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Abstract. In this paper, we introduce the complementary exponential power
series distributions, with failure rate increasing, which is complementary
to the exponential power series model proposed by Chahkandi and Ganjali
[Comput. Statist. Data Anal. 53 (2009) 4433–4440]. The new class of dis-
tribution arises on latent complementary risks scenarios, where the lifetime
associated with a particular risk is not observable, rather we observe only
the maximum lifetime value among all risks. This new class contains several
distributions as a particular case. The properties of the proposed distribution
class are discussed, such as quantiles, moments and order statistics. Estima-
tion is carried out via maximum likelihood. Simulation results on maximum
likelihood estimation are presented. A real application illustrates the useful-
ness of the new distribution class.

1 Introduction

The exponential distribution is widely used for modeling many problems in life-
time testing and reliability studies. However, the exponential distribution does not
provide a reasonable parametric fit for some practical applications where the un-
derlying failure rates are nonconstant, presenting monotone shapes. Recently, new
distributions to model the failure rate have appeared in the literature, such as those
obtained by compounding the exponential distribution with several discrete dis-
tributions. For example, a distribution with a decreasing failure rate has been ob-
tained by assuming the minimum of a random sample of the exponential distri-
bution and a random sample size. In order to do this, the geometric, the Poisson
and the logarithmic distributions were considered by Adamidis and Loukas (1998),
Kus (2007) and Tahmashi and Rezaei (2008), respectively. These works were gen-
eralized by Chahkandi and Ganjali (2009) by showing that the composition of
the exponential distribution with the power series distribution yields a distribu-
tion with a decreasing failure rate, the exponential power series (EPS) distribution.
Later Morais and Barreto-Souza (2011) replaced the exponential distribution by
the Weibull generating distributions with decreasing failure rates when the form
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parameter is lower or equal than 1 and different types of failure rates when the
form parameter is greater than 1. The distribution proposed by Kus (2007) was
generalized by including a power parameter in his distribution, by Barreto-Souza
and Cribari-Neto (2009). A different approach, that considers the maximum, in-
stead of the minimum, has been also considered. In this case the distributions ob-
tained have increasing failure rates. The geometric distribution was considered
by Adamidis et al. (2005), later generalized in Silva, Barreto-Souza and Cordeiro
(2010) by including a power parameter in his distribution. The Poisson distribu-
tion was assumed to be obtained by the distribution of Cancho, Louzada-Neto and
Barriga (2011), which later was generalized in Cordeiro, Rodrigues and de Castro
(2012) by assuming a COMPoisson distribution, by including a power parameter
in his distribution. The power series distribution, however, has not been consid-
ered yet when the maximum number of competing causes is considered, leading
to a complementary risk scenario. In this paper, assuming a power series distribu-
tion, we propose a new family distribution based on a complementary risk problem
(Basu and Klein, 1982) in the presence of latent risks. We assume that there is no
information about which factor was responsible for the component failure, but only
the maximum lifetime value among all risks is observed instead of the minimum
lifetime value among all risks as in Chahkandi and Ganjali (2009) and Morais and
Barreto-Souza (2011). The new distribution is a counterpart of the EPS distribu-
tion and then, hereafter, it shall be called the complementary exponential power
series (CEPS) distribution.

The paper is organized as follows. In Section 2 we define the CEPS distribu-
tion. In Section 3 the survival and failure rate function, the quantiles, moments,
order statistics and moments of the order statistics are provided. In Section 4 some
special cases are studied in detail and are compared to the graphics of failure rate
functions of these cases with the ones analogues EPS distributions for some par-
ticular parameters. Estimation of the parameters by maximum likelihood is given
in Section 5. Section 6 presents the results of a simulation study. In Section 7 an
application to one real data set is provided. Final remarks in Section 8 conclude
the paper.

2 The CEPS distribution

In the classical complementary risks scenarios (Basu and Klein, 1982) the life-
time associated with a particular risk is not observable, rather we observe only the
maximum lifetime value among all risks. Simplistically, in reliability, we observe
only the maximum component lifetime of a parallel system, that is, the observable
quantities for each component are maximum lifetime value to failure among all
risks, and the cause of failure. Complementary risk problems arise in several ar-
eas, such as medical, industrial and financial ones [interested readers can refer to
Lawless (2003), Crowder et al. (1991) and Cox and Oakes (1984)].
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A difficulty arises if the risks are latent in the sense that there is no information
about which factor was responsible for the component failure, which can be often
observed in field data. We call these latent complementary risks data. On many
occasions this information is not available or it is impossible that the true cause of
failure is specified by an expert. In reliability, the components can be totally de-
stroyed in the experiment. Further, the true cause of failure can be masked from our
view. In modular systems, the need to keep a system running means that a module
that contains many components can be replaced without the identification of the
exact failing component. Goetghebeur and Ryan (1995) addressed the problem of
assessing covariate effects based on a semi-parametric proportional hazards struc-
ture for each failure type when the failure type is unknown for some individuals.
Reiser et al. (1995) considered statistical procedures for analyzing masked data,
but their procedure can not be applied when all observations have an unknown
cause of failure. Lu and Tsiatis (2001) present a multiple imputation method for
estimating regression coefficients for risk modeling with missing cause of failure.
A comparison of two partial likelihood approaches for risk modeling with missing
cause of failure is presented in Lu and Tsiatis (2005).

The proposed distribution can be derived as follows. Let Z be a random variable
denoting the number of failure causes, z = 1,2, . . . , and considering Z following
a power series distribution (truncated at zero) with probability function given by

P [Z = z; θ ] = azθ
z

A(θ)
, z = 1,2, . . . , θ ∈ (0, s), (2.1)

where a1, a2, . . . is a sequence of non-negative real numbers, where at least one of
them is strictly positive, s is a positive number no greater than the ratio of conver-
gence of the power series

∑∞
z=1 azθ

z, and A(θ) = ∑∞
z=1 azθ

z,∀θ ∈ (0, s). Notice,
in particular, that A is positive and infinitely many differentiable. For more details
on the power series class of distributions, see Johnson, Kemp and Kotz (2005).
Table 1, reported in Morais and Barreto-Souza (2011), shows useful quantities of
some power series distributions (truncated at zero) such as Poisson, logarithmic,
geometric and binomial (with m being the number of replicas) distributions. The
quantities A′(θ) and A′′(θ) are the derivation of A(θ) and A′(θ) with respect to θ ,
respectively. The quantile A−1(θ) is the inverse function of A(θ).

