1) (x) then

lim x ! + 1 xe(x � 1) 2 =(4 t ) u(t; x ) =

r
t
�

holds for every t > 0, and againu is Benford in space.

6. Benford's Law for random processes

The purpose of this chapter is to show how BL arises naturally in a variety of
stochastic settings, including products of independent random variables, mix-
tures of random samples from di�erent distributions, and iteration s of random
maps. Perhaps not surprisingly, BL arises in many other important �elds of
stochastics as well, such as geometric Brownian motion, order statistics, ran-
dom matrices, L�evy processes, and Bayesian models. The present chapter may
also serve as a preparation for the specialized literature on these advanced topics
[EL, LSE, MN, Sch•u1].

6.1. Independent random variables

The analysis of sequences of random variables, notably the specialcase of (sums
or products of) independent, identically distributed (i.i.d.) sequences of ran-
dom variables, constitutes an important classical topic in probability theory.
Within this context, the present section studies general scenarios that lead to
BL emerging as an \attracting" distribution. The results nicely comp lement the
observations made in previous chapters.

Recall from Chapter 3 that a (real-valued) random variable X by de�nition
is Benford if P(S(X ) � t) = log t for all t 2 [1; 10). Also, recall that a sequence
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(X n ) of random variables convergesin distribution to a random variable X ,

symbolically X n
D! X , if lim n !1 P(X n � t) = P(X � t) holds for every

t 2 R for which P(X = t) = 0. By a slight abuse of terminology, say that (X n )

converges in distribution to BL if S(X n ) D! S(X ), where X is a Benford random
variable, or equivalently if

lim n !1 P(S(X n ) � t) = log t for all t 2 [1; 10) :

Another important concept is almost sure convergence. Speci�cally, the se-
quence (X n ) converges to X almost surely (a.s.), in symbols X n

a:s:! X , if

P(lim n !1 X n = X ) = 1. It is easy to check that X n
a:s:
! 1 implies X n

D
! X .

The reverse implication does not hold in general, as is evident from anyi.i.d.
sequence (X n ) for which X 1 is not constant: In this case, allX n have the same

distribution, so trivially X n
D! X 1, yet P( lim n !1 X n exists ) = 0.

An especially simple way of generating a sequence of random variablesis
this: Fix a random variable X , and set X n := X n for every n 2 N. While the
sequence (X n ) thus generated is clearly not i.i.d. unlessX = 0 a.s. or X = 1
a.s., Theorems4.10 and 4.17 imply

Theorem 6.1. Assume that the random variableX has a density. Then:

(i) ( X n ) converges in distribution to BL.

(ii) With probability one, (X n ) is Benford.

Proof. To prove (i), note that the random variable log jX j has a density as well.
Hence, by Theorem4.17

P(S(X n ) � t) = P(hlog jX n ji � log t)

= P(hn log jX ji � log t) ! log t as n ! 1

holds for all t 2 [1; 10), i.e. (X n ) converges in distribution to BL.
To see (ii), simply note that log jX j is irrational with probability one. By

Theorem 4.10, therefore, P
�
(X n ) is Benford

�
= 1.

Example 6.2. (i) Let X be uniformly distributed on [0; 1). For every n 2 N,

FS(X n ) (t) =
t1=n � 1

101=n � 1
; 1 � t < 10;

and a short calculation, together with the elementary estimate et � 1� t
et � 1 < t

2 for
all t > 0 shows that

�
�FS(X n ) (t) � log t

�
� �

101=n � 1 � ln 10
n

101=n � 1
<

ln 10
2n

! 0 asn ! 1 ;

and hence (X n ) converges in distribution to BL. Since P( log X is rational ) = 0,
the sequence (X n ) is Benford with probability one.
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(ii) Assume that X = 2 a.s. Thus PX = � 2, and X does not have a density.
For every n, S(X n ) = 10 hn log 2 i with probability one, so (X n ) does not converge
in distribution to BL. On the other hand, ( X n ) is Benford a.s.

Remarks. (i) In the spirit of Theorem 6.1, several results from Chapter5 can
be extended to a stochastic context. For a prototypical result, consider the
map T : x 7! 1 + x2 from Example 5.13(iii). If X has a density, then so has
Y := log jX j. Recall from the proof of Theorem5.12 that

log jT n (X )j � 2n Y a:s:! 0 asn ! 1 ;

with a uniquely de�ned Y = h(Y ), and a close inspection of the maph shows
that Y has a density as well. Hence by Theorems4.2 and 4.17, OT (X ) =�
T n � 1(X )

�
converges in distribution to BL, whereas Theorem5.12 implies that

P(OT (X ) is Benford ) = 1.
(ii) For any random variable, it is not hard to see that assertion (ii) in T he-

orem 6.1 holds whenever (i) does. In the case of an i.i.d. sequence (X n ), the
convergence of (X n ) in distribution to BL also implies that ( X n ) is Benford for
all n, so by independence it is easy to see that (X n ) is Benford with proba-
bility one. In general, however, these two properties are independent. For one
implication see Example6.2(ii). For the other implication consider the constant
sequence (X; X; X; : : : ) which is evidently not Benford, but if X is a Benford
random variable then (X ) trivially converges in distribution to BL. |

The sequence of random variables considered in Theorem6.1 is very special
in that X n is the product of n quantities that are identical, and hence dependent
in extremis. Note that X n is Benford for all n if and only if X is Benford. This
invariance property of BL persists if, unlike the case in Theorem6.1, products
of independent factors are considered.

Theorem 6.3. Let X , Y be two independent random variables withP(XY =
0) = 0 . Then:

(i) If X is Benford then so isXY .

(ii) If S(X ) and S(XY ) have the same distribution, then eitherlogS(Y ) is
rational with probability one, or X is Benford.

Proof. As in the proof of Theorem4.13, the argument becomes short and trans-
parent through the usage of Fourier coe�cients. Note �rst that logS(XY ) =
hlogS(X ) + log S(Y )i and, since the random variablesX 0 := log S(X ) and
Y0 := log S(Y) are independent,

\Plog S(XY ) = \PhX 0 + Y0 i = dPX 0 � dPY0 : (6.1)

To prove (i), simply recall that X being Benford is equivalent to PX 0 = � 0;1,
and hence dPX 0 (k) = 0 for every integer k 6= 0. Consequently, \Plog S(XY ) (k) = 0
as well, i.e.,XY is Benford.
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To see (ii), assume thatS(X ) and S(XY ) have the same distribution. In this
case, (6.1) implies that

dPX 0 (k)
�
1 � dPY0 (k)

�
= 0 for all k 2 Z :

If dPY0 (k) 6= 1 for all non-zero k, then dPX 0 = d� 0;1, i.e., X is Benford. Alterna-
tively, if dPY0 (k0) = 1 for some k0 6= 0 then, as seen in the proof of Theorem
4.13(iii), PY0 ( 1

jk0 j Z) = 1, hence jk0jY0 = jk0 j logS(Y) is an integer with proba-
bility one.

Example 6.4. Let V , W be independent random variables distributed accord-
ing to U(0; 1). Then X := 10V and Y := W are independent and, by Theorem
6.3(i), XY is Benford even thoughY is not. If, on the other hand, X := 10V

and Y := 101� V then X and Y are both Benford, yet XY is not. Hence the
independence ofX and Y is crucial in Theorem 6.3(i). It is essential in asser-
tion (ii) as well, as can be seen by lettingX equal either 10

p
2� 1 or 102�

p
2 with

probability 1
2 each, and choosingY := X � 2. Then S(X ) and S(XY ) = S(X � 1)

have the same distribution, but neither X is Benford nor logS(Y ) is rational
with probability one.

