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T -OPTIMAL DESIGNS FOR DISCRIMINATION BETWEEN TWO
POLYNOMIAL MODELS1
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This paper is devoted to the explicit construction of optimal designs for
discrimination between two polynomial regression models of degree n − 2
and n. In a fundamental paper, Atkinson and Fedorov [Biometrika 62 (1975a)
57–70] proposed the T -optimality criterion for this purpose. Recently, Atkin-
son [MODA 9, Advances in Model-Oriented Design and Analysis (2010)
9–16] determined T -optimal designs for polynomials up to degree 6 numeri-
cally and based on these results he conjectured that the support points of the
optimal design are cosines of the angles that divide half of the circle into equal
parts if the coefficient of xn−1 in the polynomial of larger degree vanishes.
In the present paper we give a strong justification of the conjecture and deter-
mine all T -optimal designs explicitly for any degree n ∈ N. In particular, we
show that there exists a one-dimensional class of T -optimal designs. More-
over, we also present a generalization to the case when the ratio between the
coefficients of xn−1 and xn is smaller than a certain critical value. Because
of the complexity of the optimization problem, T -optimal designs have only
been determined numerically so far, and this paper provides the first explicit
solution of the T -optimal design problem since its introduction by Atkinson
and Fedorov [Biometrika 62 (1975a) 57–70]. Finally, for the remaining cases
(where the ratio of coefficients is larger than the critical value), we propose a
numerical procedure to calculate the T -optimal designs. The results are also
illustrated in an example.

1. Introduction. The problem of identifying an appropriate model in a class
of competing regression models is of fundamental importance in regression anal-
ysis, and it occurs often in real experimental studies. It is widely accepted nowa-
days that good experimental designs can improve the performance of discrimi-
nation, and several authors have addressed the problem of constructing optimal
designs for this purpose; see Hunter and Reiner (1965), Stigler (1971), Atkinson
and Fedorov (1975a, 1975b), Hill (1978), Fedorov (1980), Denisov, Fedorov and
Khabarov (1981), Studden (1982), Fedorov and Khabarov (1986), Spruill (1990),
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TABLE 1
Simulated power of the F -test in a cubic regression model

∑3
j=0 θ2j xj for

the hypothesis of linear regression model for various values of θ2,3 and
different designs (θ2,2 = 0)

θ2,3 0 0.5 1.0 1.5 2.0

T -optimal 0.051 0.104 0.301 0.641 0.896
Equidistant 0.053 0.092 0.218 0.438 0.638

Dette (1994, 1995), Dette and Haller (1998), Song and Wong (1999), Uciński and
Bogacka (2005), Wiens (2009, 2010) among many others. In a fundamental paper,
Atkinson and Fedorov (1975a) introduced the T -optimality criterion for discrim-
inating between two competing regression models. As an example, these authors
constructed T -optimal designs for a constant and a quadratic model. Since its in-
troduction, the problem of determining T -optimal designs has been considered
by numerous authors; see Atkinson and Fedorov (1975b), Uciński and Bogacka
(2005), Wiens (2009), Tommasi and López-Fidalgo (2010), among others. In or-
der to demonstrate the benefits of the T -optimal design, we display, in Table 1,
the simulated power of the F -test for the hypothesis H0 : θ2,2 = θ2,3 = 0 in the cu-
bic regression model η(x, θ) = ∑3

j=0 θ2j x
j on the interval [−1,1] (with standard

normal distributed errors), where observations are taken according to two designs.
The first design is the commonly used equidistant design with 12 observations at
the four points, −1,−1/3,1/3 and 1, respectively, while the second design is a T -
optimal design, as considered in this paper, with 8 observations at the two points,
−1,1 and 16 observations at the two points −1/2,1/2, respectively. We observe
clear advantages (with respect to the power of the F -test) for the T -optimal design.

Since its introduction T -optimal designs have found numerous applications in-
cluding such important fields as chemistry of pharmacokinetics; see Atkinson, Bo-
gacka and Bogacki (1998), Asprey and Macchietto (2000), Uciński and Bogacka
(2005) or Foo and Duffull (2011) among others. The T -optimal design problem
is essentially a minimax problem, and, except for very simple models, the corre-
sponding optimal designs are not easy to find and have to be determined numer-
ically. In a recent paper, Dette and Titoff (2009) discussed the T -optimal design
problem from a general point of view and related it to a nonlinear problem in ap-
proximation theory. As an illustration, designs for discriminating between a linear
model and a cubic model without quadratic term were presented, and it was shown
that T -optimal designs are, in general, not unique.

Atkinson (2010) considered a similar problem of this type and studied the
problem of discriminating between two competing polynomial regression mod-
els which differ in the degree by two. This author determined T -optimal designs
for polynomials up to degree 6 numerically where the coefficient of xn−1 in the
polynomial of larger degree (say n) vanishes. Based on these results he conjectured
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that the support points of the T -optimal design are cosines of angles dividing a half
of circle into equal parts.