Table 1 Useful quantities of some power series distributions

Distribution az A(θ) A′(θ) A′′(θ) A−1(θ) s

Poisson z!−1 eθ − 1 eθ eθ log(1 + θ) ∞
Logarithmic z−1 − log(1 − θ) (1 − θ)−1 (1 − θ)−2 1 − e−θ 1
Geometric 1 θ(1 − θ)−1 (1 − θ)−2 2(1 − θ)−3 θ(1 + θ)−1 1

Binomial (
m
z ) (1 + θ)m − 1 m(1 + θ)m−1 m(m−1)

(1+θ)2−m (θ − 1)1/m − 1 ∞
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Let’s also consider Y1, Y2, . . . , be a sequence of independent, identically dis-
tributed, continuous random variables, independent of Z, with exponential distri-
bution with parameter β > 0, that is, the probability density function (p.d.f.) is
given by

f (y;β) = β exp{−βy}, y > 0. (2.2)

These random variables represent the lifetimes associated with the failure causes.
In the latent complementary risks scenario, the number of causes Z and the lifetime
Yi associated with a particular cause are not observable (latent variables), but only
the maximum lifetime X among all independent causes is usually observed. So,
we only observe the random variable given by

X = max{Y1, . . . , YZ}. (2.3)

Then, f (x|z;β) = zβe−βx(1 − e−βx)z−1 and the marginal p.d.f. X is

f (x; θ,β) =
∞∑

z=1

f (x|z,β)P (Z = z; θ)

=
∞∑

z=1

zβe−βx(1 − e−βx)z−1 azθ
z

A(θ)
(2.4)

=
∞∑

z=1

azzθβe−βx [θ(1 − e−βx)]z−1

A(θ)

but
∞∑

z=1

azzθβe−βx[θ(1 − e−βx)]z−1 = ∂

∂x
A

(
θ(1 − e−βx)

)
.

So

f (x; θ,β) = ∂

∂x
A

(
θ(1 − e−βx)

)/
A(θ)

(2.5)

= θβe−βxA′(θ(1 − e−βx))

A(θ)
, x > 0, θ, β > 0,

where A′(θ(1 − e−βx)) is the derivative of A(·) evaluated at θ(1 − e−βx). We
denote a random variable X following CEPS distribution with parameters θ,β by
X ∼ CEPS(θ, β).

Notice by equation (2.4) that p.d.f. of the CEPS distribution can be written as a
mixture of densities as follows:

f (x) =
∞∑

z=1

azθ
z

A(θ)
fz(x), (2.6)
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where fz is the p.d.f. of the maximum of a sample of size z of a exponential
distribution with parameter β, that is,

fz(x) = zβe−βx(1 − e−βx)z−1, x > 0. (2.7)

3 Some properties of the CEPS distribution

3.1 The distribution, survivor, failure rate functions

Let X be a non-negative random variable denoting the lifetime of a component
in some population with CEPS distribution with parameters θ and β , that is, X ∼
CEPS(θ, β). The distribution function is given by

F(x; θ,β) = A(θ(1 − e−βx))

A(θ)
, x > 0, (3.1)

and the survival function is

S(x; θ,β) = 1 − A(θ(1 − e−βx))

A(θ)
, x > 0. (3.2)

The following proposition shows that our distribution has exponential distribu-
tion as limiting distribution, when a1 > 0.

Proposition 3.1. If a1 > 0, the exponential distribution with parameter β is
a limiting special case of the CEPS distribution when θ → 0+. In general,
limθ→0+ F(x; θ,β) = (1 − e−βx)k, with k = min{n ∈ N

+ :an > 0}.
Proof. Considering equation (3.1) and using the L’Hospital’s rule k times, it fol-
lows that

lim
θ→0+ F(x; θ,β) = lim

θ→0+
(1 − e−βx)kA(k)(θ(1 − e−βx))

A(k)(θ)

= (1 − e−βx)kak

ak

= (1 − e−βx)k. �

The failure rate function is given by

h(x; θ,β) = f (x; θ,β)

S(x; θ,β)
= θβe−βxA′(θ(1 − e−βx))

A(θ) − A(θ(1 − e−βx))
, x > 0. (3.3)

Proposition 3.2. The failure rate function is increasing for x sufficiently large.

Proof. The derivative of the failure rate function is given by

h′(x) = θβ2e−βxw(x)

[A(θ) − A(θ(1 − e−βx))]2 ,
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where

w(x) = [−A′(θ(1 − e−βx)
) + θe−βxA′′(θ(1 − e−βx)

)]
× [

A(θ) − A
(
θ(1 − e−βx)

)]
+ θe−βx[

A′(θ(1 − e−βx)
)]2

.

Notice that limx→∞ w(x) = 0. Therefore, the claim follows by showing that
w′(x) < 0, for x sufficiently large. But w′(x) = θβe−βxw1(x), with

w1(x) = [−2A′′(θ(1 − e−βx)
) + θe−βxA′′′(θ(1 − e−βx)

)]
× [

A(θ) − A
(
θ(1 − e−βx)

)]
+ θe−βxA′′(θ(1 − e−βx)

)
A′(θ(1 − e−βx)

)
and limx→∞ w1(x) = 0. Then it’s sufficient to show that w′

1(x) is positive for x

sufficiently large. Notice that w′
1(x) = θβe−βxw2(x), with

w2(x) = [−3A′′′(θ(1 − e−βx)
) + θe−βxA(iv)(θ(1 − e−βx)

)]
× [

A(θ) − A
(
θ(1 − e−βx)

)]
+ A′′(θ(1 − e−βx)

)
A′(θ(1 − e−βx)

) + θe−βx[
A′′(θ(1 − e−βx)

)]2

and limx→∞ w2(x) = A′′(θ)A′(θ) > 0. Then w2(x) and w′
1(x) are positive for x

sufficiently large. �

The following proposition gives the initial and long-term values for the failure
rate function. This follows by (3.3).

Proposition 3.3. The failure rate function has the following limits:

lim
x→0+ h(x) = a1θ

A(θ)
β and lim

x→∞h(x) = β.