Corollary 6.5. Let X be a random variable withP(X = 0) = 0 , and let � be
an irrational number. If S(X ) and S(�X ) have the same distribution, i.e., ifX
and �X have the same distribution of signi�cant digits, then X is Benford.

Now consider asequence(X n ) of independent random variables. From The-
orem 6.3 it is clear that if the product

Q n
j =1 X j is Benford for all su�ciently

large n then one of the factorsX j is necessarily Benford. Clearly, this is a very
restrictive assumption, especially in the i.i.d. case, whereall X j would have
to be Benford. Much greater applicability is achieved by requiring

Q n
j =1 X j to

conform to BL only asymptotically. As the following theorem, an i.i.d. counter-
part of Theorem 6.1, shows, convergence of

� Q n
j =1 X j

�
in distribution to BL is

a very widespread phenomenon. The result may help explain why BL often ap-
pears in mathematical models that describe e.g. the evolution of stock prices by
regarding the future price as a product of the current price timesa large number
of successive, multiplicative changes in price, with the latter being modeled as
independent continuous random variables.

Theorem 6.6. Let (X n ) be an i.i.d. sequence of random variables that are not
purely atomic, i.e. P(X 1 2 C) < 1 for every countable setC � R. Then:

(i)
� Q n

j =1 X j
�

converges in distribution to BL.

(ii) With probability one,
� Q n

j =1 X j
�

is Benford.

Proof. Let Yn = log jX n j. Then (Yn ) is an i.i.d. sequence of random variables
that are not purely atomic. By Theorem 4.13(iii), the sequence of


 P n
j =1 Yj

�
=



log j

Q n
j =1 X j j

�
converges in distribution to U(0; 1). Thus

� Q n
j =1 X j

�
converges

in distribution to BL.
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To prove (ii), let Y0 be u.d. mod 1 and independent of (Yn )n 2 N, and de�ne

Sj := hY0 + Y1 + : : : + Yj i ; j 2 N0 :

Recall from Theorem 4.13(i) that Sj is uniform on [0; 1) for every j � 0. Also
note that, by de�nition, the random variables Yj +1 ; Yj +2 ; : : : are independent
of Sj . The following argument is most transparent when formulated in ergodic
theory terminology. (For an alternative approach see e.g. [Ro].) To this end,
endow

T1 := [0 ; 1)N0 = f (x j ) j 2 N0 : x j 2 [0; 1) for all j g

with the � -algebra

B1 :=
O

j 2 N0
B[0; 1)

:= �
�
f B0 � B1 � : : :� B j � [0; 1)� [0; 1)� : : : : j 2 N0; B0; B1; : : : ; B j 2 B[0; 1)g

�
:

A probability measure P1 is uniquely de�ned on (T1 ; B1 ) by setting

P1 (B0 � B1 � : : :� B j � [0; 1)� [0; 1)� : : :) = P(S0 2 B0; S1 2 B1; : : : ; Sj 2 B j )

for all j 2 N0 and B0; B1; : : : ; B j 2 B[0; 1). The map � 1 : T1 ! T1 with
� 1

�
(x j )

�
= ( x j +1 ), often referred to as the (one-sided) left shift on T1 (cf.

Example 5.25), is clearly measurable, i.e.� � 1
1 (A) 2 B1 for every A 2 B1 . As

a consequence, (� 1 )� P1 is a well-de�ned probability measure on (T1 ; B1 ). In
fact, since S1 is u.d. mod 1 and (Yn ) is an i.i.d. sequence,

(� 1 )� P1 (B0 � B1 � : : :� B j � [0; 1)� [0; 1)� : : :)

= P1 ([0; 1)� B0 � B1 � : : :� B j � [0; 1)� [0; 1)� : : :)

= P(S1 2 B0; S2 2 B1; : : : ; Sj +1 2 B j )

= P(S0 2 B0; S1 2 B1; : : : ; Sj 2 B j )

= P1 (B0 � B1 � : : :� B j � [0; 1)� [0; 1)� : : :) ;

showing that (� 1 )� P1 = P1 , i.e., � 1 is P1 -preserving. (In probabilistic terms,
this is equivalent to saying that the random process (Sj ) j 2 N0 is stationary, see
[Sh, Def.V.1.1].) It will now be shown that � 1 is evenergodic with respect to
P1 . Recall that this simply means that every invariant set A 2 B1 has measure
zero or one, or, more formally, thatP1 (� � 1

1 (A)� A) = 0 implies P1 (A) 2 f 0; 1g;
here the symbol � denotes the symmetric di�erence of two sets, i.e. A� B =
AnB [ B nA. Assume, therefore, that P1 (� � 1

1 (A)� A) = 0 for some A 2 B1 .
Given " > 0, there exists a numberN 2 N and setsB0; B1; : : : ; BN 2 B[0; 1)
such that

P1
�
A � ( B0 � B1 � : : :� BN � [0; 1)� [0; 1)� : : :)

�
< " :

For notational convenience, letA " := B0� B1� : : :� BN � [0; 1)� [0; 1)� : : : 2 B1 ,
and note that P1

�
� � j

1 (A)� � � j
1 (A " )

�
< " for all j 2 N0. Recall now from
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Theorem 4.13(iii) that, given S0; S1; : : : ; SN , the random variablesSn converge
in distribution to U(0; 1). Thus, for all su�ciently large M ,

�
�P1

�
Ac

" \ � � M
1 (A " )

�
� P1 (Ac

" )P1 (A " )
�
� < " ; (6.2)

and similarly
�
�P1

�
A " \ � � M

1 (Ac
" )

�
� P1 (A " )P1 (Ac

" )
�
� < " . (Note that ( 6.2) may

not hold if X 1, and hence alsoY1, is purely atomic, see for instance Example
4.14(ii).) Overall, therefore,

2P1 (A " )
�
1 � P1 (A " )

�
� 2" + P1

�
A " � � � M

1 (A " )
�

� 2" + P1 (A " � A) + P1
�
A� � � M

1 (A)
�

+ P1
�
� � M

1 (A)� � � M
1 (A " )

�

< 4" ;

and consequentlyP1 (A)
�
1 � P1 (A)

�
< 3" + "2. Since " > 0 was arbitrary,

P1 (A) 2 f 0; 1g, which in turn shows that � 1 is ergodic. (Again, this is equiv-
alent to saying, in probabilistic parlance, that the random process (Sj ) j 2 N0 is
ergodic, see [Sh, Def.V.3.2].) By the Birkho� Ergodic Theorem, for every (mea-
surable) function f : [0; 1) ! C with

R1
0 jf (x)j dx < + 1 ,

1
n

X n

j =0
f (x j ) !

