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Abstract: We consider the sparse regression model where the number of
parameters p is larger than the sample size n. The difficulty when con-
sidering high-dimensional problems is to propose estimators achieving a
good compromise between statistical and computational performances. The
Lasso is solution of a convex minimization problem, hence computable for
large value of p. However stringent conditions on the design are required
to establish fast rates of convergence for this estimator. Dalalyan and Tsy-
bakov [17–19] proposed an exponential weights procedure achieving a good
compromise between the statistical and computational aspects. This esti-
mator can be computed for reasonably large p and satisfies a sparsity oracle
inequality in expectation for the empirical excess risk only under mild as-
sumptions on the design. In this paper, we propose an exponential weights
estimator similar to that of [17] but with improved statistical performances.
Our main result is a sparsity oracle inequality in probability for the true
excess risk.
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1. Introduction

We observe n independent pairs (X1, Y1), . . . , (Xn, Yn) ∈ X ×R (where X is any
measurable set) such that

Yi = f(Xi) +Wi, 1 6 i 6 n, (1.1)

where f : X → R is the unknown regression function and the noise variables
W1, . . . ,Wn are independent of the design (X1, . . . , Xn), satisfy also EWi = 0
and EW 2

i 6 σ2 for any 1 6 i 6 n and for some known σ2 > 0. The distribution
of the sample is denoted by P, the corresponding expectation is denoted by E.

For any function g : X → R define ‖g‖n =
(
∑n

i=1 g(Xi)
2/n
)1/2

and ‖g‖ =
(

E‖g‖2n
)1/2

. Let F = {φ1, . . . , φp} be a set—called dictionary—of functions
φj : X → R such that ‖φj‖ = 1 for any j (this assumption can be relaxed). For
any θ ∈ R

p define fθ =
∑p

j=1 θjφj , the empirical risk

r(θ) =
1

n

n
∑

i=1

(

Yi − fθ(Xi)
)2

,

and the integrated risk

R(θ) = E

[

1

n

n
∑

i=1

(

Y ′
i − fθ(X

′
i)
)2
]

,

where {(X ′
1, Y

′
1), . . . , (X

′
n, Y

′
n)} is an independent replication of {(X1, Y1), . . . ,

(Xn, Yn)}. Let us choose θ ∈ argminθ∈Rp R(θ). Note that the minimum may
not be unique, however we do not need to treat the identifiability question since
we consider in this paper the prediction problem, i.e., find an estimator θ̂n such
that R(θ̂n) is close to minθ∈Rp R(θ) up to a positive remainder term as small as
possible.

It is a known fact that the least-square estimator θ̂LSE
n ∈ argminθ∈Rp r(θ)

performs poorly in high-dimension p > n. Indeed, consider for instance the
deterministic design case with i.i.d. noise variables N(0, σ2) and a full-rank

design matrix, then θ̂LSE satisfies

E

[

‖fθ̂LSE
n

− f‖2n
]

− ‖fθ − f‖2n = σ2.
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In the same context, assume now there exists a vector θ ∈ argminθ∈Rp R(θ)
with a number of nonzero coordinates p0 ≤ n. If the indices of these coordinates
are known, then we can construct an estimator θ̂0n such that

E

[

‖fθ̂0
n
− f‖2n

]

− ‖fθ − f‖2n = σ2 p0
n
.

The estimator θ̂0n is called oracle estimator since the set of indices of the nonzero
coordinates of θ is unknown in practice. The issue is now to build an estimator,
when the set of nonzero coordinates of θ is unknown, with statistical perfor-
mances close to that of the oracle estimator θ̂0n.

A possible approach is to consider solutions of penalized empirical risk min-
imization problems:

θ̂pen ∈ arg min
θ∈Rp

{

1

n

n
∑

i=1

(

Yi − fθ(Xi)
)2

+ pen(θ)

}

,

where the penalization pen(θ) is proportional to the number of nonzero com-
ponents of θ such as for instance AIC, Cp and BIC criteria [1, 31, 37]. Bunea,

Tsybakov and Wegkamp [9] established for the BIC estimator θ̂BIC
n the fol-

lowing non-asymptotic sparsity oracle inequality. For any ǫ > 0 there exists a
constant C(ǫ) > 0 such that for any p > 2, n > 1 we have

E

[

‖fθ̂BIC
n

− f‖2n
]

6 (1 + ǫ)‖fθ − f‖2n + C(ǫ)σ2 p0
n

log

(

ep

p0 ∨ 1

)

.

Despite good statistical properties, these estimators can only be computed in
practice for p of the order at most a few tens since they are solutions of non-
convex combinatorial optimization problems.

