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Abstract: We consider the efficient estimation of the semiparametric ad-
ditive transformation model with current status data. A wide range of sur-
vival models and econometric models can be incorporated into this general
transformation framework. We apply the B-spline approach to simultane-
ously estimate the linear regression vector, the nondecreasing transforma-
tion function, and a set of nonparametric regression functions. We show
that the parametric estimate is semiparametric efficient in the presence of
multiple nonparametric nuisance functions. An explicit consistent B-spline
estimate of the asymptotic variance is also provided. All nonparametric es-
timates are smooth, and shown to be uniformly consistent and have faster
than cubic rate of convergence. Interestingly, we observe the convergence
rate interfere phenomenon, i.e., the convergence rates of B-spline estimators
are all slowed down to equal the slowest one. The constrained optimization
is not required in our implementation. Numerical results are used to illus-
trate the finite sample performance of the proposed estimators.
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1. Introduction

We consider the efficient estimation of the following semiparametric additive
transformation model:

H(U) = Z ′β +
d∑

j=1

hj(Wj) + ǫ, (1)

where H(·) is a monotone transformation function, hj(·)’s are smooth regression
functions (with possibly different degrees of smoothness), and ǫ has a known dis-
tribution F (·) with support R. A wide range of survival models and econometric
models can be incorporated into the above general transformation framework,
e.g., [10, 20, 11, 1, 2]. In particular, the model (1) can be readily applied to a
failure time T by letting U = logT . We can obtain the partly linear additive
Cox model, i.e., [11], by assuming F (s) = 1− exp(−es) and H(u) = logA(eu),
where A is an unspecified cumulative hazard function. Specifically, the hazard
function of T , given the covariates (z, w), has the form

λ(t|z, w) = a(t) exp(β̃′z +

d∑

j=1

h̃j(wj)), (2)

where a(t) is the baseline hazard function, β̃ = −β and h̃j = −hj. However,
if we change the form of F (s) to es/(1 + es), the model (1) just becomes the
partly linear additive proportional odds model.

Motivated by the close connection with survival models, we focus on the
current status data in this paper which arises not only in survival analysis but
also in demography, epidemiology, econometrics and bioassay. More specifically,
we observe X = (V,∆, Z,W ), where V ∈ R is a random examination time and
∆ = 1{U ≤ V }. We assume that U and V are independent given (Z,W ). Under
current status data, the model (1) is also related to the semiparametric binary
model studied in econometrics. Using the link function F (·), we assume that the
probability of ∆ = 1, given the covariates (Z,W, V ), is of the expression:

P (∆ = 1|Z,W, V ) = F


β̃′Z +

d∑

j=1

h̃j(Wj) +H(V )


 . (3)

Note that [1] and [2] have done a great deal of statistical estimation and hy-

pothesis testing on the model (3) (without h̃j terms) by assuming F (·) to be
log-log function and logistic function, respectively. An extensive discussions on
the relation between (3) and survival models can be found in [9]. Recently a
similar transformation model has been considered by [4] but for the right cen-
sored data. They showed that the monotone transformation function is root-n
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estimable which will never be achieved in the case of current status data. This
is the key theoretical difference between the two types of survival data.

In this paper, we employ the B-spline approach to simultaneously estimate
the vector β, monotone H and smooth hj ’s. The corresponding estimates are

denoted as β̂, Ĥ and ĥj . In contrast, [16] apply the penalized NPMLE approach
to (1) (with d = 1) which yields a non-smooth step function Ȟ and the pe-
nalized estimate ȟ. Our B-spline framework has the following theoretical and
computational advantages over the existing penalized NPMLE approach:

1. Our B-spline estimate Ĥ is smooth and uniformly consistent. However, Ȟ
is always discontinues (regardless of the smoothness of its true function
H0) and has a bias which does not vanish asymptotically; see Page 2258 of

[16]. We can also obtain the faster rate of convergence for Ĥ than that for
Ȟ , i.e., OP (n

−1/3), by using the B-spline estimation approach. Therefore,

we expect more accurate inferences drawn from Ĥ .
2. We are able to give an explicit B-spline estimate for the asymptotic vari-

ance of β̂ based on which the asymptotic confidence interval of β can be
easily constructed. Under very weak conditions, its consistency is proven.
However, the block jackknife approach in [16] requires more computation,
and is even not theoretically justified.

3. Our spline estimation algorithm requires much less computation than the
isotonic type algorithm used in [16] since the order of jumps in the step
function is supposed to be much larger than the order of knots we choose
for estimating H and hj ’s.

In contrast with [11], we deal with the current status data rather than the right
censored data, and thus we also need to estimate the monotone transforma-
tion function which has been profiled out in their partial likelihood framework.
Despite the non-root-n convergence rates of Ĥ and ĥj ’s, we are able to show

that β̂ is root-n consistent, asymptotically normal and semiparametric efficient.
We derive the efficient information bound by taking the general two-stage pro-
jection approach from [19] which is needed due to the involvement of multiple
nonparametric functions in semiparametric models. Interestingly, we observe
the convergence rate interfere phenomenon for the B-spline estimators, i.e., the
convergence rates of nonparametric estimators are all slowed down to equal the
slowest one. Moreover, by approximating log Ḣ with the B-spline, we can avoid
the monotonicity constraint in the implementation, which is usually required in
the literature, e.g., [28].

The remainder of the paper is organized as follows. Section 2 describes the
B-spline estimation procedure. The asymptotic properties such as consistency
and convergence rates of the estimates are obtained in Section 3. The asymp-
totic distribution of the parametric component is studied in Section 4, and its
efficient information and the corresponding explicit B-spline estimate are given
in Section 5. Simulation studies are presented in Section 6.1. We close with an
appendix containing technical details.
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2. Semiparametric B-spline estimation

2.1. Assumptions

We first define some notations. For any vector v, v⊗2 = vv′. The notations >∼
and <∼ mean greater than, or smaller than, up to a universal constant. We de-
note An ≍ Bn if An

<∼ Bn and An
>∼ Bn. The notations Pn and Gn are used for

the empirical distribution and the empirical process of the observations, respec-
tively. Furthermore, we use the operator notation for evaluating expectation.
Thus, for every measurable function f and true probability P ,

Pnf =
1

n

n∑

i=1

f(Xi), Pf =

∫
fdP and Gnf =

1√
n

n∑

i=1

(f(Xi)− Pf).

We next present some model assumptions.

M1. U and V are independent given (Z,W ).
M2. (a) The covariates (Z,W ) are assumed to belong to a bounded subset in

Rl+d, say [0, 1]l × [0, 1]d. The support for V is [lv, uv], where −∞ < lv <
uv < +∞; (b) The joint density for (Z, V,W ) w.r.t. Lebesgue measure
stays away from zero, and the joint density for (V,W ) stays away from
infinity.

M3. E(Z − E(Z|V,W ))⊗2 is strictly positive definite.
M4. The residual error distribution F (·) is assumed to be known and has sup-

port R. Denote the first, second and third derivative of F as f , ḟ and f̈ ,
respectively. We assume that (a) (f(u) ∨ |ḟ(u)| ∨ |f̈(u)|) ≤ M < ∞ over
the whole R and f(u) stays away from zero in any compact set of R; (b)
[f2(v) − ḟ(v)F (v)] ∧ [f2(v) + ḟ(v)(1 − F (v))] > 0, for all v ∈ R.

Since we employ the smooth B-spline estimation rather than the penalized
NPML estimation, our residue error Condition M4 is much less restrictive than
that in [16]. Note that Condition M4(b) ensures the concavity of the function
s 7→ δ logF (s) + (1− δ) log(1 − F (s)) for δ = 0, 1.

It is easy to verify that the above Condition M4 is satisfied in the following
two general classes of residue error distribution functions after some algebra.

F1. F (s) = γ[2Γ(γ−1)]−1
∫ s

−∞
exp(−|t|γ)dt for γ > 1 is a family of distribu-

tions, which includes the standard normal distribution after appropriate
rescaling (γ = 2). This corresponds to the probit model [12].

F2. F (s) = 1 − [1 + γes]−1/γ is a Pareto distribution with parameter γ ∈
(0,∞) and corresponds to the odds-rate transformation family, see [7, 8].
It includes the following two well-known special cases:

(a). Given γ → 0, it yields the extreme value distribution, i.e. F (s) =
1−exp(−es), which corresponds to the complementary log-log trans-
formation, see [1];

(b). Given γ = 1, it gives the logistic distribution, i.e. F (s) = es/(1+ es),
which corresponds to the logit transformation, see [2].