The present paper has two purposes. In particular, we prove the conjecture raised
in Atkinson (2010) and derive explicit solutions of the T -optimal design problem
for discriminating between polynomial regression models of degree n − 2 and n

for any n ∈ N. Moreover, we also determine the T -optimal designs analytically in
the case when the ratio of the coefficients of the terms xn−1 and xn is sufficiently
small. The situation considered in Atkinson (2010) corresponds to the case where
this ratio vanishes, and in this case we show that there exists a one-dimensional
class of T -optimal designs. To the best of our knowledge these results provide the
first explicit solution of the T -optimal design problem in a nontrivial situation.
Our results provide further insight into the complicated structure of the T -optimal
design problem. Finally, in the case where the coefficient exceeds the critical value,
we suggest a procedure to determine the T -optimal design numerically.

2. The T -optimal design problem revisited. Consider the classical regres-
sion model

y = η(x) + ε,(2.1)

where the explanatory variable x varies in the design space X , and observations
at different locations, say x and x′, are assumed to be uncorrelated with the same
variance. In (2.1) the quantity ε denotes a random variable with mean 0 and vari-
ance σ 2, and η is a function, which is called regression function in the literature.
We assume that the experimenter has two parametric models for this function in
mind, that is,

η1(x, θ1) and η2(x, θ2),(2.2)

and the first goal of the experiment is to discriminate between these two models. In
(2.2) the quantities θ1 and θ2 denote unknown parameters which vary in compact
parameter spaces, say �1 ⊂ R

m1 and �2 ⊂ R
m2 , and have to be estimated from

the data. In order to find “good” designs for discriminating between the models
η1 and η2, we consider approximate designs in the sense of Kiefer (1974), which
are defined as probability measures on the design space X with finite support. The
support points of an (approximate) design ξ give the locations where observations
are taken, while the weights give the corresponding relative proportions of total
observations to be taken at these points. If the design ξ has masses ωi > 0 at the
different points xi (i = 1, . . . , k), and N observations can be made by the experi-
menter, the quantities ωiN are rounded to integers, say ni , satisfying

∑k
i=1 ni = N ,

and the experimenter takes ni observations at each location xi (i = 1, . . . , k).
To determine a good design for discriminating between the models η1 and η2

[Atkinson and Fedorov (1975a)] proposed in a fundamental paper to fix one model,
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say η1 (more precisely its corresponding parameter θ1), and to determine the de-
sign which maximizes the minimal deviation between the model η1 and the class
of models defined by η2, that is,

ξ∗ = arg max
ξ

∫
χ

(
η1(x, θ1) − η2(x, θ∗

2 )
)2

ξ(dx),

where the parameter θ∗
2 minimizes the expression

θ∗
2 = arg min

θ2∈�2

∫
χ

(
η1(x, θ1) − η2(x, θ2)

)2
ξ(dx).

Note that θ∗
2 is not an estimate, but it corresponds to the best approximation of

the “given” model η1(·, θ1) by models of the form {η2(·, θ2) | θ2 ∈ �2} with respect
to a weighted L2-norm. Since its introduction the T -optimal design problem has
found considerable interest in the literature, and we refer the interested reader to
the work of Uciński and Bogacka (2005) or Dette and Titoff (2009), among others.
In general, the determination of T -optimal designs is a very difficult problem,
and explicit solutions are—to our best knowledge—not available except for very
simple models with a few parameters. In this paper we present analytical results for
T -optimal designs, if the interest is in the discrimination between two polynomial
models which differ in the degree by two. To be precise, we consider the case
where the regression functions η1(x, θ1) and η2(x, θ2) are given by

η1(x, θ1) = θ1,0 + θ1,1x + · · · + θ1,n−2x
n−2 + θ1,n−1x

n−1 + θ1,nx
n(2.3)

and

η2(x, θ2) = θ2,0 + θ2,1x + · · · + θ2,n−2x
n−2,(2.4)

respectively, and the design space is given by X = [−1,1]. In model (2.3) the
parameter θ1 is given by θ1 = (θ1,0, θ1,1, . . . , θ1,n−2, bθ1,n, θ1,n)

T , where the ratio
of the coefficients corresponding to the highest powers b = θ1,n−1/θ1,n and the
parameter θ1,n specify the deviation from a polynomial of degree n − 2.

