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KULLBACK–LEIBLER AGGREGATION AND MISSPECIFIED
GENERALIZED LINEAR MODELS1

BY PHILIPPE RIGOLLET

Princeton University

In a regression setup with deterministic design, we study the pure aggre-
gation problem and introduce a natural extension from the Gaussian distri-
bution to distributions in the exponential family. While this extension bears
strong connections with generalized linear models, it does not require identi-
fiability of the parameter or even that the model on the systematic component
is true. It is shown that this problem can be solved by constrained and/or pe-
nalized likelihood maximization and we derive sharp oracle inequalities that
hold both in expectation and with high probability. Finally all the bounds are
proved to be optimal in a minimax sense.

1. Introduction. The last decade has witnessed a growing interest in the gen-
eral problem of aggregation, which turned out to be a flexible way to capture many
statistical learning setups. Originally introduced in the regression framework by
Nemirovski (2000) and Juditsky and Nemirovski (2000) as an extension of the
problem of model selection, aggregation became a mature statistical field with
the papers of Tsybakov (2003) and Yang (2004) where optimal rates of aggre-
gation were derived. Subsequent applications to density estimation [Rigollet and
Tsybakov (2007)] and classification [Belomestny and Spokoiny (2007)] constitute
other illustrations of the generality and versatility of aggregation methods.

The general problem of aggregation can be described as follows. Consider a
finite family H (hereafter called dictionary) of candidates for a certain statistical
task. Assume also that the dictionary H belongs to a certain linear space so that
linear combinations of functions in H remain plausible candidates. Given a subset
C of the linear span span(H) of H, the goal of aggregation is to mimic the best
element of C .

One salient feature of aggregation as opposed to standard statistical modeling
is that it does not rely on an underlying model. Indeed, the goal is not to estimate
the parameters of an underlying “true” model but rather to construct an estimator
that mimics the performance of the best model in a given class, whether this model
is true or not. From a statistical analysis standpoint, this difference is significant

Received December 2010; revised December 2011.
1Supported in part by NSF Grants DMS-09-06424, DMS-10-53987 and AFOSR Grant A9550-08-

1-0195.
MSC2010 subject classifications. Primary 62G08; secondary 62J12, 68T05, 62F11.
Key words and phrases. Aggregation, regression, classification, oracle inequalities, finite sample

bounds, generalized linear models, logistic regression, minimax lower bounds.

639

http://www.imstat.org/aos/
http://dx.doi.org/10.1214/11-AOS961
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


640 P. RIGOLLET

since performance cannot be measured in terms of parameters: there is no true pa-
rameter. Rather, a stochastic optimization point of view is adopted. If R(·) denotes
a convex risk function, the goal pursued in aggregation is to construct an aggregate
estimator ĥ such that

ER(ĥ) ≤ C min
f ∈C

R(f ) + ε,(1.1)

where ε is a small term that characterizes the performance of the given aggre-
gate ĥ. As illustrated below, the remainder term ε is an explicit function of the size
M of the dictionary and the sample size n that shows the interplay between these
two fundamental parameters. Such oracle inequalities with optimal remainder term
ε were originally derived by Yang (2000) and Catoni (2004) for model selection
in the problems of density estimation and Gaussian regression, respectively. They
used a method, called progressive mixture, that was later extended to more gen-
eral stochastic optimization problems in Juditsky, Rigollet and Tsybakov (2008).
However, only bounds in expectation have been derived for this estimator and it
is argued in Audibert (2008) that this estimator cannot achieve optimal remain-
der terms with high probability. In the same paper, Audibert suggests a different
estimator that satisfies such an oracle inequality with high probability at the cost
of large constants in the remainder term. One contribution (Theorem 3.2) of the
present paper is to develop a new estimator that enjoys this desirable property with
small constants. We also study two other aggregation problems: linear and convex
aggregation.

When the model is misspecified, the minimum risk satisfies minf ∈C R(f ) > 0,
and it is therefore important to obtain a leading constant C = 1 in (1.1). Many
oracle inequalities with leading constant term C > 1 can be found in the literature
for related problems. Yang (2004) derives oracle inequalities with C > 1 but where
the class C = Cn actually depends on the sample size n so that minf ∈Cn R(f ) goes
to 0 as n goes to infinity under additional regularity assumptions. In this paper, we
focus on the so-called pure aggregation setup as defined by Nemirovski (2000) and
Tsybakov (2003) where the class C is fixed and remains very general. As a result,
we are only seeking oracle inequalities that have leading constant C = 1. Because
they hold for finite M and n, such oracle inequalities are truly finite sample results.

The pure aggregation framework departs from the original problem of aggre-
gation, where the goal was to achieve adaptation by mimicking the best of given
estimators built from an independent sample. Thus a typical aggregation proce-
dure consists in splitting the sample in two parts, using the first part to construct
estimators and the second to aggregate them [see, e.g., Lecué (2007), Rigollet
and Tsybakov (2007)]. This procedure relies heavily on the fact that the observa-
tions are identically distributed, which is not the case in the fixed design regression
framework studied in the rest of the paper. It is worth mentioning that in the case of
model selection aggregation for Gaussian regression with fixed design, the dictio-
nary can be taken to be a family of projection or even affine estimators built from
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the same sample. This specific case has been investigated in more detail by Alquier
and Lounici (2011), Dalalyan and Salmon (2011), Rigollet and Tsybakov (2011),
but is beyond the scope of this paper. Nevertheless, pure aggregation, where the
dictionary H is deterministic, has grown into a field of its own [see, e.g., Bunea,
Tsybakov and Wegkamp (2007), Juditsky and Nemirovski (2000), Juditsky, Rigol-
let and Tsybakov (2008), Lounici (2007), Nemirovski (2000), Tsybakov (2003)].
In the case of regression with fixed design studied in this paper, the dictionary can
be thought of as a family of functions with minimal conditions that is expected to
have good approximation properties.

Pure aggregation turns out to be a stochastic optimization problem, where the
goal is to minimize an unknown risk function R over a certain set C . This paper
is devoted to the case where the risk function is given by the Kullback–Leibler
divergence, and three constraint sets that were introduced in Nemirovski (2000)
are investigated.

We consider an extension of aggregation for Gaussian regression that encom-
passes distributions for responses in a one-parameter exponential family, with
particular focus on the family of Bernoulli distributions in order to cover binary
classification. A natural measure of risk in this problem is related to the Kullback–
Leibler divergence between the distribution of the actual observations and that
of observations generated from a given model. In a way, this extension is close
to generalized linear models [see, e.g., McCullagh and Nelder (1989)], which are
optimally solved by maximum likelihood estimation [see, e.g., Fahrmeir and Kauf-
mann (1985)]. However, in the present aggregation framework, it is not assumed
that there is one true model but we prove that maximum likelihood estimators still
perform almost as well as the optimal solution of a suitable stochastic optimiza-
tion problem. This generalized framework encompasses logistic regression as a
particular case.

Throughout the paper, for any x ∈ R
n, let xj denote its j th coordinate. In other

words, any vector x ∈ R
n can be written x = (x1, . . . , xn). Similarly an n × M

matrix H has coordinates Hi,j ,1 ≤ i ≤ n,1 ≤ j ≤ M . The derivative of a function
b : R → R is denoted by b′. For any real-valued function f , we denote by ‖f ‖∞ =
supx |f (x)| ∈ [0,∞], its sup-norm. Finally, for any two real numbers x and y, we
use the notation x ∧ y = min(x, y) and x ∨ y = max(x, y).