Notice that limx→0+ h(x) ≤ limx→∞ h(x).

3.2 Quantiles, moments, mean residual and order statistics

From (3.1) the quantile γ of the CEPS distribution, xγ = F−1(γ ; θ,β) is given by

xγ = −β−1 log{1 − θ−1A−1(γA(θ))}, (3.4)

where A−1(·) is the inverse function of A(·).
An expression for the moments of a CEPS distribution can be derived as the

following.
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Proposition 3.4. The r th moment of CEPS(θ, β) distribution is finite and is given
by

E(Xr) = �(r + 1)

βrA(θ)

∞∑
z=1

z−1∑
j=0

azθ
zz

(
z − 1

j

)
(−1)j

1

(j + 1)r+1 . (3.5)

Proof. Since A′ is a nondecreasing function, A′(θ(1 − e−βx)) ≤ A′(θ). Hence, by
(2.5) it follows that f (x) ≤ A′(θ)

A(θ)
θβe−βx, which implies that E(Xr) is finite.

By equation (2.6), that describes the density CEPS as a mixture, it follows

E(Xr) =
∞∑

z=1

azθ
z

A(θ)
E(Y r

z ),

where Yz has fz as its density function, defined in (2.7). Equation (3.5) follows
from this equality and that E(Y r

z ) = �(r+1)
βr

∑z−1
j=0 z(

z−1
j

)(−1)j 1
(j+1)r+1 . �

An expression for the mean residual of a CEPS distribution can be derived as
the following.

Proposition 3.5. The mean residual, given the survival to time x, until the time of
failure, of the CEPS distribution can be obtained as follows:

m(x) = E(X − x|X ≥ x)
(3.6)

= 1

βA(θ)S(x)

∞∑
z=1

z−1∑
j=0

azθ
zz

(
z − 1

j

)
(−1)j−1 e−β(j+1)x

(j + 1)2 .

Proof. Since the conditional density of X − x0 given X ≥ x0 is f (x + x0)/S(x0),
then E(X − x|X ≥ x) = 1

S(x)

∫ ∞
0 yf (y + x)dy and the claim follows by writing f

as a mixture of the density functions fz as in (2.7). �

An explicit expression for the density of the ith order statistic Xi:n, say, fi:n(x),
in a random sample of size n from the CEPS distribution is derived in the sequel.
It is well known that

fi:n(x) = 1

B(i, n − i + 1)
f (x)F i−1(x)

(
1 − F(x)

)n−i

for i = 1, . . . , n, where B(·, ·) is the beta function. Using the binomial expansion
in the last equation, fi:n(x) becomes

fi:n(x) =
n−i∑
k=0

(−1)k

B(i, n − i + 1)

(
n − i

k

)
f (x)F i+k−1(x), (3.7)
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where f (·) and F(·) are p.d.f. and c.d.f. given by (2.5) and (3.1), respectively. By
inserting these equations in (3.7), we obtain for x > 0

fi:n(x; θ,β) = θβe−βxA′(θ(1 − e−βx))

A(θ)B(i, n − i + 1)
(3.8)

×
n−i∑
k=0

(−1)k
(

n − i

k

)[
A(θ(1 − e−βx))

A(θ)

]i+k−1

.

The moments of the CEPS distribution order statistics are obtained by using a
result due to Barakat and Abdelkader (2004) applied to the independent and iden-
tically distributed (i.i.d.) case, leading to

E[Xr
i:n; θ,β] = r

n∑
k=n−i+1

(−1)k−n+i−1
(

k − 1
n − i

)(
n

k

)∫ ∞
0

xr−1Sk(x;β,p)dx

= r

n∑
k=n−i+1

(−1)k−n+i−1
(

k − 1
n − i

)(
n

k

)
(3.9)

×
∫ ∞

0
xr−1

[
1 − A(θ(1 − e−βx))

A(θ)

]k

dx.

4 Special cases

In this section we present some special cases of the CEPS distribution. Expressions
for mean, variance and mean residual are presented.

4.1 Complementary exponential binomial distribution

The complementary exponential binomial (CEB) distribution is defined from the
c.d.f. (2.5) with A(θ) = (1 + θ)m − 1, which is given by

F(x; θ,β) = (1 + θ(1 − e−βx))m − 1

(1 + θ)m − 1
, x > 0, (4.1)

where m is integer positive.
The associated p.d.f. and failure rate function are given, respectively, by

f (x; θ,β) = θβe−βxm(1 + θ(1 − e−βx))m−1

(1 + θ)m − 1

and

h(x; θ,β) = θβe−βxm(1 + θ(1 − e−βx))m−1

(1 + θ)m − (1 + θ(1 − e−βx))m

for x > 0.
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The mean, variance and mean residual of the CEB distribution are given, re-
spectively, by

E[X] = (1 + θ)m

β((1 + θ)m − 1)

m∑
z=1

(−1)z+1

z

(
m

z

)(
θ

1 + θ

)z

,

Var[X] = (1 + θ)m

β2((1 + θ)m − 1)

[
2

m∑
z=1

(−1)z+1

z2

(
m

z

)(
θ

1 + θ

)z

− (1 + θ)m

(1 + θ)m − 1

(
m∑

z=1

(−1)z+1

z

(
m

z

)(
θ

1 + θ

)z
)2]

and

m(x) = (1 + θ)m

β[(1 + θ)m − (1 + θ(1 − e−βx))m]
m∑

z=1

(−1)z

z

(
m

z

)(
θe−βx

1 + θ

)x

.

4.2 Complementary exponential Poisson distribution

The complementary exponential Poisson (CEP) distribution was introduced by
Cancho, Louzada-Neto and Barriga (2011). The p.d.f. and survival function are
given by

f (x; θ,β) = θβe−βx−θe−βx

1 − e−θ
and S(x; θ,β) = 1 − e−θe−βx

1 − e−θ

for x > 0, respectively. The next proposition gives us another characterization of
the CEP distribution.

Proposition 4.1. The CEP distribution can be obtained as limiting of CEB distri-
bution with c.d.f. given by (4.1), if mθ → λ > 0, when m → ∞ and θ → 0+.

