Brazilian Journal of Probability and Statistics
2011, Vol. 25, No. 3, 353-361

DOI: 10.1214/11-BJPS147

© Brazilian Statistical Association, 2011

On default priors and approximate location models

D. A. S. Fraser and N. Reid
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Abstract. A prior for statistical inference can be one of three basic types:
a mathematical prior originally proposed in Bayes [Philos. Trans. R. Soc.
Lond. 53 (1763) 370-418; 54 (1764) 269-325], a subjective prior presenting
an opinion, or a truly objective prior based on an identified frequency ref-
erence. In this note we consider a method for deriving a mathematical prior
based on approximate location models. This produces a mathematical poste-
rior, and any practical interpretation of such a posterior is in terms of exact or
approximate confidence under the postulated model. We describe how a pro-
posed prior can be simply checked for consistency with confidence methods,
using expansions about the maximum likelihood estimator.

1 Introduction

Priors have been used for more than two centuries [Bayes (1763)] to weight an
observed likelihood function, thus providing a prominent procedure for statisti-
cal inference. As such it is arguably the oldest formalized methodology in statis-
tics, and long predates the formal introduction of the likelihood function [Fisher
(1922)]. The procedure provides a rich methodology for examining a statistical
model with observed data and has had profound effects in liberalizing statistical
analyses. It does give rise to statements presented as probabilities, in contrast to
the confidence procedure of Fisher (1930) and Neyman (1937) that gives rise to
statements labeled as confidence. Lindley (1958) showed that the two procedures
lead to the same result for scalar parameters only in location models; he then ar-
gued that this meant that confidence was not entitled to be labeled as probability,
although he could equally have argued that Bayesian inference was not entitled to
be labeled as confidence.

As an example of Lindley’s (1958) analysis, if we have an observed datum y°
from a Normal (0, 1) distribution, the confidence 95% lower bound is y* — 1.64,
and the posterior 95% lower bound is y* — 1.64 under the prior 7 (0) d6 o d6;
this prior represents the translation invariance of the location model. Similarly, the
observed p-value and the posterior survivor value are the same for all 8 and given
by ®(y? — 6), where & is the standard normal distribution function. Of course the
prior is not proper and thus cannot directly represent probabilities.
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The probability lemma for calculating conditional probability takes two prob-
ability inputs and produces one probability output. If one input, however, is ab-
sent and a convenient mathematical object is substituted, then the conditions of
the lemma are not fulfilled and the output is not a probability on the basis of the
lemma. It may have attractive properties by other arguments; indeed it is our view
that translation invariance as represented in a prior does widely give confidence,
of first or sometimes higher order accuracy. These arguments are expanded on in
Fraser (2010a, 2010b, 2010c). One conclusion is that the Bayes initiative was pre-
scient, a very early and profound initial step towards confidence [Fisher (1930)],
but needing some two hundred years to clarify the concept.

In Section 2 we describe the location invariance, which was in fact used by
Bayes (1763) in an augmented analogy, and then describe approximate translation
invariance based on model continuity [Fraser et al. (2010c)]. Priors with this invari-
ance were called default priors in Fraser et al. (2010c), and lead to second-order
confidence for linear parameters. Section 3 discusses necessary and sufficient con-
ditions for a prior to have approximate default properties. In Section 4 we show
that even with default priors, confidence statements for curved parameters will be
accurate only to first order, and we describe some related developments.

2 Location models and the location relationship

A location model f(y — 6), where we initially suppose the variable y and parame-
ter 6 are scalar, has the property that a displacement a to y and a parallel displace-
ment a to 6 leaves the statistical model unchanged. Conversely, if a transformation
as just described produces a new variable and new parameter with an unchanged
probability distribution, then the model is a location model. Let z =y — 6 and
let zg be the B-quantile of the f(z) distribution. Then the confidence inversion of
the interval (—o00, zg) produces the B-confidence lower bound y — zg. And in a
related way the prior m(0) d6 o< d6 having location invariance gives the posterior
lower bound y — zg with a claimed valuation B; again these are equal. The two ap-
proaches are of course familiar but the unifying theme perhaps less so; for further
discussion, see Fraser and Reid (2002).