Semiparametric additive transformation model under current status data 1739

2.2. B-spline estimation framework

From now on, we change the signs of β and hj for simplicity of exposition. In
addition, we re-centerH(v) to H(v)−H(lv) so that H(lv) = 0 for the purpose of
identifiability. The additional parameter H(lv) will be absorbed into the vector
β, i.e., the first coordinate of z is set as one. Given a single observation at
x = (v, δ, z, w), the log-likelihood of model (1) is written as

ℓ(β, h1, . . . , hd, H) = δ log



F


H(v) + β′z +

d∑

j=1

hj(wj)







+ (1− δ) log



1− F


H(v) + β′z +

d∑

j=1

hj(wj)





 . (4)

We assume that β ∈ B, which is a bounded open subset in R
l, and that its

true value β0 is an interior point of B. Before specifying the parameter spaces
for H and hj ’s, we first introduce the Hölder ball Hr

c(Y), which is a class of
smooth functions widely used in the nonparametric estimation, e.g., [22, 23].
For any f ∈ Hr

c(Y), it is J < r times continuously differentiable on Y and its
J-th derivative is uniformly Hölder continuous with exponent κ ≡ r−J ∈ (0, 1],
i.e.,

sup
y1,y2∈Y,y1 6=y2

|f (J)(y1)− f (J)(y2)|
|y1 − y2|κ

≤ c.

The functions in the Hölder ball can always be approximated by a basis expan-
sion, i.e.,

f(t) ≈
K∑

k=1

γkBk(t) = γ′B(t), (5)

where γ = (γ1, . . . , γK)′ and B(t) = (B1(t), . . . , BK(t))′. Actually, if the degree
d of the B-spline satisfies d ≥ (r − 1), we have

‖f − γ′B‖∞ ≍ K−r as K → ∞, (6)

where ‖ · ‖∞ denotes the supremum norm..
Assume the following parameter space Condition P1 for the smooth hj .

P1. For j = 1, . . . , d and some known cj , we assume that the parameter space
for hj is Hj , where

Hj =

{
hj : hj ∈ Hrj

cj [0, 1] with rj > 1/2 and

∫ 1

0

hj(wj)dwj = 0

}
,

and that the corresponding spline space is

Hjn =

{
hj : hj(w) = γ′

jBj(w) with ‖hj‖∞ ≤ cj and

∫ 1

0

hj(wj)dwj = 0

}
,
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based on a system of basis functions Bj = (Bj1, . . . , BjKj )
′ of degree

dj ≥ (rj − 1).

As seen from the previous examples, it is reasonable to assume that H(·) is
differentiable and strictly increasing over [lv, uv], i.e., Ḣ(v) ≥ C0 > 0. Con-
sidering that H(lv) = 0, we can thus write H(v) =

∫ v

lv
exp(g(s))ds, where

g(v) ≡ log Ḣ(v) is well defined. Such reparametrization can get around the
strict monotonicity and positivity constraints of H , and thus avoids the con-
strained optimization in the computation. The parameter space Condition P2
for g is specified below.

P2. For some known c0, we assume that the parameter space for g is G, where

G =
{
g : g ∈ Hr0

c0 [lv, uv] with r0 > 1/2
}
,

and that the corresponding spline space is

Gn = {g : g(v) = γ′
0B0(v) and ‖g‖∞ ≤ c0}

based on a system of basis functions B0 = (B01, . . . , B0K0) of degree
d0 ≥ (r0 − 1).

Similarly, we define G′
n = {H(v) =

∫ v

lv
exp(g(s))ds : g ∈ Gn}. By some algebra,

we can show that H ∈ Hr0+1
c′0

[lv, uv] for some c′0 < ∞.

Remark 1. Note that in the theoretical proofs and numerical calculations the
exact values of cj are not necessary. Instead, only the boundedness condition,
equivalently the compactness of parameter spaces and spline spaces, is needed.
Here we assume this boundedness condition, which can be relaxed by invoking
the chaining arguments, only for simplifying our theoretical derivations.

In this paper, we propose the B-spline approach to estimate H and hj ’s as
follows. Let A = B × G × Πd

j=1Hj and An = B × Gn × Πd
j=1Hjn. Denote α as

(β′, g, h1, . . . , hd)
′ and its true value α0 as (β′

0, g0, h10, . . . , hd0)
′, where g0(·) =

log Ḣ0(·). The log-likelihood (4) for the observation i can thus be reparametrized
as

ℓi(α) = δi log



F


β′zi +

∫ vi

lv

exp(g(s))ds+
d∑

j=1

hj(wij)







+ (1− δi) log



1− F


β′zi +

∫ vi

lv

exp(g(s))ds+
d∑

j=1

hj(wij)





 . (7)

The corresponding B-spline estimate α̂ is defined as

α̂ = arg max
α∈An

n∑

i=1

ℓi(α). (8)
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We can also write α̂ = (β̂′, ĝ, ĥ1, . . . , ĥd)
′ = (β̂′, γ̂′

0B0, γ̂
′
1B1, . . . , γ̂

′
dBd)

′. Then,

the estimate Ĥ(v) =
∫ v

lv
exp(γ̂′

0B0(s))ds. Some tedious algebra reveals that the

Hessian matrix of ℓi(α) w.r.t. (β
′, γ′

0, γ
′
1, . . . , γ

′
d)

′ is indeed negative semidefinite
under Condition M4(b) which guarantees the existence of α̂. See more discus-
sions on the computation feasibility in the simulation section. The above esti-
mation procedure also applies to other linear sieves approximating the Hölder
ball (or more generally Hölder space), e.g., wavelets.

3. Consistency and rates of convergence

In this section, we show that our B-spline estimate is consistent and the conver-
gence rate of each nonparametric estimate appears to interfere with each other.
Define

d(α, α0) = ‖β − β0‖+ ‖H −H0‖2 +
d∑

j=1

‖hj − hj0‖2,

where ‖ · ‖2 is the L2 norm. Now we give the main Theorem of this section.

Theorem 1. Suppose that Conditions M1-M4 and P1-P2 hold. If Kj/n → 0
for j = 0, 1, . . . , d, then we have

d(α̂, α0) = oP (1). (9)

More specifically, we further prove that

d(α̂, α0) = OP

(
max
0≤j≤d

{
K

−rj
j ∨

√
Kj/n

})
. (10)

If we further require that Kj ≍ n1/(2rj+1) for j = 0, . . . , d, then we have

d(α̂, α0) = OP (n
−r/(2r+1)), (11)

where r = min0≤j≤d{rj}.
Under the right censored data, [11] derived similar convergence rate result

(10) in the partly linear additive Cox model by assuming equal rj ’s. Accord-

ing to Theorem 1, the smooth Ĥ can achieve the rate of convergence, i.e.,
OP (n

−r/(2r+1)), no slower than n1/3-rate derived in the penalized estimation
context, see [16], when we assume that g0 and hj0’s are all at least continuously

differentiable, i.e., r ≥ 1. More importantly, we can further show that Ĥ is uni-
formly consistent, i.e., ‖Ĥ −H0‖∞ = oP (1), by applying Lemma 2 in [5] that

‖f‖∞ <∼ ‖f‖2r/(2r+d)
L2(Leb) for any f ∈ Hr

c [a, b]
d and noting that Ĥ,H0 ∈ Hr0+1

c′0
[lv, uv]

for some c′0 > 0.
The above theorem also holds when we employ the constrained monotone B-

spline to approximateH0, i.e., γ
′
0B0(v) ≈ logH(v) with γ01 ≤ γ02 ≤ · · · ≤ γ0K0 .

However, such constrained optimization usually requires additional computa-
tional effort, see [28].
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Remark 2. From the above Theorem 1, we observe the interesting convergence
rate interfere phenomenon, i.e., the convergence rate for each B-spline estimate
is forced to equal the slowest one. In [16], they also show that the convergence

rate of the penalized estimate h̃ is unfortunately slowed down to OP (n
−1/3) by

the NPMLE H̃ regardless of the smoothness degree of h0. One possible solution
in achieving the optimal rate for each nonparametric estimate is to extend the
most recent mixed rate asymptotic results [18] to the semiparametric setup.

Since we assume that r > 1/2, the convergence rate given in (11) is always
oP (n

−1/4). Such a rate is usually fast enough to guarantee the regular asymp-

totic behavior of β̂, i.e.,
√
n-consistency and asymptotic normality. Indeed, we

will improve the current suboptimal rate of β̂ in (11) to the optimal
√
n rate,

and further show that β̂ is semiparametric efficient in next section.

4. Weak convergence of the parametric estimate

In this section, we study the weak convergence of the spline estimate β̂ in the
presence of multiple nonparametric nuisance functions. We first calculate the
semiparametric efficient information based on the projection onto the nonorthog-
onal sumspace.