In the following discussion, we define

η̄(x,α, b, θ1,n) = η1(x, θ1) − η2(x, θ2)
(2.5)

= α0 + α1x + · · · + αn−2x
n−2 + θ1,n(bxn−1 + xn),

where we use the notation αi = θ1,i − θ2,i (i = 0, . . . , n − 2); then the problem of
finding the T -optimal design for the models η1 and η2 can be reduced to

ξ∗ = arg max
ξ

∫
χ

(
α∗

0 + α∗
1x + · · · + α∗

n−2x
n−2 + θ1,n(bxn−1 + xn)

)2
ξ(dx),

where α∗ = (α∗
1 , . . . , α∗

n−2)
T is a vector minimizing the expression

α∗ = arg min
α

∫
χ
(η̄(x,α, b, θ1,n))

2ξ(dx).
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It is now easy to see that for a fixed value of b = θ1,n−1/θ1,n, the T -optimal
design does not depend on the parameter θ1n. In the next section we give the
complete solution of the T -optimal design problem if the absolute value of the
parameter b = θ1,n−1/θ1,n less or equal to some critical value.

3. T -optimal designs for small values of |b| = |θ1,n−1/θ1,n|. Throughout
this section we assume that the parameter b satisfies

|b| = |θ1,n−1/θ1,n| ≤ n

(
1 − cos

(
π

n

))/(
1 + cos

(
π

n

))
= n tan2

(
π

2n

)
;(3.1)

then it is easy to see that all points

t∗i (b) = −
(

1 + |b|
n

)
cos

(
iπ

n

)
− |b|

n
, i = 1, . . . , n,(3.2)

are located in the interval [−1,1]. Our first result gives an explicit solution of
the T -optimal design problem in the case b = θ1,n−1 = 0 and—as a by-product—
proves the conjecture raised in Atkinson (2010).

THEOREM 3.1. A design ξ is T -optimal for discriminating between models
(2.3) and (2.4) with θ1n−1 = 0 on the interval [−1,1] if and only if it can be repre-
sented in the form ξ = (1 − α)ξ1 + αξ2, where α ∈ [0,1], the measures ξ1 and ξ2
are defined by

ξ1 =
(

t∗1 (0) · · · t∗n(0)

ω∗
1 · · · ω∗

n

)
, ξ2 =

(−t∗n(0) · · · −t∗1 (0)

ω∗
n · · · ω∗

1

)
(3.3)

and the weights and support points are given by

ω∗
i = 2

n
sin2

(
iπ

2n

)
, ω∗

n−i = 2

n
cos2

(
iπ

2n

)
, i = 1, . . . ,

⌊
n

2

⌋
,

(3.4)

ω∗
n = 1

n

and (3.2) for b = 0, respectively.

PROOF. It was proved by Dette and Titoff (2009) (see Theorem 2.1) that any
T -optimal design on the interval [−1,1] for discriminating between the polyno-
mials

∑n−2
j=0 θ2,j x

j and

η1(x, θ1) =
n−2∑
j=0

θ1,j x
j + θ1nx

n

(note that θ1n−1 = 0) is supported at the set of the extremal points

A =
{
x ∈ [−1,1] ∣∣ ψ∗(x) = sup

t∈[−1,1]
|ψ∗(t)|

}
,
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where ψ∗(x) = η1(x, θ1) − ∑n−2
j=0 θ̄2j x

j and

θ̄2 = (θ̄2,0, . . . , θ̄2,n−2)
T = arg min

θ2∈Rn−1
sup

x∈[−1,1]

∣∣∣∣∣η1(x, θ1) −
n−2∑
j=0

θ2,j x
j

∣∣∣∣∣(3.5)

is the parameter corresponding to the best approximation of η1(x, θ1) with re-
spect to the sup-norm. By a standard result in approximation theory [see Achiezer
(1956), Sections 35 and 43] it follows that the solution of the problem (3.5) is
unique and given by ψ∗(x) = θ1,n2−(n−1)Tn(x), where Tn(x) = cos(n arccosx) is
the nth Chebyshev polynomial of the first kind. Note that Tn(x) is an even or odd
polynomial of degree n with leading coefficient 2n−1 [see Szegő (1975)]. The cor-
responding extremal points are given by x0 = t∗1 (0) = −1, xi = t∗i (0) = − cos iπ

n
,

i = 1, . . . , n − 1, xn = t∗n(0) = 1.
Now it follows from Theorem 2.2 in Dette and Titoff (2009) that a design ξ∗ is

T -optimal if and only if it satisfies the system of linear equations∫
A

ψ∗(x)xk dξ∗(x) = 0, k = 0, . . . , n − 2.(3.6)

[Note that in the case of linear models the necessary condition in Theorem 2.2 in
Dette and Titoff (2009) is also sufficient.] Therefore for proving that ξ∗

1 = ξ1 is a
T -optimal design, it is sufficient to verify the identities∫

ψ∗(x) dξ∗
1 (x) = θ1,n2−(n−1)(−1)n

n∑
i=1

(−1)ixk
i ω∗

i = 0(3.7)