Proof. We shall show that the survival function of the CEB distribution converges
to the survival function of the CEP distribution under conditions of the proposition,
that is,

lim
m→∞
θ→0+

1 − (1 + θ(1 − e−βx))m − 1

(1 + θ)m − 1
= 1 − e−λe−βx

1 − e−λ
.

The claim follows by the following limits:

lim
m→∞
θ→0+

(
1 + θ(1 − e−βx)

)m = lim
m→∞
θ→0+

(
1 + mθ(1 − e−βx)

m

)
= eλ(1−e−βx)
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and

lim
m→∞
θ→0+

(1 + θ)m = lim
m→∞
θ→0+

(
1 + mθ

m

)m

= eλ.
�

The failure rate function of the CEP distribution is given by

h(x; θ,β) = θβe−βx

eθe−βx − 1
, x > 0.

The mean, variance and mean residual of the CEP distribution are given, respec-
tively, by

E[X] = θ

β(1 − e−θ )
F2,2([1,1], [2,2],−θ),

Var[X] = 2θ

β2(1 − e−θ )

[
2F3,3([1,1,1], [2,2,2],−θ)

− θ

1 − e−θ
F 2

2,2([1,1], [2,2],−θ)

]
and

m(x) = θe−βx

λ(1 − e−θe−βx
)
F2,2([1,1], [2,2],−θe−βx),

where Fp,q(n,d, λ) is the generalized hypergeometric function. This function
is also known as Barnes’s extended hypergeometric function. The definition of
Fp,q(n,d, λ) is

Fp,q(n,d, λ) =
∞∑

k=0

λk ∏p
i=1 �(ni + k)�−1(ni)

�(k + 1)
∏q

i=1 �(di + k)�−1(di)
,

where n = [n1, n2, . . . , np], p is the number of operands of n, d = [d1, d2, . . . , dq]
and q is the number of operands of d. The generalized hypergeometric function is
quickly evaluated and readily available in standard software such as Maple or R
(R Development Core Team, 2008).

4.3 Complementary exponential geometric distribution

The complementary exponential geometric (CEG) distribution, introduced by
Adamidis et al. (2005), is defined by the c.d.f. (2.5) with A(θ) = θ(1 − θ)−1,
which is given by

F(x; θ,β) = (1 − θ)(1 − e−βx)

(1 − θ(1 − e−βx))
, x > 0, θ ∈ (0,1).
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The associated p.d.f. and failure rate function are given, for x > 0, respectively, by

f (x; θ,β) = (1 − θ)βe−βx

(1 − θ(1 − e−βx))2 and h(x; θ,β) = (1 − θ)β

1 − θ(1 − e−βx)
.

The mean, variance and mean residual are given, respectively, by

E[X] = − 1

θβ
log(1 − θ), Var[X] = − 2

θβ2

[
2 Li2

(
θ

θ − 1

)
+ 1

θ
log2(1 − θ)

]
and

m(x) = −1 − θ(1 − e−βx)

βθe−βx

[
log(1 − θ) − log

(
1 − θ(1 − e−βx)

)]
,

where Lis(z) is the polylogarithm function defined by

Lis(z) = z

�(s)

∫ ∞
0

us−1e−u

1 − ze−u
du, z < 1, s > 0.

The polylogarithm function is quickly evaluated in standard software such as R.

4.4 Complementary exponential logarithmic distribution

The c.d.f. of the complementary exponential logarithmic (CEL) distribution is de-
fined by (2.5) with A(θ) = − log(1 − θ), 0 < θ < 1. The associated p.d.f. and
failure rate function are

f (x; θ,β) = − θβe−βx

log(1 − θ)(1 − θ(1 − e−βx))

and

h(x; θ,β) = − θβe−βx

log((1 − θ)/(1 − θ(1 − e−βx)))(1 − θ(1 − e−βx))

for x > 0, respectively.
The mean, variance and mean residual of the CEL distribution are given, re-

spectively, by

E[X] = 1

β log(1 − θ)
Li2

(
θ

θ − 1

)
,

Var[X] = 2

β2 log(1 − θ)
Li3

(
θ

θ − 1

)
− 1

β2 log2(1 − θ)
Li22

(
θ

θ − 1

)
and

m(x) = 1

β[log(1 − θ) − log(1 − θ(1 − e−βx))] Li2

(
θ

θ − 1
e−βx

)
.

Figure 1 shows the behavior of failure rate functions of the EPS and CEPS
distributions for some values of the parameters. The CEPS failure rate function
increases while the EPS failure rate function decreases with x, but both converge
to β when x → ∞, corroborating Proposition 3.3.
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Figure 1 Comparing the failure rate function of the EPS and CEPS distributions for the same fixed
θ values. We fixed β = 1.0.

5 Inference

5.1 Maximum likelihood estimation

Let x = (x1, . . . , xn) be a random sample of the CEPS distribution with unknown
parameter vector ξ = (θ, β). The log-likelihood l = l(ξ ;x) is given by

l = n log(θβ) − β

n∑
i=1

xi +
n∑

i=1

log
(
A′(θ(1 − e−βxi )

)) − n log(A(θ)). (5.1)

The maximum likelihood estimations (MLEs) of θ and β can be derived directly
either from the log-likelihood (5.1) or by solving the following nonlinear system:

∂l(ξ ;x)

∂θ
= n

θ
− nA′(θ)

A(θ)
+

n∑
i=1

(1 − e−βxi )A′′(θ(1 − e−βxi ))

A′(θ(1 − e−βxi ))
= 0, (5.2)
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∂l(ξ ;x)

∂β
= n

β
−

n∑
i=1

xi + θ

n∑
i=1

xie
−βxiA′′(θ(1 − e−βxi ))

A′(θ(1 − e−βxi ))
= 0. (5.3)

Large sample inference for the parameters can be based, in principle, on the
MLEs and their estimated standard errors. According to Cox and Hinkley (1974),
it can be shown, under suitable regularity conditions, the following convergence in
distribution:

√
n(θ̂ − θ, β̂ − β)

D→ N2(0, I−1(θ, β)),

where I(θ, β) is the Fisher information matrix, that is,

I(θ, β) = −

⎡⎢⎢⎣E

(
∂2L(θ,β;X)

∂θ2

)
E

(
∂2L(θ,β;X)

∂θ ∂β

)
E

(
∂2L(θ,β;X)