Considering convex penalty function leads to computationally feasible opti-
mization problems. A popular example of convex optimization problem is the
Lasso estimator (cf. Frank and Friedman [22], Tibshirani [39], and the parallel
work of Chen, Donoho and Saunders [15] on basis pursuit) with the penalty
term pen(θ) = λ|θ|1, where λ > 0 is some regularization parameter and, for any

integer d ≥ 2, real q > 0 and vector z ∈ R
d we define |z|q = (

∑d
j=1 |z

q
j |)1/q

and |z|∞ = max1≤j≤d |zj |. Several algorithms allow to compute the Lasso for
very large p, one of the most popular is known as LARS, introduced by Efron,
Hastie, Johnstone and Tibshirani [21]. However, the Lasso estimator requires
strong assumptions on the matrix A = (φj(Xi))16i6n,16j6p to establish fast
rates of convergence results. Bunea, Tsybakov and Wegkamp [8] and Lounici
[30] assume a mutual coherence condition on the dictionary. Bickel, Ritov and
Tsybakov [7] and Koltchinskii [25] established sparsity oracle inequalities for the
Lasso under a restricted eigenvalue condition. Candès and Tao [11] and Koltchin-
skii [26] studied the Dantzig Selector which is related to the Lasso estimator and
suffers from the same restrictions. See, e.g., Bickel, Ritov and Tsybakov [7] for
more details. Several alternative penalties were recently considered. Zou [45]
proposed the adaptive Lasso which is the solution of a penalized empirical risk
minimization problem with the penalty pen(θ) = λ

∑p
j=1

1
|ŵj |

|θj | where ŵ is
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an initial estimator of θ. Zou and Hastie [46] proposed the elastic net with the
penalty pen(θ) = λ1|θ|1 + λ2|θ|22, λ1, λ2 > 0. Meinshausen and Bühlmann [35]
and Bach [6] considered bootstrapped Lasso. See also Ghosh [23] or Cai, Xu
and Zhang [10] for more alternatives to the Lasso. All these methods were moti-
vated by their superior performances over the Lasso either from the theoretical
or the practical point of view. However, strong assumptions on the design are
still required to establish the statistical properties of these methods (when such
results exist). A recent paper by van de Geer and Bühlmann [42] provides a
complete survey and comparison of all these assumptions.

Simultaneously, the PAC-Bayesian approach for regression estimation was
developed by Audibert [4, 5] and Alquier [2, 3], based on previous works in
the classification context by Catoni [12–14], Mc Allester [34], Shawe-Taylor and
Williamson [38], see also Zhang [44] in the context of density estimation. This
framework is very well adapted for studying the excess risk R(·) − R(θ) in the
regression context since it requires very weak conditions on the dictionary. How-
ever, the methods of these papers are not designed to cover the high-dimensional
setting under the sparsity assumption. Dalalyan and Tsybakov [16–19] propose
an exponential weights procedure related to the PAC-Bayesian approach with
good statistical and computational performances. However they consider deter-
ministic design, establishing their statistical result only for the empirical excess
risk instead of the true excess risk R(·)−R(θ).

In this paper, we propose to study two exponential weights estimation proce-
dures. The first one is an exponential weights combination of the least squares
estimators in all the possible sub-models. This estimator was initially proposed
by Leung and Barron [28] in the deterministic design setting. Note that in the
literature on aggregation and exponential weights, the elements of the dictionary
are often arbitrary preliminary estimators computed from a frozen fraction of
the initial sample so that these estimators are considered as deterministic func-
tions, the aggregate is then computed using this dictionary and the remaining
data. This scheme is referred to as ’data splitting’. See for instance Dalalyan and
Tsybakov [18] and Yang [43]. Leung and Barron [28] proved that data splitting
is not necessary in order to aggregate least squares estimators and raised the
question of computation of this estimator in high dimension. In this paper we
explicit the oracle inequality satisfied by this estimator in the high-dimensional
case. For the second procedure, the design may be either random or determinis-
tic. We adapt to the regression framework PAC-Bayesian techniques developed
by Catoni [14] in the classification framework to build an estimator satisfying a
sparsity oracle inequality for the true excess risk. Even though we do not study
the computational aspect in this paper, it should be noted that efficient Monte
Carlo algorithms are available to compute these exponential weights estimators
for reasonably large dimension p (p ≃ 5000), see in particular the monograph
of Marin and Robert [32] for an introduction to MCMC methods. Note also
that in a work parallel to ours, Rigollet and Tsybakov [36] consider also an
exponential weights procedure with discrete priors and suggest a version of the
Metropolis-Hastings algorithm to compute it.
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The paper is organized as follows. In Section 2 we define an exponential
weights procedure and derive a sparsity oracle inequality in expectation when
the design is deterministic. In Section 3, the design can be either deterministic
or random. We propose a modification of the first exponential weights procedure
for which we can establish a sparsity oracle inequality in probability for the true
excess risk. Finally Section 4 contains all the proofs of our results.

2. Sparsity oracle inequality in expectation

Throughout this section, we assume that the design is deterministic and the
noise variables W1, . . . ,Wn are i.i.d. gaussian N(0, σ2).

For any J ⊂ {1, . . . , p} and K > 0 define

Θ(J) =

{

θ ∈ R
p : ∀j /∈ J, θj = 0

}

, (2.1)

and

ΘK(J) =

{

θ ∈ R
p : |θ|1 ≤ K and ∀j /∈ J, θj = 0

}

. (2.2)

For the sake of simplicity we will write ΘK = ΘK({1, . . . , p}).
For any subset J ⊂ {1, . . . , p} define

θ̂J ∈ arg min
θ∈Θ(J)

r(θ),

where r(θ) = 1
n

∑n
i=1(Yi − fθ(Xi))

2 = ‖Y − fθ‖2n with Y = (Y1, . . . , Yn)
T .