(k = 0,1, . . . , n− 2), which will be done in the Appendix. In a similar way we can
check that the design ξ∗

2 in (3.3) is a T -optimal design. Note that

supp(ξ∗
1 ) ∪ supp(ξ∗

2 ) =
{
xi = − cos

(
π

n
i

) ∣∣∣ i = 0, . . . , n

}
= A,

because t∗n−i (0) = −t∗i (0). Moreover, (3.6) defines a system of linear equations of
the form Fω = 0 for the vector ω = (ω0, . . . ,ωn)

T of the T -optimal design ξ∗,
where the matrix F is given by F = ((−1)ixk

i )
k=0,...,n−2
i=0,...,n ∈ R

n−1×n+1 and has
rank n − 1. Additionally, the components of the vector ω satisfy

∑n
i=0 ωi = 1.

Therefore the set of solutions has dimension 1. Because the vectors of weights
corresponding to the designs ξ∗

1 and ξ∗
2 are given by ω(1) = (0,ω∗

1, . . . ,ω
∗
n)

T and
ω(2) = (ω∗

n, . . . ,ω
∗
1,0)T and are therefore linearly independent (note that ω∗

i >

0, i = 1, . . . , n), any vector of weights corresponding to a T -optimal design must
be a convex combination of ω(1) and ω(2). Consequently, any T -optimal design
can be represented in the form ξ = (1 −α)ξ∗

1 +αξ∗
2 , which proves the assertion of

Theorem 3.1. �

Note that the T -optimal design is not unique in the case b = 0. On the other
hand, the T -optimal designs are unique, whenever θ1,n−1 �= 0, and, if the ratio



194 H. DETTE, V. B. MELAS AND P. SHPILEV

|θ1,n−1/θ1,n| is not too large, the T -optimal designs can also be found explicitly as
demonstrated in our following result.

THEOREM 3.2. If the parameter b = θ1,n−1/θ1,n satisfies (3.1), then there ex-
ists a unique T -optimal design on the interval [−1,1] for discriminating between
models (2.3) and (2.4). For positive b this design has the form

ξ∗ =
(

t∗1 (b) · · · t∗n(b)

ω∗
1 · · · ω∗

n

)
,(3.8)

where the points t∗i (b) and weights w∗
i (b) are defined in (3.2) and (3.4), respec-

tively [note that t∗1 (b) ≥ −1, t∗n(b) = 1]. The T -optimal design for negative b has
the form

ξ∗ =
(−t∗n(b) · · · −t∗1 (b)

ω∗
n · · · ω∗

1

)

[note that −t∗n(b) = −1,−t∗1 (b) ≤ 1].

PROOF. We consider the case 0 < b ≤ n(1 − cos(π
n
))/(1 + cos(π

n
)) where

direct calculations show that the points t∗i (b), i = 1, . . . , n, are contained in the
interval [−1,1]. Moreover, these points are the extremal points of the polynomial

cnTn

(−x − b/n

1 + b/n

)
, cn = (−1)n

(
1

2

)n−1(
1 + b

n

)n

,(3.9)

where Tn is the Chebyshev polynomial of the first kind. For later purposes we note
that the coefficient of xn−1 in this polynomial is equal to

n∑
i=1

[(
1 + b

n

)
ui + b

n

]
= b,(3.10)

where u1, . . . , un are the roots of the polynomial Tn(x), that is, ui = cos(2i−1
2n

π)

(i = 1, . . . , n),
∑n

i=1 ui = 0. It can be shown by a standard argument in approxi-
mation theory [see Achiezer (1956), Sections 35 and 43] that θ1nψ

∗(x) with

ψ∗(x) = cnTn

(−x − b/n

1 + b/n

)

is the unique solution of the extremal problem

min
θ2∈Rn−1

sup
x∈[−1,1]

∣∣∣∣∣η1(x, θ1) −
n−2∑
j=0

θ2,j x
j

∣∣∣∣∣,
where η1(x, θ1) = ∑n

j=0 θ1,j x
j . Therefore by Theorems 2.1 and 2.2 in Dette

and Titoff (2009), a T -optimal design is supported at the n extremal points
t∗1 (b), . . . , t∗n(b) [note that we use b ≤ n tan2( π