A similar result holds for a p-dimensional variable y and p-dimensional pa-
rameter 6 in a location model f(y — 0). If the parameter of interest ¥ is 61, then
as above the B-confidence lower bound is obtained by inverting the pivot y; — i
giving the B-confidence lower bound y; — zg. And the marginal posterior lower
bound obtained by using the location invariant prior 7 (0) d0 « df gives y? — 28,
and fully agrees with the 8-confidence lower bound. This property does not extend
however to parameters of interest i that are not linear in 8; an example is given in
Section 4.

More generally in transformation models, the default prior given by the right
invariant measure of the transformation group ensures that posterior probability
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bounds are the same as confidence bounds for a wide range of parameters, with the
caveat, again, that if the parameter of interest is not simply related to the transfor-
mation structure, that is, does not have a linearity property, then posterior inference
can again disagree with confidence.

Fraser et al. (2010c) described how continuity in a general statistical model can
lead to posterior inference that has valid confidence to O(n~!), with n the size
of an independent, identically distributed sample, or more generally an amount of
information. The distribution function for each component of a vector response y
can be used to give an approximate location model, and thence to an analogue of
the location invariant prior described above; the distribution function provides a
link between the parameter and the variable, in the following sense. In a location
model for a single variable y with scalar parameter 9, f(y; 8) = f(y —6), we have
F(y+do;0+df) = F(y;0) by the location property, where F is the distribution
function. We can also write this as

dy _ _Fo(:0)
do Fy(y; 0)

El

where F.g is the derivative of the distribution function with respect to 6. This shows
that change in y is compensated by change in €; the defining feature of a location
model. In a nonlocation model, we can derive a similar result locally:

dy| _ Fe(3%6)
do |y Fy(yO;Q) ’

where now y° is a fixed point, usually the observed data point. Equivalently, in
terms of the quantile function F' “lu;0)= y(u; 0),

LN (:0)|
—_— = —yu; = u; — -0)-
a9 0 757 o0, Yo u=F(y%;0)
For a sample of independent observations y, ..., ¥, from the same model we can

do this for each observation, giving y = y(u; 0) = {y1(u1;0), ..., y,(u,; 0)}, and
express its derivative with respect to 6 as a vector of length n:

_ Oy(u; 0)
yo_ a0

d
{ww»”quwz5§

wi=F(00)
If 6 is a vector of length p, then the same construction can be used, with each
Vi (6) arow vector of length p:
Vi(0)
| : |=ve, @.1)
,0
g Vi (0)

which is an n x p matrix that explicitly links change at the observed data with
parameter change at various 6 values. Fraser et al. (2010c) refer to V (6) as the

dy
do’
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sensitivity matrix. In the location model f(y; — x/B), Vi(B) = x/, and V(B) is
simply the design matrix and thus records sample space directions indicated by
possible changes in the regression parameter.

More generally the matrix V (0) presents sample space directions intrinsic to an
approximate location model at the observed data [Fraser et al. (2010b)], and then
the default prior 7 (0) d6 o< |V ()| d6 ensures that posterior probabilities for linear
components of 6 are equivalent, to second order, to the p-values computed from
frequentist methods. It is sometimes more convenient to reexpress the relationship
at (2.1) in the form

dy =V (0)do,

and then to derive the corresponding relationship between 6 and 0, where 0 is the
maximum likelihood estimator. This is derived in Fraser et al. (2010c) to be

dd =W (®)do (2.2)

at (y°,69), where W(0) = j =L@ H'0°; yO)V () db, j(6) = —0%L(0; y) /6 30’
is the observed Fisher information, and

2
H'(0% y°) = £4.,(8% y°) = €(6; :
07 y7) =L,y (075 y7) 300y 03 y) o0
This leads to the default prior
w(0)do o |[W(0)|db. (2.3)

Inference based on this default prior is typically accurate to O (n~!), for linear
parameters. In models having a right invariant prior it reproduces that prior; in
particular in the regression model y; = x/8 + o'z; it gives the 7(0) =dB do /o, for
any fixed distribution for z. Additional examples are given in Fraser et al. (2010c).