Let

Qθ(x) = f(θ)

(
δ

F (θ)
− 1− δ

1− F (θ)

)
,

where θ(z, v, w) = β′z +H(v) +
∑d

j=1 hj(wj). Denote θ0 as the true value of θ.
The score functions (operators) for β, g and hj are separately calculated as

ℓ̇β(X ;α) = ZQθ(X), (12)

ℓ̇g[a](X ;α) =

[∫ V

lv

exp(g(s))a(s)ds

]
Qθ(X), (13)

ℓ̇hj [bj ](X ;α) = bj(Wj)Qθ(X). (14)

We assume that a ∈ L2(H) ≡ {a :
∫ uv

lv
a2(s)dH(s) < ∞} and bj ∈ L0

2(wj) ≡
{bj :

∫ 1

0
bj(wj)dwj = 0 and

∫ 1

0
b2j(wj)dwj < ∞} so that all the score functions

defined above are square integrable.
To calculate the efficient score function ℓ̃β, we need to find the projection of ℓ̇β

onto the sumspaceA = Ag+Ah1+· · ·+Ahd
, whereAg = {ℓ̇g[a] : a ∈ L2(H)} and

Ahj = {ℓ̇hj [bj] : bj ∈ L0
2(wj)}. For simplicity, we define ℓ̇β(X ;α0) and ℓ̇β(X ; α̂)

as ℓ̇β0 and ℓ̇β̂ , respectively. The same notation rule applies to ℓ̇g[a](X ;α) and

ℓ̇hj [bj](X ;α). We define

ℓ̃β(X ;α) = ℓ̇β(X ;α)− ℓ̇g[ā
†](X ;α)−

d∑

j=1

ℓ̇hj [b̄
†
j](X ;α),
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where ā† = (a†1, . . . , a
†
l )

′ and b̄†j = (b†j1, . . . , b
†
jl)

′. And (a†k, b
†
1k, . . . , b

†
dk) is the

minimizer of

(ak, b1k, . . . , bdk) 7→ E



[ℓ̇β0 ]k − ℓ̇g0 [ak]−

d∑

j=1

ℓ̇hj0 [bjk]





2

for k = 1, . . . , l. Similarly, denote ℓ̃β(X ;α0) and ℓ̃β(X ; α̂) as ℓ̃β0 and ℓ̃β̂, respec-

tively. By taking the two-stage projection approach from [19], we have

ℓ̃β0(X) =

(
Z − b̄†(W )−

E((Z − b̄†(W ))Q2
θ0
(X)|V )

E(Q2
θ0
(X)|V )

)
Qθ0(X) (15)

where b̄†(W ) =
∑d

j=1 b̄
†
j(Wj) satisfies

E

{[
Z − b̄†(W )− E((Z − b̄†(W ))Q2

θ0
|V )

E(Q2
θ0
|V )

]

k

Q2
θ0bjk(Wj)

}
= 0 (16)

for every bjk ∈ L0
2(wj), j = 1, . . . , d and k = 1, . . . , l. By slightly modifying the

proof of Lemma 4 in [16], we can show that the above nonorthogonal projection
is well defined and b̄†(·) exists by the alternating projection Theorem A.4.2
in [3].

Define Πj and Πa as the projection operators

Πjg 7→
E[g(V,W )Q2

θ0
|Wj = wj ]

E[Q2
θ0
|Wj = wj ]

, Πag 7→
E[g(V,W )Q2

θ0
|V = v]

E[Q2
θ0
|V = v]

,

respectively. Define

D(v, w) =
E[ZQ2

θ0
|V = v,W = w]

E[Q2
θ0
|V = v,W = w]

, S(v, wj) =
E[Q2

θ0
|V = v,Wj = wj ]

E[Q2
θ0
|Wj = wj ]

,

T (wi, wj) =
E[Q2

θ0
|Wi = wi,Wj = wj ]

E[Q2
θ0
|Wj = wj ]

, U(wj , v) =
E[Q2

θ0
|Wj = wj , V = v]

E[Q2
θ0
|V = v]

.

We say a function f(s, t) belongs to a uniform Hölder ball Hr
c(S × T ) in t

relative to s if it is J < r continuously differentiable w.r.t. t and its J-th partial
derivative satisfies, with κ ≡ r − J ,

sup
s∈S

sup
t1 6=t2

|f (J)
t (s, t1)− f

(J)
t (s, t2)|

|t1 − t2|κ
≤ c.

Define Sf(v, wj) = S(v, wj)fV |Wj
(v, wj), Tf(wi, wj) = T (wi, wj)fWi|Wj

(wi, wj)
and Uf(wj , v) = U(wj , v)fWj |V (wj , v), where fV |Wj

, fWi|Wj
and fWj |V are

the conditional densities of V given Wj , Wi given Wj and Wj given V w.r.t.
Lebesgue measure, respectively.

Here, we assume some model assumptions implying that both b†jk and a†k
belong to some Hölder balls for any j = 1, . . . , d and k = 1, . . . , l.
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M5. We assume that [ΠjD(v, w)]k ∈ H
rj
c̄j [0, 1], Sf(v, wj) ∈ H

rj
c̄j ([lv, uv]× [0, 1])

in wj relative to v and Tf(wi, wj) ∈ H
rj
c̄j [0, 1]

2 in wj relative to wi for
some 0 < c̄j < ∞ and j = 1, . . . , d.

M6. We assume that [ΠaD(v, w)]k ∈Hr0+1
c̄0 [lv, uv] and Uf(wj , v)∈Hr0+1

c̄0 ([0, 1]×
[lv, uv]) in v relative to wj for some 0 < c̄0 < ∞.

Note that we can simplify Sf(v, wj) (Tf(wi, wj)) to S(v, wj) (T (wi, wj)) in
Condition M5 and simplify Uf(wj , v) to U(wj , v) in Condition M6 when we
assume that V and W are independent and that W is pairwise independent.

Theorem 2. Suppose that Conditions M1-M6 and P1-P2 hold. If Kj ≍ n1/(2rj+1)

and Ĩ0 is invertible, then we have

√
n(β̂ − β0) =

1√
n

n∑

i=1

Ĩ−1
0 ℓ̃β0(Xi) + oP (1)

d−→ N(0, Ĩ−1
0 ), (17)

where Ĩ0 is the efficient information matrix defined as Eℓ̃β0 ℓ̃
′
β0
.

5. B-spline estimate of the efficient information

In this section, we give an explicit B-spline estimate for the efficient information
as a by-product of the establishment of asymptotic normality of β̂. Indeed, it is
simply the observed information matrix if we treat the semiparametric model as
a parametric one after the B-spline approximation, i.e., Hj = Hjn and G = Gn.
Specifically, we treat ℓi(α) defined in (7) as if it were a parametric likelihood
ℓi(β, γ0, γ1, . . . , γd).

We construct the corresponding information estimator for (β′, γ0, γ1, . . . , γ2)
′:

Ĵ =

(
Î11 Î12
Î21 Î22

)

(l+
∑d

j=0 Kj)×(l+
∑d

j=0 Kj)

,

where Îj,k =
∑n

i=1 Aj(Xi; α̂)A
′
k(Xi; α̂)/n, for j, k = 1, 2, and

A1(X ;α) = ℓ̇β(X ;α),

A2(X ;α) =
(
ℓ̇g[B01], . . . , ℓ̇g[B0K0 ], ℓ̇h1 [B11], . . . , ℓ̇hd

[BdKd
]
)′

.

The parametric inferences imply that the information estimator for β is of the
form

Î = Î11 − Î12Î
−1
22 Î21. (18)

Some calculations further reveal that

Î = Pn


ℓ̇β̂ − ℓ̇ĝ[(γ̄

†
0)

′B0]−
d∑

j=1

ℓ̇ĥj
[(γ̄†

j )
′Bj ]



⊗2

, (19)
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where [γ̄†
j ]Kj×l = (γ†

j1, . . . , γ
†
jl) for j = 0, 1, . . . , d and (γ†

0k, . . . , γ
†
dk)

T = Î−1
22 Î211k

where 1k represents the l-vector with its k-th element as one and others as zeros.
We will use (18) as our estimator for Ĩ0.

We need the following additional assumption for Theorem 3.

M7. We assume that

E sup
ak∈Gn

[∫ V

lV

[exp(g(s))− exp(g0(s))]ak(s)ds

]2
<∼ ‖H −H0‖22.

Theorem 3. Under Conditions M1-M7 and P1-P2, we have Î
P→ Ĩ0.

Note that the consistency of the similar random-sieve efficient information
estimate was also proven in the linear regression models with current data; see
Theorem 3 of [21].

6. Numerical results

6.1. Simulations

We perform a Monte-Carlo study to assess the finite-sample performance of our
proposed method. To compare with the penalized NPMLE in [16], we adopt the
same setting used in their paper. We simulate the current status data from the
partly linear additive Cox model which is a special case of general transformation
model. We choose H(u) = logA(eu) where A(u) = ek0(exp(u/3) − 1) with
k0 = 0.06516. The errors ǫ follow an extreme value distribution with F (s) =
1− exp(−es). The regression coefficients β1 = 0.3 and β2 = 0.25. The covariate
Z1 is Uniform[0.5, 1.5] and Z2 is Bernoulli with success probability 0.5. We
choose W as Uniform[1, 10] and h(w) = sin(w/1.2−1)−k0. Censoring times are
standard exponential distribution conditional on being in the interval [0.2, 1.8].
The sample sizes are n = 400 and n = 1600. We simulate 400 realizations for
both sample sizes.

