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Abstract. Determining the acceptability of any product, reliability sampling
plans are used. In this paper, reliability sampling plans for truncated life test
are developed when the lifetimes of a test follow an alpha distribution. The
sampling plan proposed here can save the test time in practical situations.
Sampling plans are established through an algorithm. Moreover, some tables
are provided for the proposed sampling plans so that proposed method can be
used conveniently for the practitioner. Operating characteristic values of the
sampling plans are also presented. Examples are provided to illustrate its use.

1 Introduction

With the globalization of business, the dimensions of business are changing
rapidly. With the emergence of competition at the global level, the customer is
the one who is benefited the most. He now has options, as he can choose what he
would like to buy from various alternatives. Due to the highly competitive global
business market, a product’s quality plays one of the most important roles for in-
dustry growth in today’s competitive business arena. Ensuring for a quality level,
there are two important tools: statistical quality control and acceptance sampling.
To assure the quality of products, inspections are performed, but in many situa-
tions, it may not be possible to perform hundred percent inspections, and if no
inspections are performed, we cannot assure the quality of the lot or products. In
this situation, acceptance sampling plans (ASPs) play the role of ‘bridge’ between
hundred percent inspections and no inspection.

An acceptance sampling plan in statistical quality control refers to the process
of randomly inspecting a certain number of items from a lot or batch in order to
decide whether to accept or reject the entire batch or lot of product. It is used when
inspecting every item is not physically possible or would be overly expensive,
or when inspecting a large number of items would lead to errors due to worker
fatigue. This last concern is especially important when a large number of items are
processed in a short period of time. For example, when an acceptance sampling
plan would be used is in destructive testing, such as testing eggs for salmonella
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or vehicles for crash testing. Obviously, in these cases it would not be helpful to
test every item! However, 100 percent inspection does make sense if the cost of
inspecting an item is less than the cost of passing on a defective item. A decision
to accept or reject the lot subject to the risk associated with the two types of errors
(rejecting a good lot or accepting a bad lot) is possible, such a procedure is called
a ‘Reliability Test Plan’ or ‘Acceptance Sampling based on life test plans.’ For
a given acceptance sampling plan, the consumer’s and producer’s risks are the
probabilities that a bad lot is accepted and a good lot is rejected, respectively, and
the goal of an acceptance sampling plan is to determine the criteria for acceptance
or rejection based on the size of the lot, the size of the sample, and the level of
confidence we wish to attain.

Sometimes, it might be time consuming to wait until all test items fail in a
life test if the lifetimes of test items are high. One can use the truncated life test
for saving time and money. The test can be performed without waiting until all
test items fail, and then the test time can be reduced significantly. The problem
considered here is that of finding the smallest sample size to ensure a certain mean
lifetime when the life test is terminated at a preassigned time t , and when the
number of failures observed does not exceed a given acceptance number c. The
decision is to accept the lot only if the specified mean lifetime can be established
with a preassigned high probability P ∗, which provides protection to consumers.
The life test is finished at the time at which the (c + 1)th failure is observed or at
time t , whichever is earlier.

In the literature, Sobel and Tischendrof (1959) developed a truncated life test
of this type for the exponential distribution. Goode and Kao (1961) developed
the sampling plans based on a truncated life test for the Weibull distribution with
known shape parameter. Gupta and Groll (1961) developed the sampling plans
based on the truncated life test for the gamma distribution with known shape pa-
rameter. Kantam and Rosaiah (1998) developed the sampling plans based on the
truncated life test for the half-logistic distribution. Kantam et al. (2001) developed
the sampling plans based on the truncated life test for the log-logistic distribution
with known shape parameter. For more insight in this regard, we refer to Bakl-
izi (2003) for Pareto distribution, to Baklizi and El Masri (2004) for Birnbaum–
Saunders distribution, to Rosaiah and Kantam (2005) for inverse Rayleigh distribu-
tion, to Tsai and Wu (2006) for generalized Rayleigh distribution, and to Rosaiah et
al. (2006) for exponentiated log-logistic distribution. Balakrishnan et al. (2007) de-
veloped the ASPs for generalized Birnbaum–Saunders distribution. Aslam (2007)
developed grouped ASPs for the Rayleigh distribution, and Aslam and Shabaz
(2007) developed grouped ASPs for the generalized exponential distribution. Tsai
and Wu (2008) developed ASPs for the Inverse Gaussian distribution, and Srini-
vasa et al. (2009) developed ASPs for the Marshall–Olkin extended distribution,
etc.