Z 1

0
f (x) dx as n ! 1

holds for all (x j ) j 2 N0 2 T1 , with the possible exception of a set ofP1 -measure
zero. In probabilistic terms, this means that

limn !1
1
n

X n

j =0
f (Sj ) =

Z 1

0
f (x) dx a.s. (6.3)

Assume from now on that f is actually continuous with lim x " 1 f (x) = f (0), e.g.
f (x) = e2�{x . For any such f , as well as anyt 2 [0; 1) and m 2 N, denote the
set
�

! 2 
 : lim sup n !1

�
�
�
�
1
n

X n

j =1
f

�
ht + Y1(! ) + : : : + Yj (! )i

�
�

Z 1

0
f (x) dx

�
�
�
� <

1
m

�

simply by 
 f;t;m . According to (6.3), 1 =
R1

0 P(
 f;t;m ) dt, and henceP(
 f;t;m ) =
1 for a.e.t 2 [0; 1). Sincef is uniformly continuous, for every m � 2 there exists
tm > 0 such that P(
 f;t m ;m ) = 1 and 
 f;t m ;m � 
 f; 0;bm= 2c. From

1 = P
� \

m � 2

 f;t m ;m

�
� P

� \

m � 2

 f; 0;bm= 2c

�
� 1 ;

it is clear that

lim n !1
1
n

X n

j =1
f

�
hY1 + : : : + Yj i

�
=

Z 1

0
f (x) dx a.s. (6.4)
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As the intersection of countably many sets of full measure has itself full measure,
choosingf (x) = e2�{kx , k 2 Z in (6.4) shows that, with probability one,

limn !1
1
n

X n

j =1
e2�{k (Y1 + ::: + Yj ) =

Z 1

0
e2�{kx dx = 0 for all k 2 Z; k 6= 0 :

(6.5)
By Weyl's criterion [ KN, Thm.2.1], (6.5) is equivalent to

P
� � X n

j =1
Yj

�
is u.d. mod 1

�
= 1 :

In other words, (
Q n

j =1 X j ) is Benford with probability one.

Remarks. (i) As has essentially been observed already in Example4.14(ii), for
Theorem 6.6(i) to hold it is necessary and su�cient that

P(log jX 1j 2 a + 1
m Z) < 1 for all a 2 R; m 2 N : (6.6)

On the other hand, it is not hard to see that (ii) holds if and only if

P(log jX 1j 2 1
m Z) < 1 for all m 2 N ; (6.7)

which is a strictly weaker assumption than (6.6). Clearly, if X 1 is not purely
atomic then (6.6), and hence also (6.7) hold. However, if e.g. X 1 = 2 with
probability one then (6.6) does not hold, and correspondingly

� Q n
j =1 X j

�
= (2 n )

does not converge in distribution to BL, whereas (6.7) does hold, and
� Q n

j =1 X j
�

is Benford with probability one, cf. Example 6.2(ii).
(ii) For more general results in the spirit of Theorem 6.6 the reader is referred

to [Sch•u1, Sch•u2]. |

Example 6.7. (i) Let (X n ) be an i.i.d. sequence withX 1 distributed according
to U(0; a), the uniform distribution on [0 ; a) with a > 0. The k-th Fourier
coe�cient of Phlog X 1 i is

\Phlog X 1 i (k) = e2�{k log a ln 10
ln 10 + 2�{k

; k 2 Z ;

so that, for every k 6= 0,

�
�
� \Phlog X 1 i (k)

�
�
� =

ln 10
p

(ln 10)2 + 4 � 2k2
< 1:

As seen in the proof of Theorem4.13(iii), this implies that
� Q n

j =1 X j
�

converges
in distribution to BL, a fact apparently �rst recorded in [ AS]. Note also that
E logX 1 = log a

e . Thus with probability one,
� Q n

j =1 X j
�

converges to 0 or +1 ,
depending on whethera < e or a > e. In fact, by the Strong Law of Large
Numbers [CT],

n

r Y n

j =1
X j

a:s:!
a
e
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holds for everya > 0. If a = e then

P
�

lim inf n !1

Y n

j =1
X j = 0 and lim supn !1

Y n

j =1
X j = + 1

�
= 1 ;

showing that in this case the product
Q n

j =1 X j does not converge but rather
attains, with probability one, arbitrarily small as well as arbitrarily lar ge positive
values. By Theorem6.6(ii), the sequence

� Q n
j =1 X j

�
is a.s. Benford, regardless

of the value of a.

(ii) Consider an i.i.d. sequence (X n ) with X 1 distributed according to a
log-normal distribution such that log X 1 is standard normal. Denote by f n the
density of



log

Q n
j =1 X j

�
. Since log

Q n
j =1 X j =

P n
j =1 logX j is normal with

mean zero and variancen,

f n (s) =
1

p
2�n

X

k2 Z
e� (k+ s)2 =(2n ) ; 0 � s < 1;

from which it is straightforward to deduce that

lim n !1 f n (s) = 1 ; uniformly in 0 � s < 1:

Consequently, for all t 2 [1; 10),

P
�

S
� Y n

j =1
X j

�
� t

�
= P

�D
log

Y n

j =1
X j

E
� log t

�

=
Z log t

0
f n (s) ds !

Z log t

0
1 ds = log t ;

i.e.,
� Q n

j =1 X j
�

converges in distribution to BL. By Theorem 6.6(ii) also

P
�� Y n

j =1
X j

�
is Benford

�
= 1 ;

even thoughE log
Q n

j =1 X j =
P n

j =1 E logX j = 0, and hence, as in the previous
example, the sequence

� Q n
j =1 X j

�
a.s. oscillates forever between 0 and +1 .

Having seen Theorem6.6, the reader may wonder whether there is an anal-
ogous result forsums of i.i.d. random variables. After all, the focus in classical
probability theory is on sums much more than on products. Unfortunately, the
statistical behavior of the signi�cands is much more complex for sums than for
products. The main basic reason is that the signi�cand of the sum oftwo or
more numbers depends not only on the signi�cand of each each number (as in
the case of products), but also on theirexponents. For example, observe that

S
�
3 � 103 + 2 � 102�

= 3 :2 6= 5 = S
�
3 � 102 + 2 � 102�

;

while clearly

S
�
3 � 103 � 2 � 102�

= 6 = S
�
3 � 102 � 2 � 102�

:
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Practically, this di�culty is reected in the fact that for positive rea l numbers u,
v, the value of log(u + v), relevant for conformance with BL via Theorem 4.2, is
not easily expressed in terms of logu and logv, whereas log(uv) = log u + log v.

In view of these di�culties, it is perhaps not surprising that the analo g of
Theorem 6.6 for sums arrives at a radically di�erent conclusion.

Theorem 6.8. Let (X n ) be an i.i.d. sequence of random variables with �nite
variance, that is EX 2

1 < + 1 . Then:

(i) Not even a subsequence of
� P n

j =1 X j
�

converges in distribution to BL.

(ii) With probability one,
� P n

j =1 X j
�

is not Benford.

Proof. Assume �rst that EX 1 6= 0. By the Strong Law of Large Numbers,
1
n

�
� P n

j =1 X j
�
� converges a.s., and hence also in distribution, to the constant

jEX 1j. Since

logS
� �

�
�
X n

j =1
X j

�
�
�
�

=
D

log
�
�
�
X n

j =1
X j

�
�
�
E

=
�

log
�

1
n

�
�
�
X n

j =1
X j

�
�
�

�
+ log n

�
;

any subsequence of
�
S

�
1
n

�
� P n

j =1 X j
�
� �� either does not converge in distribution

at all or else converges to a constant; in neither case, therefore, is the limit a
Benford random variable. Since, with probability one,

�
� P n

j =1 X j
�
� ! + 1 , it

follows from

log
�
�
�
X n

j =1
X j

�
�
� � logn = log

1
n

�
�
�
X n

j =1
X j

�
�
�

a:s:! j EX 1j ;

together with Lemma 4.3(i) and Proposition 4.8(iii) that
� P n

j =1 X j ) is, with
probability one, not Benford.