The relationship between variable and parameter in (2.3) is rather powerful. It
shows that locally there is a location model f (B — B) that agrees with the given
model to first derivative at the data value in the sample space, and agrees with the
given model in the parameter space, for parameter values in the moderate deviation
range, O (n~'/?) about the maximum likelihood value. The default prior as defined
by this local location model can be viewed as ‘flat’ in the location parameter coor-
dinates. This suggests that for an arbitrary prior, we can examine its effect on the
likelihood by seeing whether or not it agrees with this flat prior, to some order of
approximation. If it does not, then the posterior survival probability will typically
differ from the p-value, and the posterior intervals will thus not have the claimed
probability content under the model. We now consider some aspects of this, fol-
lowing Fraser and Reid (1995), Fraser and Sun (2009), Fraser et al. (2010a) and
Fraser (2010d). We restrict attention to the scalar parameter case, as the vector
parameter case raises some technical difficulties.
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In the scalar case we have df = w(0) dO where w(0) is a scalar function of 6.
We can sometimes integrate the equation directly and obtain the location parameter

6
B= w()do. 2.4)
)
As a simple example consider a sample y = (y1, ..., y,)" of independent observa-

tions from the scale family with density f(y;; o) = (1/0) f (yi /o) where the form
of f is known. Since F(y;; o) = F(y;/o), we have

Vi(@) = =Fq (yi:0)/Fy (yi10)| 0 = ¥} /o,

where y0 = (y?, ey yr?)’ is the observed sample. In quantile form the variable-
parameter relationship y; = ou; gives the same result. Thus we have the default
prior (o) o |V (0)|, where

1 1/2
— / 12 _ 1 02
V@)= (V) VR =—(3H") .

proportional to the usual prior for a scale parameter. Alternatively if we work with
W (o) defined at (2.3), we obtain

60
lw(o)|=—,
o

where 69 is the maximum likelihood estimate. The two forms of the prior are
equivalent, as constants of proportionality do not matter.

Now consider the direct integration route to obtain the location relationship.
From (2.4) we obtain 8 = op(logo — logoy); this produces the logarithmic repa-
rameterization as one might expect.

To gain more insight into the equation d 6 = w(0) do, we consider the following
expansion. Let w = w(fp) and ¢ = w’(fp); a second-order approximation for the
location parameter is given by

0
B =f9 {w +c(0 —60)}d6 = w (0 — 6p) + (6 — 60)° /2, (2.5)
0

where often w = 1 which would simplify the final expression. This exact or ap-
proximate location reparameterization gives an approximating second-order quan-
tile presentation of the model as ,3 = B + z where z has the fixed distribution
describing the location residual ,é — B.

3 Is a prior second-order default?

For the scalar case we now discuss a simple test criterion for whether a proposed
prior has the default properties found with the flat prior for the location model
context.
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For this, the basic input is of course the log-likelihood function ¢°(6) =
log f(y%; 0). To work easily with this likelihood we choose convenient coordi-
nates that are centered at the observed maximum likelihood value and scaled with
respect to observed information; specifically we take the new parameter coordi-
nate to be 6 = jeléz 6 — éo) where Jgg is the observed information. In these new
coordinates the likelihood function has the simplified form

00)=—-6%2—aw30/6n'> + 0™,

where a3/n'/? is the negative third derivative of likelihood at the maximum with

respect to the standardized coordinates and the dependence on sample size has
been made explicit.
Now expanding the log-prior in the standardized parameter gives

logm(6) =ao+a16/n'> + 0(n™");
and then combining likelihood and prior gives the posterior
7(0; data) = kexp{—(@ — a1 /n'/*)?/2 — a3(6 — a1 /n"*)?/6n'/?}

to O(n~"), where terms of O(n~') have been introduced to simplify the result-
ing expression. This shows that the prior to this order causes a translation by the
amount a1 /n'/? on the likelihood in standardized coordinates. Do we actually want
a prior hopefully not informative to be displacing the location likelihood informa-
tion provided by the data?

If the initial parameterization € is linear and if we want the related location
model to have a flat prior with slope or log-slope equal to zero then we would
want ay/ n'/2 =0 to the order O(n~"). And we see of course that such a prior
does not shift the likelihood information.

Alternatively, however, suppose that 6 is not linear. Then, following Section 3,
we can calculate the curvature ¢ from the relationship do = w(6)dO. In the stan-
dardized parameterization  we have w(d) = w +c0/n'/? which integrates to give
the linear parameterization 8 = wd + c6%/2n'/2.