∂θ ∂β

)
E

(
∂2L(θ,β;X)

∂β2

)
⎤⎥⎥⎦ ,

where L(θ,β;x) = log(f (x; θ,β)) is the logarithm of density CEPS(θ, β) distri-
bution (given by equation (2.5)), then the second derivatives are given by

∂2L(θ,β;x)

∂θ2 = − 1

θ2 − A′′(θ)A(θ) − A′2(θ)

A2(θ)

+ b2(x)[A′′′(θb(x))A′(θb(x)) − A′′2(θb(x))]
A′2(θb(x))

,

∂2L(θ,β;x)

∂θ ∂β
= xe−βx

A′2(θb(x))
{A′(θb(x))[A′′(θb(x)) + θb(x)A′′′(θb(x))]

− θb(x)A′′2(θb(x))},
∂2L(θ,β;x)

∂β2 = − 1

β2 − θx2e−βx

A′2(θb(x))
{A′(θb(x))[A′′(θb(x)) − θe−βxA′′′(θb(x))]

+ θe−βxA′′2(θb(x))},
where A′′′(θb(x)) is the third derivative of A(·) evaluated at b(x) and b(x) =
θ(1 − e−βx).

6 Simulation study

This section presents the results of a simulation study carried out to assess the
accuracy of the approximation of the variance and covariance of the MLEs de-
termined from the Fisher information matrix. Five thousand samples of sizes
n = 20,30,50,100 and 200 were generated from a Binomial–Exponential dis-
tribution (with m = 13) for each combination of the parameter values (θ;β) =



578 Flores D., Borges, Cancho and Louzada

(0,1;2), (0,3;2), (0,5;2), (0,7;2), (0,9;2), (0,1;6), (0,3;6), (0,5;6), (0,7;6)

and (0,9;6). Overall, 50 different setups were considered.
The simulated values of Var(θ̂), Var(β̂) and Cov(θ̂ , β̂), as well as their approx-

imate values obtained by averaging the corresponding values obtained from the
expected and observed information matrices, are presented in Table 2. It is ob-
served that the approximate values determined from the expected and observed
information matrices are close to the simulated values for large values of n. Fur-
thermore, it is noted that the approximation becomes quite accurate as n increases.
Additionally, variances and covariances of MLEs obtained from the observed in-
formation matrix are quite close from the variances and covariances obtained from
the expected information matrix for large value of n. Also, the simulation study in-
clude the mean square error (mse) of the MLEs, as well as the empirical coverage
probabilities of the 95% confidence intervals for the parameters θ and β , which
are closer to the nominal coverage as the sample size increases.

7 Application

In this section we reanalyze the data set considered by Cancho, Louzada-Neto
and Barriga (2011). The lifetimes are the number of million revolutions before
failure for each one of the 23 ball bearings on an endurance test of deep groove
ball bearings. From the practical point of view, even though the risks for deep
groove ball bearing failure are unobserved, one may speculate on some possible
competing risks. For instance, we can consider the risk of contamination from dirt
from the casting of the casing, the wear particles from hardened steel gear wheels
and the harsh working environments, amongst others, which can lead to the deep
groove ball bearing failure.

The shape of the failure rate function for the data set can be determined from
a TTT plot (Aarset, 1985). This plot is built from the points ( r

n
,G( r

n
)), where

G( r
n
) = [∑r

i=1 Y(i) + (n − r)Y(r)]/(∑r
i=1 Y(i)), r = 1, . . . , n, and Y(i) is the ith or-

der statistic of the sample. As pointed out in the literature, it is shown that the rate
of failure is increasing (decreasing) if the TTT plot is concave (convex). However,
since the TTT plot is a sufficient condition, but not necessary, to indicate the rate
of failure, it is taken here only as a reference to determine the shape of the rate
of failure. Figure 2 shows the TTT plot for the considered data, which is concave,
indicating an increasing failure rate function, which can be properly accommo-
dated by the CEPS distribution, but not for the EPS ones proposed by Chahkandi
and Ganjali (2009), since they can only accommodate decreasing failure rate func-
tions; see Figure 1.

Therefore, the data set may be fitted by the CEPS distribution. Thus, the Pois-
son, geometric, logarithmic and binomial distributions can be used for this pur-
pose. The maximum likelihood estimation is obtained by direct maximization
of (5.1) via the optim function of the R program (R Development Core Team,



T
he

com
plem

entary
exponentialpow

er
series

distribution
579

Table 2 Mean of the variances and covariances of the MLEs, mean square error (mse) of the MLEs and coverage probabilities of the 95% confidence
intervals for the parameters

Simulated Expected information Observed information Coverage

n (θ;β) θ̂ β̂ Var(θ̂) Var(β̂) mse(θ̂) mse(β̂) Cov(θ̂ , β̂) Var(θ̂) Var(β̂) Cov(θ̂ , β̂) Var(θ̂) Var(β̂) Cov(θ̂ , β̂) θ β

20 (0, 1; 2) 0.151 2.228 0.020 0.420 0.022 0.472 0.063 0.015 0.401 0.061 0.022 0.447 0.071 0.999 0.953
(0, 3; 2) 0.390 2.128 0.051 0.221 0.059 0.237 0.073 0.026 0.198 0.053 0.065 0.220 0.077 0.985 0.955
(0, 5; 2) 0.609 2.078 0.069 0.142 0.081 0.148 0.064 0.063 0.148 0.070 0.143 0.160 0.100 0.964 0.968
(0, 7; 2) 0.763 2.032 0.057 0.099 0.061 0.100 0.043 0.145 0.131 0.103 0.209 0.133 0.115 0.956 0.978
(0, 9; 2) 0.857 1.979 0.039 0.071 0.041 0.072 0.026 0.305 0.125 0.149 0.248 0.115 0.118 0.953 0.982