The paper is organized as follows. In the next section, we define the problem
of Kullback–Leibler aggregation, in the context of misspecified generalized linear
models. In particular, we exhibit a natural measure of performance that suggests
the use of constrained likelihood maximization to solve it. Exact oracle inequali-
ties, both in expectation and with high probability, are gathered in Section 3 and
their optimality for finite M and n is assessed in Section 4. These oracle inequali-
ties for the case of large M are illustrated on a logistic regression problem, similar
to the problem of training a boosting algorithm, in Section 5. Finally, Section 6
contains the proofs of the main results together with useful properties on the con-
centration and the moments of sums of random variables with distribution in an
exponential family.
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2. Kullback–Leibler aggregation.

2.1. Setup and notation. Let x1, . . . , xn be n given points in a space X and
consider the equivalence relation ∼ on the space of functions f : X → R that is
defined such that f ∼ g if and only if f (xi) = g(xi) for all i = 1, . . . , n. Denote
by Q1:n the quotient space associated to this equivalence relation and define the
norm ‖ · ‖ by

‖f ‖2 = 1

n

n∑
i=1

f 2(xi), f ∈ Q1:n.

Note that ‖ · ‖ is a norm on the quotient space but only a seminorm on the whole
space of functions f : X → R. In what follows, it will be useful to define the inner
product associated to ‖ · ‖ by

〈f,g〉 = 1

n

n∑
i=1

f (xi)g(xi).

Using this inner product, we can also denote the average of a function f by 〈f,1〉,
where 1(·) is the function in Q1:n that is identically equal to 1.

Recall that a random variable Y ∈ R has distribution in a (one-parameter)
canonical exponential family if it admits a density with respect to a reference mea-
sure on R given by

p(y; θ) = exp
{
yθ − b(θ)

a
+ c(y)

}
.(2.1)

A detailed treatment of exponential families of distributions together with exam-
ples can be found in Barndorff-Nielsen (1978), Brown (1986), McCullagh and
Nelder (1989) and in Lehmann and Casella (1998). Several examples are also pre-
sented in Section 5 of the present paper. It can be easily shown that if Y admits a
density given by (2.1), then

E[Y ] = b′(θ) and var[Y ] = ab′′(θ).(2.2)

We assume hereafter that the distribution of Y is not degenerate so that (2.2) en-
sures that b is strictly convex and b′ is onto its image space.

For any g ∈ Q1:n, let Pg denote the distribution of n independent random
variables Y1, . . . , Yn ∈ Y ⊂ R such that Yi has density given by p(y; θi) where
θi = [b′]−1 ◦ g(xi) so that Yi has expectation g(xi).

In this paper, we assume that we observe n independent random variables
Y1, . . . , Yn ∈ Y with joint distribution P = Pf for some unknown f . We denote
by E the corresponding expectation.
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2.2. Aggregation and misspecified generalized linear models. When X ⊂ R
d ,

generalized linear models (GLMs) assume that the distribution of the observa-
tion Yi belongs to a given exponential family with expectation E[Yi] = f (xi), i =
1, . . . , n, and that l ◦ f (x) = β�x where l : Y̆ → R is a link function and β ∈ R

d

is the unknown parameter of interest. A canonical choice for the link function is
l = [b′]−1 and in the rest of the paper, we study only this choice. In particular, this
canonical choice implies that θi = β�xi . While GLMs allow more choices for the
distribution of the response variable, the modeling assumption θi = β�xi is quite
strong and may be violated in practice. Aggregation offers a nice setup to study
the performance of estimators of f even when this model is misspecified.

Aggregation for the regression problem was introduced by Nemirovski (2000)
and further developed by Tsybakov (2003) where the author considers a regression
problem with random design that has known distribution. We now recall the main
ideas of aggregation applied to the regression problem, with emphasis on its dif-
ference with the linear regression model. In the framework of the previous section,
consider a finite dictionary H = {h1, . . . , hM} such that ‖hj‖ is finite and for any
λ ∈ R

M , let hλ denote the linear combination of hj ’s defined by

hλ =
M∑

j=1

λjhj .(2.3)

Assume that we observe n independent random couples (xi, Yi), i = 1, . . . , n, such
that E[Yi] = f (xi). The goal of aggregation is to solve the following optimization
problem:

min
λ∈�

‖hλ − f ‖2,(2.4)

where � is a given subset of R
M and f is unknown. Previous papers on aggrega-

tion in the regression problem have focused on three choices for the set � corre-
sponding to the three different problems of aggregation originally introduced by
Nemirovski (2000). Optimal rates of aggregation for these three problems in the
Gaussian regression setup can be found in Tsybakov (2003).

MODEL SELECTION AGGREGATION. The goal is to mimic the best hj in the
dictionary H. Therefore, we can choose � to be the finite set V = {e1, . . . , eM}
formed by the M vectors in the canonical basis of R

M . The optimal rate of model
selection aggregation in the Gaussian case is (logM)/n.

LINEAR AGGREGATION. The goal is to mimic the best linear combination of
the hj ’s in the dictionary H. Therefore, we can choose � to be whole space R

M .
The optimal rate of linear aggregation in the Gaussian case is M/n.

CONVEX AGGREGATION. The goal is to mimic the best convex combination
of the hj ’s in the dictionary H. Therefore, we can choose � to be the flat simplex
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of R
M , denoted by �+

1 and defined by

�+
1 =

{
λ ∈ R

M :λj ≥ 0, j = 1, . . . ,M,

M∑
j=1

λj = 1

}
.(2.5)

The optimal rate of convex aggregation in the Gaussian case is (M/n) ∧√
log(1 + M/

√
n)/n.

In practice, the regression function f is unknown and it is impossible to perfectly
solve (2.4). Our goal is therefore to recover an approximate solution of this prob-
lem in the following sense. We wish to construct an estimator λ̂n such that

‖h
λ̂n

− f ‖2 − min
λ∈�

‖hλ − f ‖2(2.6)

is as small as possible. An inequality that provides an upper bound on the (random)
quantity in (2.6) in a certain probabilistic sense is called oracle inequality.

Observe that this is not a linear model since we do not assume that the function
f is of the form hλ for some λ ∈ R

M . Rather, the bias term minλ∈�‖hλ −f ‖2 may
not vanish and the goal is to mimic the linear combination with the smallest bias
term.

The notion of Kullback–Leibler aggregation defined in the next subsection
broadens the scope of the above problem of aggregation to encompass other dis-
tributions for Y .

2.3. Kullback–Leibler aggregation. Recall that the ubiquitous squared norm
‖ · ‖2 as a measure of performance for regression problems takes its roots in the
Gaussian regression model. The Kullback–Leibler divergence between two proba-
bility distributions P and Q is defined by

K(P‖Q) =
⎧⎨
⎩

∫
log

(
dP

dQ

)
dP, if P � Q,

∞, otherwise.