2n
) at this point, which implies
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|t∗j (b)| ≤ 1; j = 1, . . . , n] and the weights are determined by (3.6). Because the
set of extremal points is given by A = {t∗1 (b), . . . , t∗n(b)}, this system reduces to

n∑
i=1

t∗k
i (b)(−1)iω∗

i = 0, k = 0,1, . . . , n − 2,(3.11)

and we will prove in the Appendix that the weights given in (3.4) define a solution
of (3.11). Therefore the design ξ∗ specified in (3.8) is a T -optimal design for
0 < b ≤ n(1 − cosπ/n)/(1 + cosπ/n). Since the function ψ∗(x) is unique, any
T -optimal design is supported at the points t∗1 (b), . . . , t∗n(b) [see Theorem 2.1 in
Dette and Titoff (2009)]. By Theorem 2.2 in the same reference, it follows that the
weights of any T -optimal design satisfy the system of linear equations (3.11) with
ω∗

i = ωi and
∑n

i=1 ωi = 1. Since ψ∗(t∗i (b)) = (−1)i (i = 1, . . . , n) we can rewrite
this system as

Fω = en,(3.12)

where ω = (ω1, . . . ,ωn)
T is the vector of weights, the last row of the matrix

F is given by (1, . . . ,1) and corresponds to the condition
∑n

i=1 ωi = 1, en =
(0, . . . ,0,1)T ∈ R

n denotes the nth unit vector and the columns of the matrix F

are given by

ai = (−1)i(1, t∗i (b), . . . , (t∗i (b))n−2,ψ∗(t∗i (b)))T , i = 1,2, . . . , n.

The remaining assertion of Theorem 3.2 follows if we prove that detF �= 0,
which implies that the solution of (3.12), and therefore the T -optimal design,
is unique. For this purpose assume that the opposite holds. In this case the
rows of the matrix F would be linearly dependent, and there exists a vec-
tor h = (h1, . . . , hn−1,1)T such that aT

i h = 0, i = 1,2, . . . , n. But the function
k(x) = (1, x, . . . , xn−2,ψ∗(x))T h is a polynomial of degree n with coefficient
of xn−1 given by b. Since aih = k(t∗i (b)) = 0 this polynomial has roots at the
points t∗i (b), moreover

n∑
i=1

t∗i (b) = −b −
n∑

i=1

(
1 + b

n

)
cos

(
iπ

n

)
= −b + 1 + b

n
.

However, by (3.10) the sum of the roots must equal −b by Vieta’s formula. This
contradiction proves that detF �= 0. Therefore the system of equations in (3.12)
has a unique solution, which means that the T -optimal design is unique.

The case of negative b is considered in a similar way, and the details are omitted
for the sake of brevity. �

The critical values b∗
n = n tan2( π

2n
) for various values of n ∈ N are displayed in

Table 2. Theorems 3.1 and 3.2 give an explicit solution of the T -optimal design
problem for discriminating between a polynomial regression of degree n−2 and n,
whenever |b| = |θ1,n−1|/|θ1,n| ≤ bn. In the opposite case the solution is not so
transparent and will be discussed in the following section.
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TABLE 2
The critical values b∗

n = n tan2( π
2n

) for various values n ∈ N

n 3 4 5 6 7 8 9 10

b∗
n 1 0.6864 0.5280 0.4306 0.3646 0.3168 0.2801 0.2509

4. T -optimal designs for large values of |b|. In this section we consider the
case |b| ≥ n tan2( π

2n
), for which the T -optimal design cannot be found explicitly.

Therefore we present a numerical method to determine the optimal designs. The
method was described by Dette, Melas and Pepelyshev (2004) in the context of
determining optimal designs for estimating individual coefficients in a polynomial
regression model [see also Melas (2006)], and for the sake of brevity, we only
explain the basic principle. For this purpose we rewrite the function η̄ in (2.5) as

η̄(x,α, b̄) = α0 + α1x + · · · + αn−2x
n−2 + θ1n−1(x

n−1 + b̄xn),(4.1)

where b̄ = 1/b = θ1n/θ1n−1. Note that for fixed b̄, the T -optimal design is inde-
pendent of the parameter θ1n−1 and that the choice

b̄ ∈
[
−1

n
cot2

(
π

2n

)
,

1

n
cot2

(
π

2n

)]

corresponds to the case |b| ≥ n tan2( π
2n

) considered in this section. In order to ex-
press the dependence on the parameter b̄, we use the notation t∗i (b̄) for the support
points and ω∗

i (b̄) for the weights of the T -optimal design in this section.
The main idea of the algorithm is a representation of the support points t∗i (b̄)

and corresponding weights ω∗
i (b̄) in terms of a Taylor series, where the coefficients

can be determined explicitly as soon as the design is known for a particular point b̄.
The algorithm proceeds in several steps:

(1) Initialization: In the present situation the point b̄ is given by b̄ = 0, which
corresponds to the situation of discriminating between a polynomial of degree
n − 2 and n − 1. For this case it follows from Dette and Titoff (2009) that the
T -optimal design coincides with the D1-optimal design. This design has been de-
termined explicitly by Studden (1980) and puts masses ωi(0) = 1

n−1 at the points

ti(0) = cos( (i−1)π
n−1 ) (i = 2, . . . , n − 1) and masses ω1(0) = ωn(0) = 1

2(n−1)
at the

points t1(0) = −1 and tn(0) = 1.
(2) The dual problem: For the constructions of the Taylor expansion we now

associate to each vector

τ ∈ U =
{
(t2, . . . , tn−1,ω1, . . . ,ωn−1)

T
∣∣∣ −1 < t2 < · · · < tn−1 < 1;

ωi > 0,

n−1∑
j=1

ωj < 1

}
,
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a design with n support points defined by

ξτ =
(−1 t2 · · · tn−1 1

ω1 ω2 · · · ωn−1 ωn

)
.