Denote by Pn({1, . . . , p}) the set of all subsets of {1, . . . , p} containing at most

n elements. The aggregate f̂n is defined as follows

f̂n = fθ̂n , θ̂n = θ̂n(λ, π)
△
=

∑

J∈Pn({1,...,p})
πJe

−λ
(

r(θ̂J)+
2σ2|J|

n

)

θ̂J
∑

J∈Pn({1,...,p})
πJe

−λ
(

r(θ̂J )+
2σ2|J|

n

) (2.3)

where λ > 0 is the temperature parameter, π is the prior probability distri-
bution on P({1, . . . , p}), the set of all subsets of {1, . . . , p}, that is, for any
J ∈ {1, . . . , p}, πJ ≥ 0 and

∑

J∈P({1,...,p}) πJ = 1.

The next result is a reformulation in our context of Theorem 8 of [28].

Proposition 2.1. Assume that the noise variables W1, . . . ,Wn are i.i.d. N(0, σ2).

Then the aggregate θ̂n defined by (2.3) with 0 < λ 6
n

4σ2 satisfies

E

[

r(θ̂n)
]

6 min
J∈Pn({1,...,p})

{

E[r(θ̂J )] +
1

λ
log

(

1

πJ

)}

. (2.4)

Proposition 2.1 holds true for any prior π. We suggest using the following
prior. Fix α ∈ (0, 1) and define

πJ =
α|J|

∑n
j=0 α

j

(

p

|J |

)−1

, ∀J ∈ Pn({1, . . . , p}), and πJ = 0 if |J | > n. (2.5)
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As a consequence, we obtain the following immediate corollary of Proposi-
tion 2.1.

Theorem 2.1. Assume that the noise variables W1, . . . ,Wn are i.i.d. N(0, σ2).

Then the aggregate f̂n = fθ̂n , with λ = n
4σ2 and π taken as in (2.5), satisfies

E

[

‖f̂n − f‖2n
]

6 min
θ∈Rp

{

‖fθ − f‖2n +
σ2|J(θ)|

n

(

4 log

(

pe

|J(θ)|α

)

+ 1

)

+
4σ2 log

(

1
1−α

)

n

}

,

(2.6)

where for any θ ∈ R
p J(θ) = {j : θj 6= 0}.

This result improves upon [17] which established in Theorem 6 for gaussian
noise and deterministic design

E

[

‖f̂n − f‖2n
]

≤ min
θ∈Rp

{

‖fθ − f‖2n +
16σ2|J(θ)|

n

(

1 + log+

(

√

Tr(A⊤A)

M(θ)σ
|θ|1
))

+
σ2

n

}

,

where log+ x = max {log x, 0} and we recall that A = (φj(Xi))1≤i≤n,1≤j≤p.
Note that our bound is faster by a factor log+ |θ|1. Note also that the bound in
the above display grows worse for large values of |θ|1.

In order to evaluate the performance of these exponential weights procedures,
[40] developed a notion of optimal rate of sparse prediction. In particular, [36]
established that there exists a numerical constant c∗ > 0 such that for all
estimator Tn

sup
θ∈R

p\{0}:
|J(θ)|≤s

sup
f

{

E
[

‖Tn − f‖2n
]

− ‖fθ − f‖2n
}

≥ c∗
σ2

n

[

rank(A) ∧ s log
(

1 +
ep

s

)]

.

The above display combined with Theorem 2.1 shows that the exponential
weights procedure (2.3) with the prior (2.5) achieves the optimal rate of sparse

prediction for any vector θ satisfying |J(θ)| ≤ rank(A)
log(1+ep) .

3. Sparsity oracle inequality in probability

In Section 2 we assumed the design is deterministic and we established an or-
acle inequality in expectation with the optimal rate of sparse prediction. We
want now to establish an oracle inequality in probability that holds true for
deterministic and random design.

From now on, the design can be either deterministic or random.
We make the following mild assumption:

L = max
1≤j≤M

‖φj‖∞ < ∞.
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We assume in this section that the noise variables are subgaussian. More
precisely we have the following condition.

Assumption 3.1. The noise variables W1, . . . ,Wn are independent and inde-
pendent of X1, . . . , Xn. We assume also that there exist two known constants
σ > 0 and ξ > 0 such that

E(W 2
i ) ≤ σ2

∀k ≥ 3, E(|Wi|k) ≤ σ2k!ξk−2.

The estimation method is a version of the Gibbs estimator introduced in
[13, 14]. Fix K ≥ 1. First we define the prior probability distribution as follows.
For any J ⊂ {1, . . . , p} let uJ denote the uniform measure on ΘK+1(J). We
define

m(dθ) =
∑

J⊂{1,...,p}

πJuJ (dθ)

with π taken as in (2.5).
We are now ready to define our estimator. For any λ > 0 we consider the

probability measure ρ̃λ admitting the following density w.r.t. the probability
measure m

dρ̃λ
dm

(θ) =
e−λr(θ)

∫

ΘK
e−λrdm

. (3.1)

The aggregate f̃n is defined as follows

f̃n = fθ̃n , θ̃n = θ̃n(λ,m) =

∫

ΘK

θρ̃λ(dθ). (3.2)

Define

C1 =
[

8σ2 + (2‖f‖∞ + L(2K + 1))2
]

∨[8[ξ + (2‖f‖∞ + L(2K + 1))]L(2K + 1)] .