Denote by Pf the joint distribution of the observations Yi, i = 1, . . . , n. If Pf

denotes an n-variate Gaussian distribution with mean (f (x1), . . . , f (xn))
� and

variance σ 2In, where In denotes the n × n identity matrix, then K(Pf ‖Pg) =
n

2σ 2 ‖f −g‖2. In order to allow an easier comparison between the results of this pa-
per and the literature, consider a normalized Kullback–Leibler divergence defined
by K̄(Pf ‖Pg) = K(Pf ‖Pg)/n. In the Gaussian regression setup, the quantity of
interest in (2.6) can be written

K̄(Pf ‖Ph
λ̂n

) − min
λ∈�

K̄(Pf ‖Phλ),(2.7)

up to a multiplicative constant term equal to 2σ 2. Nevertheless, the quantity in
(2.7) is meaningful for other distributions in the exponential family.
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Given a subset � of R
M , the goal of Kullback–Leibler aggregation (in short,

KL-aggregation) is to construct an estimator λ̂n such that the excess-KL, defined
by

EKL(h
λ̂n

,�, H) = K̄(Pf ‖Pb′◦h
λ̂n

) − inf
λ∈�

K̄(Pf ‖Pb′◦hλ
),(2.8)

is as small as possible.
Whereas KL-aggregation is a purely finite sample problem, it bears connections

with the asymptotic theory of model misspecification as defined in White (1982),
following LeCam (1953) and Akaike (1973). White (1982) proves that if the re-
gression function f is not of the form f = b′ ◦ hλ for some λ in the set of param-
eters �, then under some identifiability and regularity conditions, the maximum
likelihood estimator converges to λ∗ defined by

λ∗ = arg min
λ∈�

K(Pf ‖Pb′◦hλ
).

Upper bounds on the excess-KL can be interpreted as finite sample versions of
those original results.

Note that assuming that Yi admits a density of the form (2.1) with known cu-
mulant function b(·) is a strong assumption unless Yi has Bernoulli distribution, in
which case identification of this distribution is trivial from the context of the sta-
tistical experiment. We emphasize here that model misspecification pertains only
to the systematic component.

3. Main results. Let Z = {(x1, Y1), . . . , (xn, Yn)} be n independent observa-
tions and assume that for each i, the density of Yi is of the form p(yi; θi) as defined
in (2.1) where θi = [b′]−1 ◦ f (xi). Then, we can write for any λ ∈ R

M ,

K(Pf ‖Pb′◦hλ
) = −n

a
(〈f,hλ〉 − 〈b ◦ hλ,1〉) −

n∑
i=1

E[c(Yi)] + Ent(Pf ),(3.1)

where Ent(Pf ) denotes the entropy of Pf and is defined by

Ent(Pf ) =
n∑

i=1

E
[
log

(
p

(
Yi; [b′]−1 ◦ f (xi)

))]
.

Note that the term −∑n
i=1 E[c(Yi)] + Ent(Pf ) does not depend on λ.

For estimators of the form θ̂i = hλ(xi), maximizing the log-likelihood is equiv-
alent to maximizing

�n(λ) =
n∑

i=1

{Yihλ(xi) − 〈b ◦ hλ,1〉}(3.2)

over a certain set � that depends on the problem at hand.
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We now give bounds for the problem of KL-aggregation for the choices of �

corresponding to the three problems of aggregation introduced in the previous sec-
tion. All proofs are gathered in Section 6 and rely on the following conditions,
which can be easily checked given the cumulant function b.

CONDITION 1. The set of admissible parameters is 	 = R and there exists a
positive constant B2 such that

sup
θ∈	

b′′(θ) ≤ B2.(3.3)

CONDITION 2. We say that the couple (H,�) satisfies Condition 2 if there
exists a positive constant κ2 such that

b′′(hλ(x)) ≥ κ2,

uniformly for all x ∈ X and all λ ∈ �.

Conditions 1 and 2 are discussed in the light of several examples in Section 5.
Condition 1 is used only to ensure that the distributions of Yi have uniformly
bounded variances and sub-Gaussian tails, whereas Condition 2 is a strong con-
vexity condition that depends not only on the cumulant function b but also on the
aggregation problem at hand that is characterized by the couple (H,�).

3.1. Model selection aggregation. Recall that the goal of model selection ag-
gregation is to mimic a function hj such that K(Pf ‖Pb′◦hj

) ≤ K(Pf ‖Pb′◦hk
) for all

k �= j . A natural candidate would be the function in the dictionary that maximizes
the function �n defined in (3.2) either over the finite set V = {e1, . . . , eM} formed
by the M vectors in the canonical basis of R

M or over its convex hull. However,
it has been established [see, e.g., Juditsky, Rigollet and Tsybakov (2008), Lecué
(2007), Lecué and Mendelson (2009), Rigollet and Tsybakov (2012)] that such
a choice is suboptimal in general. Lecué and Mendelson (2009) proved that the
maximum likelihood estimator on the flat simplex �+

1 defined in Section 3.3 is
also suboptimal for the problem of model selection. As a consequence, we resort
to a compromise between these two ideas and maximize a partially interpolated
log-likelihood. Define λ̂ ∈ �+

1 to be such that

λ̂ ∈ arg max
λ∈�+

1

{
M∑

j=1

λj�n(ej ) + �n(λ)

}
.(3.4)

Note that the criterion maximized in the above equation is the sum of the log-
likelihood and a linear interpolation of the values of the log-likelihood at the ver-
tices of the flat simplex. As argued above, both of these terms are needed. Indeed,
using only the linear interpolation would lead us to choose λ̂ to be one of the
vertices of the simplex which, as mentioned above, is a suboptimal choice.
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THEOREM 3.1. Assume that Condition 1 holds and that (H,�+
1 ) satisfies

Condition 2. Recall that V = {e1, . . . , eM} is the finite set formed by the M vec-
tors in the canonical basis of R

M . Then, the aggregate h
λ̂

with λ̂ defined in (3.4)
satisfies

E[EKL(h
λ̂
, V, H)] ≤ 8B2

κ2

logM

n
.(3.5)

A similar result for hλ̃ where λ̃ are exponential weights was obtained by
Dalalyan and Tsybakov (2007) for a different class of regression problems with
deterministic design under the squared loss. For random design, Juditsky, Rigollet
and Tsybakov (2008) obtained essentially the same results for the mirror averag-
ing algorithm. Also for random design, Lecué and Mendelson (2009) proposed a
different estimator to solve this problem and give for the first time a bound with
high probability with the optimal remainder term. Such a result was claimed by
Audibert (2008) for a different estimator when the design is random. Despite this
recent effervescence, no bounds that hold with high probability have been derived
for the deterministic design case considered here and the estimator proposed by
Lecué and Mendelson (2009) is based on a sample splitting argument that does not
extend to deterministic design. The next theorem aims at giving such an inequality
for the aggregate h

λ̂
.

THEOREM 3.2. Assume that Condition 1 holds and that (H,�+
1 ) satisfies

Condition 2. Recall that V = {e1, . . . , eM} is the finite set formed by the M vectors
in the canonical basis of R

M . Then, for any δ > 0, with probability 1 − δ, the
aggregate h

λ̂
with λ̂ defined in (3.4) satisfies

EKL(h
λ̂n

, V, H) ≤ 8B2

κ2

log(M/δ)

n
.(3.6)

The proofs of both theorems are gathered in Section 6.2.

3.2. Linear aggregation. Let � ⊂ R
M be a closed convex set or R

M itself. The
maximum likelihood aggregate over � ⊂ R

M is uniquely defined as a function in
the quotient space Q1:n by the linear combination h

λ̂n
with coefficients given by

λ̂n ∈ arg max
λ∈�

�n(λ).(3.7)

Note that both λ̂n and λ∗ ∈ arg minλ∈� K(Pf ‖Pb′◦hλ
) exist as soon as � is a closed

convex set [see Ekeland and Témam (1999), Chapter II, Proposition 1.2]. Likewise,
from the same proposition, we find that if � = R

M , Condition 2 entails that both
λ̂n and λ∗ exist. Indeed, under Condition 2, the function b is convex coercive and
thus both functionals

hλ �→ −
n∑

i=1

{Yihλ(xi) − 〈b ◦ hλ,1〉} and hλ �→ −〈f,hλ〉 + 〈b ◦ hλ,1〉
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are convex coercive. Thus, the aggregates hλ∗ and h
λ̂n

are uniquely defined as

functions in the quotient space Q1:n, even though λ∗ and λ̂n may not be unique.
We first extend the original results of Nemirovski (2000) and Tsybakov (2003)

by providing bounds on the expected excess-KL, E[EKL(h
λ̂n

,�, H)] where � is

either a closed convex set or � = R
M , which corresponds to the problem of linear

aggregation.