30 (0, 1; 2) 0.129 2.140 0.011 0.261 0.012 0.280 0.038 0.010 0.268 0.041 0.012 0.290 0.045 0.998 0.958
(0, 3; 2) 0.356 2.079 0.031 0.151 0.034 0.157 0.049 0.018 0.132 0.035 0.032 0.142 0.045 0.978 0.954
(0, 5; 2) 0.587 2.052 0.053 0.099 0.061 0.102 0.049 0.042 0.099 0.047 0.085 0.104 0.064 0.964 0.960
(0, 7; 2) 0.760 2.024 0.049 0.069 0.053 0.070 0.036 0.097 0.088 0.068 0.140 0.088 0.078 0.954 0.976
(0, 9; 2) 0.861 1.978 0.033 0.049 0.034 0.050 0.022 0.203 0.083 0.099 0.172 0.077 0.082 0.953 0.979

50 (0, 1; 2) 0.118 2.084 0.006 0.162 0.006 0.169 0.023 0.006 0.161 0.025 0.007 0.167 0.026 0.986 0.955
(0, 3; 2) 0.333 2.050 0.015 0.087 0.017 0.090 0.027 0.011 0.079 0.021 0.015 0.083 0.024 0.975 0.949
(0, 5; 2) 0.558 2.037 0.035 0.062 0.038 0.063 0.033 0.025 0.059 0.028 0.043 0.062 0.035 0.966 0.962
(0, 7; 2) 0.756 2.027 0.037 0.043 0.040 0.044 0.026 0.058 0.053 0.041 0.083 0.053 0.047 0.963 0.976
(0, 9; 2) 0.874 1.980 0.025 0.030 0.026 0.030 0.015 0.122 0.050 0.060 0.110 0.047 0.052 0.957 0.979

100 (0, 1; 2) 0.107 2.035 0.003 0.078 0.003 0.079 0.012 0.003 0.080 0.012 0.003 0.082 0.013 0.980 0.962
(0, 3; 2) 0.315 2.023 0.006 0.041 0.006 0.041 0.011 0.005 0.040 0.011 0.006 0.040 0.011 0.966 0.956
(0, 5; 2) 0.529 2.022 0.017 0.031 0.017 0.032 0.016 0.013 0.030 0.014 0.017 0.030 0.016 0.966 0.954
(0, 7; 2) 0.741 2.018 0.026 0.024 0.028 0.024 0.017 0.029 0.026 0.021 0.039 0.027 0.023 0.961 0.969
(0, 9; 2) 0.882 1.985 0.018 0.016 0.018 0.016 0.010 0.061 0.025 0.030 0.057 0.024 0.027 0.960 0.976

200 (0.1;2) 0.102 2.016 0.002 0.042 0.002 0.042 0.006 0.001 0.040 0.006 0.002 0.041 0.006 0.961 0.956
(0, 3; 2) 0.307 2.010 0.003 0.020 0.003 0.020 0.006 0.003 0.020 0.005 0.003 0.020 0.005 0.962 0.956
(0, 5; 2) 0.518 2.012 0.008 0.015 0.008 0.015 0.008 0.006 0.015 0.007 0.007 0.015 0.008 0.962 0.956
(0, 7; 2) 0.728 2.015 0.015 0.013 0.016 0.013 0.010 0.015 0.013 0.010 0.018 0.013 0.011 0.965 0.965
(0, 9; 2) 0.891 1.993 0.012 0.009 0.012 0.009 0.007 0.031 0.012 0.015 0.030 0.012 0.014 0.963 0.979



580
Flores

D
.,B

orges,C
ancho

and
L

ouzada

Table 2 (Continued)

Simulated Expected information Observed information Coverage

n (θ;β) θ̂ β̂ Var(θ̂) Var(β̂) mse(θ̂) mse(β̂) Cov(θ̂ , β̂) Var(θ̂) Var(β̂) Cov(θ̂ , β̂) Var(θ̂) Var(β̂) Cov(θ̂ , β̂) θ β

20 (0, 1; 6) 0.149 6.666 0.018 3.677 0.020 4.120 0.174 0.015 3.613 0.184 0.021 3.985 0.21 0.999 0.961
(0, 3; 6) 0.385 6.353 0.051 2.010 0.058 2.134 0.217 0.026 1.781 0.158 0.065 1.987 0.231 0.981 0.958
(0, 5; 6) 0.615 6.248 0.069 1.256 0.082 1.317 0.188 0.063 1.334 0.210 0.147 1.448 0.307 0.969 0.970
(0, 7; 6) 0.771 6.111 0.056 0.883 0.061 0.895 0.130 0.145 1.182 0.308 0.212 1.191 0.346 0.958 0.980
(0, 9; 6) 0.854 5.943 0.040 0.661 0.042 0.664 0.085 0.305 1.123 0.447 0.246 1.035 0.352 0.946 0.980

30 (0, 1; 6) 0.128 6.411 0.011 2.348 0.012 2.516 0.114 0.010 2.408 0.123 0.012 2.595 0.134 0.999 0.965
(0, 3; 6) 0.358 6.243 0.032 1.317 0.035 1.376 0.144 0.018 1.187 0.105 0.033 1.274 0.136 0.980 0.951
(0, 5; 6) 0.594 6.185 0.054 0.882 0.063 0.916 0.147 0.042 0.889 0.140 0.088 0.946 0.195 0.967 0.966
(0, 7; 6) 0.761 6.081 0.048 0.598 0.052 0.605 0.106 0.097 0.788 0.205 0.140 0.797 0.234 0.961 0.978
(0, 9; 6) 0.862 5.924 0.033 0.429 0.034 0.435 0.063 0.203 0.749 0.298 0.172 0.691 0.245 0.954 0.982

50 (0, 1; 6) 0.115 6.248 0.006 1.420 0.006 1.481 0.069 0.006 1.445 0.074 0.007 1.532 0.078 0.986 0.960
(0, 3; 6) 0.332 6.161 0.015 0.779 0.016 0.805 0.077 0.011 0.712 0.063 0.015 0.748 0.073 0.976 0.953
(0, 5; 6) 0.559 6.123 0.035 0.531 0.038 0.546 0.094 0.025 0.533 0.084 0.043 0.559 0.106 0.968 0.961
(0, 7; 6) 0.755 6.070 0.038 0.388 0.041 0.392 0.079 0.058 0.473 0.123 0.083 0.479 0.142 0.958 0.974
(0, 9; 6) 0.869 5.938 0.026 0.269 0.027 0.273 0.047 0.122 0.449 0.179 0.108 0.423 0.155 0.951 0.980