As pointed out in the previous discussion, there exists a corresponding extremal
problem defined by

inf
q∈Rn−1

sup
x∈[−1,1]

|b̄xn + xn−1 − f̄ T (x)q|(4.2)

with a unique solution corresponding to the T -optimal design problem under con-
sideration, where we use the notation f̄ T (x) = (1, x, . . . , xn−2).

(3) The necessary condition: For each vector q in (4.2), define vectors dq =
(qT ,1, b̄)T ,� = (q, τ ) and a quadratic form

H(�, b̄) = H(q, τ, b̄) = dT
q M(ξτ )dq,

where M(ξτ ) is the information matrix of the design ξτ for the regression
model (4.1). It then follows by similar results as in Dette, Melas and Pepelyshev
(2004) that the design ξτ∗ is a T -optimal design for discriminating between the
polynomials of degree n and n − 2, and the vector q∗ is a solution of an extremal
problem (4.2) if the points �∗ = (q∗, τ ∗) ∈ R

n−1 × U are the unique solution of
the system

∂

∂�
H(�, b̄)

∣∣∣∣
�=�∗

= 0,

such that the inequality |dT
q∗f (x)|2 ≤ dT

q∗M(ξτ∗)dq∗ holds for all x ∈ [−1,1].
(4) Taylor expansion of the optimal solution: The function

�∗ :

{
I −→ R

3n−4,

b̄ −→ �∗(b̄) = (�∗
1(b̄), . . . ,�∗

3n−4(b̄)) = (q∗(b̄)T , τ ∗(b̄)T ),

which maps the parameter b̄ ∈ I = [− 1
n

cot2( π
2n

), 1
n

cot2( π
2n

)] to the coordinates of

the best approximation q∗(b̄) and the support points t∗i (b̄) and weights ω∗(b̄) of
the T -optimal design, is a real analytical function. The coefficients in the corre-
sponding Taylor expansion,

�∗(b̄) = �∗(b̄0) +
∞∑

j=1

�∗(j, b̄0)(b̄ − b̄0)
j

in a neighborhood of any point b̄0 ∈ I , can be calculated by the recursive formulas

�∗(s + 1, b̄0) = − 1

(s + 1)!J
−1(b̄0)

(
d

db

)s+1

g
(
�∗

(s)(b̄), b̄
)∣∣∣∣

b̄=b̄0

,

s = 0,1,2, . . . ,
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where

�∗
(s)(b̄) = �∗

(s)(b̄0) +
s∑

j=1

�∗(j, b̄0)(b̄ − b̄0)
j ,

g(�, b̄) = ∂

∂�
H(�, b̄),

J (b̄0) =
(

∂2

∂�i ∂�j

H(�, b̄)

)∣∣∣∣
�=�∗(b̄0)

.

We can use this procedure to calculate the T -optimal design for discriminating
between polynomials of degree n and n − 2 in the cases which are not covered by
Theorems 3.1 and 3.2. We illustrate the methodology in the following example.

EXAMPLE 4.1. Consider the T -optimal design problem for a model of de-
gree 5 and a cubic polynomial model. Note that for n = 5, we have n tan2( π

2n
) �

0.528. Therefore if b ∈ [0,0.528], a T -optimal design is given by Theorem 3.1,
that is,

ξ∗
T =

(
t1(b) t2(b) t3(b) t4(b) 1
0.038 0.138 0.262 0.362 1

5

)
,

t∗i (b) = −
(

1 + b

5

)
cos

(
iπ

5

)
− b

5
, i = 1, . . . ,5.

In order to construct the T -optimal design on the interval [0.528,∞], we intro-
duce the notation b̄ = 1/b ∈ [0,1.894]. With the results of the previous paragraph
we obtain a Taylor expansion for the interior support points t∗2 (b̄), t∗3 (b̄), t∗4 (b̄) and
weights ω∗

1(b̄),ω∗
2(b̄),ω∗

3(b̄),ω∗
4(b̄) of the T -optimal design for discriminating be-

tween a cubic and a polynomial of degree 5 where b̄ = θ1n/θ1n−1. By the results
of Studden (1980), the vector of support points and weights corresponding to the
center of the expansion at the point b̄0 = 0 is explicitly known; that is,

(t∗2 (0), t∗3 (0), t∗4 (0),ω∗
1(0), . . . ,ω∗

4(0)) = (− 1√
2
,0, 1√

2
, 1

8 , 1
4 , 1

4 , 1
4

)
.