In acceptance sampling based on truncated life tests, Balakrisnan et al. (2007)
have the following assumptions: (i) the units are destructible or are degraded af-
ter the life test, and (ii) there are several distributions that model the product life
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reasonably well. Thus, considering similar risk and operating conditions and the
assumptions (i) and (ii), the consumer will benefit with a smaller number of units
required to test. For this reason, we could use a distribution that gives the small-
est sample size. In this paper, alpha distribution is considered and we present a
methodology to find the minimum sample size necessary to ensure a specified
mean life. In Section 2 we describe the alpha distribution. In Section 3 we de-
velop the proposed acceptance sampling plan. In Section 4, illustrative examples
are presented and, finally, conclusions are given in Section 5.

2 Alpha distribution

The alpha distribution was first used as a result of wear analysis of broad nosed
cutting tools and modeling the life characteristic of machine components which
deteriorate according to a scheme of the nonstationary linear random wear process
(Vysokovskii, 1970). Also, in many situations it was successfully used, such as
modeling the cutting tool life (Kendall and Sheikh, 1979 and Pandit and Sheikh,
1980), monitoring the dimensions of machine parts for statistical quality control
(Pronikov, 1973), and in size modelling (Ahmad and Chaudhary, 1992). Kattan
(1996) obtained the strength-reliability of a product considering alpha distribution
as strength as well as stress distribution. Recently, Khan and Islam (2007) obtained
the strength-reliability for alpha distributed stress with respect to finite strength.
Later, Khan and Islam (2010) discussed the robustness of the reliability character-
istic of alpha distributed lifetimes. The density function of the alpha distribution
with parameters α and β is

f (t) = 1

�(α)

β√
2π

1

t2 exp
[
−

{
1

2

(
α − β

t

)2}]
; t > 0, α,β > 0. (2.1)

where �(α) is given as

�(α) =
∫ α

−∞
1√
2π

e−(1/2)u2
du

(the distribution function of the standard normal variate N(0,1) calculated for
t = α).

Now, the cumulative density function of alpha distribution is

F(t) = �(α − β/t)

�(α)
, t, α,β > 0. (2.2)

Družinin (1977) described the time needed to perform some operations and applied
by Katzev (1974) in cutting-tools durability analysis (Dorin & Vodă, 1973), this
variable is in fact the inverse of a left truncated normal variable N(μ,σ 2) in the
origin.
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Indeed, if X is a measurable characteristic with f (x, θ) as its density and xt is
a left truncated point (i.e., x ≥ xt ), then, the density of the truncated variable Xt is

Xt : ft (x; θ) = 1

1 − FX(x; θ)
f (x, θ), x ≥ xT , θ ∈ R, (2.3)

where FX(x; θ) is the distribution function of the initial variable X(F ′
X(x; θ) =

f (x; θ)). If we take X ∼ N(μ,σ 2), xt = 0 and compute the density of X−1
0 , de-

noting μ = α/β and σ = 1/β , we get easily the form (2.1) (Dorin et al., 1994).
Suppose the mean of the truncated normal distribution is zero, then the cumulative
distribution function of the alpha distribution is

F(t,1/β) = 2�

(
t

(1/β)

)
− 1. (2.4)