In practice, the location and the numbers of knots for H and hj need to
be determined. For simplicity, we will use the equal-spaced knots for all func-
tions. Common model selection methods such as the Akaike information crite-
rion (AIC), and the Bayesian information criterion (BIC) can be employed for
selecting the number of knots. In this paper, we determine K0,K1, . . . ,Kd by
the AIC, given by

AIC = −2
n∑

i=1

ℓi(α̂) + 2

(
ℓ+

d∑

j=0

Kj

)

In our simulation, we use a quadratic spline to approximate both function h
and function g in H . Then, AIC = −2

∑n
i=1 ℓi(α̂) + 2(K0 + K1 + 2). Based

on our experiences, it is generally adequate to choose less than ten knots to
achieve reasonable approximation, provided that h and H are not overly erratic.
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Fig 2. Plot of the estimated h and H with various values of K0 and K1.

Figure 1 shows the AIC scores under different combinations of K0 and K1 for
one realization of the simulation with the sample size n = 1600. It shows that
the optimal choices for K0 and K1 are 5 and 5, respectively. The estimated h
and H with various values ofK0 and K1 are plotted in Figure 2. In the left panel
of Figure 2, we fix K0 = 5 and plot the estimated h with K1 = 3, 5, 10. When
K1 is small (e.g., K1 = 3), there seems be to a big bias in our estimator. On the
other hand, when K1 is large (e.g., K1 = 10), the estimator displays a wiggly
behavior. In the right panel of Figure 2, we fix K1 = 5 and plot the estimated H
with K0 = 5, 7, 10. As the number of knots is increasing, the estimated H shows
a similar wiggly shape. Hence, the numbers of knots should be chosen with
caution. It is worth noting that the selected values K0,K1, . . . ,Kd based the
AIC criterion can be regarded only as the minimum numbers of knots required.
They may not be the optimal choices since the concept of optimality is not well
defined here. See [26] for similar discussions.
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Table 1

Monte Carlo results for the partly linear Cox model with current status data based on
400 replicates

Sample size 400 Sample size 1600

β̂1 Bias 0.0318 0.0100
SD 0.2919 0.1246
ESD 0.3102 0.1325
Coverage 0.9620 0.9690
ESD-WB 0.3547 0.1575

β̂2 Bias 0.0168 0.0074
SD 0.1533 0.0797
ESD 0.1612 0.0803
Coverage 0.9710 0.9680
ESD-WB 0.1836 0.0936

Joint Coverage 0.9620 0.9550
SD: Standard error; ESD: Estimated standard error; ESD-WB: Estimated
standard error from the weighted bootstrap method

Simulation results show that our B-spline estimation procedure performs
quite well in the semiparametric transformation model. The bias and standard
errors of the spline estimates of β1 and β2 are given in Table 1. The table
shows that the sample biases of both β̂1 and β̂2 are small. The ratio of the
standard errors for the two sample sizes is close to 2, a result consistent with
a
√
n-convergence rate for β̂1 and β̂2. The estimated standard errors from (18)

(denoted as ESD) are also displayed in Table 1, which are very close to the
simulation results. Although our proposed method tends to overestimate the
standard error slightly but the overestimation lessens as sample size increases.
We also compare our results with the weighted bootstrap method in [17]. The
weights are from the exponential distribution with mean one. The estimated
standard errors are also similar to the results obtained using our explicit B-
spline estimate. The 95% confidence interval constructed from (18) generally

have coverage close to the nominal value. Histograms of β̂1 and β̂2 are shown in
Figure 3. It is clear that the marginal distributions of β̂1 and β̂2 are Gaussian.
The left panel of Figure 4 displays the spline estimate of h(w) and the monotone

estimate Ĥ is given in the right panel of Figure 4. The dashed line is the true
function, the solid line is the average estimate over 400 realizations, and the
dash-dotted line is the 95% pointwise confidence band for h(w) or H(v) when
we know the true model, which is obtained by taking 2.5 percentile and 97.5
percentile of these 400 estimates at each w or v.

As suggested by one of the referees, we also perform a Monte-Carlo study by
including two nonparametric functions in the model. Under the same setting as
in the last study, the two nonparametric functions are h1(w1) = sin(w1/1.2 −
1)−k0 with w1 following a uniform distribution on [1, 10] and h2(w2) = 3w2

2−1
with w2 following a uniform distribution on [−1, 1]. Figure 5 shows the AIC
scores under different combinations of K0, K1 and K2 for one realization of the
simulation with the sample size n = 1600. For illustration, we only plot two
choices of K0 where the top surface is for K0 = 10 and the bottom surface is
for K0 = 4. The optimal choice by the AIC criterion is (K0,K1,K2) = (4, 5, 3).
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Fig 3. Histogram of β̂1 and β̂2 based on 1600 samples and 400 replicates.
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The spline estimates of h1, h2 and H under the optimal number of knots are
displayed in Figure 6, and the dotted lines are the true functions.

To compare our spline based method with the penalized method in [16],
there are four obvious advantages of our method. First, the computational cost
of our spline estimate Ĥ is much less expensive than that used in [16], i.e.
the cumulative sum diagram approach. This is because the number of basis B-
splines, i.e., K0, is often taken much smaller than the sample size n, thus the
dimension of the estimation problem is greatly reduced. Secondly, our estimate
of the transformation function H is smooth with a higher convergence rate.
We obtain a narrower confidence interval for H shown in the right panel of
Figure 4. Thirdly, we can obtain an explicit consistent estimate Î. However, the
block jackknife approach proposed in [16] is not theoretically justified. At last,
we do not require the constrained optimization in our implementations.



Semiparametric additive transformation model under current status data 1749

3
4

5
6

7
8

9
10

2

4

6

8

10
750

760

770

780

790

800

810

K
2

K
1

A
IC

Fig 5. AIC scores under different combinations of K0, K1, and K2.

0 5 10
−1.5

−1

−0.5

0

0.5

1

w
1

h 1(w
1)

−1 0 1
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

w
2

h 2(w
2)

0 1 2
−1

−0.5

0

0.5

1

1.5

2

u

H
(u

)

Fig 6. Estimates of h1, h2 and H. The dotted lines are true functions.



1750 G. Cheng and X. Wang

6.2. Application: Calcification data

We illustrate the proposed method in a dataset from the calcification study.
[27] investigated the calcification of intraocular lenses, which is an infrequently
reported complication of cataract treatment. Understanding the effect of some
clinical variables on the time to calcification of the lenses after implantation is
the objective of the study. The patients were examined by an ophthalmologist to
determine the status of calcification at a random time ranging from zero to thirty
six months after implantation of the intraocular lenses. The severity of calcifi-
cation was graded into five categories ranging from zero to four. In our analysis,
we simply treat those with severity > 1 as calcified and those with severity ≤ 1
as not calcified. This dataset can be treated as the current status dataset be-
cause only the examination time and the calcification status at examination are
available. The covariates of interest include Z1 incision length, Z2 gender (0 for
female and 1 for male), and W age at implantation/10. The original dataset has
379 records. We remove the one record with missing measurement, resulting the
sample size n = 378. This dataset has been studied by [26], [14], and [15]. [26]
and [14] modeled the event time by the log-transformation. A straightforward
estimation of the hazard function is not available. [15] used the cure model to
fit the data, and assumed a generalized linear model for the cure probability.
For subjects not cured, the linear and partly linear Cox proportional hazards
models are used to model the survival risk.

We fit this dateset using the semiparametric additive transformation model.
We assume the error distribution F to be one of the two distributions: extreme
value distribution and logistic distribution. We approximate h and log Ḣ by
quadratic splines. The optimal choices of knots for h and log Ḣ are 6 and 5,
respectively. The estimates and their corresponding estimated standard errors
for the parametric part are summarized in Table 2. The estimates for h(w) based
on different error distributions are displayed in the left panel of Figure 7, and the
estimates of H(v) are plotted in the right panel of Figure 7. The analysis shows
very similar results for these two error distributions. From Table 2, both incision
length and gender are insignificant at the 5% level of significance. From the left
panel of Figure 7, h(w) increases steadily from age 50, achieving a peak at
age 60, decreasing gradually thereafter, which means that patients ages around
60 tend to enjoy a longer time to calcification. The estimated transformation
function Ĥ in the right panel of Figure 7 displays a nonlinear behavior and it
shows that the transformation is necessary.

Table 2

The estimates and their corresponding estimated standard errors for the parametric part for
the calcification data

extreme value distribution logistic distribution

β̂1 −0.1870 −0.2562

ESD(β̂1) 0.2322 0.2119

β̂2 0.3502 0.3573

ESD(β̂2) 0.3481 0.3280
ESD: Estimated standard error
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We can incorporate an unknown scale parameter into to the residual error
distribution F (·) to further improve the above analysis. Our general B-spline
estimation framework can also handle this type of transformation models easily.