100 (0, 1; 6) 0.106 6.099 0.003 0.750 0.003 0.760 0.037 0.003 0.723 0.037 0.003 0.745 0.038 0.981 0.958
(0, 3; 6) 0.314 6.074 0.006 0.374 0.006 0.379 0.034 0.005 0.356 0.032 0.006 0.365 0.034 0.967 0.953
(0, 5; 6) 0.531 6.072 0.016 0.269 0.017 0.274 0.047 0.013 0.267 0.042 0.017 0.274 0.048 0.972 0.956
(0, 7; 6) 0.738 6.043 0.025 0.212 0.026 0.214 0.050 0.029 0.236 0.062 0.038 0.240 0.069 0.963 0.969
(0, 9; 6) 0.880 5.959 0.018 0.152 0.018 0.153 0.032 0.061 0.225 0.089 0.057 0.216 0.082 0.961 0.979

200 (0, 1; 6) 0.104 6.058 0.002 0.366 0.002 0.369 0.019 0.001 0.361 0.018 0.002 0.367 0.019 0.957 0.955
(0, 3; 6) 0.307 6.039 0.003 0.183 0.003 0.184 0.016 0.003 0.178 0.016 0.003 0.181 0.016 0.962 0.954
(0, 5; 6) 0.515 6.040 0.007 0.133 0.008 0.134 0.023 0.006 0.133 0.021 0.007 0.135 0.022 0.965 0.958
(0, 7; 6) 0.726 6.035 0.016 0.120 0.016 0.121 0.032 0.015 0.118 0.031 0.018 0.120 0.034 0.963 0.959
(0, 9; 6) 0.893 5.981 0.012 0.076 0.012 0.077 0.020 0.031 0.112 0.045 0.030 0.110 0.043 0.962 0.960
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Figure 2 Empirical scaled TTT-transform for the data.

Table 3 MLEs and their standard errors (in brackets) for the
parameters of the fitted distributions

Distribution θ β

CEB 600 (280.3460) 0.0315 (0.0036)
CEP 7.3259 (2.594) 0.0358 (0.0061)
CEG 0.9447 (0.0415) 0.0436 (0.0094)
CEL 0.9982 (0.0077) 0.0516 (0.0215)
Weibull 2.1026 (0.3437) 0.0122 (0.0014)

2008). For the complementary exponential-binomial model it is taken m = 5, a
value that determines the CEB model with the greatest likelihood. Also, for sake
of comparison, we fit more one usual lifetime distribution generally used for fitting
a data set with increasing failure rate function: the Weibull distribution. As well
known, the Weibull distribution is indexing by two parameters as it is the case for
the CEPS distribution. The density functions of the Weibull distributions, with pa-
rameters θ and β , is given by θβθxθ−1 exp(−(βx)θ ), respectively. Table 3 shows
the MLEs and their standard errors for the CEPS distribution parameters as well
as for the Weibull distribution parameters.

We compare the fitting of the CEPS particular distributions and the Weibull one
by considering the AIC (Akaike’s information criterion,−2l(θ̂ , β̂) + 2p, where p

is the number of parameters in the model) and BIC [Schawartz’s Bayesian infor-
mation criterion, −2l(θ̂ , β̂) + 2 log(n), where n is the size sample]. Both criterion
penalize overfitting and the preferred model is the one with the smaller value on
each criterion. Also, Table 4 presents the maximum values of the log-likelihood
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Table 4 l(·) value, and AIC and BIC values for the fitted distributions

Distribution l(·) AIC BIC χ2 (p-value) K–S (p-value)

CEB −112.9874 229.9748 232.2459 0.7117 (0.8704) 0.1061 (0.9339)
CEP −113.1521 230.3042 232.5752 0.8630 (0.8344) 0.1150 (0.8875)
CEG −114.3502 232.7004 234.9714 2.4302 (0.4880) 0.1387 (0.7173)
CEL −116.7022 237.4044 239.6754 6.5446 (0.0879) 0.2066 (0.2441)
Weibull −113.6887 231.3774 233.6484 2.4634 (0.4819) 0.1512 (0.6157)

Figure 3 Left panel: The plots of the fitted CEB, CEP, CEG, CEL and Weibull densities. Right
panel: Kaplan–Meir curve together with the fitted survival functions.

function (l(·)), the estimated AIC and BIC criteria, the Pearson χ2 statistic (ob-
tained with the partition used in the histogram presented in the Figure 3) and the
Kolmogorov–Smirnov distance (K–S) considering the all fitted distributions.

The CEB distribution outperforms its concurrent distributions in all considered
criteria. The parameter estimates of the CEB distribution of θ and β (and their
standard errors) are 600 (280.3460) and 0.0315 (0.0036), respectively. Figure 3
shows the fitted density functions of the all fitted distributions superimposed to the
histogram and the fitted survival superimposed to the empirical survival function.

8 Concluding remarks

In this paper we propose the CEPS distribution, which is complementary to the
EPS distribution proposed by Chahkandi and Ganjali (2009), and accommodate
increasing failure rate functions. It arises on latent complementary risks scenarios,
where the lifetime associated with a particular risk is not observable but only the
maximum lifetime value among all risks. We provide a mathematical treatment of
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the new distribution including expansions for its density and cumulative distribu-
tions, survival and failure rate functions. We derive expansions for the moments
and quantile function, obtain the density of the order statistics and provide expan-
sions for moments of the order statistics. Maximum likelihood inference is imple-
mented straightforwardly. Finally, we fit the CEPS distribution to a real data set
in order to show its flexibility and potentially as a lifetime distribution compared
with an usual two-parameters lifetime distributions.

Acknowledgments

The authors are grateful to the anonymous referees for their important comments,
suggestions and criticisms. José Flores D. is supported by the Pontificia Univer-
sidad Católica del Perú and the University of Sao Paulo. The researches of Fran-
cisco Louzada and Vicente G. Cancho are supported by the Brazilian organization
CNPq.