We can now state the main result of this section.

Theorem 3.1. Let Assumption 3.1 be satisfied. Take K > 1 and λ = λ∗ = n
2C1

.
Assume that argminθ∈Rp R(θ) ∩ΘK 6= ∅. Then we have, for any ε ∈ (0, 1) and
any θ̄ ∈ argminθ∈Rp R(θ) ∩ΘK , with probability at least 1− ǫ,

R(θ̃n) ≤ R(θ̄) +
3L2

n2
+

8C1
n

[

|J(θ̄)| log (K + 1)

+

(

|J(θ̄)| log
(

enp

α|J(θ̄)|

)

+ log

(

2

ε(1− α)

))

]

.

The choice λ = λ∗ comes from the optimization of a (rather pessimistic)
upper bound on the risk R (see Inequality (4.9) in the proof of this theorem,
page 142). However this choice is not necessarily the best choice in practice even
though it gives the good order of magnitude for λ. The practitioner may use
cross-validation to properly tune the temperature parameter.
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Theorem 3.1 improves upon previous results on the following points:

1) Our oracle inequality is sharp in the sense that the leading factor in front
of R(θ̄) is equal to 1 and we require only maxj ‖φj‖ < ∞ whereas l1-penalized
empirical risk minimization procedures such as Lasso or Dantzig selector have a
leading factor strictly larger than 1 and impose in addition stringent conditions
on the dictionary (cf. [7, 11]). For instance, [7] imposes the design matrix A =
(φj(Xi))1≤i≤n,1≤j≤p to be deterministic and to satisfy the following restricted
eigenvalue condition for the Lasso

κ(s)
△
= min

J0⊂{1,...,p}:
|J0|6s

min
∆∈R

p\{0}:
|∆Jc

0
|163|∆J0

|1

|A∆|2√
n|∆J0

|2
> 0,

where for any ∆ ∈ R
p and J ⊂ {1, . . . , p}, we denote by ∆J the vector in R

p

which has the same components as ∆ on J and zero coordinates on the comple-
ment Jc. Assuming in addition that the noise is gaussian N(0, σ2) and taking

λ = Aσ
√

log p
n , A > 8, [7] proved that the Lasso θ̂L satisfies with probability at

least 1−M1−A2/8

1

n
‖fθ̂L − f‖2n ≤ (1 + η)

1

n
‖fθ − f‖2n + C(η)A2σ2|J(θ)| log p

n
, ∀θ ∈ R

p,

where η, C(η) > 0 and C(η) increases to +∞ as η tends to 0.
On the downside, our estimator requires the additional condition |θ̄|1 ≤ K.

This condition is common in the PAC-bayesian literature. Removing this condi-
tion is a difficult problem and does not seem possible with the actual techniques
of proof where this condition is needed in order to apply Bernstein’s inequality.

2) We establish a sparsity oracle inequality in probability for the integrated
risk R(·) whereas previous results on the exponential weights are given in ex-
pectation [16, 17, 19, 24, 29, 36].

3) Unlike mirror averaging or progressive mixture rules, satisfying similar
inequalities in expectation, our estimator does not involve an averaging step
[18, 24, 29]. As a consequence, its computational complexity is significantly
reduced as compared to those procedures with averaging step. For instance
[29] considered the model (1.1) with random design and i.i.d. observations
(X1, Y1), . . . , (Xn, Yn), n ≥ 2. The studied estimator is the following mirror
averaging scheme

fθ̂MA , θMA =
1

n

n−1
∑

k=0

θ̃k,

where θ̃0 =
∫

Θ(K) θdΠ and for any 1 ≤ k ≤ n − 1, θ̃k is defined similarly as

θ̃n in (3.1)–(3.2) with r(θ) replaced by rk(θ) = 1
k

∑k
i=1(Yi − fθ(Xi))

2. These
estimators can be implemented for example by MCMC. In this case, computing
the integral

∫

Θ(K)
θρ̃λ(dθ) is the most time-consuming part of the procedure.
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The procedure (3.1)–(3.2) requires computing this integral only once whereas
the mirror averaging procedure of [29] requires computing integrals of this form
n times.

4) Under the assumption |θ̄|1 ≤ K for some absolute constant K and taking
ǫ = n−1 we have with probability at least 1− n−1

R(θ̃n) ≤ R(θ̄) + C
C1
n
|J(θ̄)| log

(

enp

α|J(θ̄)|

)

+
3L2

n2
, (3.3)

for some absolute constant C > 0. In [36] a minimax lower bound in expectation
is established for deterministic design and Gaussian noise. A similar result holds
in probability with the same proof combined with Theorem 2.7 of [41]. There
exists absolute constants c1, c2 > 0 such that

inf
Tn

sup
θ∈R

p:
|J(θ)|≤s

sup
f

P

[

‖Tn− f‖2n ≥ ‖fθ − f‖2n + c1
σ2

n
rank(A) ∧ s log

(

1 +
ep

s

)

]

≥ c2.