Appendix

Some useful Lemmas

We define ǫ-covering number (ǫ-bracketing number) as N(ǫ,A, d) (NB(ǫ,A, d)).
The corresponding ǫ-entropy (ǫ-bracketing entropy) is defined as H(ǫ,A, d) =
logN(ǫ,A, d) (HB(ǫ,A, d) = logNB(ǫ,A, d)). Define Gn(δ0; ‖ · ‖) = {g : g(v) =
γ′
0B0(v) satisfying ‖g‖ ≤ δ0} and Hjn(δj ; ‖ · ‖) = {hj : hj(wj) = γjBj(wj)

satisfying ‖hj‖ ≤ δj and
∫ 1

0
hj(wj)dwj = 0}. Obviously, Gn(c0; ‖ · ‖∞) = Gn

and Hjn(cj ; ‖ · ‖∞) = Hjn. Lemma 1 follows from the B-spline approximation
property (6). Lemma 2 is directly implied by Lemma 2.5 in [24]. Lemma 4 is
adapted from Proposition 1 in [6].

Lemma 1. There exist gn ∈ Gn and hjn ∈ Hjn such that

‖gn − g0‖∞ ≍ K−r0
0 , (A.1)

‖Hn −H0‖∞ = O(K−r0
0 ), (A.2)

‖hjn − hj0‖∞ ≍ K
−rj
j , (A.3)

∥∥∥∥∥∥

d∑

j=1

hjn −
d∑

j=1

hj0

∥∥∥∥∥∥
∞

= O

(
max

j=1,...,d
{K−rj

j }
)
, (A.4)

where Hn(v) =
∫ v

lv
exp(gn(s))ds.
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Lemma 2.

H(ǫ,Gn(δ0; ‖ · ‖), ‖ · ‖) <∼ K0 log(1 + 4δ0/ǫ), (A.5)

H(ǫ,Hjn(δj ; ‖ · ‖), ‖ · ‖) <∼ Kj log(1 + 4δj/ǫ) (A.6)

for 1 ≤ j ≤ d.

Lemma 3. Let h = (h1, . . . , hd). Define K = {ζ(β,h, H) : β ∈ B,h ∈∏d
j=1 Hjn, g ∈ Gn}, where the form of ζ is defined in (A.12). We have

sup
ζ∈K

|Gnζ| = OP ( max
j=0,1,...,d

{K1/2
j }). (A.7)

Proof. Define l∗(β,h, H) = δF (β′z+
∑d

j=1 hj(wj)+H(v))+(1−δ)[1−F (β′z+
∑d

j=1 hj(wj) +H(v))]. The construction of l∗(·) implies that

‖l∗(β0,hn, Hn)− l∗(β0,h0, H0)‖∞ = O( max
j=0,1,...,d

{K−rj
j }) (A.8)

based on (A.2), (A.4) and M4. Thus, l∗(β0,hn, Hn) is bounded away from zero
for sufficiently large n.

For any β1, β2 ∈ B, h1,h2 ∈ ∏d
j=1 Hjn and g1, g2 ∈ Gn, we have

|ζ(β1,h1, H1)− ζ(β2,h2, H2)|
<∼ |l∗(β1,h1, H1)− l∗(β2,h2, H2)|

<∼ ‖β1 − β2‖+
d∑

j=1

‖h1j − h2j‖∞ + ‖g1 − g2‖∞. (A.9)

The first and second inequalities in the above follow from the fact that l∗(β0,hn,
Hn) is strictly positive for sufficiently large n by (A.8), and Condition M4(a),
respectively. As shown in (A.9), the functions in the class K are Lipschitz con-
tinuous in (β,h, g). Therefore, by combining Lemma 2 and Theorem 2.7.11 in
[25], we obtain that

HB(ǫ,K, L2(P )) <∼ max
0≤j≤d

{Kj} log(1 +M/ǫ),

where M = max0≤j≤d{4cj}. In the end, we apply Lemma 3.4.2 in [25] to this
uniformly bounded class of functions K to obtain (A.7).

Lemma 4. Suppose the following Conditions (B1)-(B3) hold.

B1. Pnℓ̇β̂ = oP (n
−1/2), Pnℓ̇ĝ[ā

†] = oP (n
−1/2) and Pnℓ̇ĥj

[b̄†j ] = oP (n
−1/2);

B2. sup{α:d(α,α0)≤C1n−r/(2r+1)} Gn(ℓ̃β(X ;α)− ℓ̃β(X ;α0)) = oP (1);

B3. P (ℓ̃β(X ;α) − ℓ̃β(X ;α0)) = −Ĩ0(β − β0) + o(‖β − β0‖) + o(n−1/2) for α
satisfying d(α, α0) ≤ C1n

−r/(2r+1).
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If α̂ is consistent and Ĩ0 is invertible, then we have

√
n(β̂ − β0) =

1√
n

n∑

i=1

Ĩ−1
0 ℓ̃β0(Xi) + oP (1)

d−→ N(0, Ĩ−1
0 ).

Lemma 5. (i) If a(s, t) = a(s1, s2, t) ∈ Hr
c(S1 ×S2 ×T ) in t relative to s1 and

s2, then
∫
S1

a(s1, s2, t) ds1 ∈ Hr
c′(S2 × T ) in t relative to s2.

(ii) If a(s, t), b(s, t) ∈ Hr
c(S×T ) in t relative to s, then c(s, t) ≡ a(s, t)b(s, t) ∈

Hr
c′(S × T ) in t relative to s.
(iii) If a(s, t) ∈ Hr

c(S×T ) in t relative to s and f(·) ∈ C⌈β⌉, then f(a(s, t)) ∈
Hr

c′(S × T ) in t relative to s.

Proof. Let ⌊r⌋ be the largest integer smaller than r. Denote the m-th derivative
of a(s, t) w.r.t. t as Dm

t a(s, t) for m = 0, 1, . . . , ⌊r⌋.
(i) Note that Dm

t a(s1, s2, t) is bounded for 0 ≤ m ≤ ⌊r⌋, by the dominated
convergence theorem, we can take derivative inside the integral to obtain

Dm
t

(∫

S1

a(s1, s2, t) ds1

)
=

∫

S1

Dm
t a(s1, s2, t) ds1,

which implies that Dm
t (
∫
S1

a(s1, s2, t) ds1) is bounded for 0 ≤ m ≤ ⌊r⌋. Using
this and the fact that

∣∣D⌊r⌋
t

(∫
S1

a(s1, s2, t2) ds1
)
−D

⌊r⌋
t

(∫
S1

a(s1, s2, t1) ds1
)∣∣

|t2 − t1|r−⌊r⌋

≤
∫

S1

sup
s1,s2

sup
t1 6=t2

|D⌊r⌋
t a(s1, s2, t2)−Dmα

t a(s1, s2, t1)|
|t2 − t1|r−⌊r⌋

ds1 ≤ c′ < ∞,

for all s2 and t1 6= t2, we conclude that
∫
S1

a(s1, s2, t) ds1 ∈ Hr
c′(S2 × T ) in t

relative to s2 for some c′ < ∞.
(ii) The result is true because

Dm
t c =

∑

i+j=m

Di
taD

j
t b

is bounded for 0 ≤ m ≤ ⌊r⌋. Also we note that for i < ⌊r⌋,

|Di
ta(s, t2)−Di

ta(s, t1)|
|t2 − t1|r−⌊r⌋

=
|
∫ t2
t1

Di+1
t a(s, t) dt|

|t2 − t1|r−⌊r⌋
.

It can then be easily verified that

sup
s

sup
t1 6=t2

|D⌊r⌋
t c(s, t2)−D

⌊r⌋
t c(s, t1)|

|t2 − t1|r−⌊r⌋
< ∞.

(iii) When 0 < α ≤ 1, the result follows from the observation that

f(a(s, t2))− f(a(s, t1))

|t2 − t1|β
=

f(a(s, t2))− f(a(s, t1))

|a(s, t2)− a(s, t1)|
· |a(s, t2)− a(s, t1)|

|t2 − t1|β
.
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Using the chain rule, the above observation and part (ii) of the lemma, the
desired result can be obtained by induction for general β.

Denote

Sk(X ;α,wk) = [ℓ̇β(X ;α)]k − ℓ̇g[ak](X ;α)−
d∑

j=1

ℓ̇hj [bjk](X ;α),

where wk = (ak, b1k, . . . , bdk). Let Wn = Gn ×∏d
j=1 Hjn and N0 = {α ∈ A :

d(α, α0) = o(1)}.
Lemma 6. Under Conditions M1-M7 & P1-P2, we have

E sup
wk∈Wn

|Sk(X ;α,wk)− Sk(X ;α0, wk)|2 <∼ d2(α, α0) (A.10)

for all α ∈ N0 and k = 1, . . . , l.

Proof. In view of (12)-(14), we can bound the left hand side of (A.10) by

<∼ ‖Qθ −Qθ0‖22 + E

{
sup

ak∈Gn

[∫ V

lv

(exp(g(s))− exp(g0(s)))ak(s)ds

]2
(Qθ −Qθ0)

2

}

+ E sup
ak∈Gn

[∫ V

lv

exp(g0(s))ak(s)ds(Qθ −Qθ0)

]2

+ E sup
ak∈Gn

[∫ V

lv

(exp(g(s))− exp(g0(s)))ak(s)dsQθ0

]2

+

d∑

j=1

E sup
bjk∈Hjn

[
b2jk(Qθ −Qθ0)

2
]

after some algebra. The compactness of Gn and Hjn imply that the third and
fifth term in the above are both of the order ‖Qθ −Qθ0‖22. For the second term,
we can further bound it by

E

[
sup

ak∈Gn

∫ V

lV

a2k(s)ds

∫ V

lV

[exp(g(s))− exp(g0(s))]
2ds(Qθ −Qθ0)

2

]
.