At the first step we use a Taylor expansion at the point b̄0 = 0 to determine the
T -optimal design for b̄ ∈ [0,0.4]. When we have found the vector �∗(0.4) we
construct a further Taylor expansion at the point b̄0 = 0.4, and this process is con-
tinued in order to determine the vector �∗(b̄) for any value b̄ ∈ [0,1.894]. The
support points and weights are depicted in Figure 1 as a function of the param-
eter b̄ = 1/b = θ1n/θ1n−1. Note that in all cases b �= 0 the T -optimal design for
discriminating between a polynomial of degree 5 and 3 is supported at 5 points.
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FIG. 1. The support points (left panel) and weights (right panel) of the T -optimal design for dis-
criminating between a polynomial of degree 3 and 5 for various values of b̄ = 1/b ∈ [0,1.894].

5. Concluding remarks and further discussion. In this paper we have de-
termined T -optimal designs for discriminating between two rival polynomial re-
gression models of degree n − 2 and n. To the best of our knowledge these results
provide the first analytic solution of a T -optimal discriminating design problem
with an arbitrary number of parameters in the regression model.

It should be pointed out that the results depend on the ratio of the coefficients
of the terms xn−1 and xn in the polynomial of larger degree, which is a well-
known feature of the T -optimality criterion. Therefore the designs derived here
are local in the sense of Chernoff (1953). Usually locally optimal designs serve as
a benchmark for commonly used designs, as demonstrated in the example in the
Introduction. Moreover, locally optimal designs form the basis for more sophis-
ticated design strategies, which require less knowledge about the model parame-
ters such as Bayesian or standardized maximin optimality criteria [see Chaloner
and Verdinelli (1995) or Dette (1997), among others]. This extension was already
mentioned in the pioneering work of Atkinson and Fedorov (1975a, 1975b) and
we conclude this paper with a brief discussion of a first explicit result on maximin
T -optimal designs for the polynomial regression models.

To be precise, consider the situation where the ratio b = θ1,n−1/θ1,n cannot be
exactly specified, but prior knowledge suggests that b ∈ I for some interval I ⊂ R.
Without loss of generality, assume θ1,n = 1; then following Atkinson and Fedorov
(1975a), a maximin optimal discriminating design maximizes the expression

inf
b∈I

inf
θ2∈Rn−1

∫ 1

−1

(
xn + bxn−1 +

n−2∑
j=0

θ2,j x
j

)2

dξ(x).(5.1)
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The following result provides a solution of this optimal design problem for specific
intervals I ⊂ R.

THEOREM 5.1. (a) If I = R, the maximin T -optimal discriminating design is
given by

ξ∗
MM =

⎛
⎝ t∗0 t∗1 · · · t∗n−1 t∗n

1

2n

1

n
· · · 1

n

1

2n

⎞
⎠ ,(5.2)

where the support points are defined by

t∗i = cos
(

n − i

n
π

)
, i = 0, . . . , n.

(b) Assume that I = (−∞,−b0] or I = [b0,∞). If b0 ≥ 0, then the maximin T -
optimal discriminating design coincides with the T -optimal discriminating design
determined in Sections 3 and 4 for the value b = b0.

In particular, if b0 = 0, then all designs specified in Theorem 3.1 are maximin
T -optimal discriminating designs.

PROOF. In order to prove part (a), note that for I = R criterion (5.1) reduces
to

sup
ξ

inf
θ∈Rn

∫ 1

−1

(
xn +

n−1∑
j=0

θ2,n−1x
j

)2

dξ(x),

which corresponds to the T -optimal discriminating design problem for a polyno-
mial of degree n and n − 1. By the results in Dette and Titoff (2009), the solution
of this problem coincides with the D1-optimal design, which is given by (5.2) [see
Studden (1980)].