If s ≤ rank(A)
log(1+ep) then we observe that the upper bound in (3.3) is optimal up to

the additional logarithmic factor logn. Note however that if p ≥ n1+δ for some
δ > 0, which is relevant with the high-dimensional setting we consider in this
paper, then our bound is rate optimal.

4. Proofs

4.1. Proofs of Section 2

This proof uses an argument from Leung and Barron [28].

Proof of Proposition 2.1. The mapping Y → f̂n(Y )
△
= (f̂n(X1, Y ), . . . , f̂n(Xn,

Y ))T is clearly continuously differentiable by composition of elementary differen-
tiable functions. For any subset J ⊂ {1, . . . , p} define AJ = (φj(Xi))1≤i≤n,j∈J ,
ΣJ = 1

nA
T
JAJ , ΦJ (·) = (φj(·))j∈J and

gJ = e−λ
(

‖Y −fJ‖
2
n+

2σ2|J|
n

)

where

fJ(x, Y ) =
1

n
Y TAJΣ

+
J ΦJ(x)

T ,

and Σ+
J denotes the pseudo-inverse of ΣJ . Denote by ∂i the derivative w.r.t. Yi.

Simple computations give

∂ifJ(x, Y ) =
1

n
ΦJ(Xi)Σ

+
J ΦJ (x)

T ,

(∂ifJ(X1, Y ), . . . , ∂ifJ(Xn, Y ))Y = fJ(Xi, Y ),
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and

n
∑

l=1

fJ(Xl, Y )∂ifJ(Xl, Y ) = fJ(Xi, Y ).

Thus we have

∂i(gJ) = −λ∂i
(

‖Y − fJ‖2n
)

gJ

= −2λ

n

(

(Yi − fJ(Xi, Y ))−
n
∑

l=1

∂ifJ(Xl, Y )(Yl − fJ(Xl, Y ))

)

gJ

= −2λ

n
(Yi − fJ(Xi, Y ))gJ ,

Recall that

f̂n(·, Y )) =

∑

J∈Pn({1,...,p})
πJgJfJ(·, Y )

∑

J∈Pn({1,...,p})
πJgJ

.

We have

∂if̂n(Xi, Y ) =

∑

J∈Pn({1,...,p})
πJ (∂i(gJ)fJ(Xi, Y ) + gJ∂i(fJ(Xi, Y )))
∑

J∈Pn({1,...,p})
πJgJ

−
(
∑

J∈Pn({1,...,p})
πJgJfJ (Xi, Y )

)(
∑

J∈Pn({1,...,p})
πJ∂i(gJ)

)

(
∑

J∈Pn({1,...,p})
πJgJ)2

= − 2λ

n
Yif̂n +

2λ

n

∑

J∈Pn({1,...,p})
fJ(Xi, Y )2πJgJ

∑

J∈Pn({1,...,p})
πJgJ

+
1

n

∑

J∈Pn({1,...,p})
ΦJ(Xi)Σ

+
J ΦJ(Xi)

TπJgJ
∑

J∈Pn({1,...,p})
πJgJ

2λ

n
Yif̂n(Xi, Y )− 2λ

n
f̂2
n(Xi, Y )

=
2λ

n

∑

J∈Pn({1,...,p})
(fJ (Xi, Y )− f̂n(Xi, Y ))2πJgJ

∑

J∈Pn({1,...,p})
πJgJ

+
1

n

∑

J∈Pn({1,...,p})
ΦJ(Xi)Σ

+
J ΦJ(Xi)

TπJgJ
∑

J∈Pn({1,...,p})
πJgJ

≥ 0. (4.1)

Consider the following estimator of the risk

r̂n(Y ) = ‖f̂n(Y )− Y ‖2n +
2σ2

n

n
∑

i=1

∂if̂n(Xi, Y )− σ2. (4.2)

Using an argument based on Stein’s identity as in [27] we now prove that

E[r̂n(Y )] = E

[

‖f̂n(Y )− f‖2n
]

.
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We have

E

[

‖f̂n(Y )− f‖2n
]

= E

[

‖f̂n(Y )− Y ‖2n +
2

n

n
∑

i=1

Wi(f̂n(Xi, Y )− f(Xi))

]

− σ2

= E

[

‖f̂n(Y )− Y ‖2n +
2

n

n
∑

i=1

Wif̂n(Xi, Y )

]

− σ2. (4.3)

For z = (z1, . . . , zn)
T ∈ R

n write FW,i(z) =
∏

j 6=i FW,i(zj), where FW denotes
the c.d.f. of the random variable W1. Since E(Wi) = 0 we have

E

[

Wif̂n(Xi, Y )
]

= E

[

Wi

∫ Wi

0

∂if̂n(Xi, Y1, . . . , Yi−1, f(Xi) + z, Yi+1, . . . , Yn)dz

]

=

∫

Rn−1

(∫

R

y

∫ y

0

∂if̂n(Xi, f + z)dzidFW (y)

)

dFW,i(z). (4.4)

In view of (4.1) we can apply Fubini’s Theorem to the right-hand-side of (4.4).
We obtain under the assumption W ∼ N(0, σ2) that
∫

R+

∫ y

0

∂if̂n(Xi, f + z)dzidFW (y) =

∫

R+

∫ ∞

zi

ydFW (y)∂if̂n(Xi, f + z)dzi

=

∫

R+

σ2∂if̂n(Xi, f + z)dFW (zi),

A Similar equality holds for the integral over R−. Thus we obtain

E

[

Wif̂n(Xi, Y )
]

= σ2
E

[

∂if̂n(Xi, Y )
]

.