Considering the compactness of G and Gn, we know the second term is also of the
order ‖Qθ−Qθ0‖22. Assumption M4(a) together with Cauchy-Schwartz inequality

implies that ‖Qθ−Qθ0‖22 <∼ ‖β−β0‖2+ ‖H−H0‖22+ ‖∑d
j=1(hj −hj0)‖22. Since

we assume that the density for W is bounded away from zero and infinity, we
have that ‖∑d

j=1(hj−hj0)‖22 <∼
∑d

j=1 ‖hj−hj0‖22 considering the identifiability

condition
∫ 1

0 hj(wj)dwj = 0. Assumption M7 implies that the fourth term is of
the order ‖H −H0‖22. Considering the form of d(α, α0), we conclude the whole
proof.
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Proof of Theorem 1

We show the estimation consistency (9) by first establishing

P



(β̂ − β0)

′Z +
d∑

j=1

(ĥj − hjn)(Wj) + Ĥ(V )−Hn(V )





2

= oP (1). (A.11)

Combining (A.11) with the identifiability Condition M3, we directly obtain (β̂−
β0) = oP (1) which, in turn, implies that P

{∑d
j=1(ĥj − hjn)(Wj) + Ĥ(V ) −

Hn(V )
}2

= oP (1). Considering the assumption M2(b) and that
∫ 1

0
hj(wj)dwj =

0 for hj ∈ Hj∪Hjn, we can further show
∑d

j=1 ‖ĥj−hjn‖2+‖Ĥ−Hn‖2 = oP (1).
The spline approximation result (A.2) and (A.3) conclude the proof of (9).

In the below, we will show (A.11) to complete the proof of (9). Recall that

h = (h1, . . . , hd). Denote h0, hn and ĥ as the corresponding true value, B-
spline approximation and sieve estimate, respectively. Recall that l∗(β0,hn, Hn)
is bounded away from zero for sufficiently large n as implied by (A.8). Then, by
the definition of α̂, we have

Pn log{l∗(β̂, ĥ, Ĥ)/l∗(β0,hn, Hn)} ≥ 0,

which implies that, by the inequality that α log(x) ≤ log(1 + α(x − 1)) for any
x > 0 and α ∈ (0, 1),

0 ≤ Pn log

[
1 + α

{
l∗(β̂, ĥ, Ĥ)

l∗(β0,hn, Hn)
− 1

}]
≡ Pnζ(β̂, ĥ, Ĥ). (A.12)

Lemma 3 implies that (Pn − P )ζ(β̂, ĥ, Ĥ) = oP (1) since Kj/n = o(1) for any

j = 0, 1, . . . , d. Thus, Pζ(β̂, ĥ, Ĥ) ≥ oP (1) based on (A.12). Let Un(X) =

l∗(β̂, ĥ, Ĥ)/l∗(β0,hn, Hn). Based on (A.8) we know PUn(X) = 1+oP (1), which

further implies Pζ(β̂, ĥ, Ĥ) ≤ oP (1) by the concavity of s 7→ log(s). This in

turn implies that Pζ(β̂, ĥ, Ĥ) = oP (1). This forces P |(β′
0Z +

∑d
j=1 hjn(Wj) +

Hn(V )) − (β̂′Z +
∑d

j=1 ĥj(Wj) + Ĥ(V ))| = oP (1) by the strict concavity of

s 7→ log s, Conditions M4(a), P1 and P2. It is easy to verify that ER2
n = oP (1)

if E|Rn| = oP (1). Thus, we have shown (A.11) in the end.
As for the convergence rate results (10) & (11), we first apply Theorem 3.2.5

in [25] to establish

‖θ̂ − θ0‖2 = OP (δ1n ∨ δ2n), (A.13)

where θ̂ is the plug-in sieve estimate of θ and

δ1n = max
0≤j≤d

{
√
Kj}/

√
n and δ2n = max

0≤j≤d
{K−rj

j }. (A.14)

Following similar arguments in proving the consistency, we know that (A.13)
implies (10) and (11) by choosing Kj ≍ n1/(2rj+1).
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In the below, we show (A.13) by verifying the conditions of Theorem 3.2.5 in
[25]. We first need to show that

P [ℓ(α0)− ℓ(α)] >∼ ‖θ − θ0‖22 (A.15)

for every α in the neighborhood of α0. Define q(δ, t) = δ log(F (t))+(1−δ) log(1−
F (t)) and q̈(δ, t) as its second derivative w.r.t. t. Since α0 maximizes α 7→ Pℓ(α),
we have

P [ℓ(α0)− ℓ(α)] = P

[
−q̈(δ, θ̃)

2
(θ − θ0)

2

]
,

where θ̃ is on the line segment between θ and θ0. The compactness of the pa-
rameter spaces imply that P [ℓ(α0) − ℓ(α)] ≍ ‖θ − θ0‖22. This completes the
proof of (A.15). We next calculate the order of E sup‖θ−θ0‖2≤δ |Gn(ℓ(α)−ℓ(α0))|
as a function of δ, denoted as φn(δ), by the use of Lemma 3.4.2 of [25]. Let
F1n(δ) = {ℓ(α) − ℓ(α0) : g ∈ Gn, hj ∈ Hjn, ‖θ − θ0‖2 ≤ δ}. Using the same
argument as that in the proof of Lemma 3, we obtain that HB(ǫ,F1n(δ), L2(P ))
is bounded by Cmax0≤j≤d{Kj} log(1 + δ/ǫ). This leads to

JB(δ,F1n(δ), L2(P )) =

∫ δ

0

√
1 +HB(ǫ,F1n(δ), L2(P ))dǫ ≤ C max

0≤j≤d
{
√
Kj}δ.

The compactness of Gn and Hjn implies the uniform boundedness of any f ∈
F1n(δ). Thus, Lemma 3.4.2 of [25] gives

φn(δ) = max
0≤j≤d

{
√
Kj}δ + max

0≤j≤d
{Kj}/

√
n.

By solving δ−2
1n φn(δ1n) ≤

√
n, we get the form of δ1n in (A.14).

We next show that Pnℓ(α̂)−Pnℓ(α0) ≥ −OP (δ
2
2n). The definition of α̂ implies

that Pn[ℓ(α̂)− ℓ(α0)] ≥ An +Bn, where An = (Pn − P ){ℓ(β0, Hn,hn)− ℓ(α0)}
and Bn = P{ℓ(β0, Hn,hn)− ℓ(α0)}. A straightforward Taylor expansion gives

An = (Pn − P )



ℓ̇2(β0, H̃n, h̃n)(Hn −H0) +

d∑

j=1

ℓ̇2+j(β0, H̃n, h̃n)(hjn − hj0)



 ,

where ℓ̇t is the Fréchet derivative of ℓ(β0, Hn,hn) w.r.t. the t-th argument.
Considering (A.2), (A.3) and the fact that 0 < ǫ1 ≤ |q̇(δ, t)| ≤ ǫ2 < ∞ for t in
some compacta of R1, we have

P

{
ℓ̇2(β0, H̃n, h̃n)(Hn −H0) +

∑d
j=1 ℓ̇2+j(β0, H̃n, h̃n)(hjn − hj0)

max0≤j≤d{K−rj
j }nǫ

}2

→ 0

(A.16)

for any ǫ > 0. Let F2n = {ℓ(β0, H,h) − ℓ(α0) : g ∈ Gn, hj ∈ Hjn, ‖g − g0‖∞ ≤
C0K

−r0
0 , ‖hj − hj0‖∞ ≤ CjK

−rj
j }. Similar analysis in Lemma 3 show that the
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bracketing entropy integral (in terms of L2(P )) for F2n is finite, thus yields that
F2n is P-Donsker. Combining this P-Donsker result and (A.16), we use Corollary

2.3.12 of [25] to conclude that
√
nAn/(max0≤j≤d{K−rj

j }nǫ) = oP (1). By choos-

ing some proper 0 < ǫ < 1/2 satisfying nǫ−1/2 = max0≤j≤d{K−rj
j }, we have

An = oP (max0≤j≤d{K−2rj
j }). We can also show Bn ≥ −O(max0≤j≤d{K−2rj

j })
by similar analysis of (A.15). This gives the form of δ2n in (A.14), and thus
concludes the whole proof.