Now, the average life of the distribution is μ = (1/β). If μ = μ0 is a specified
mean, then a specified mean μ0 = (1/β0). The distribution function of t is

F(t,1/β0) = 2�

(
t

1/β0

)
− 1. (2.5)

3 Development of sampling plan

Assume that a truncated life test is conducted when the lifetimes of test items
follow the alpha distribution defined by equations (2.1) and (2.5). One objective of
this experiment is to set a lower confidence limit on the mean lifetime, and we want
to test whether the mean lifetime of items is longer than our expectation. Assume
that μ = μ0, where μ0 is the specified mean lifetime for items. The decision is to
accept the lot if and only if the number of observed failures at the end of the fixed
time t does not exceed a given number c; or to terminate the test and reject the lot
if there are more than c failures occurring before time t , which implies that the true
mean lifetime of items is below the specified one. The sampling plan contains:

• the number of units, n, required on the test,
• an acceptance number, c, and a ratio t/μ0.

If c or fewer failures occur during the test time t , the lot is accepted; otherwise, the
lot is rejected.

Fix the consumer risk first, then the probability of accepting a bad lot is not
to exceed 1 − P ∗. A bad lot means that the lot with the true mean lifetime is
below the specified mean lifetime μ0. Thus, the probability P ∗ is a confidence
level in the sense that the chance of rejecting a lot with μ < μ0 is at least P ∗. For
a predetermined value of P ∗, our sampling plan is characterized by (n, c, t/μ0).

Here, we consider a lot of infinitely large size so that the theory of binomial
distribution can be applied, and the acceptance or rejection of the lot is equivalent
to the acceptance or rejection of the hypothesis μ ≥ μ0. Mathematically, given
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P ∗(0 < P ∗ < 1), the ratio of t/μ0, and an acceptance number c, we need to find
the smallest positive integer n so that we can assert that μ ≥ μ0 with confidence
level of P ∗ if the number of failures observed in time t does not exceed c.

In accordance with the design of the proposed sampling plans, the required
sample size, n, is the smallest positive integer which satisfies the inequality

c∑
i=0

(
n

i

)
P i(1 − P)n−i ≤ 1 − P ∗, (3.1)

where F(t,1/β0) is the probability of a failure observed during the time t when
the true mean lifetime of items is μ0. It follows from the fact that the chance of
observing x failures during the time t is a binomial distribution with density

f (x) =
(

n

x

)
P x(1 − P)n−x. (3.2)

Equation (2.5) shows that F(t,1/β0) depends only on the ratio t/β0 = t/μ0.
Thus, experiment needs only to specify this ratio. The minimum values of
n satisfying (2.4) are obtained for P ∗ = 0.75,0.90,0.95,0.99 and t/μ0 =
0.628,0.942,1.257,1.571,2.356,3.141,3.927,4.712. Following Gupta and Groll
(1961), Kantam and Rosaiah (1998) and Srinivasa et al. (2009), the results are
displayed in Table 1.

The operating characteristic (OC) curve of the sampling plan (n, c, t/μ0) gives
the probability of accepting a lot; it is given by

L(P ) =
c∑

i=0

(
n

i

)
P i(1 − P)n−i , (3.3)

where p = F(t,μ) is treated as a function of lot quality parameter μ.
The producer risk is the probability of rejecting a good lot. For a given value

of the producer risk, say, 0.05, one may be interested in knowing what value of
μ/μ0 will ensure the producer risk less than or equal to 0.05 if a sampling plan
(n, c, t/μ0) is adopted. The value of μ/μ0 can be taken as the smallest number of
μ/μ0 (> 1) so that p satisfies the inequality

c∑
i=0

(
n

i

)
P i(1 − P)n−i ≥ 0.95. (3.4)

For a given sampling plan (n, c, t/μ0) at a specified confidence level P ∗, we
have computed the smallest values of μ/μ0 satisfying the inequality (3.4). The OC
values are given in Table 3 below. An algorithm is provided here to construct the
tables of the proposed sampling plans for practitioners in three stages as follows:

• Set a given probability of accepting a bad lot (1 − P ∗).
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Table 1 Minimum sample size for the specified ratio t/μ0

t/μ0

P ∗ c 0.628 0.942 1.257 1.571 2.356 3.141 3.972 4.712

0.75 0 2 1 1 1 1 1 1 1
0.75 1 4 3 2 2 2 2 2 2
0.75 2 6 4 3 3 3 3 3 3
0.75 3 7 5 5 4 4 4 4 4
0.75 4 9 7 6 5 5 5 5 5
0.75 5 11 8 7 6 6 6 6 6
0.75 6 13 9 8 7 7 7 7 7
0.75 7 14 11 9 8 8 8 8 8
0.75 8 16 12 10 9 9 9 9 9
0.75 9 18 13 11 10 10 10 10 10
0.75 10 20 14 12 12 11 11 11 11
0.90 0 3 2 1 1 1 1 1 1
0.90 1 5 3 3 2 2 2 2 2
0.90 2 7 5 4 3 3 3 3 3
0.90 3 9 6 5 4 4 4 4 4
0.90 4 11 8 6 5 5 5 5 5
0.90 5 13 9 7 6 6 6 6 6
0.90 6 15 10 9 7 7 7 7 7
0.90 7 16 12 10 8 8 8 8 8
0.90 8 18 13 11 9 9 9 9 9
0.90 9 20 14 12 10 10 10 10 10
0.90 10 22 16 13 12 11 11 11 11
0.95 0 4 2 2 1 1 1 1 1
0.95 1 6 4 3 3 2 2 2 2
0.95 2 8 5 4 4 3 3 3 3
0.95 3 10 7 5 5 4 4 4 4
0.95 4 12 8 7 6 5 5 5 5
0.95 5 14 10 8 7 6 6 6 6
0.95 6 16 11 9 8 7 7 7 7
0.95 7 18 13 10 9 8 8 8 8
0.95 8 20 14 11 10 9 9 9 9
0.95 9 22 15 13 11 10 10 10 10
0.95 10 23 17 14 12 11 11 11 11
0.99 0 5 3 2 2 1 1 1 1
0.99 1 8 5 4 3 2 2 2 2
0.99 2 10 7 5 4 3 3 3 3
0.99 3 12 8 6 5 4 4 4 4
0.99 4 15 10 8 6 5 5 5 5
0.99 5 17 11 9 8 6 6 6 6
0.99 6 19 13 10 9 7 7 7 7
0.99 7 21 14 11 10 8 8 8 8
0.99 8 23 16 12 11 9 9 9 9
0.99 9 25 17 14 12 10 10 10 10
0.99 10 27 18 15 13 11 11 11 11
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• Find the smallest sample size n for each predetermined value c satisfying the
inequality

c∑
i=0

(
n

i

)
P i(1 − P)n−i ≤ 1 − P ∗, (3.5)

where p = F(t,μ0). The sampling plan (n, c, t/μ0) can be obtained after the
value of t/μ0 is specified.

• For a given producer risk α, find the smallest value of μ/μ0 which satisfies the
inequality

c∑
i=0

(
n

i

)
P i(1 − P)n−i ≥ 1 − α. (3.6)

4 Illustrative examples

Example 1

Assume that the lifetimes of electrical devices follow an alpha distribution and
an experimenter is interested in establishing a sampling plan to ensure that the
mean lifetime is at least 1000 hours with confidence level P ∗ = 0.90. The ex-
perimenter wishes to stop the experiment at t = 628 hours. Then for an ac-
ceptance number c = 2, from Table 1, the required sample size corresponding
to the values of P ∗ = 0.90, t/μ0 = 0.628 and c = 2 is n = 7. Thus, 7 units
have to be put on test. If no more than 2 failures out of 7 are observed during
628 hours, then the experimenter can assert that the mean lifetime is at least
1000 hours with a confidence level 0.90 for the sampling plan (n = 7, c = 2,
t/μ0 = 0.628) and confidence level P ∗ = 0.90. Under alpha distribution the val-
ues of the Operating Characteristic (OC) function from Table 2 are as follows:

μ/μ0 2 4 6 8 10 12

OC 0.548 0.891 0.960 0.982 0.990 0.994

If the true mean lifetime average life is double the specified lifetime (μ/μ0 =
2), the producer’s risk is (1 − 0.548 = 0.452), while it is about 0.01 when the true
mean lifetime is ten times of the specified mean life.

In this example, we can get the smallest values of μ/μ0 for various choices of
c and t/μ0 from Table 3 in order to assert the producer risk is less than or equal to
0.05. In the example, the smallest value of μ/μ0 is 5.51 for c = 2, t/μ0 = 0.628
and P ∗ = 0.90, that is, the item should have a mean lifetime of at least 5.51 times
of the specified mean lifetime of 1000 hours in order that the lot will be accepted
with the probability 0.95 under the design. The actual mean lifetime necessary to
transship 95 percent of the lot is provided in Table 3.
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Table 2 Values of the operating characteristic function of the sampling plans (n, c, t/μ0)

μ/μ0

P ∗ n c t/μ0 2 4 6 8 10 12

0.75 6 2 0.628 0.662 0.930 0.975 0.988 0.993 0.997
0.75 4 2 0.942 0.694 0.944 0.980 0.993 0.996 0.997
0.75 3 2 1.257 0.755 0.959 0.986 0.995 0.997 0.998
0.75 3 2 1.571 0.606 0.925 0.977 0.989 0.995 0.998
0.75 3 2 2.356 0.262 0.788 0.924 0.967 0.982 0.992
0.75 3 2 3.141 0.077 0.606 0.842 0.925 0.962 0.976
0.75 3 2 3.972 0.015 0.408 0.724 0.862 0.922 0.954
0.75 3 2 4.712 0.004 0.262 0.606 0.789 0.880 0.924
0.90 7 2 0.628 0.549 0.890 0.961 0.982 0.989 0.993
0.90 5 2 0.942 0.510 0.884 0.960 0.981 0.990 0.994
0.90 4 2 1.257 0.480 0.870 0.958 0.981 0.990 0.994
0.90 3 2 1.571 0.606 0.925 0.976 0.990 0.995 0.996
0.90 3 2 2.356 0.262 0.789 0.926 0.967 0.982 0.989
0.90 3 2 3.141 0.077 0.606 0.842 0.925 0.960 0.976
0.90 3 2 3.972 0,015 0.408 0.724 0.861 0.923 0.954
0.90 3 2 4.712 0.003 0.262 0.607 0.790 0.879 0.926
0.95 8 2 0.628 0.445 0.848 0.942 0.972 0.985 0.991
0.95 5 2 0.942 0.510 0.885 0.959 0.981 0.991 0.994
0.95 4 2 1.257 0.482 0.881 0.958 0.981 0.990 0.994
0.95 4 2 1.571 0.290 0.795 0.924 0.965 0.980 0.989
0.95 3 2 2.356 0.261 0.789 0.925 0.966 0.982 0.990
0.95 3 2 3.141 0.078 0.607 0.841 0.926 0.961 0.976
0.95 3 2 3.972 0.015 0.408 0.724 0.862 0.924 0.954
0.95 3 2 4.712 0.003 0.262 0.607 0.790 0880 0.926
0.99 10 2 0.628 0.277 0.750 0.896 0.949 0.972 0.983
0.99 7 2 0.942 0.236 0.734 0.890 0.947 0.972 0.981
0.99 5 2 1.257 0.275 0.776 0.915 0.960 0.979 0.987
0.99 4 2 1.571 0.291 0.795 0.924 0.965 0.981 0.988
0.99 3 2 2.356 0.262 0.790 0.924 0.967 0.983 0.990
0.99 3 2 3.141 0.077 0.607 0.843 0.925 0.961 0.977
0.99 3 2 3.972 0.015 0.409 0.724 0.862 0.922 0.954
0.99 3 2 4.712 0.003 0.262 0.607 0.790 0.880 0.926