It remains to consider the caseEX 1 = 0. Without loss of generality, it can
be assumed thatEX 2

1 = 1. By the Central Limit Theorem 1p
n

P n
j =1 X j con-

verges in distribution to the standard normal distribution. Thus fo r su�ciently
large n, and up to a rotation (i.e. an addition mod 1) of [0; 1), the distri-
bution of hlog j

P n
j =1 X j ji di�ers by arbitrarily little from the distribution of

Y := hlog jZ ji , whereZ is standard normal. Intuitively, it is clear that PY 6= � 0;1,
i.e., Y is not uniform on [0; 1). To see this more formally, note that

FY (s) = 2
X

k2 Z

�
�

�
10s+ k �

� �
�
10k ��

; 0 � s < 1; (6.8)

with � (= FZ ) denoting the standard normal distribution function, see Example
4.16(ii). Thus

jFY (s) � sj � FY (s) � s > 2
�
� (10 s) � � (1)

�
� s =: R(s) ; 0 � s < 1;

and since R is concave on [0; 1) with R(0) = 0 and R0(0) = 2 ln 10p
2�e

� 1 =

0:1143: : : > 1
9 , it follows that

max0� s< 1 jFY (s) � sj > max0� s< 1 R(s) > 0;
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showing that indeed PY 6= � 0;1, and hence
� P n

j =1 X j
�

does not converge in
distribution to BL.

The veri�cation of (ii) in the case EX 1 = 0 uses an almost sure version
of the Central Limit Theorem, see [LP]. With the random variables X n de-
�ned on some (abstract) probability space (
 ; A; P), let 
 1 :=

�
! 2 
 :� P n

j =1 X j (! )
�

is Benford
	

. By Theorem 4.2 and Proposition 4.8(iii), the se-
quence

�
xn (! )

�
with

xn (! ) = log
1

p
n

�
�
�
X n

j =1
X j (! )

�
�
� ; n 2 N ;

is u.d. mod 1 for all ! 2 
 1. For every interval [a; b) � [0; 1), therefore,

1
ln N

X N

n =1

1[a;b)
�
xn (! )

�

n
! b� a as N ! 1 :

(Recall the remark on p.18.) However, as a consequence of [LP, Thm.2], for
every [a; b) � [0; 1),

1
ln N

X N

n =1

1[a;b)
�
xn

�

n
a:s:! FY (b) � FY (a) ;

with FY given by (6.8). As shown above,FY (s) 6� s, and therefore P(
 1) = 0.
In other words, P

�
(
P n

j =1 X j ) is Benford
�

= 0.

Example 6.9. (i) Let (X n ) be an i.i.d. sequence withP(X 1 = 0) = P(X 1 =
1) = 1

2 . Then EX 1 = EX 2
1 = 1

2 , and by Theorem 6.8(i) neither
� P n

j =1 X j
�

nor
any of its subsequences converges in distribution to BL. Note that

P n
j =1 X j is

binomial with parameters n and 1
2 , i.e. for all n 2 N,

P
� X n

j =1
X j = l

�
= 2 � n

�
n
l

�
; l = 0 ; 1; : : : ; n :

The Law of the Iterated Logarithm [ CT] asserts that

X n

j =1
X j =

n
2

+ Yn

p
n ln ln n for all n � 3 ; (6.9)

where the sequence (Yn ) of random variables is bounded, in factjYn j � 1 a.s. for
all n. From (6.9) it is clear that, with probability one, the sequence

� P n
j =1 X j

�

is not Benford.

(ii) Let (X n ) be an i.i.d. sequence of Cauchy random variables. AsEjX 1j is
even in�nite, Theorem 6.8 does not apply. However, recall from Example4.14(i)
that 1

n

P n
j =1 X j is again Cauchy, and hence the distribution ofhlog j(

P n
j =1 X j )ji

is but a rotated version of Phlog jX 1 ji , the density of which is given by

f hlog jX 1 ji (s) =
ln 10

�

X

k2 Z

1
cosh

�
(s + k) ln 10

� ; 0 � s < 1:
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The density f hlog jX 1 ji is a smooth function, and

f hlog jX 1 ji (0) =
ln 10

�

X

k2 Z

2
10k + 10 � k >

ln 10
�

�
1 +

40
101

�
> 1 +

2
101

;

showing that
�
log j

P n
j =1 X j j

�
is not u.d. mod 1. Hence the sequence

� P n
j =1 X j

�

does not converge in distribution to BL, and nor does any of its subsequences.
This example shows that the conclusions of Theorem6.8 may hold, at least

in parts, even if the X n do not have �nite �rst, let alone �nite second moments.

Remark. Recall from the remark on p.18 that a sequence failing to be Benford
may conform to a weaker form of BL. As seen above, under mild conditions the
stochastic sequence

� P n
j =1 X j

�
is not Benford. Under the appropriate assump-

tions, however, it does obey a weaker form of BL, see [Scha2]. |

6.2. Mixtures of distributions

The characterizations of the Benford distribution via scale-, base- and sum-
invariance, given in Chapter 4, although perhaps mathematically satisfying,
hardly help explain the appearance of BL empirically in real-life data. Applica-
tion of those theorems requires explaining why the underlying data isscale- or
base-invariant in the �rst place. BL nevertheless does appear in many real-life
datasets. Thus the question arises: What do the population data of three thou-
sand U.S. counties according to the 1990 census have in common withthe usage
of logarithm tables during the 1880s, numerical data from newspaper articles
of the 1930's collected by Benford, or universal physical constants examined
by Knuth in the 1960's? Why should these data exhibit a logarithmically dis-
tributed signi�cand or equivalently, why should they be scale- or base-invariant?

As a matter of fact, most data-sets do not follow BL closely. Benford already
observed that while some of his tables conformed to BL reasonably well, many
others did not. But, as Raimi [Ra1] points out, \what came closest of all, how-
ever, was the union of all his tables." Combine the molecular weight tables with
baseball statistics and drainage areas of rivers, andthen there is a very good �t.
Many of the previous explanations of BL have �rst hypothesized some universal
table of constants, such as Raimi's [Ra1] \stock of tabular data in the world's
libraries", or Knuth's [ Kn] \imagined set of real numbers", and then tried to
prove why certain speci�c sets of real observations were representative of either
this mysterious universal table or the set of all real numbers. What seems more
natural though is to think of data as coming from many di�erent dist ributions.
This was clearly the case in Benford's original study. After all, he hadmade
an e�ort \to collect data from as many �elds as possible and to include a wide
variety of types", noting that \the range of subjects studied and tabulated was
as wide as time and energy permitted".

The main goal of this section is to provide a statistical derivation of BL, in
the form of a central-limit-like theorem that says that if random samples are
taken from di�erent distributions, and the results combined, then | provided
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the sampling is \unbiased" as to scale or base | the resulting combined samples
will converge to the Benford distribution.