Proof of Theorem 2

We apply Lemma 4 to prove this theorem by checking their Conditions B1 – B3.
To facilitate the understanding, we first sketch the verification of Condition B1
and then provide the details. To verify B1, we first know that Pnℓ̇β̂ = 0 since β̂

maximizes l(β, ĝ, ĥ1, . . . , ĥd), β̂ is consistent and β0 is an interior point of B. We

next show that b†jk (a†k) belongs to H
rj
c̃j
[0, 1] (Hr0

c̃0
[lv, uv]) for some 0 < c̃j < ∞

and j = 0, 1, . . . , d such that there exists a b†jkn ∈ Hjn (a†kn ∈ Gn) satisfying

‖b†jk − b†jkn‖∞ = O(n−rj/(2rj+1)) (A.17)

‖a†kn − a†k‖∞ = O(n−r0/(2r0+1)) (A.18)

by (6) and the assumption that Kj ≍ n1/(2rj+1). Since Pnℓ̇ĥj
[bjkn] = 0 and

Pnℓ̇ĝ[akn] = 0 for any bjkn ∈ Hjn and akn ∈ Gn, it remains to show

Pn

{
ℓ̇ĥj

[b†jkn]− ℓ̇ĥj
[b†jk]

}
= oP (n

−1/2), (A.19)

Pn

{
ℓ̇ĝ[a

†
kn]− ℓ̇ĝ[a

†
k]
}

= oP (n
−1/2) (A.20)

for verifying Condition B1.
Now we show b†jk ∈ H

rj
c̃j
[0, 1] and (A.19). Following the analysis in Page 2282

of [16], we can write, with ā†I(v) =
∫ v

lv
exp(g0(s))ā

†(s)ds,

b̄†j = ΠjD(v, w) −Πj ā
†
I(v)−

∑

i6=j

Πj b̄
†
i

= ΠjD(v, w) −
∫ uv

lv

ā†I(v)Sf(v, wj)dv −
∑

i6=j

∫ 1

0

b̄†i (wi)Tf(wi, wj)dwi.

According to Lemma 5 and dominated convergence theorem, we know that
b†jk(wj) ∈ H

rj
c̃j
[0, 1] under Condition M5, b†jk ∈ L0

2(wj) and a†k ∈ L2(H) (thus a†Ik
is uniformly bounded) for some 0 < c̃j < ∞. As for (A.19), we first decompose
its left hand side as I1n + I2n, where

I1n = P
{
ℓ̇ĥj

[b†jkn − b†jk]− ℓ̇hj0 [b
†
jkn − b†jk]

}
,

I2n = (Pn − P )
{
ℓ̇ĥj

[b†jkn − b†jk]
}
.
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By Cauchy-Schwartz Inequality, we have I1n <∼ ‖b†kjn − b†kj‖∞‖θ̂ − θ0‖2 based
on Conditions M4(a), P1 & P2. Thus, (A.13) and (A.17) imply that I1n =
OP (n

−2r/(2r+1)) = oP (n
−1/2) since r > 1/2.

To show I2n = oP (n
−1/2), we need to make use of Lemma 3.4.2 in [25]. We

first construct the following class of functions:

In =

{
fθ,bjkn

(x) = ℓ̇hj [bjkn − b†jk](x;α) : α ∈ An(n
−r

2r+1 ) and

bjkn ∈ H′
jn

(
n

−rj
2rj+1

)}
,

where An(δ) ≡ {α ∈ An : d(α, α0) ≤ C1δ} and H′
jn(δ) ≡ {bjkn ∈ Hjn :

‖bjkn − b†jk‖∞ ≤ C2δ} for some 0 < C1, C2 < ∞. Let Θn(δ) = {β′z +H(v) +
∑d

j=1 hj(wj) : α ∈ An(δ)}. It is easy to verify that, for every x,

|fθ1,bjkn1
(x)− fθ2,bjkn2

(x)| <∼ ‖θ1 − θ2‖∞ + ‖bjkn1 − bjkn2‖∞, (A.21)

where θj ∈ Θn(n
−r/(2r+1)) for j = 1, 2. Let θ1, . . . , θN(ǫ,Θn(n

−r/(2r+1)),‖·‖∞) and

b1jkn, . . . , b
N(ǫ,H′

jn(n
−rj/(2rj+1)),‖·‖∞)

jkn

be the ǫ-cover for Θn(n
−r/(2r+1)) and H′

jn(n
−rj/(2rj+1)), respectively. Thus, we

can construct the bracket [fθi,bljkn
−2Cǫ, fθi,bljkn

+2Cǫ] covering In. The bracket
size is 4Cǫ. Hence, we obtain

HB(ǫ, In, L2(PX))

≤ H(ǫ/(4C),Θn(n
−r

2r+1 ), ‖ · ‖∞) +H(ǫ/(4C),H′
jn(n

−rj
2rj+1 ), ‖ · ‖∞)

<∼ max
0≤j≤d

{Kj} log(1 + n−r/(2r+1)/ǫ)

based on Lemma 2. The corresponding δ-bracketing entropy integral is calcu-
lated as

JB(δ, In, L2(PX)) ≡
∫ δ

0

√
1 +HB(ǫ, In, L2(PX))

<∼ max
0≤j≤d

{
√
Kj}n− r

4r+2 δ1/2. (A.22)

Now, it is ready to apply Lemma 3.4.2 in [25] to show E‖Gn‖In = o(1) implying
I2n = oP (n

−1/2). Note that ‖f‖2 <∼ ‖bjkn − bjk†‖2 and ‖f‖∞ ≤ ‖bjkn − bjk†‖∞
for any f ∈ In, and thus δ and M in Lemma 3.4.2 of [25] are both chosen as

K
−rj
j , i.e., n−rj/(2rj+1). Then, by Lemma 3.4.2 of [25] and (A.22), we have that

E‖Gn‖In = O

(
n
−
(

r−1
4r+2+

rj
4rj+2

)

∨ n− 4r−1
4r+2

)
= o(1).

This completes the proof of (A.19).
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We next show (A.20) by similar arguments. Similarly, we have

ā†I(v) = ΠaD(v, w) −
d∑

j=1

∫ 1

0

b̄†j(wj)Uf(wj , v)dwj .

Recall that ā†I(v) =
∫ v

lv
exp(g0(s))ā

†(s)ds. Under Condition M6 and the assump-

tion that g0 ∈ Hr0
c0 [lv, uv], we can show that a†Ik ∈ Hr0+1

c̃0
[lv, uv], which implies

that a†k ∈ Hr0
c̃0
[lv, uv] for some 0 < c̃0 < ∞, based on Lemma 5. We next show

that I ′1n = oP (n
−1/2) and I ′2n = oP (n

−1/2), where

I ′1n = P
{
ℓ̇ĝ[a

†
kn − a†k]− ℓ̇g0 [a

†
kn − a†k]

}
,

I ′2n = (Pn − P )
{
ℓ̇ĝ[a

†
kn − a†k]

}
.

Similarly, by Cauchy-Schwartz Inequality, we can show that

I ′1n
<∼ ‖a†kn − a†k‖∞‖θ̂ − θ0‖2 + P

[∫ v

lv

(exp(ĝ)− exp(g0))(s)(a
†
kn − a†k)(s)ds

]

<∼ ‖a†kn − a†k‖∞
(
‖θ̂ − θ0‖2 + ‖Ĥ −H0‖2

)

<∼ OP (n
−r/(2r+1)) = oP (n

−1/2)

by choosing Kj ≍ n1/(2rj+1). Following similar arguments in analyzing I2n,
we can show that I ′2n = oP (n

−1/2). Thus, we have verified Condition B1 in
Lemma 4. We again apply Lemma 3.4.2 of [25] to verify Assumption B2. The
details are skipped due to the similarity of the previous analysis.

It remains to verify Assumption B3. This can be easily established using the
Taylor expansion in Banach space. However, we first need to reparameterize the
efficient score function ℓ̃β(X ;α) as

ℓ̃β(X ;α∗) = ZQθ(X)−



∫ V

lv

ā†(s)dH(s) +

d∑

j=1

b̄†j(Wj)


Qθ(X)

≡ ℓ̇β(X ;α∗)− ℓ̇η[c̄
†](X ;α∗),

where α∗ = (β,H, h1, . . . , hd), η = (H,h1, . . . , hd) and c̄† = (ā†, b̄†1, . . . , b̄
†
d).

We first derive two useful equalities (A.26)-(A.27). Let Eα∗ be the expectation
corresponding to the reparametrized likelihood under the parameter α∗. Since
Eα∗ ℓ̃β(X ;α∗) = 0, we have

∂

∂t
|t=0Eα∗

t
ℓ̃β(X ;α∗

t ) = 0, (A.23)

where α∗
t = α∗

0 + tǫ. Define ℓ̃β,β and ℓ̃β,η[c] as the first derivative of ℓ̃β w.r.t.
β and η (along the direction c), respectively. By setting ǫ = (ǫ′β, 0, . . . , 0)

′ and
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ǫ = (0, e)′ = (0,∆H, b1, . . . , bd)
′, respectively, some calculations reveal that

E
{
ℓ̃β,β(X ;α∗

0)ǫβ

}
+ E

{
ℓ̃β(X ;α∗

0)ℓ̇
′
β(X ;α∗

0)ǫβ

}
= 0, (A.24)

E
{
ℓ̃β,η[e](X ;α∗

0)
}
+ E

{
ℓ̃β(X ;α∗

0)ℓ̇
′
η[e](X ;α∗

0)
}

= 0 (A.25)

based on (A.23). By considering the orthogonal property of ℓ̃β0 and the above
reparametrization, we obtain the following two useful facts:

Ĩ0 = −E
{
ℓ̃β,β(X ;α∗

0)
}
, (A.26)

E
{
ℓ̃β,η[e](X ;α∗

0)
}
= 0 (A.27)

based on (A.24) and (A.25).