Alternatively, we can get the sampling plans as follows: Assume that the life-
times of the items follow an alpha distribution and the consumers require a prob-
ability of rejecting a bad lot, P ∗ = 0.95, and the sampling plan is based on an
acceptance number c = 2 and t/μ0 = 0.628. What should the true mean lifetime
of items fulfill so that the producer risk will be 5 percent? From Table 3, we
find that μ/μ0 = 6.36. Thus, the manufactured items should have a mean life-
time at least 6.36 times of the specified mean one in order that the items can
be accepted with probability 0.95 under the design. From Table 1 we can find
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Table 3 Minimum ratio of true value μ to required μ0 for the acceptability of a lot with producer’s
risk 0.05

t/μ0

P ∗ c 0.628 0.942 1.257 1.571 2.356 3.141 3.972 4.712

0.75 0 28.08 21.66 28.91 36.13 54.19 72.25 91.36 108.38
0.75 1 7.29 7.834 6.28 7.84 11.76 15.68 19.83 23.53
0.75 2 4.60 4.22 3.71 4.64 6.96 9.28 11.73 13.92
0.75 3 3.11 3.01 4.02 3.52 5.28 7.04 8.90 10.56
0.75 4 2.78 3.02 3.23 2.95 4.42 5.89 7.45 8.84
0.75 5 2.56 2.54 2.77 2.61 3.91 5.21 6.59 7.82
0.75 6 2.41 2.23 2.47 2.37 3.56 4.74 6.01 7.12
0.75 7 2.12 2.32 2.25 2.20 3.30 4.40 5.57 6.61
0.75 8 2.07 2.11 2.09 2.07 3.11 4.14 5.25 6.22
0.75 9 2.01 1.95 1.96 1.97 2.95 3.94 4.97 5.91
0.75 10 1.98 1.83 1.86 1.89 2.83 3.77 4.77 5.66
0.90 0 43.34 42.13 28.92 36.14 54.19 72.25 91.37 108.39
0.90 1 9.30 7.84 10.45 7.84 11.76 15.68 19.83 23.53
0.90 2 5.51 5.57 5.63 4.64 6.96 9.28 11.73 13.93
0.90 3 4.17 3.85 4.02 5.02 5.28 7.04 8.90 10.56
0.90 4 3.52 3.61 3.23 4.04 4.42 5.89 7.45 8.84
0.90 5 3.14 2.99 2.77 3.46 3.91 5.21 6.59 7.82
0.90 6 2.87 2.59 2.97 3.08 3.56 4.74 5.99 7.12
0.90 7 2.50 2.61 2.68 2.82 3.30 4.40 5.57 6.61
0.90 8 2.38 2.36 2.47 2.61 3.11 4.15 5.24 6.22
0.90 9 2.29 2.18 2.29 2.45 2.95 3.94 4.98 5.91
0.90 10 2.22 2.23 2.16 2.33 2.83 3.77 4.77 5.66
0.95 0 57.32 42.13 56.22 36.12 54.19 72.25 91.37 108.39
0.95 1 11.41 10.93 10.45 13.07 11.76 15.68 19.83 23.53
0.95 2 6.36 5.57 5.63 7.03 6.96 9.28 11.73 13.92
0.95 3 4.70 4.66 4.02 5.02 5.28 7.04 8.90 10.56
0.95 4 3.88 3.60 4.03 4.04 4.42 5.89 7.45 8.84
0.95 5 3.40 3.42 3.39 3.46 3.91 5.21 6.59 7.82
0.95 6 3.09 2.95 2.97 3.08 3.56 4.74 5.60 7.12
0.95 7 2.87 2.90 2.68 2.82 3.30 4.40 5.57 6.61
0.95 8 2.70 2.61 2.47 2.61 3.11 4.12 5.24 6.22
0.95 9 2.56 2.40 2.61 2.45 2.95 3.94 4.98 5.91
0.95 10 2.34 2.42 2.44 2.33 2.83 3.77 4.78 5.66
0.99 0 70.22 65.01 56.22 70.26 54.19 72.25 91.36 108.39
0.99 1 15.37 13.95 14.59 13.07 11.76 15.65 19.82 23.53
0.99 2 8.13 8.27 7.43 7.03 6.96 9.28 11.73 13.90
0.99 3 5.78 5.48 5.13 5.02 5.28 7.04 8.90 10.56
0.99 4 5.00 4.73 4.80 4.04 4.42 5.89 7.45 8.84
0.99 5 4.24 3.84 3.99 4.24 3.91 5.22 6.59 7.82
0.99 6 3.75 3.63 3.46 3.72 3.56 4.74 6.00 7.12
0.99 7 3.42 3.18 3.09 3.35 3.30 4.40 5.57 6.61
0.99 8 3.17 3.40 2.81 3.08 3.11 4.15 5.25 6.22
0.99 9 2.97 2.82 2.91 2.87 2.95 3.94 4.98 5.91
0.99 10 2.83 2.60 2.71 2.70 2.84 3.77 4.77 5.68
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that the number of items required to be tested is n = 8 and the sampling plan is
(n = 8, c = 2, t/μ0 = 0.628).