Combining (4.2), (4.3) and the above display gives

E [r̂n(Y )] = E

[

‖f̂n(Y )− f‖2n
]

.

Since f̂n(·, Y ) is the expectation of fJ(·, Y ) w.r.t. the probability distribution
∝ g · π, we have

‖f̂n(·, Y )−Y ‖2n =

∑

J∈Pn({1,...,p})

(

‖fJ(·, Y )− Y ‖2n−‖fJ(·, Y )− f̂n(Y )‖2n
)

gJπJ
∑

J∈Pn({1,...,p})
gJπJ

.

For the sake of simplicity set fJ = fJ(·, Y ) and f̂n = f̂n(·, Y ). Combining (4.2),
the above display and λ 6

n
4σ2 yields

r̂n(Y ) =

∑

J∈Pn({1,...,p})

(

‖fJ − Y ‖2n +
∑n

i=1

(

4λσ2

n − 1
)

‖fJ − f̂n‖2n
)

gJπJ
∑

J∈Pn({1,...,p})
πJgJ

+
2σ2

n2

n
∑

i=1

∑

J∈Pn({1,...,p})
ΦJ(Xi)Σ

+
J ΦJ(Xi)

TπJgJ
∑

J∈Pn({1,...,p})
πJgJ

− σ2

6
∑

J∈Pn({1,...,p})

(

‖fJ − Y ‖2n +
2σ2

n
|J |
)

gJπJ − σ2.
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By definition of gJ we have

‖fJ − Y ‖2n +
2σ2|J |

n
= − 1

λ
log

(

gJ
∑

J∈Pn({1,...,p})
gJπJ

)

− 1

λ
log





∑

J∈Pn({1,...,p})

gJπJ



 .

Integrating the above inequality w.r.t. the probability distribution 1
C g ·π (where

C =
∑

J∈Pn({1,...,p})
gJπJ is the normalization factor) and using the fact that

∑

J∈Pn({1,...,p})

1

C
gJπJ log

(

1

C
gJ

)

= K
(g · π

C
, π
)

> 0

as well as a convex duality argument (cf., e.g., [20], p. 264) we get

r̂n(Y ) 6
∑

J∈Pn({1,...,p})

(

‖Y − fJ‖2n +
2σ2

n
|J |
)

π′
J +

1

λ
K(π′, π)− σ2,

for all probability measure π′ on P({1, . . . , p}). Taking the expectation in the
last inequality we get for any π′

E

[

‖f̂n − f‖2n
]

= E[r̂n(Y )]

6
∑

J∈Pn({1,...,p})

(

E[‖fJ − Y ‖2n] +
2σ2

n
|J |
)

π′
J +

1

λ
K(π′, π)− σ2

6
∑

J∈Pn({1,...,p})

(

E[‖fJ − f‖2n] +
2

n

n
∑

i=1

E[WifJ(Xi, Y )] +
2σ2

n
|J |
)

π′
J

+
1

λ
K(π′, π)

6
∑

J∈Pn({1,...,p})

(

E[‖fJ − f‖2n] +
4σ2

n
|J |
)

π′
J +

1

λ
K(π′, π),

where we have used Stein’s argument E[WifJ(Xi, Y )] = σ2
E [∂ifJ(Xi, Y )] and

the fact that
∑n

i=1 ∂ifJ(Xi, Y ) = 1 in the last line. Finally taking π′ in the set
of Dirac distributions on the subset J of {1, . . . , p} yields the theorem.

Proof of Theorem 2.1. First note that any minimizer θ ∈ R
p of the right-hand-

side in (2.6) is such that |J(θ)| 6 rank(A) 6 n where we recall that A =
(φj(Xi))16i6n,16j6p. Indeed, for any θ ∈ R

p such that |J(θ)| > rank(A) we can
construct a vector θ′ ∈ R

p such that fθ = fθ′ and |J(θ′)| 6 rank(A) and the
mapping x → x log

(

epα
x

)

is nondecreasing on (0, p].
Next for any J ∈ Pn({1, . . . , p}) we have

E[‖fJ − f‖2n] = min
θ∈Θ(J)

{

‖fθ − f‖2n
}

+
σ2|J |
n

= min
θ∈Θ(J)

{

‖fθ − f‖2n +
σ2|J(θ)|

n

}

.