THEOREM 3.3. Let � be a closed convex subset of R
M or R

M itself, such that
(H,�) satisfies Condition 2. If the marginal variances satisfy E[Yi −f (xi)]2 ≤ σ 2

for any i = 1, . . . , n, then the maximum likelihood aggregate h
λ̂n

over � satisfies

E[EKL(h
λ̂n

,�, H)] ≤ 2σ 2

aκ2

D

n
,

(3.8)

E‖h
λ̂n

− hλ∗‖2 ≤ 4σ 2

κ4

D

n
,

where D ≤ M is the dimension of span(H) and λ∗ ∈ arg minλ∈� K(Pf ‖Pb′◦hλ
).

Vectors λ∗ ∈ arg minλ∈� K(Pf ‖Pb′◦hλ
) are oracles since they cannot be com-

puted without the knowledge of Pf . The oracle distribution Pb′◦hλ∗ corresponds
to the distribution of the form Pb′◦hλ

, λ ∈ �, that is the closest to the true distri-
bution Pf in terms of Kullback–Leibler divergence. Introducing this oracle allows
us to assess the performance of the maximum likelihood aggregate, without as-
suming that Pf is of the form Pb′◦hλ

for some λ ∈ �. Note also that from (2.2),
the bounded variance condition E[Yi − f (xi)]2 ≤ σ 2 is a direct consequence of
Condition 1 with σ 2 = aB2.

Theorem 3.3 is valid in expectation. The following theorem shows that these
bounds are not only valid in expectation but also with high probability.

THEOREM 3.4. Let � be a closed convex subset of R
M or R

M itself and such
that (H,�) satisfies Condition 2. Moreover, let Condition 1 hold and let D be
the dimension of the linear span of the dictionary H = {h1, . . . , hM}. Then, for
any δ > 0, with probability 1 − δ, the maximum likelihood aggregate h

λ̂n
over �

satisfies

EKL(h
λ̂n

,�, H) ≤ 8B2

κ2

D

n
log

(
4

δ

)
,

(3.9)

‖h
λ̂n

− hλ∗‖2 ≤ 16aB2

κ4

D

n
log

(
4

δ

)
,

where λ∗ ∈ arg minλ∈� K(Pf ‖Pb′◦hλ
).

We see that the price to pay to obtain bounds with high probability is essentially
the same as for the bounds in expectation up to an extra multiplicative term of
order log(1/δ).
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3.3. Convex aggregation. In this subsection, we assume that � ⊂ �+
1 is a

closed convex set. Note that both a maximum likelihood estimator λ̂n and an oracle
λ∗ ∈ arg minλ∈� K(Pf ‖Pb′◦hλ

) exist.
Recall that if (H,�) satisfies Condition 2, Theorems 3.3 and 3.4 also hold. The

following theorems ensure a better rate for the maximum likelihood aggregate h
λ̂n

over � when D, and thus M , becomes much larger than n. It extends the problem
of convex aggregation defined by Nemirovski (2000), Juditsky and Nemirovski
(2000) and Tsybakov (2003) to the case where the distribution of the response
variables is not restricted to be Gaussian.

THEOREM 3.5. Let � be any closed convex subset of the flat simplex �+
1

defined in (2.5). Let Condition 1 hold and assume that the dictionary H consists
of functions satisfying ‖hj‖ ≤ R, for any j = 1, . . . ,M and some R > 0. Then, the
maximum likelihood aggregate h

λ̂n
over � satisfies

E[EKL(h
λ̂n

,�, H)] ≤ RB

√
logM

an
.(3.10)

Moreover, if (H,�) satisfies Condition 2, then

E‖h
λ̂n

− hλ∗‖2 ≤ 2RB

κ2

√
a logM

n
,

where λ∗ ∈ arg minλ∈� K(Pf ‖Pb′◦hλ
).

The bounds of Theorem 3.5 also have a counterpart with high probability as
shown in the next theorem.

THEOREM 3.6. Let � be any closed convex subset of the flat simplex �+
1

defined in (2.5). Fix M ≥ 3, let Condition 1 hold and assume that the dictionary H
consists of functions satisfying ‖hj‖ ≤ R, for any j = 1, . . . ,M and some R > 0.
Then, for any δ > 0, with probability 1 − δ, the maximum likelihood aggregate h

λ̂n

over � satisfies

EKL(h
λ̂n

,�, H) ≤ RB

√
2 log(M/δ)

an
.(3.11)

Moreover, if (H,�) satisfies Condition 2, then on the same event of probability
1 − δ, it holds

‖h
λ̂n

− hλ∗‖2 ≤ 2RB

κ2

√
2a log(M/δ)

n
,(3.12)

where λ∗ ∈ arg minλ∈� K(Pf ‖Pb′◦hλ
).
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This explicit logarithmic dependence in the dimension M illustrates the benefit
of the �1 constraint for high-dimensional problems. Raskutti, Wainwright and Yu
(2011) have obtained essentially the same result as Theorem 3.6 for the special
case of Gaussian linear regression. While their proof technique yields significantly
larger constants, they also cover the case of aggregation over �q balls for q < 1
explicitly. However, their result is limited to the linear regression model where the
regression function f is of the form f = hλ∗ for some λ∗ ∈ �1, where �1 denotes
the unit �1 ball of R

M .
Most of the existing bounds for convex aggregation hold for the expected

excess-KL. Many papers provide bounds with high probability [see, e.g., Koltchin-
skii (2011), Massart (2007), Mitchell and van de Geer (2009) and references
therein] but they typically do not hold for the excess-KL itself but for a quantity
related to

K̄(Pf ‖Pb′◦h
λ̂n

) − C min
λ∈�

K̄(Pf ‖Pb′◦hλ
),

where C > 1 is a constant. When the quantity minλ∈� K̄(Pf ‖Pb′◦hλ
) is not small

enough, such bounds can become uninformative. A notable exception is Ne-
mirovski et al. [(2008), Proposition 2.2] where the authors derive a result similar
to Theorem 3.6 under a different but similar set of assumptions. Most importantly,
their bounds do not hold for the maximum likelihood estimator but for the output
of a recursive stochastic optimization algorithm.

3.4. Discussion. As mentioned before, it is worth noticing that the technique
employed in proving the bounds in expectation of the previous subsection yield
bounds with high probability at almost no extra cost.