Denote by M the set of all probability measures on (R; B). Recall that a
(real Borel) random probability measure, abbreviated henceforth asr.p.m., is a
function P : 
 ! M , de�ned on some underlying probability space (
 ; A; P),
such that for every B 2 B the function ! 7! P(! )(B ) is a random variable.
Thus, for every ! 2 
, P(! ) is a probability measure on (R; B), and, given any
real numbersa; b and any Borel setB ,

f ! : a � P(! )(B ) � bg 2 A ;

see e.g. [Ka] for an authoritative account on random probability measures. In
more abstract conceptual terms, an r.p.m. can be interpreted asfollows: When
endowed with the topology of convergence in distribution, the setM becomes
a complete and separable metrizable space. Denote byBM its Borel � -algebra,
de�ned as the smallest � -algebra containing all open subsets ofM . Then P� P
simply is a probability measure on (M ; BM ).

Example 6.10. (i) Let P be an r.p.m. that is U(0; 1) with probability 1
2 , and

otherwise isexp(1), i.e. exponential with mean 1, henceP(X > t ) = min(1 ; e� t )
for all t 2 R, see Example3.10(i,ii). Thus, for every ! 2 
, the probability mea-
sureP is either U(0; 1) or exp(1), and P

�
P = U(0; 1)

�
= P

�
P = exp(1)

�
= 1

2 . For
a practical realization of P simply ip a fair coin | if it comes up heads, P(! ) is
a U(0; 1)-distribution, and if it comes up tails, then P is an exp(1)-distribution.

(ii) Let X be distributed according to exp(1), and let P be an r.p.m. where,
for each ! 2 
, P(! ) is the normal distribution with mean X (! ) and variance
1. In contrast to the example in (i), here P is continuous, i.e., P(P = Q) = 0
for each probability measureQ 2 M .

The following example of an r.p.m. is a variant of a classical construction due
to L. Dubins and D. Freedman which, as will be seen below, is an r.p.m. leading
to BL.

Example 6.11. Let P be the r.p.m. with support on [1; 10), i.e. P
�
[1; 10)

�
= 1

with probability one, de�ned by its (random) cumulative distribution f unction
FP , i.e.

FP (t) := FP (! ) (t) = P(! )
�
[1; t]

�
; 1 � t < 10;

as follows: SetFP (1) = 0 and FP (10) = 1. Next pick FP (101=2) according
to the uniform distribution on [0 ; 1). Then pick FP (101=4) and FP (103;4) in-
dependently, uniformly on

�
0; FP (101=2)

�
and

�
FP (101=2); 1

�
, respectively, and

continue in this manner. This construction is known to generate an r.p.m. a.s.
[DF, Lem.9.28], and as can easily be seen, is dense in the set of all probability
measures on

�
[1; 10); B[1; 10)

�
, i.e., it generates probability measures that are

arbitrarily close to any Borel probability measure on [1; 10).

The next de�nition formalizes the notion of combining data from di�er ent
distributions. Essentially, it mimics what Benford did in combining baseball
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statistics with square-root tables and numbers taken from newspapers, etc. This
de�nition is key to everything that follows. It rests upon using an r.p .m. to
generate a random sequence of probability distributions, and thensuccessively
selecting random samples from each of those distributions.

De�nition 6.12. Let m be a positive integer andP an r.p.m. A sequence of
P-random m-samplesis a sequence (X n ) of random variables on (
 ; A; P) such
that, for all j 2 N and some i.i.d. sequence (Pn ) of r.p.m.s with P1 = P, the
following two properties hold:

Given Pj = Q; the random variablesX ( j � 1)m +1 ; X ( j � 1)m +2 ; : : : ; X jm (6.10)

are i.i.d. with distribution Q ;
The variables X ( j � 1)m +1 ; X ( j � 1)m +2 ; : : : ; X jm are independent of (6.11)

Pi ; X ( i � 1)m +1 ; X ( i � 1)m +2 ; : : : ; X im for every i 6= j :

Thus for any sequence (X n ) of P-random m-samples, for each! 2 
 in the
underlying probability space, the �rst m random variables are a random sample
(i.e., i.i.d.) from P1(! ), a random probability distribution chosen according to
the r.p.m. P; the secondm-tuple of random variables is a random sample from
P2(! ) and so on. Note the two levels of randomness here: First a probability is
selected at random, and then a random sample is drawn from this distribution,
and this two-tiered process is continued.

Example 6.13. Let P be the r.p.m. in Example 6.10(i), and let m = 3. Then
a sequence ofP-random 3-samples is a sequence (X n ) of random variables
such that with probability 1

2 , X 1; X 2; X 3, are i.i.d. and distributed according
to U(0; 1), and otherwise they are i.i.d. but distributed according to exp(1);
the random variables X 4; X 5; X 6 are again equally likely to be i.i.d. U(0; 1) or
exp(1), and they are independent ofX 1; X 2; X 3, etc. Clearly the (X n ) are all
identically distributed as they are all generated by exactly the sameprocess.
Note, however, that for instanceX 1 and X 2 are dependent: Given thatX 1 > 1,
for example, the random variableX 2 is exp(1)-distributed with probability one,
whereas the unconditional probability that X 2 is exp(1)-distributed is only 1

2 .

Remark. If ( X n ) is a sequence ofP-random m-samples for somem and some
r.p.m. P, then the X n are a.s. identically distributed according to the distri-
bution that is the average (expected) distribution of P (see Proposition 6.15
below), but they are not in general independent (see Example6.13). On the
other hand, given (P1; P2; : : :), the (X n ) are a.s. independent, but clearly are
not in general identically distributed. |

Although sequences ofP-random m-samples have a fairly simple structure,
they do not �t into any of the familiar categories of sequences of random vari-
ables. For example, they are not in general independent, exchangeable, Markov,
martingale, or stationary sequences.

Example 6.14. Assume that the r.p.m. P is, with equal probability, the Dirac
measure concentrated at 1 and the probability measure1

2 (� 1 + � 2), respectively,
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i.e. P(P = � 1) = P
�
P = 1

2 (� 1 + � 2)
�

= 1
2 . Let (X n ) be a sequence ofP-random

3-samples. Then the random variablesX 1; X 2; : : : are

not independent as

P(X 2 = 2) =
1
4

but P(X 2 = 2 jX 1 = 2) =
1
2

;

not exchangeableas

P
�
(X 1; X 2; X 3; X 4)=(1 ; 1; 1; 2)

�
=

9
64

6=
3
64

= P
�
(X 1; X 2; X 3; X 4)=(2 ; 2; 2; 1)

�
;

not Markov as

P(X 3 = 1 jX 1 = X 2 = 1) =
9
10

6=
5
6

= P(X 3 = 1 jX 2 = 1) ;

not martingale as

E(X 2 jX 1 = 2) =
3
2

but EX 2 =
5
4

;

not stationary as

P
�
(X 1; X 2; X 3) = (1 ; 1; 1)

�
=

9
16

6=
15
32

= P
�
(X 2; X 3; X 4) = (1 ; 1; 1)

�
:

Recall that, given an r.p.m. P and any Borel set B , the quantity P(B ) is
a random variable with values between 0 and 1. The following propertyof the
expectation of P(B ), as a function of B , is easy to check.

Proposition 6.15. Let P be an r.p.m. Then EP, de�ned as

(EP)(B ) := EP(B ) =
Z



P(! )(B ) dP(! ) for all B 2 B ;

is a probability measure on(R; B).