PAC-Bayesian bounds for sparse regression estimation 139

Thus

min
J∈Pn({1,...,p})

{

E[‖fJ − f‖2n] +
1

λ
log

(

1

πJ

)

+
σ2J

n

}

= min
J∈Pn({1,...,p})

min
θ∈Θ(J)

{

‖fθ − f‖2n +
1

λ
log

(

1

πJ(θ)

)

+
σ2|J(θ)|

n

}

= min
θ∈Rp

{

‖fθ − f‖2n +
1

λ
log

(

1

πJ(θ)

)

+
σ2|J(θ)|

n

}

.

Combining the above display with Proposition 2.1 and our definition of the prior
π gives the result.

4.2. Proof of Theorem 3.1

We state below a version of Bernstein’s inequality useful in the proof of Theorem
3.1. See Proposition 2.9 page 24 in [33], more precisely Inequality (2.21).

Lemma 4.1. Let T1, . . . , Tn be independent real valued random variables. Let
us assume that there is two constants v and w such that

n
∑

i=1

E[T 2
i ] ≤ v

and for all integers k ≥ 3,

n
∑

i=1

E
[

(Ti)
k
+

]

≤ v
k!wk−2

2
.

Then, for any ζ ∈ (0, 1/w),

E exp

[

ζ

n
∑

i=1

[Ti − E(Ti)]

]

≤ exp

(

vζ2

2(1− wζ)

)

.

Proof of Theorem 3.1. For any θ ∈ ΘK+1 define the random variables

Ti = Ti(θ) = − (Yi − fθ(Xi))
2 + (Yi − fθ̄(Xi))

2 .

Note that these variables are independent. We have

n
∑

i=1

E[T 2
i ] =

n
∑

i=1

E

[

[2Yi − fθ̄(Xi)− fθ(Xi)]
2
[fθ̄(Xi)− fθ(Xi)]

2
]

=

n
∑

i=1

E

[

[2Wi + 2f(Xi)− fθ̄(Xi)− fθ(Xi)]
2
[fθ̄(Xi)− fθ(Xi)]

2
]
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≤
n
∑

i=1

E

[

[

8W 2
i + 2(2‖f‖∞ + L(2K + 1))2

]

[fθ̄(Xi)− fθ(Xi)]
2
]

=
n
∑

i=1

E
[

8W 2
i + 2(2‖f‖∞ + L(2K + 1))2

]

E

[

[fθ̄(Xi)− fθ(Xi)]
2
]

≤ n
[

8σ2 + 2(2‖f‖∞ + L(2K + 1))2
] [

R(θ)−R(θ̄)
]

=: v(θ, θ̄) = v,

where we have used in the last line Pythagore’s Theorem to prove ‖fθ − fθ̄‖2 =
R(θ)−R(θ̄). Next we have, for any integer k ≥ 3, that

n
∑

i=1

E
[

(Ti)
k
+

]

≤
n
∑

i=1

E

[

|2Yi − fθ̄(Xi)− fθ(Xi)|k |fθ̄(Xi)− fθ(Xi)|k
]

≤
n
∑

i=1

E

[

22k−1
[

|Wi|k + (‖f‖∞ + L(K + 1/2))k
]

|fθ̄(Xi)− fθ(Xi)|k
]

≤
n
∑

i=1

E

[

22k−1
[

|Wi|k+(‖f‖∞+L(K+1/2))k
]

[L(2K+1)]k−2 [fθ̄(Xi)−fθ(Xi)]
2
]

≤ 22k−1
[

σ2k!ξk−2 + (‖f‖∞ + L(K + 1/2))k
]

[L(2K + 1)]k−2

×
n
∑

i=1

E

[

[fθ̄(Xi)− fθ(Xi)]
2
]

≤ (σ2k!ξk−2 + (‖f‖∞ + L(K + 1/2))k)(4L(2K + 1))k−2

4(σ2 + (‖f‖∞ + L(K + 1/2))2)
v

≤ 1

4

(

k!ξk−2 + [‖f‖∞ + L(K + 1/2)]k−2
)

[4L(2K + 1)]k−2v

≤ 2

4
k! (ξ + [‖f‖∞ + L(K + 1/2)])k−2 [4L(2K + 1)]k−2v ≤ v

k!wk−2

2
,

with w := 8(ξ + [‖f‖∞ + L(K + 1/2)])L(K + 1/2).
Next, for any λ ∈ (0, n/w) and θ ∈ ΘK+1, applying Lemma 4.1 with ζ = λ/n

gives

E exp
[

λ
(

R(θ)−R(θ̄)− r(θ) + r(θ̄)
)]

≤ exp

[

vλ2

2n2(1− wλ
n )

]

.

Set C = 8
(

σ2 + [‖f‖∞ + L(K + 1/2)]2
)

. For the sake of simplicity let us put

β =

(

λ− λ2C

2n(1− wλ
n )

)

. (4.5)

For any ε > 0 the last display yields

E exp

[

β
(

R(θ)−R(θ̄)
)

+ λ
(

−r(θ) + r(θ̄)
)

− log
2

ε

]

≤ ε

2
.
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Integrating w.r.t. the probability distribution m(·) we get

∫

E exp

[

β
(

R(θ)−R(θ̄)
)

+ λ
(

−r(θ) + r(θ̄)
)

− log
2

ε

]

m(dθ) ≤ ε

2
.