Example 2

Consider a problem associated with software reliability provided by Wood (1996)
and analyzed from the acceptance sampling viewpoint by Rosaiah and Kantam
(2005), Balakrishnan et al. (2007), Srinivasa et al. (2009), and Srinivasa et al.
(2009). We consider the failure times in hours of the release of software, which
times correspond to the lifetimes from the starting of the execution of the software
until which the failure of the software is experienced. We assume that while the
software is operating, the development of intangible cumulative degradation dete-
riorates with the nonstationary linear random wear process of this software. Then
it is reasonable to suppose that the random variable follows the alpha distribution.
Let the specified mean life be 1000 hours and the testing time t = 1257 hours
which leads to the ratio t/μ0 = 1.257. Thus, for an acceptance number c = 2 and
confidence level P ∗ = 0.95, the required n is found from Table 3 to be 4, that is,
in this case, the acceptance sampling plan for the truncated life test from the alpha
distribution is (n = 4, c = 2, t/μ0 = 1.257). We considered the ordered sample
size n = 4 with observations 519, 968, 1430, and 1893. Based on these data, we
have to decide whether to accept or reject the lot. We will accept the lot only if
the number of failures before 1257 hours is at most 2. The confidence level of the
decision process is assured by the sampling plan only if the lifetimes follow the
alpha distribution. We have verified this for the above sample data by the Q–Q
plot. The Kolmogorov–Smirnov test is also applied to test the goodness of fit for
the alpha distribution. Since for the given sample of n = 4 observations, there are
only c = 2 failures at 519 and 968 hours before t = 1257, we shall accept the lot,
assuring a specified mean life as 1000 hours with a confidence level P ∗ = 0.95.

5 Conclusions

In this paper, reliability sampling plans for truncated life tests are developed when
the lifetimes of the items follow an alpha distribution. We have shown in general
that under similar conditions, in order to ensure a specified mean life with a given
confidence level, the alpha distribution model results in smaller sample sizes than
some other models used in acceptance sampling. We have also demonstrated for
a real data set that the alpha distribution fits the data better than the other models
used in life testing. Some tables are provided so that the proposed method can be
used conveniently for the practitioners in practical situations.
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