Example 6.16. (i) Let P be the r.p.m. of Example 6.10(i). Then EP is the
Borel probability measure with density

f EP (t) =

8
><

>:

0 if t < 0 ;
1
2 + 1

2 e� t if 0 � t < 1 ;
1
2 e� t if t � 1 ;

9
>=

>;
=

1
2

1[0;1) (t) +
1
2

e� t 1[0;+ 1 ) ; t 2 R :

(ii) Consider the r.p.m. P of Example 6.10(ii), that is, P(! ) is normal with
mean X (! ) and variance 1, whereX is distributed according to exp(1). In this
case,EP is also a.c., with density

f EP (t) =
1

p
2�

Z + 1

0
e� 1

2 ( t � � )2
e� � d� = e

1
2 � t � 1 � �(1 � t)

�
; t 2 R :
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(iii) Even if P is a.c. only with probability zero, it is possible for EP to be
a.c. As a simple example, letX be exp(1)-distributed and P = 1

2 (� � X + � X ).
Then P(P is purely atomic ) = 1, yet EP is the standard Laplace (or double-
exponential) distribution; i.e., EP is a.c. with density

f EP (t) =
e�j t j

2
; t 2 R :

The next lemma shows that the limiting proportion of times that a sequence
of P-random m-sample falls in a (Borel) set B is, with probability one, the
averageP-value of the set B , i.e., the limiting proportion equals EP(B ). Note
that this is not simply a direct corollary of the classical Strong Law of Large
Numbers as the random variables in the sequence are not in generalindependent
(see Examples6.13 and 6.14).

Lemma 6.17. Let P be an r.p.m., and let (X n ) be a sequence ofP-random
m-samples for somem 2 N. Then, for every B 2 B,

# f 1 � n � N : X n 2 B g
N

a:s:! EP(B ) as N ! 1 :

Proof. Fix B 2 B and j 2 N, and let Yj = # f 1 � i � m : X ( j � 1)m + i 2 B g. It
is clear that

limN !1
# f 1 � n � N : X n 2 B g

N
=

1
m

limn !1
1
n

X n

j =1
Yj ; (6.12)

whenever the limit on the right exists. By (6.10), given Pj , the random variable
Yj is binomially distributed with parameters m and E

�
Pj (B )

�
, hence a.s.

EYj = E
�
E(Yj jPj )

�
= E

�
mPj (B )

�
= mEP(B ) (6.13)

sincePj has the same distribution asP. By (6.11), the Yj are independent. They
are also uniformly bounded, as 0� Yj � m for all j , hence

P 1
j =1 EY 2

j =j 2 < + 1 .
Moreover, by (6.13) all Yj have the same mean valuemEP(B ). Thus by [CT,
Cor.5.1]

1
n

X n

j =1
Yj

a:s:! mEP(B ) as n ! 1 ; (6.14)

and the conclusion follows by (6.12) and (6.14).

Remark. The assumption that eachPj is sampled exactlym times is not essen-
tial: The above argument can easily be modi�ed to show that the samecon-
clusion holds if the j -th r.p.m. is sampled M j times where (M j ) is a sequence
of independent, uniformly bounded N-valued random variables which are also
independent of the rest of the process. |

The stage is now set to give a statistical limit law (Theorem6.20below) that
is a central-limit-like theorem for signi�cant digits mentioned above. Roughly
speaking, this law says that if probability distributions are selected at random,
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and random samples are then taken from each of these distributions in such a
way that the overall process is scale- or base-neutral, then the signi�cant digit
frequencies of the combined sample will converge to the logarithmic distribution.
This theorem may help explain and predict the appearance of BL in signi�cant
digits in mixtures of tabulated data such as the combined data from Benford's
individual datasets, and also his individual dataset of numbers gleaned from
newspapers.

In order to draw any conclusions concerning BL for the process ofsampling
from di�erent distributions, clearly there must be some restriction on the un-
derlying r.p.m. that generates the sampling procedure. Otherwise,if the r.p.m.
is, say, U(0; 1) with probability one, for example, then any resulting sequence
of P-random m-samples will be i.i.d. U(0; 1), and hence a.s. not Benford, by
Example 3.10(i). Similarly, it can easily be checked that sequences ofP-random
m-samples from the r.p.m.s in Example6.10(i) and (ii) will not generate Benford
sequences. A natural assumption to make concerning an r.p.m. in this context
is that on averagethe r.p.m. is unbiased (i.e. invariant) with respect to changes
in scale or base.

De�nition 6.18. An r.p.m. P hasscale-unbiased (decimal) signi�cant digits if,
for every signi�cand event A, i.e. for every A 2 S, the expected value ofP(A)
is the same as the expected valueP(�A ) for every � > 0, that is, if

E
�
P(�A )

�
= E

�
P(A)

�
for all � > 0; A 2 S:

Equivalently, the Borel probability measure EP has scale-invariant signi�cant
digits.

Similarly, P has base-unbiased signi�cant (decimal) digitsif, for every A 2 S
the expected value ofP(A) is the same as the expected value ofP(A1=n ) for
every n 2 N, that is, if

E
�
P(A1=n )

�
= E

�
P(A)

�
for all n 2 N; A 2 S;

i.e., if EP has base-invariant signi�cant digits.

An immediate consequence of Theorems4.20 and 4.30 is

Proposition 6.19. Let P be an r.p.m. with EP(f 0g) = 0 . Then the following
statements are equivalent:

(i) P has scale-unbiased signi�cant digits.

(ii) P(f� 10k : k 2 Zg) = 0 , or equivalently S� P(f 1g) = 0 holds with probabil-
ity one, and P has base-unbiased signi�cant digits.

(iii) EP(A) = B(A) for all A 2 S, i.e., EP is Benford.

Random probability measures with scale- or base-unbiased signi�cant digits
are easy to construct mathematically (see Example6.22 below). In real-life
examples, however, scale- or base-unbiased signi�cant digits should not be taken
for granted. For instance, picking beverage-producing companies in Europe at
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random, and looking at the metric volumes of samples ofm products from each
company, is not likely to produce data with scale-unbiased signi�cant digits,
since the volumes in this case are probably closely related to liters. Conversion
of the data to another unit such as gallons would likely yield a radically di� erent
set of �rst-digit frequencies. On the other hand, if species of mammals in Europe
are selected at random and their metric volumes sampled, it seems more likely
that the latter process is unrelated to the choice of human units.

The question of base-unbiasedness of signi�cant digits is most interesting
when the units in question are universally agreed upon, such as the numbers of
things, as opposed to sizes. For example, picking cities at random and looking
at the number of leaves ofm-samples of trees from those cities is certainly less
base-dependent than looking at the number of �ngers ofm-samples of people
from those cities.

As will be seen in the next theorem, scale- or base-unbiasedness ofan r.p.m.
imply that sequence ofP-random samples are Benford a.s. A crucial point in the
de�nition of an r.p.m. P with scale- or base-unbiased signi�cant digits is that
it does not require individual realizations of P to have scale- or base-invariant
signi�cant digits. In fact, it is often the case (see Benford's original data in [Ben]
and Example 6.22 below) that a.s. none of the random probabilities has either
of these properties, and it is only on average that the sampling process does not
favor one scale or base over another. Recall from the notation introduced above
that S� P(f 1g) = 0 is the event f ! 2 
 : P(! )(S = 1) = 0 g.