We finally mention the question of persistence posed by Greenshtein and
Ritov (2004) and further studied by Greenshtein (2006) and Bartlett, Mendel-
son and Neeman (2012). In these papers, the goal is to find performance
bounds that explicitly depend on n, M and the radius R of the �1 ball R�1
when the functions of the dictionary are scaled to have unit norm. Clearly,
this is essentially the same problem as ours if we choose the dictionary to be
{0,Rh1, . . . ,RhM,−Rh1, . . . ,−RhM}. More precisely, allowing M and R to de-
pend on n, persistence asks the question of which regime gives remainder terms
that converge to 0. While we do not pursue directly this question, we can obtain
such bounds for deterministic design and show that the constrained maximum like-
lihood estimator on a closed convex subset of the �1 ball is persistent as long as
R = R(n) = o(

√
n/ log(M)). The original result of Greenshtein and Ritov (2004)

in this sense allows only R = o([n/ log(M)]1/4) but when the design is random
with unknown distribution. The use of deterministic design in the present paper
makes the prediction task much easier. Indeed, a significant amount of work to
prove persistence has been made toward describing general conditions on the dis-
tribution of the design to ensure persistence at a rate R = o(

√
n/ log(M)), as in

Greenshtein (2006) and Bartlett, Mendelson and Neeman (2012).
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4. Optimal rates of aggregation. In Section 3, we have derived upper bounds
for the excess-risk both in expectation and with high probability under appropriate
conditions. The bounds in expectation can be summarized as follows. For a given
� ⊆ R

M , there exists an estimator Tn such that its excess-KL satisfies

E[K̄(Pf ‖PTn)] − inf
λ∈�

K̄(Pf ‖Pb′◦hλ
) ≤ C�n,M(�),

where C > 0 and

�n,M(�) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D

n
∧ logM

n
,

if � = V (model selection aggregation),
D

n
, if � ⊆ R

M (linear aggregation),

D

n
∧

√
logM

n
,

if � = �+
1 (convex aggregation).

(4.1)

Here D ≤ M ∧ n is the dimension of the linear span of the dictionary H and
� ⊆ R

M means that � is either a closed convex subset of R
M or R

M itself.
Note that for model selection aggregation, the estimator that achieves this rate
is given by Tn = b′ ◦ hλ̃n

I(D ≥ logM) + b′ ◦ h
λ̂n

I(D ≤ logM), where λ̃n is de-

fined in (3.4), h
λ̂n

is the maximum likelihood aggregate over �+
1 and I(·) denotes

the indicator function. Obviously, the lower bound for linear aggregation does
not hold for any closed convex subset of R

M since {0} is such a set and clearly
�n,M({0}) ≡ 0. We will prove the lower bound on the unit �∞ ball defined by
�∞ = {x ∈ R

M : max1≤j≤M |xj | ≤ 1}.
For linear and model selection aggregation, these rates are known to be opti-

mal in the Gaussian case where the design is random but with known distribution
[Tsybakov (2003)] and where the design is deterministic [Rigollet and Tsybakov
(2011)]. For convex aggregation, it has been established by Tsybakov (2003) [see
also Rigollet and Tsybakov (2011)] that the optimal rate for Gaussian regression

is of order
√

log(1 + eM/
√

n)/n, which is equivalent to the upper bounds ob-
tained in Theorems 3.5–3.6 of the present paper when M � √

n but is smaller in
general. To obtain better upper bounds, one may resort to more complicated, com-
binatorial procedures such as the ones derived in the papers cited above but the
full description of this idea goes beyond the scope of this paper. Note that in the
case of bounded regression with quadratic risk and random design, Lecué (2012)
recently proved that the constrained empirical risk minimizer attains the optimal

rate
√

log(1 + eM/
√

n)/n without any modification.
In this section, we prove that these rates are minimax optimal under weaker

conditions that are also satisfied by the Bernoulli distribution. The notion of opti-
mality for aggregation employed here is a natural extension of the one introduced
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TABLE 1
Exponential families of distributions and constants in Conditions 1 and 2 where H∞ is defined

in (4.3). [Source: McCullagh and Nelder (1989)]

� E(Y ) a b(θ) b′′(θ) B2 κ2

Normal R θ σ 2 θ2

2 1 1 1

Bernoulli R
eθ

1+eθ 1 log(1 + eθ ) eθ

(1+eθ )2
1
4

eH∞
(1+eH∞ )2

Gamma (−∞,0) − 1
θ

1
α − log(−θ) 1/θ2 ∞ 1

H 2∞
Negative binomial (0,∞) r

1−eθ 1 r log( eθ

1−eθ ) reθ

(1−eθ )2 ∞ reH∞
(1−eH∞ )2

Poisson R eθ 1 eθ eθ ∞ e−H∞

by Tsybakov (2003). Before stating the main result of this section, we need to in-
troduce the following definition. Fix κ2 > 0 and let �(κ2) be the level set of the
function b′′ defined by

�(κ2) = {θ ∈ R :b′′(θ) ≥ κ2}.(4.2)

In the Gaussian case, it is clear from Table 1 that �(κ2) = R for any κ2 ≤ 1. For
the cumulant function of the Bernoulli distribution, when κ2 < 1/4, �(κ2) is a
compact symmetric interval given by[

2 log
(

1 − √
1 − 4κ2

2κ

)
,2 log

(
1 + √

1 − 4κ2

2κ

)]
.

Furthermore, we have �(1/4) = {0} and �(κ2) = ∅, for κ2 > 1/4. In the next
theorem, we assume that for a given κ2 > 0, �(κ2) is convex. This is clearly the
case when the cumulant function b is such that b′′ is quasi-concave, that is, sat-
isfies for any θ, θ ′ ∈ R, u ∈ [0,1], b′′(uθ + (1 − u)θ ′) ≥ min[b′′(θ), b′′(θ ′)]. This
assumption is satisfied for the Gaussian and Bernoulli distributions.

Let D̄ denote the class of dictionaries H = {h1, . . . , hM} such that ‖hj‖∞ ≤ 1,
j = 1, . . . ,M . Moreover, for any convex set � ⊆ R

M , denote by I (�) the interval
[−H∞,H∞], where

H∞ = H∞(�) = sup
H∈D̄

sup
λ∈�

sup
x∈X

|hλ(x)| ∈ [0,∞].(4.3)

For example, we have

I (�) =
⎧⎨
⎩

[−1,1], if � = V (model selection aggregation),
R, if � = R

M (linear aggregation),
[−1,1], if � = �+

1 (convex aggregation).

To state the minimax lower bounds properly, we use the notation

EKL(Tn,�,f, H) = E[K̄(Pf ‖PTn)] − inf
λ∈�

K̄(Pf ‖Pb′◦hλ
),
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that makes the dependence in the regression function f explicit. Finally, we denote
by Ef the expectation with respect to the distribution Pf .

THEOREM 4.1. Fix M ≥ 2, n ≥ 1,D ≥ 1, κ2 > 0, and assume that Condi-
tion 1 holds. Moreover, assume that for a given set � ⊆ R

M , we have I (�) ⊂
�(κ2). Then, there exists a dictionary H ∈ D̄, with rank less than D, and positive
constants c∗, δ such that

inf
Tn

sup
λ∈�

Pb′◦hλ

[
EKL(Tn,�,b′ ◦ hλ, H) > c∗

κ2

2a
�∗

n,M(�)

]
≥ δ(4.4)

and

inf
Tn

sup
λ∈�

Eb′◦hλ
[EKL(Tn,�,b′ ◦ hλ, H)] ≥ δc∗

κ2

2a
�∗

n,M(�),(4.5)

where the infimum is taken over all estimators and where

�∗
n,M(�) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

D

n
∧ logM

n
, if � = V ,

D

n
, if � ⊃ �∞(1),

D

n
∧

√
log(1 + eM/

√
n)

n
, if � = �+

1 .

(4.6)

This theorem covers the Gaussian and the Bernoulli case for which Condition 1
is satisfied. Lower bounds for aggregation in the Gaussian case have already been
proved in Rigollet and Tsybakov [(2011), Section 6] in a weaker sense. Indeed,
we enforce here that H ∈ D̄ and has rank bounded by D, whereas Rigollet and
Tsybakov (2011) use unbounded dictionaries with rank that may exceed D by a
logarithmic multiplicative factor.

Observe that from (4.5), the least favorable regression functions are of the form
f = b′ ◦ hλ, λ ∈ �, as it is the case for Gaussian aggregation [see, e.g., Tsybakov
(2003)].