Define ℓ̃β,α∗,α∗ [h1, h2](X ;α∗) as the second order Fréchet derivative of ℓ̃β
w.r.t. α∗ along the direction [h1, h2] at the point α

∗. The same notation rule ap-
plies to ℓ̇β,α∗,α∗ [h1, h2](X ;α∗) and ℓ̇η,α∗,α∗ [h1, h2, h3](X ;α∗). Now we are ready
to express the Taylor expansion as follows.

E[ℓ̃β(X ;α)− ℓ̃β(X ;α0)]

= E[ℓ̃β(X ;α∗)− ℓ̃β(X ;α∗
0)]

= E
{
ℓ̃β,β(X ;α∗

0)
}
(β − β0) + E

{
ℓ̃β,η[η − η0](X ;α∗

0)
}

+
1

2
E
{
ℓ̃β,α∗,α∗ [∆α∗,∆α∗](X ; α̃∗)

}

= −Ĩ0(β − β0)

+
1

2
E
{
ℓ̇β,α∗,α∗ [∆α∗,∆α∗](X ; α̃∗)− ℓ̇η,α∗,α∗ [c̄†,∆α∗,∆α∗](X ; α̃∗)

}
,

where ∆α∗ = α∗ − α∗
0 and α̃∗ lies between α∗ and α∗

0. The last equation in the
above follows from (A.26) & (A.27). Now we only need to show that the second
term in the last equation is of the order

o(‖β − β0‖) + o(n−1/2).

Let ∆H = H −H0 and ∆hj = hj − hj0. After some algebra, we obtain

ℓ̇β,α∗,α∗ [∆α∗,∆α∗](X ; α̃∗)

= ZQ̈θ̃


Z ′(β − β0) + ∆H(V ) +

d∑

j=1

∆hj(Wj)



2

,

ℓ̇η,α∗,α∗ [c̄†,∆α∗,∆α∗](X ; α̃∗)

=



∫ V

lv

ā†(s)dH(s) +

d∑

j=1

b̄†j(Wj)


 Q̈θ̃


Z ′(β − β0) + ∆H(V ) +

d∑

j=1

∆hj(Wj)



2

+ 2

[∫ V

lv

ā†(s)d∆H(s)

]
Q̇θ̃


Z ′(β − β0) + ∆H(V ) +

d∑

j=1

∆hj(Wj)


 ,



Semiparametric additive transformation model under current status data 1761

where θ̃ lies between θ and θ0. Considering the assumption that d(α, α0) ≤
C1n

−r/(2r+1) and the previously shown result that a†k and b†jk are both uniformly
bounded, we can verify Assumption B3 based on the above expressions. This
completes the proof of Theorem 2.

Proof of Theorem 3

To facilitate the understanding, we first provide the roadmap of our proof here.
For simplicity, we write Sk(X ;α0, wk) and Sk(X ; α̂, wk) as S0

k[wk] and Ŝk[wk],

respectively. Based on the definitions of Ĩ0 and (19), we know their (k, k′)-th
entry can be written as

Ĩ0(k, k
′) = ES0

k[w
†
k]S

0
k′ [w

†
k′ ], (A.28)

Î(k, k′) = PnŜk[ŵ
†
k]Ŝk′ [ŵ†

k′ ], (A.29)

where w†
k = (a†k, b

†
1k, . . . , b

†
dk) and ŵ†

k = ((γ†
0k)

′B0, (γ
†
1k)

′B1, . . . , (γ
†
dk)

′Bd). Re-

call that Wn = Gn × ∏d
j=1 Hjn. Define w̃†

k ≡ argminwk∈Wn E{S0
k[wk]}2. To

establish Î
P→ Ĩ0, we need to establish the following three equations step by

step:

Î(k, k′) = ES0
k[ŵ

†
k]S

0
k′ [ŵ

†
k′ ] + oP (1), (A.30)

ES0
k[ŵ

†
k]S

0
k′ [ŵ

†
k′ ]− ES0

k[w̃
†
k]S

0
k′ [w̃

†
k′ ] = oP (1), (A.31)

ES0
k[w̃

†
k]S

0
k′ [w̃

†
k′ ]− Ĩ0(k, k

′) = o(1). (A.32)

We first consider (A.30). It is easy to show that

E

[
sup

α∈N0,wk∈Wn

|Sk(X ;α,wk)|2
]
≤ const. < ∞ (A.33)

since A and Wk are both assumed to be compact. Note that (A.33) implies that
{Sk(x;α,wk) : α ∈ N0, wk ∈ Wn} is P-Glivenko-Cantelli. Then, we know that,
uniformly over wk, wk′ ∈ Wn,

PnŜk[wk]Ŝk′ [wk′ ] = EŜk[wk]Ŝk′ [wk′ ] + oP (1) (A.34)

by considering Corollary 9.27 of [13]. Uniformly over wk, wk′ ∈ Wn, we have
∣∣∣EŜk[wk]Ŝk′ [wk′ ]− ES0

k[wk]S
0
k′ [wk′ ]

∣∣∣

≤ E
∣∣∣Ŝk[wk](Ŝk′ [wk′ ]− S0

k′ [wk′ ])
∣∣∣+ E

∣∣∣S0
k′ [wk′ ](Ŝk[wk]− S0

k[wk])
∣∣∣

≤ ‖Ŝ2
k[wk]‖2‖Ŝk′ [wk′ ]− S0

k′ [wk′ ]‖2 + ‖S0
k′ [wk′ ]‖2‖Ŝk[wk]− S0

k[wk]‖2
≤ oP (1), (A.35)

where the last inequality follows from Lemma 6 (together with the consistency
of α̂) & (A.33). Combining (A.34) and (A.35), we have obtained that

sup
wk,wk′∈Wn

∣∣∣PnŜk[wk]Ŝk′ [wk′ ]− ES0
k[wk]S

0
k′ [wk′ ]

∣∣∣ = oP (1), (A.36)

which implies (A.30).
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We next consider (A.31). By similar analysis applied to (A.35), we know

that (A.31) holds if ‖S0
k[w̃

†
k] − S0

k[ŵ
†
k]‖2 = oP (1). Denote Mn(w) and M(w) as

PnŜ
2
k[w] and ‖S0

k[w]‖22, respectively. The definition of w̃†
k further implies that

‖S0
k[w̃

†
k]− S0

k[ŵ
†
k]‖22 = ‖S0

k[ŵ
†
k]‖22 − ‖S0

k[w̃
†
k]‖22,

= PnŜ
2
k[ŵ

†
k]− ‖S0

k[w̃
†
k]‖22 + op(1),

= Mn(ŵ
†
k)−M(w̃†

k) + oP (1),

where the second equality follows from (A.36). By the definitions of ŵ†
k and w̃†

k,
we have

Mn(ŵ
†
k)−M(ŵ†

k) ≤ Mn(ŵ
†
k)−M(w̃†

k) ≤ Mn(w̃
†
k)−M(w̃†

k).

Therefore, we conclude the proof of (A.31) by applying (A.36) to the above
inequality.

In the end, we consider (A.32). Again, by the form of Ĩ0(k, k
′) given in (A.28)

and similar analysis in (A.31), we only need to show ‖S0
k[w̃

†
k]−S0

k[w
†
k]‖2 = o(1).

By the definitions of w̃†
k and w†

k, we have

‖S0
k[w̃

†
k]− S0

k[w
†
k]‖22 = inf

wk∈Wn

E


ℓ̇g0 [a†k]− ℓ̇g0 [ak] +

d∑

j=1

(ℓ̇hj0 [b
†
jk]− ℓ̇hj0 [bjk])



2

<∼ inf
wk∈Wn



‖ℓ̇g0 [a

†
k]− ℓ̇g0 [ak]‖22 +

d∑

j=1

‖ℓ̇hj0 [b
†
jk]− ℓ̇hj0 [bjk]‖22





<∼ inf
ak∈Gn

‖ℓ̇g0 [a†k]− ℓ̇g0 [ak]‖22

+
d∑

j=1

inf
bjk∈Hjn

‖ℓ̇hj0 [b
†
jk]− ℓ̇hj0 [bjk]‖22

<∼ inf
ak∈Gn

‖a†k − ak‖2∞ +

d∑

j=1

{
inf

bjk∈Hjn

‖b†jk − bjk‖2∞
}
,

where the last inequality trivially follows from the form of ℓ̇g[a] and ℓ̇hj [bj ]. In

the proof of Theorem 2, we show that a†k ∈ Hr0
c̃0
[lv, uv] and b†jk ∈ H

rj
c̃j
[0, 1]. Thus,

we have ‖S0
k[w̃

†
k]−S0

k[w
†
k]‖2 → 0 based on the last inequality in the above. This

completes the whole proof.
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