Theorem 6.20 ([Hi2]). Let P be an r.p.m. AssumeP either has scale-unbiased
signi�cant digits, or else has base-unbiased signi�cant digits and S� P(f 1g) = 0
with probability one. Then, for every m 2 N, every sequence(X n ) of P-random
m-samples is Benford with probability one, that is, for allt 2 [1; 10),

# f 1 � n � N : S(X n ) < t g
N

a:s:! log t as N ! 1 :

Proof. Assume �rst that P has scale-unbiased signi�cant digits, i.e., the proba-
bility measure EP has scale-invariant signi�cant digits. According to Theorem
4.20, EP is Benford. Consequently, Lemma6.17 implies that for every sequence
(X n ) of P-random m-samples and everyt 2 [1; 10),

# f 1 � n � N :S(X n ) < t g
N

=
#

�
1 � n � N :X n 2

S
k2 Z 10k

�
(� t; � 1] [ [1; t)

�	

N
a:s:
! EP

� [

k2 Z
10k �

(� t; � 1] [ [1; t)
� �

= log t as N ! 1 :

Assume in turn that S� P(f 1g) = 0 with probability one, and that P has base-
unbiased signi�cant digits. Then

S� EP(f 1g) = EP
�
S� 1(f 1g)

�
=

Z



S� P(! )( f 1g) dP(! ) = 0 :

Henceq = 0 holds in (4.8) with P replaced byEP, proving that EP is Benford,
and the remaining argument is the same as before.
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Corollary 6.21. If an r.p.m. P has scale-unbiased signi�cant digits, then for
every m 2 N, every sequence(X n ) of P-random m-samples, and everyd 2
f 1; 2; : : : ; 9g,

# f 1 � n � N : D1(X n ) = dg
N

a:s:! log(1 + d� 1) as N ! 1 :

A main point of Theorem 6.20 is that there are many natural sampling pro-
cedures that lead to the same logarithmic distribution. This helps explain how
the di�erent empirical evidence of Newcomb, Benford, Knuth and Nigrini all
led to the same law. It may also help explain why sampling the numbers from
newspaper front pages or almanacs [Ben], or accumulating extensive accounting
data [Ni], often tends toward BL, since in each of these cases various distribu-
tions are being sampled in a presumably unbiased way. In a newspaper, perhaps
the �rst article contains statistics about population growth, the s econd arti-
cle about stock prices, the third about forest acreage. None of these individual
distributions itself may be unbiased, but the mixture may well be.

Justi�cation of the hypothesis of scale- or base-unbiasedness ofsigni�cant
digits in practice is akin to justi�cation of the hypothesis of independence (and
identical distribution) when applying the Strong Law of Large Numbers or the
Central Limit Theorem to real-life processes: Neither hypothesis can be formally
proved, yet in many real-life sampling procedures, they appear to be reasonable
assumptions.

Many standard constructions of r.p.m. automatically have scale- and base-
unbiased signi�cant digits, and thus satisfy BL in the sense of Theorem 6.20.

Example 6.22. Recall the classical Dubins{Freedman construction of an r.p.m.
P described in Example6.11. It follows from [ DF, Lem.9.28] that EP is Benford.
HenceP has scale- and base-unbiased signi�cant digits. Note, however, that with
probability one P will not have scale- or base-invariant signi�cant digits. It is
only on averagethat these properties hold but, as demonstrated by Theorem
6.20, this is enough to guarantee that random sampling fromP will generate
Benford sequences a.s.

In the Dubins{Freedman construction, the fact that FP (101=2), FP (101=4),
FP (103=4), etc. are chosenuniformly from the appropriate intervals is not cru-
cial: If Q is any probability measure on (0; 1), and the values ofFP (101=2) etc.
are chosen independently according to an appropriately scaled version on Q,
then, for the r.p.m. thus generated, EP will still be Benford, provided that Q
is symmetric about 1

2 , see [DF, Thm.9.29]. As a matter of fact, real-world pro-
cesses often exhibit this symmetry in a natural way: Many data maybe equally
well recorded using certain units or their reciprocals, e.g. in miles pergallon vs.
gallons per mile, or Benford's \candles per watt" vs. \watts per candle". This
suggests that the distribution of logS should be symmetric about 1

2 .

Data having scale- or base-unbiased signi�cant digits may be produced in
many ways other than through random samples. If such data are combined
with unbiased randomm-samples then the result will again conform to BL in the
sense of Theorem6.20. (Presumably, this is what Benford did when combining
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mathematical tables with data from newspaper statistics.) For example, consider
the sequence (2n ) which may be thought of as the result of a periodic sampling
from a (deterministic) geometric process. As (2n ) is Benford, any mixture of this
sequence with a sequence of unbiased randomm-samples will again be Benford.

Finally, it is important to note that many r.p.m. and sampling processes do
not conform to BL, and hence necessarily are scale- and base-biased.

Example 6.23. (i) Let P be the constant r.p.m. P � � 1. SinceEP = � 1 has
base-invariant signi�cant digits, P has base-unbiased signi�cant digits. Never-
theless, for every sequence (X n ) of P-random m-samples, the sequence of �rst
signi�cant digits is constant, namely D1(X n ) � 1.

Similarly, if P = � 0;1 with probability one, then EP = � 0;1 does not have
scale- or base-invariant signi�cant digits. Consequently, every sequence ofP-
random m-samples is an i.i.d.U(0; 1)-sequence and hence not Benford, by Ex-
ample 3.10(i).

(ii) The r.p.m. considered in Example 6.10 do not have scale- or base-
unbiased signi�cant digits, simply becauseEP is not Benford.

(iii) As a another variant of the classical construction in [DF], consider the
following way of generating an r.p.m. on [1; 10): First let X 1=2 be uniformly
distributed on [1; 10) and setFP (X 1=2) = 1

2 . Next let X 1=4 and X 3=4 be inde-
pendent and uniformly distributed on [1; X 1=2) and [X 1=2; 10), respectively, and
set FP (X 1=4) = 1

4 and FP (X 3=4) = 3
4 , etc. It follows from [DF, Thm.9.21] that

FEP (t) =
2
�

arcsin logt ; 1 � t < 10;

and henceEP is not Benford. The r.p.m. P thus constructed, therefore, has
scale- and base-biased signi�cant digits.

6.3. Random maps

The purpose of this brief concluding section is to illustrate and proveone simple
basic theorem that combines the deterministic aspects of BL studied in Chapter
5 with the stochastic considerations of the present chapter. Speci�cally, it is
shown how applying randomly selected maps successively may generate Benford
sequences with probability one. Random maps constitute a wide and intensely
studied �eld, and for stronger results than the one discussed here the interested
reader is referred e.g. to [Ber3].

For a simple example, �rst consider the mapT : R ! R with T(x) =
p

jxj.
SinceT n (x) = jxj2

� n
! 1 asn ! 1 wheneverx 6= 0, the orbit OT (x0) is not

Benford for any x0. More generally, consider the randomized map

T(x) =

( p
jxj with probability p ;

x3 with probability 1 � p ;
(6.15)
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and assume that, at each step, the iteration ofT is independent of the entire
past process. Ifp = 1, this is simply the map studied before, and hence for
every x0 2 R, the orbit OT (x0) is not Benford. On the other hand, if p = 0
then Theorem 5.12 implies that, for almost every x0 2 R, OT (x0) is Benford. It
is plausible to expect that the latter situation persists for small p > 0. As the
following theorem shows, this is indeed that case even when the non-Benford
map

p
jxj occurs more than half of the time: If

p <
log 3

log 2 + log 3
= 0 :6131: : : ; (6.16)

then, for a.e.x0 2 R, the (random) orbit OT (x0) is Benford with probability one.
To concisely formulate this result, recall that for any (determinist ic or random)
sequence (Tn ) of maps mappingR or parts thereof into itself, the orbit OT (x0)
of x0 2 R simply denotes the sequence

�
Tn � 1 � : : : � T1(x0)

�
n 2 N

.