A consequence of Theorem 4.1 is that the rates of convergence obtained in Sec-
tion 3, both in expectation and with high probability, cannot be improved without
further assumptions except for the logarithmic term of convex aggregation. The
proof of Theorem 4.1 is provided in the supplementary material [Rigollet (2012)].

5. Examples.

5.1. Examples of exponential families. This subsection is a reminder of the
versatility of exponential families of distributions and its goal is to illustrate Con-
ditions 1 and 2 on some examples. Most of the material can be found, for example,
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in McCullagh and Nelder (1989). The form of the density described in (2.1) is usu-
ally referred to as natural form. We now recall that it already encompasses many
different distributions. Table 1 gives examples of distributions that have such a
density. For distributions with several parameters, it is assumed that all parameters
but θ are known. For the Normal and Gamma distributions, the reference measure
is the Lebesgue measure whereas for the Bernoulli, Negative binomial and Pois-
son distributions, the reference measure is the counting measure on Z. For all these
distributions, the cumulant function b(·) is twice continuously differentiable.

Observe first that only the Normal and Bernoulli distributions satisfy Condi-
tion 1. Indeed, all other distributions in the table do not have sub-Gaussian tails
and therefore, we cannot use Lemma 6.1 to control the deviations and moments
of the sum of independent random variables. Therefore, only Theorem 3.3 applies
to the remaining distributions even though direct computation of the moments can
yield results of the same type as Theorems 3.5 and 3.6 but with bounds that are
larger by orders of magnitude.

Another important message of Table 1 is that the constant κ2 can depend on
the constant H∞ defined in (4.3). Consequently the L2 distance ‖h

λ̂n
− hλ∗‖2 is

affected by the constant κ2 and thus by H∞. However, the constant B2 does not
depend on H∞. Therefore, the bounds on the excess-KL presented in Theorems
3.5 and 3.6 hold without extra assumption of the dictionary. For the Normal dis-
tribution, κ2 = B2 = 1 regardless of the value H∞, which makes it a particular
case.

5.2. Bounds for logistic regression with a large dictionary. Let us now focus
on the Bernoulli distribution. Recall that in the setup of binary classification, we
observe a collection of independent random couples (x1, Y1), . . . , (xn, Yn) such
that Yi ∈ {0,1} has Bernoulli distribution with parameter f (xi), i = 1, . . . , n. As
shown in the survey by Boucheron, Bousquet and Lugosi (2005), there exists a
tremendous amount of work in this topic and we will focus on the so-called boost-
ing type algorithms. A dictionary of base classifiers H = {h1, . . . , hM}, that is,
functions taking values in [−1,1], is given and training a boosting algorithm con-
sists in combining them in such a way that hλ(xi) predicts f (xi) well.

This part of the paper is mostly inspired by Friedman, Hastie and Tibshi-
rani (2000) who propose a statistical view of boosting following an original re-
mark of Breiman (1999). Specifically, they offer an interpretation of the original
AdaBoost algorithm introduced in Freund and Schapire (1996) as a sequential op-
timization procedure that fits an extended additive model for a particular choice
of the loss function. Then they propose to directly maximize the Bernoulli log-
likelihood using quasi-Newton optimization and derive a new algorithm called
LogitBoost. Even though we do not detail how maximization of the likelihood is
performed, LogitBoost aims at solving the same problem as the one studied here.
One difference here is that while extended additive models assume that there ex-
ists λ ∈ � ⊂ R

M such that the regression function is of the form f = [b′]−1 ◦ hλ,
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KL-aggregation does not. The paper of Friedman, Hastie and Tibshirani (2000)
focuses on the optimization side of the problem and does not contain finite sam-
ple results. A recent attempt to compensate for a lack of statistical analysis can
be found in Mease and Wyner (2008) and the many discussions that it produced.
We propose to contribute to this discussion by illustrating some statistical aspects
of LogitBoost based on the rates derived in Section 3 and in particular, how its
performance depends on the size of the dictionary.

Given a convex subset � ⊂ R
M and a convex function ϕ : R → R, training a

boosting algorithm, and more generally a large margin classifier, consists in mini-
mizing the risk function defined by

Rϕ(hλ) = 1

n

n∑
i=1

E[ϕ(−Ỹihλ(xi))]

over λ ∈ �, where Ỹi = 2Yi − 1 ∈ {−1,1}. It is not hard to show that minimizing
the Kullback–Leibler divergence K(Pf ‖Pb′◦hλ

), is equivalent to choosing

ϕ(x) = log(1 + ex)

log 2
,(5.1)

up to the normalizing constant log 2 that appears to ensure that ϕ(0) = 1. For the
choice of ϕ defined in (5.1), we have

Rϕ(hλ) − min
λ∈�

Rϕ(hλ) = 1

log 2
EKL(hλ,�, H).

In boosting algorithms, the size of the dictionary M is much larger than the sample
size n so that the results of Theorems 3.3 and 3.4 are useless and it is necessary
to constrain λ to be in the rescaled flat simplex R�+

1 so that H∞ = R. Given
that for the Bernoulli distribution, we have a = 1,B2 = 1/4, the constants in the
main theorems can be explicitly computed and in fact, they remain low. We can
therefore apply Theorems 3.5 and 3.6 to obtain the following corollary that gives
oracle inequalities for the ϕ-risk Rϕ , both in expectation and with high probability.
We focus on the case where M is (much) larger than n as it is usually the case in
boosting.

COROLLARY 5.1. Consider the boosting problem with a given dictionary of
base classifiers and let ϕ be the convex function defined in (5.1). Then, the maxi-
mum likelihood aggregate h

λ̂n
over the rescaled flat simplex R�+

1 , R > 0, defined
in (3.7) satisfies

E[Rϕ(h
λ̂n

)] ≤ min
λ∈R�+

1

Rϕ(hλ) + R

2 log 2

√
logM

n
.

Moreover, for any δ > 0, with probability 1 − δ, it holds

Rϕ(h
λ̂n

) ≤ min
λ∈R�+

1

Rϕ(hλ) + R

2 log 2

√
2 log(M/δ)

n
.
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6. Proof of the main results. In this section, we prove the main theorems.
We begin by recalling some properties of exponential families of distributions.
While similar results can be found in the literature, the results presented below are
tailored to our needs. In particular, the constants in the upper bounds are explicit
and kept as small as possible. In this section, for any ω ∈ �2(R), denote by |ω|2 its
�2-norm.

6.1. Some useful results on canonical exponential families. Let Y ∈ R be a
random variable with distribution in a canonical exponential family that admits a
density with respect to a reference measure on R given by

p(y; θ) = exp
{
yθ − b(θ)

a
+ c(y)

}
, θ ∈ R.(6.1)

It can be easily shown [see, e.g., Lehmann and Casella (1998), Theorem 5.10] that
the moment generating function of Y is given by

E[etY ] = e(b(θ+at)−b(θ))/a.(6.2)

Using (6.2) we can derive the Chernoff-type bounds presented in the following
lemma.

LEMMA 6.1. Let ω = (ω1, . . . ,ωn) ∈ R
n be a vector of deterministic weights.

Let Y1, . . . , Yn be independent random variables such that Yi has density p(·; θi)

defined in (6.1), θi ∈ R, i = 1, . . . , n, and define the weighted sum Sω
n =∑n

i=1 ωiYi . Assume that Condition 1 holds. Then the following inequalities hold:

E
[
exp

(
s|Sω

n − E(Sω
n )|)] ≤ exp

(
s2B2a|ω|22

2

)
,(6.3)

P[|Sω
n − E(Sω

n )| > t] ≤ 2 exp
(
− t2

2aB2|ω|22

)
,(6.4)

and for any r ≥ 0, we have

E|Sω
n − E(Sω

n )|r ≤ Cr |ω|r2,(6.5)

where Cr = r(2aB2)r/2�(r/2) and �(·) denotes the Gamma function.