Next, Fubini’s theorem gives

E

∫

exp

[

β
(

R(θ)−R(θ̄)
)

+ λ
(

−r(θ) + r(θ̄)
)

− log
2

ε

]

m(dθ)

= E

∫

exp

[

β
(

R(θ)−R(θ̄)
)

+ λ
(

−r(θ) + r(θ̄)
)

− log

[

dρ̃λ
dm

(θ)

]

− log
2

ε

]

ρ̃λ(dθ)

≤ ε

2
.

Jensen’s inequality yields

E exp

[

β

(∫

Rdρ̃λ −R(θ̄)

)

+ λ

(

−
∫

rdρ̃λ + r(θ̄)

)

−K(ρ̃λ,m)− log
2

ε

]

≤ ε

2
.

Now, using the basic inequality exp(x) ≥ 1R+
(x) we get

P

{

β

(∫

Rdρ̃λ −R(θ̄)

)

+λ

(

−
∫

rdρ̃λ + r(θ̄)

)

−K(ρ̃λ,m)− log
2

ε

]

≥ 0

}

≤ ε

2
.

Using Jensen’s inequality again gives

∫

Rdρ̃λ ≥ R

(∫

θρ̃λ(dθ)

)

= R(θ̃λ).

Combining the last two displays we obtain

P

{

R(θ̃λ)−R(θ̄) ≤
∫

rdρ̃λ − r(θ̄) + 1
λ

[

K(ρ̃λ,m) + log 2
ε

]

β
λ

}

≥ 1− ε

2
.

Now, using Lemma 1.1.3 in Catoni [14] we obtain that

P

{

R(θ̃λ)−R(θ̄) ≤ inf
ρ∈M1

+
(ΘK+1)

∫

rdρ− r(θ̄) + 1
λ

[

K(ρ,m) + log 2
ε

]

β
λ

}

≥ 1− ε

2
.

(4.6)
We now want to bound from above r(θ) − r(θ̄) by R(θ) − R(θ̄). Applying

Lemma 4.1 to T̃i(θ) = −Ti(θ) and similar computations as above yield succes-
sively

E exp
[

λ
(

R(θ̄)−R(θ) + r(θ) − r(θ̄)
)]

≤ exp

[

vλ2

2n2(1 − wλ
n )

]

,
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and so for any (data-dependent) ρ,

E exp

[

γ

(

−
∫

Rdρ+R(θ̄)

)

+ λ

(∫

rdρ − r(θ̄)

)

−K(ρ,m)− log
2

ε

]

≤ ε

2
,

where

γ =

(

λ+
λ2C

2n(1− wλ
n )

)

. (4.7)

Now,

P

{

∫

rdρ− r(θ̄) ≤ γ

λ

[∫

Rdρ−R(θ̄)

]

+
1

λ

[

K(ρ,m) + log
2

ε

]

}

≥ 1− ε

2
. (4.8)

Combining (4.8) and (4.6) with a union bound argument gives

P

{

R(θ̃λ)−R(θ̄)

≤ inf
ρ∈M1

+
(ΘK+1)

γ
[∫

Rdρ−R(θ̄)
]

+ 2
[

K(ρ,m) + log 2
ε

]

β

}

≥ 1− ε,

where M1
+(ΘK+1) is the set of all probability measures over ΘK+1.

Now for any δ ∈ (0, 1] taking ρ as the uniform probability measure on the set
{t ∈ Θ(J(θ̄)) : |t− θ̄|1 ≤ δ} ⊂ ΘK+1(J(θ̄)) gives

P

{

R(θ̃λ) ≤ R(θ̄) +
1

β

[

γL2δ2 + 2

(

|J(θ̄)| log K + 1

δ

+ |J(θ̄)| log 1

α
+ log

(

1

1− α

)

+ log

(

p

|J(θ̄)|

)

+ log
2

ε

)]}

≥ 1− ε.

Taking δ = n−1 and the inequality log
( p
|J(θ̄)|

)

≤ |J(θ̄)| log pe
|J(θ̄)|

gives

P

{

R(θ̃λ) ≤ R(θ̄) +
1

1− λC
2(n−wλ)

[

(

1 +
λC

2(n− wλ)

)

L2

n2

+
2

λ

(

|J(θ̄)| log (K + 1) + |J(θ̄)| log
(

epn

α|J(θ̄)|

)

+ log

(

2

ε(1− α)

))

]}

≥ 1−ε

(4.9)

where we replaced γ and β by their definitions, see (4.5) and (4.7). Taking now
λ = n/(2C1) (where we recall that C1 = C ∨w) in (4.9) gives
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P

{

R(θ̃λ) ≤ R(θ̄) +
3L2

n2
+

8C1
n

[

|J(θ̄)| log (K + 1)

+

(

|J(θ̄)| log
(

enp

α|J(θ̄)|

)

+ log

(

2

ε(1− α)

))

])}

≥ 1− ε,

where we have used that 1− λC
2(n−wλ) ≥ 1/2 and 1 + λC

2(n−wλ) ≤ 3/2.
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