Theorem 6.24 ([Ber3]). Let (� n ) be an i.i.d. sequence of positive random vari-
ables, and assume thatlog � 1 has �nite variance, i.e. E(log � 1)2 < + 1 . For
the sequence(Tn ) of random maps given byTn : x 7! x � n and a.e. x0 2 R,
the orbit OT (x0) is Benford with probability one or zero, depending on whether
E log � 1 > 0 or E log � 1 � 0.

Proof. For every x 2 R and n 2 N,

log
�
Tn � : : : � T1(x)

�
=

� Y n

j =1
� j

�
log jxj = 10B n log jxj ;

where Bn =
P n

j =1 log � j . Assume �rst that E log � 1 > 0. In this case, B n
n

a:s:!
log � 1 as n ! 1 , and it can be deduced from [KN, Thm.4.2] that, with proba-
bility one, the sequence (10B n y) is u.d. for a.e.y 2 R. Sincex 7! log jxj maps the
family of (Lebesgue) nullsets into itself, with probability one OT (x0) is Benford
for a.e. x0 2 R. More formally, with (
 ; A; P) denoting the underlying probabil-
ity space, there exists 
 1 2 A with P(
 1) = 1 such that for every ! 2 
 1 the
sequenceOT (x0) is Benford for all x0 2 RnB ! , where B ! 2 B with � (B ! ) = 0.
Denote by N � R � 
 the set of all ( x0; ! ) for which OT (x0) is not Benford,
and let

Nx = f ! 2 
 : ( x; ! ) 2 N g; x 2 R ;

N ! = f x 2 R : (x; ! ) 2 N g; ! 2 
 :

Then Nx 2 A and N ! 2 B for all x 2 R and ! 2 
, respectively, and � (N ! ) = 0
for all ! 2 
 1. By Fubini's Theorem,

0 =
Z



� (N ! ) dP(! ) =

Z

R� 

1N d(� � P) =

Z

R
P(Nx ) d� (x) ;

showing that P(Nx ) = 0 for a.e. x 2 R. Equivalently P(OT (x0) is Benford ) = 1
holds for a.e.x0 2 R.
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Next assume thatE log � 1 < 0. Then Tn � : : : � T1(x) a:s:! 1 asn ! 1 for every
x 6= 0, and henceOT (x) is not Benford. (Note, however, that (Tn � : : :� T1(x) � 1)
may be Benford in this case.)

Finally, it remains to consider the caseE log � 1 = 0. It follows from the Law
of the Iterated Logarithm that, for every t 2 R,

lim supN !1
# f 1 � n � N : Bn � tg

N
�

1
2

with probability one :

Clearly, this implies P(OT (x0) is Benford ) = 0 for every x0 2 R.

Example 6.25. (i) For the random map given by (6.15),

P
�

� =
1
2

�
= p = 1 � P(� = 3) ;

and the condition E log � = � p log 2 + (1 � p) log 3 > 0 is equivalent to (6.16).
Note that E log � > 0 is not generally equivalent to the equally plausible (yet
incorrect) condition E� > 1. In the present example, the latter reduces top < 4

5 .

(ii) Consider the sequence (Tn ) of random maps Tn : x 7! j xj102n +  n where
( n ) is an i.i.d. sequence of Cauchy random variables. SinceEj 1j = + 1 , Theo-
rem 6.24does not apply. However,Bn = n(n+1)+

P n
j =1  j , and [CT, Thm.5.22]

shows that B n
n 2

a:s:! 1 as n ! 1 . The latter is enough to deduce from [KN,
Thm.4.2] that (10B n y) is u.d. mod 1 for a.e.y 2 R. The same argument as in
the above proof shows thatP(OT (x0) is Benford ) = 1 for a.e. x0 2 R. Thus the
conclusions of Theorem6.24 may hold under weaker assumptions.

(iii) Statements in the spirit of Theorem 6.24 are true also for more general
random maps, not just monomials [Ber3].

List of symbols

N; N0; Z; Q; set of positive integer, non-negative integer, integer, rational,
R+ ; R; C positive real, real, complex numbers

(Fn ) sequence of Fibonacci numbers, (Fn ) = (1 ; 1; 2; 3; 5; 8; 13; : : :)

(pn ) sequence of prime numbers, (pn ) = (2 ; 3; 5; 7; 11; 13; 17; : : :)

bxc largest integer not larger than x 2 R

hxi fractional part of x 2 R, i.e. hxi = x � b xc

<z, =z real, imaginary part of z 2 C

z, jzj conjugate, absolute value (modulus) ofz 2 C

C l set of all l times continuously di�erentiable functions, l 2 N0

C1 set of all smooth (i.e. in�nitely di�erentiable) functions, i.e.
C1 =

T
l � 0 C l
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S signi�cand function (De�nition 2.3)

D1; D2; D3 etc. �rst, second, third etc. signi�cant decimal digit (De�nition 2.1)

D (b)
m m-th signi�cant digit base b

logx base 10 logarithm ofx 2 R+

ln x natural logarithm of x 2 R+

# A cardinality (number of elements) of the �nite set A

O order symbol; an = O(bn ) as n ! 1 provided that jan j � cjbn j
for somec > 0 and all n

(
 ; A; P) probability space

Ac complement ofA in some ambient space 
 clear from the con-
text, i.e. Ac = f ! 2 
 : ! 62Ag

AnB set of elements ofA not in B , i.e. AnB = A \ B c

A� B symmetric di�erence of A and B , i.e. A� B = AnB [ B nA

� (f ) � -algebra generated by the functionf : 
 ! R

f � P probability measure on R induced by P and the measurable
function f : 
 ! R, via f � P(� ) := P

�
f � 1(� )

�

� a Dirac probability measure concentrated at a 2 


B Borel � -algebra onR or parts thereof

� Lebesgue measure on (R; B) or parts thereof

S signi�cand � -algebra (De�nition 2.7)

1A indicator function of the set A

� a;b normalized Lebesgue measure (uniform distribution)
on

�
[a; b); B[a; b)

�

i.i.d. independent, identically distributed (sequence or family of ran-
dom variables)

a.e. (Lebesgue) almost every

a.s. almost surely, i.e. with probability one

u.d. mod 1 uniformly distributed modulo one (De�nition 4.1)

X; Y; : : : (real-valued) random variable 
 ! R

EX expected (or mean) value of the random variableX

var X variance of the random variable with EjX j < + 1 ;
var X = E(X � EX )2

P probability measure on (R; B), possibly random

PX distribution of the random variable X
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FP , FX distribution function of P, X

B Benford distribution on ( R+ ; S)

OT (x0) orbit of x0 under the map T, possibly nonautonomous

N f Newton map associated with di�erentiable function f

� (A) spectrum (set of eigenvalues) ofd � d-matrix A

X n
D! X (X n ) converges in distribution to X

X n
a:s:! X (X n ) converges toX almost surely

EP expectation of r.p.m. P (Proposition 6.15)

� end of Proof

| end of Note and Remark(s)
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