PROOF. Using, respectively, (6.2), (2.2) and (3.3), we get

E
[
exp

(
s
(
Sω

n − E(Sω
n )

))] = exp

(
1

a

n∑
i=1

[b(θi + asωi) − b(θi) − asωib
′(θi)]

)

≤ exp
(

s2B2a|ω|22
2

)
.

The same inequality holds with s replaced by −s so (6.3) holds.
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The proof of (6.4) follows from (6.3) together with a Chernoff bound. Next,
note that

E|Sω
n − E(Sω

n )|r =
∫ ∞

0
P

(|Sω
n − E(Sω

n )| > t1/r) dt ≤ 2
∫ ∞

0
exp

(
− t2/r

2aB2|ω|22

)
dt,

where we used (6.4) in the last inequality. Using a change of variable, it is not hard
to see that this bound yields (6.5). �

6.2. Proof of Theorems 3.1 and 3.2. According to (3.1), minimizing λ �→
K(Pf ‖Pb′◦hλ

) is equivalent to maximizing λ �→ L(λ) where

L(λ) = 〈f,hλ〉 − 〈b ◦ hλ,1〉.(6.6)

Note that for any � ⊂ R
M , the set of optimal solutions �∗ satisfies

�∗ = arg min
λ∈�

K(Pf ‖Pb′◦hλ
) = arg max

λ∈�

L(λ).

Moreover, for any λ ∈ �,λ∗ ∈ �∗, we have

L(λ∗) − L(λ) = aEKL(hλ,�, H).(6.7)

For any fixed λ ∈ �+
1 , define the following quantities:

Sn(λ) =
M∑

j=1

λj�n(ej ) + �n(λ),

S(λ) = n

M∑
j=1

λjL(ej ) + nL(λ)

and observe that S(λ) = E[Sn(λ)] and that for any λ ∈ �+
1 ,

Sn(λ) − S(λ) = 2
n∑

i=1

(
Yi − f (xi)

)
hλ(xi).

Let β > 0 be a parameter to be chosen later. By definition of λ̂, we have for any
λ ∈ �+

1 that

S(λ̂) ≥ S(λ) − �n(λ) − β logM,(6.8)

where �n(λ) = 2
∑n

i=1(Yi − f (xi))hλ̂−λ
(xi) − β logM . The following lemma is

useful to control the term �n(λ) both in expectation and with high probability.

LEMMA 6.2. Under Condition 1, for any λ ∈ �+
1 we have

E

[
exp

(
�n(λ)

β
− 2B2an

β2

M∑
j=1

λ̂j‖hj − hλ‖2

)]
≤ 1.
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PROOF. For any λ ∈ �+
1 , j = 1, . . . ,M , define ϒj by

ϒj(λ) = 2B2an

β2 ‖hj − hλ‖2.

Jensen’s inequality and the fact that logM = ∑M
j=1 λ̂j (logM) yield

E

[
exp

(
�n(λ)

β
−

M∑
j=1

λ̂jϒj (λ)

)]

≤ E

[
M∑

j=1

λ̂j exp

(
2

β

n∑
i=1

(
Yi − f (xi)

)(
hj (xi) − hλ(xi)

) − logM − ϒj(λ)

)]

≤ 1

M

M∑
j=1

E

[
exp

(
2

β

n∑
i=1

(
Yi − f (xi)

)(
hj (xi) − hλ(xi)

) − ϒj(λ)

)]
.

Now, from (6.3), which holds under Condition 1, we have for any λ ∈ �+
1 , j =

1, . . . ,M , that

E

[
exp

(
2

β

n∑
i=1

(
Yi − f (xi)

)(
hj (xi) − hλ(xi)

))]
≤ exp(ϒj (λ)),

and the result of the lemma follows from the previous two displays. �

Take any λ̄ ∈ arg maxλ∈�+
1

S(λ) and observe that Condition 2 together with a

second-order Taylor expansion of the function S(·) around λ̄ gives for any λ ∈ �+
1

S(λ) ≤ S(λ̄) + [∇λS(λ̄)]�(λ − λ̄) − nκ2

2
‖hλ − hλ̄‖2,

where ∇λS(λ̄) denotes the gradient of λ �→ S(λ) at λ̄. Since λ̄ is a maximizer of
λ �→ S(λ) over the set �+

1 to which λ also belongs, we find that ∇λS(λ̄)�(λ− λ̄) ≤
0 so that, together with (6.8), the previous display yields

nκ2

2
‖h

λ̂
− hλ̄‖2 ≤ S(λ̄) − S(λ̂) ≤ �n(λ̄) + β logM.(6.9)

PROOF OF THEOREM 3.1. Using the convexity inequality t ≤ et − 1 for any
t ∈ R, Lemma 6.2 yields

E[�n(λ̄)] ≤ βE

M∑
j=1

λ̂jϒj (λ̄) = βE

M∑
j=1

λ̂jϒj (λ̂) + 2B2an

β

M∑
j=1

E‖h
λ̂
− hλ̄‖2.

The previous display combined with (6.9) gives

S(λ̄) − E[S(λ̂)] ≤ βE

M∑
j=1

λ̂jϒj (λ̂) + 4B2a

βκ2

[
S(λ̄) − E[S(λ̂)]] + β logM.
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It implies that for β ≥ 8B2a/κ2

S(λ̄) − E[S(λ̂)] ≤ 2βE

M∑
j=1

λ̂jϒj (λ̂) + 2β logM.(6.10)

Observe now that a second-order Taylor expansion of the function L(·) around λ̂,
together with Condition 2, gives for any λ ∈ �+

1

L(λ) ≤ L(λ̂) + [∇λL(λ̂)]�(λ − λ̂) − κ2

2
‖hλ − h

λ̂
‖2.

Thus

M∑
j=1

λ̂jL(ej ) ≤ L(λ̂) − κ2

2

M∑
j=1

λ̂j‖hj − h
λ̂
‖2.

It follows that

S(λ̂) = n

M∑
j=1

λ̂jL(ej ) + nL(λ̂) ≤ 2nL(λ̂) − nκ2

2

M∑
j=1

λ̂j‖hj − h
λ̂
‖2.

Combined with (6.10), the above inequality yields

S(λ̄) − 2nE[L(λ̂)] ≤
(

2β − κ2β2

4B2a

)
E

M∑
j=1

λ̂jϒj (λ̂) + 2β logM ≤ 2β logM

for β ≥ 8B2a/κ2. Note that for any j = 1, . . . ,M , S(λ̄) ≥ S(ej ) = 2nL(ej ) so
that from (6.7), we get

aE[EKL(h
λ̂
, V, H)] = max

1≤j≤M
L(ej ) − E[L(λ̂)] ≤ β

n
logM. �

PROOF OF THEOREM 3.2. From Lemma 6.2 and a Chernoff bound, we get
for any λ ∈ �+

1 and any δ > 0 that

P

[
�n(λ) − 2B2an

β

M∑
j=1

λ̂j‖hj − hλ‖2 > β log(1/δ)

]
≤ δ.