References

Aarset, M. V. (1985). The null distribution for a test of constant versus “bathtub” failure rate. Scan-
dinavian Journal of Statistics 12(1), 55–68. MR0804225

Adamidis, K. and Loukas, S. (1998). A lifetime distribution with decreasing failure rate. Statistics &
Probability Letters 39(1), 35–42. MR1649319

Adamidis, K., Dimitrakopoulou, T. and Loukas, S. (2005). On an extension of the exponential-
geometric distribution. Statistics & Probability Letters 73(3), 259–269. MR2179285

Barakat, H. M. and Abdelkader, Y. H. (2004). Computing the moments of order statistics from non-
identical random variables. Statistical Methods and Applications 13, 15–26. MR2081962

Barreto-Souza, W. and Cribari-Neto, F. (2009). A generalization of the exponential–Poisson distri-
bution. Statistics & Probability Letters 79, 2493–2500. MR2556316

Basu, A. and Klein, J. (1982). Some recent development in competing risks theory. In Survival Anal-
ysis (Crowley, J. and Johnson, R. A, eds.) 1, 216–229. Hayward: IMS. MR0734204

Cancho, V. G., Louzada-Neto, F. and Barriga, G. D. (2011). The Poisson–exponential lifetime distri-
bution. Computational Statistics & Data Analysis 55, 677–686. MR2736587

Chahkandi, M. and Ganjali, M. (2009). On some lifetime distributions with decreasing failure rate.
Computational Statistics & Data Analysis 53, 4433–4440. MR2744336

Cordeiro, G., Rodrigues, J. and de Castro, M. (2012). The exponential COM–Poisson distribution.
Statistical Papers 53, 653–664. MR2958745

Cox, D. R. and Hinkley, D. V. (1974). Theoretical Statistics. London: Chapman & Hall. MR0370837
Cox, D. R. and Oakes, D. (1984). Analysis of Survival Data. London: Chapman & Hall. MR0751780
Crowder, M., Kimber, A., Smith, R. and Sweeting, T. (1991). Statistical Analysis of Reliability Data.

London: Chapman & Hall. MR1122148
Goetghebeur, E. and Ryan, L. (1995). A modified log rank test for competing risks with missing

failure type. Biometrics 77, 207–211. MR1049423
Johnson, N. L., Kemp, A. W. and Kotz, S. (2005). Univariate Discrete Distribution. Hoboken, NJ:

Wiley. MR2163227
Kus, C. (2007). A new lifetime distribution. Computational Statistics & Data Analysis 51, 4497–

4509. MR2364461

http://www.ams.org/mathscinet-getitem?mr=0804225
http://www.ams.org/mathscinet-getitem?mr=1649319
http://www.ams.org/mathscinet-getitem?mr=2179285
http://www.ams.org/mathscinet-getitem?mr=2081962
http://www.ams.org/mathscinet-getitem?mr=2556316
http://www.ams.org/mathscinet-getitem?mr=0734204
http://www.ams.org/mathscinet-getitem?mr=2736587
http://www.ams.org/mathscinet-getitem?mr=2744336
http://www.ams.org/mathscinet-getitem?mr=2958745
http://www.ams.org/mathscinet-getitem?mr=0370837
http://www.ams.org/mathscinet-getitem?mr=0751780
http://www.ams.org/mathscinet-getitem?mr=1122148
http://www.ams.org/mathscinet-getitem?mr=1049423
http://www.ams.org/mathscinet-getitem?mr=2163227
http://www.ams.org/mathscinet-getitem?mr=2364461


584 Flores D., Borges, Cancho and Louzada

Lawless, J. F. (2003). Statistical Models and Methods for Lifetime Data, 2nd ed. Hoboken, NJ: Wiley.
MR1940115

Lu, K. and Tsiatis, A. A. (2001). Multiple imputation methods for estimating regression coeffi-
cients in the competing risks model with missing cause of failure. Biometrics 54, 1191–1197.
MR1950427

Lu, K. and Tsiatis, A. A. (2005). Comparision between two partial likelihood approaches for the com-
peting risks model with missing cause of failure. Lifetime Data Analysis 11, 29–40. MR2139480

Morais, A. L. and Barreto-Souza, W. (2011). A compound class of weibull and power series distri-
butions. Computational Statistics & Data Analysis 55(3), 1410–1425.

Reiser, B., Guttman, I., Lin, D., Guess, M. and Usher, J. (1995). Bayesian inference for masked
system lifetime data. Applied Statistics 44, 79–90. MR1323353

R Development Core Team (2008). R: A Language and Environment for Statistical Computing. Vi-
enna, Austria: R Foundation for Statistical Computing.

Silva, R. B., Barreto-Souza, W. and Cordeiro, G. M. (2010). A new distribution with decreasing,
increasing and upside-down bathtub failure rate. Computational Statistics & Data Analysis 54(4),
935–944. MR2580928

Tahmashi, R. and Rezaei, S. (2008). A two-parameter lifetime distribution with decreasing failure
rate. Computational Statistics & Data Analysis 52, 3889–3901. MR2432214

J. Flores D.
DAC
Pontificia Universidad Católica del Perú
Lima
Perú
E-mail: jfdelgad@pucp.edu.pe

P. Borges
DEs
Universidade Federal de São Carlos
SP
Brazil
E-mail: patrickborges@yahoo.com.br

V. G. Cancho
ICMC
Universidade de São Paulo
São Carlos - SP
Brazil
E-mail: garibay@icmc.usp.br

F. Louzada
ICMC
Universidade de São Paulo
SP
Brazil
E-mail: louzada@icmc.usp.br

http://www.ams.org/mathscinet-getitem?mr=1940115
http://www.ams.org/mathscinet-getitem?mr=1950427
http://www.ams.org/mathscinet-getitem?mr=2139480
http://www.ams.org/mathscinet-getitem?mr=1323353
http://www.ams.org/mathscinet-getitem?mr=2580928
http://www.ams.org/mathscinet-getitem?mr=2432214
mailto:jfdelgad@pucp.edu.pe
mailto:patrickborges@yahoo.com.br
mailto:garibay@icmc.usp.br
mailto:louzada@icmc.usp.br

	Introduction
	The CEPS distribution
	Some properties of the CEPS distribution
	The distribution, survivor, failure rate functions
	Quantiles, moments, mean residual and order statistics

	Special cases
	Complementary exponential binomial distribution
	Complementary exponential Poisson distribution
	Complementary exponential geometric distribution
	Complementary exponential logarithmic distribution

	Inference
	Maximum likelihood estimation

	Simulation study
	Application
	Concluding remarks
	Acknowledgments
	References
	Author's Addresses