To obtain the prior reexpressed in the linear parameterization 8 we first calculate

dp

— = w—i—cé/nl/2
de

=w exp{cé/wnl/z}

to second order, and then use use its inverse to adjust the prior to be relative to 6.

This gives the reexpressed log-prior relative to the linear parameterization as
do+a10/n'? — (c/w)d/n'/?,

and leads to the following posterior expressed in terms of the linear parameteriza-
tion

kexp{—(@ —al/n'"»)?/2 — a3 —al/n'/?)36n'/?},
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where af = aj; —c/w. Thus to have a prior that is flat relative to the location param-
eterization, and therefore does not shift the likelihood, we need to have aj =0, that
is, a; = ¢/w, which in turn means the prior must take account of the first derivative
of w(#), or more generally the first derivative array of the sensitivity matrix V().

In the scalar parameter case Welch and Peers (1963) showed that posterior
quantiles had correct frequentist coverage to O (n~!) if the prior is proportional
to i1/2(9), where i(0) is the expected Fisher information function in a single ob-
servation from the model, so in a sense the calculations above might rarely be
needed. However, the requirement that a; = ¢/w is weaker, as all arguments here
are carried out locally near the maximum likelihood point. They might also be rel-
evant in a setting where nuisance parameters were handled by combining a profile
or adjusted profile likelihood with a prior for the parameter of interest only, as in
Fraser et al. (2003).

4 Discussion

In the preceding section we considered local properties of a prior that is flat in
a locally defined location parameter. When 6 is a vector, the location parameter
B(0) is not available explicitly, as at (2.4), but is available implicitly [Fraser and
Yi (2003)]. However, an expansion of 8 similar to (2.5) is available, where W (9)
is a p X p matrix, and the analogues of w and c are a p x p matrixanda p X p X p
array, respectively. The structure of these coefficients is described in Fraser et al.
(2010a), and the use of this expansion for constraining priors is investigated in
Fraser (2010d).

The default prior, proportional to |W(6)|, can be constructed, as in Fraser et
al. (2010c), but posterior marginal inference for component parameters will only
be well calibrated, that is, agree with the p-value, to O(n_l), if the component
parameter is linear in the underlying (approximate) location parameter. To illus-
trate this in simple form, assume that (y1, y2) is a mean of n observations from
the location normal distribution on the plane, and assume the parameter of interest
is (@) =61 + k922/2n1/2. A contour of the parameter ¥ crosses the 67 axis at
right angles and with positive k£ bends to the left above and below this axis. At
the observed data point y° = (0, 0)’, the constrained maximum likelihood estimate
of 01 is given ¥ is ég = (¥, 0)’ neglecting terms in the likelihood equations of
O(n~"). Consider evaluating ¥ with the statistic #(y) = y + ky3/2n'/2, which
has the same contours on the sample space as does i on the parameter space. This
function is asymptotically normally distribution with mean ¥ and variance 1. The
p-value based on the marginal distribution of ¢ is the probability left of the 7(y)
contour through y°, using the normal distribution with mean v and variance 1.
The posterior survivor function is the probability to the right of the ¢ (6) con-
tour, using the bivariate normal distribution with mean y® = (0, 0) and identity
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covariance. These are equal when the curvature k = 0, but as k increases, the re-
gion of integration for the p-value decreases and the region of integration for the
s-value increases. Thus the Bayes s-value will be miscalibrated by a term that is
O(n~'/%), in contrast to the reproducibility inherent in the p-value. The example
above is more general than it may appear, as it captures first-order deviations from
limiting normal distribution.

Some aspects of this discrepancy were discussed as part of the marginalization
paradox [Dawid (1973)], but identifying curvature as an intrinsic cause is more
recent [Fraser and Reid (2002); Fraser and Sun (2009); Fraser et al. (2010a)].

Thus although Bayesian inference generally gives confidence statements to a
first order of approximation, and with the default prior leads to confidence state-
ments to second order, as described above, more generally inference based on a
prior comes with risks not often easily assessed. For some discussion including ex-
amples of the curvature discussed in Section 3, see Fraser (2010a, 2010b, 2010c).
For some examples where Bayes and confidence methods routinely give identical
results see Bédard et al. (2007). And for three examples where Bayesian infer-
ence has progressively greater difficulty in achieving an analysis, see Fraser et al.
(2009).
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