Thus, the event Aλ(δ) = {�n(λ) ≤ 2B2an
β

∑M
j=1 λ̂j‖hj − hλ‖2 + β log(1/δ)} has

probability greater than 1 − δ. Theorem 3.2 follows by applying the same steps as
in the proof of Theorem 3.1 but on the event Aλ̄(δ) instead of in expectation. �



660 P. RIGOLLET

6.3. Proofs of Theorems 3.3–3.6. The following lemma exploits the strong
convexity property stated in Condition 2.

LEMMA 6.3. Let φ1, . . . , φD be an orthonormal basis of the linear span of
the dictionary H. Let � be a closed convex subset of R

M or R
M itself and assume

that (H,�) satisfies Condition 2. Denote by λ∗ any maximizer of the function
λ �→ L(λ) over the set �. Then any maximum likelihood estimator λ̂n satisfies

κ2

2
‖h

λ̂n
− hλ∗‖2 ≤ L(λ∗) − L(λ̂n) ≤ 2

κ2

D∑
j=1

ζ 2
j ,(6.11)

where ζj = 1
n

∑n
i=1 Yiφj (xi) − 〈f,φj 〉, j = 1, . . . ,D. Moreover, if � ⊂ �+

1 is a

closed convex set, then λ̂n satisfies

κ2

2
‖h

λ̂n
− hλ∗‖2 ≤ L(λ∗) − L(λ̂n) ≤ max

1≤j≤M
|ξj |,(6.12)

where ξj = 1
n

∑n
i=1 Yihj (xi) − 〈f,hj 〉, j = 1, . . . ,M .

PROOF. A second-order Taylor expansion of the function L(·) around λ∗ gives
for any λ ∈ �

L(λ) ≤ L(λ∗) + [∇λL(λ∗)]�(λ − λ∗) − κ2

2
‖hλ − hλ∗‖2,

where we used Condition 2 and where ∇λL(λ∗) denotes the gradient of λ �→ L(λ)

at λ∗. Since λ∗ is a maximizer of λ �→ L(λ) over the set � to which λ also belongs,
we find that ∇λL(λ∗)�(λ − λ∗) ≤ 0 so that

L(λ∗) − L(λ) ≥ κ2

2
‖hλ − hλ∗‖2(6.13)

for any λ ∈ �, which gives the left inequalities in (6.11) and (6.12).
Next, from the definition of λ̂n, we have

L(λ̂n) ≥ L(λ∗) + Tn(λ
∗ − λ̂n),(6.14)

where

Tn(μ) = 1

n

n∑
i=1

Yihμ(xi) − 〈f,hμ〉, μ ∈ R
M.

Writing hμ = ∑D
j=1 νjφj , ν ∈ R

D , we find that

Tn(μ) =
D∑

j=1

νj

(
1

n

n∑
i=1

Yiφj (xi) − 〈f,φj 〉
)

=
D∑

j=1

νj ζj .
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Define the random variable Vn = supμ∈RM : ‖hμ‖>0{|Tn(μ)|/‖hμ‖}, so that Vn sat-
isfies

Vn = sup
ν∈RM

ν �=0

|∑D
j=1 νj ζj |

(
∑D

j=1 ν2
j )1/2

=
(

D∑
j=1

ζ 2
j

)1/2

.

Since Tn(λ
∗ − λ̂n) ≥ −Vn‖h

λ∗−λ̂n
‖, it yields together with (6.14) that

L(λ̂n) ≥ L(λ∗) − ‖h
λ∗−λ̂n

‖
(

D∑
j=1

ζ 2
j

)1/2

.(6.15)

Combining (6.15) and (6.13) with λ = λ̂n, we get (6.11).
We now turn to the proof of (6.12). From (6.14), and the Hölder inequality, we

have

L(λ∗) − L(λ̂n) ≤
(

M∑
j=1

|λ̂n,j − λ∗
j |

)
max

1≤j≤M
|ξj | ≤ max

1≤j≤M
|ξj |.

Combined with (6.13), this inequality yields (6.12). �

In view of (6.7), to complete the proof of Theorems 3.3–3.6, it is sufficient to
bound from above the quantities appearing on the right-hand side of (6.11) and
(6.12). This is done using results from Section 6.1 and by observing that the ran-
dom variables ζj and ξj are of the form

ζj = Sω
(ζj )

n − E
(
Sω

(ζj )

n

)
, ω

(ζj )

i = φj (xi)

n
,

∣∣ω(ζj )
∣∣
2 = 1√

n
(6.16)

and

ξj = Sω
(ξj )

n − E
(
Sω

(ξj )

n

)
, ω

(ξj )

i = hj (xi)

n
,

∣∣ω(ξj )
∣∣
2 ≤ R√

n
,(6.17)

if max1≤j≤M ‖hj‖ ≤ R.

PROOF OF THEOREM 3.3. Since the random variables Yi, i = 1, . . . , n, are
mutually independent, we have

E[ζ 2
j ] = var

(
1

n

n∑
i=1

Yiφj (xi)

)
≤ σ 2

n2

n∑
i=1

φ2
j (xi) = σ 2

n
.

Together with (6.7) and (6.11), this bound completes the proof of Theorem 3.3.
�
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PROOF OF THEOREM 3.4. For any s, t > 0, we have

P

[
D∑

j=1

ζ 2
j > t

]
= P

[
1

D

D∑
j=1

ζ 2
j >

t

D

]
≤ e−st/D

E
[
e
(s/D)

∑D
j=1 ζ 2

j
]

≤ e−st/D 1

D

D∑
j=1

E[esζ 2
j ] ≤ e−st/D 1

D

D∑
j=1

∞∑
p=0

sp

p!E[ζ 2p
j ],

where we used, respectively: the Markov inequality, the Jensen inequality and Fa-
tou’s lemma. Observe now that (6.5), which holds under Condition 1, and (6.16)
yield

E[ζ 2p
j ] ≤ C2p

∣∣ω(ζj )
∣∣2p
2 = C2p

np
= 2(p!)

(
2aB2

n

)p

.

Therefore, the last two displays with s = n/(4aB2) yield

P

(
D∑

j=1

ζ 2
j > t

)
≤ 4e−nt/(4aB2D).

Theorem 3.4 follows by taking t = 4aB2D
n

log(4/δ) in the previous display together
with (6.7) and (6.11). �

Before completing the proof of Theorems 3.5 and 3.6, observe that (6.3) and
(6.17) imply that for any j = 1, . . . ,M , the random variable |ξj | is sub-Gaussian
with variance proxy σ 2 = (RB)2a/n, that is,

E
[
es|ξj |] ≤ es2σ 2/2 = es2(RB)2a/(2n).(6.18)

PROOF OF THEOREM 3.5. It follows from Lemma 2.3 in Massart (2007) with
the above choice of variance proxy that

E

[
max

1≤j≤M
|ξj |

]
≤ RB

√
a logM

n
.

Combined with (6.7) and (6.12) the previous inequality completes the proof of
Theorem 3.5. �

PROOF OF THEOREM 3.6. Using, respectively, a union bound, a Chernoff
bound and (6.18), we find

P

(
max

1≤j≤M
|ξj | > t

)
≤ M exp

(
nt2

2(RB)2a

)
.

Together with (6.7) and (6.12), this bound completes the proof of Theorem 3.6 by

taking t = RB

√
2a log(M/δ)

n
. �
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SUPPLEMENTARY MATERIAL

Minimax lower bounds (DOI: 10.1214/11-AOS961SUPP; .pdf). Under some
convexity and tail conditions, we prove minimax lower bounds for the three prob-
lems of Kullback–Leibler aggregation: model selection, linear and convex. The
proof consists in three steps: first, we identify a subset of admissible estimators,
then we reduce the problem to a usual problem of regression function estimation
under the mean squared error criterion and finally, we use standard minimax lower
bounds to complete the proof.
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