For a proof of part (b), observe that

sup
ξ

inf
b∈I

sup
θ2∈Rn−1

∫ 1

−1

(
xn + bxn−1 +

n−2∑
j=0

θ2,j x
j

)2

dξ(x)

= inf
b∈I

sup
ξ

sup
θ2∈Rn−1

∫ 1

−1

(
xn + bxn−1 +

n−2∑
j=0

θ2,j x
j

)2

dξ(x) =: inf
b∈I

R(b),

where the last equality defines the function R in an obvious manner. We now con-
sider the case I = [b0,∞) with b0 ≥ 0 and show that the function R is increasing
on R

+, which implies

inf
b∈I

R(b) = R(b0)(5.3)
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and proves the assertion for the case I = [b0,∞). Recall the definition of b∗ = n

tan2(π/2n) in (3.1); then the proof of Theorem 3.1 shows that for ∈ (0, b∗]

R(b) =
(

1 + b

n

)2n 1

22n−2 ,

which is obviously increasing with respect to the argument b. If R would be not in-
creasing on the remaining region R

+ \ (0, b∗], then there would exist real numbers
b2 > b1 > b∗, such that R(b1) = R(b2) with corresponding extremal polynomials

Li(x) = xn + bix
n−1 + qT

i f̄ (x), i = 1,2,

where f̄ (x) = (1, x, . . . , xn−2)T and

qi = arg min
q∈Rn−1

∫ 1

−1

(
xn + bix

n−1 + qT f̄ (x)
)2

dξ(x).

This yields

sup
x∈[−1,1]

|L1(x)| = sup
x∈[−1,1]

|L2(x)| = √
R(b1) = √

R(b2).

By the discussion in Section 4, the polynomials L1,L2 can be chosen such that
they coincide at the boundary points of the interval [−1,1] (note that for b > b∗
the support of the optimal discriminating design always contains both boundary
points −1 and 1). Therefore a simple argument shows that there exist n − 2 other
points in the interior of the interval (−1,1), where the polynomials must coincide.
Consequently, L1(t̃j ) = L2(t̃j ) for n points t̃1, . . . , t̃n ∈ [−1,1], which shows that
the polynomials are identical. This yields b1 = b2, and because of this contradic-
tion the monotonicity of the function R has been established, which proves (5.3)
and part (b) in the case I = [b0,∞). The remaining case I = (−∞,−b0] can be
proved by similar arguments, and the details are omitted for the sake of brevity.

�

Theorem 5.1 provides the solution to maximin T -optimal discriminating design
problems for specific intervals I ⊂ R. In particular, it identifies the worst case
as a boundary point of the interval under investigation using the monotonicity of
the criterion with respect to b. This property, which appears in many minimax-
or maximin optimal design problems, has been criticized by Dette (1997). This
author recommends Bayesian or standardized maximin optimality criteria, which
reflect the different sizes of the optimality criteria for different values of b in a
more reasonable way. The determination of T -optimal discriminating designs with
respect to these criteria is substantially harder and a challenging problem for future
research.
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APPENDIX: PROOF OF IDENTITIES (3.7) AND (3.11)

Note that the identities in (3.7) and (3.11) can be written in the form
n∑

i=1

t∗k
i (b)(−1)iω∗

i = 0, k = 0,1, . . . , n − 2,(A.1)

where t∗i (0) = cos( iπ
n

) = xi . We will prove that these equalities hold for any real
number b. Since

t∗k
i (b) =

k∑
j=0

aj cos
(

jiπ

n

)
, i = 0,1, . . . , n, k = 0,1, . . . , n − 2,(A.2)

for some coefficients aj = aj (b) (j = 0,1, . . . , k) the identities in (A.1) follow
from

n∑
i=1

(−1)i cos
(

kiπ

n

)
ω∗

i = 0, k = 0,1, . . . , n − 2.(A.3)

In order to prove (A.3), consider first the case k = 0, n = 2s for some s, where the
left-hand side of (A.3) reduces to

n∑
i=1

ω∗
i (−1)i = 1

n

[
s−1∑
i=1

[(
1 − cos

(
iπ

n

))
(−1)i +

(
1 + cos

(
iπ

n

))
(−1)i

]

+ (−1)s + 1

]

= 1

n

[
s−1∑
i=1

2(−1)i + (−1)s + 1

]
= 0,

which proves (A.3). If k = 0, n = 2s + 1, we get

n∑
i=1

ω∗
i (−1)i = 1

n

[
s∑

i=1

[(
1 − cos

(
iπ

n

))
(−1)i −

(
1 + cos

(
iπ

n

))
(−1)i

]
+ (−1)

]

= 1

n

[
2

s∑
i=1

cos
(

iπ

n

)
(−1)i+1 − 1

]

= 1

n

[
1 − cos[π(1 + 2(n + 1)s)/(2n)]

cos(π/(2n))
− 1

]

= −1

n

cos((2s + 1)π/2)

cos(π/(2n))
= 0,

where the third identity follows by standard results for trigonometrical summation
[see, e.g., Jolley (1961), formula (428)]. This proves (A.3) for the case k = 0, n =
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2s + 1. Now consider the case of even n,n = 2s for some odd s, s = 2l − 1 and k

of the form k = 2(2r − 1). In this case the left-hand side of (A.3) reduces to

1

n

[
s−1∑
i=1

[(
1 − cos

(
iπ

n

))
+

(
1 + cos

(
iπ

n

))]
(−1)i cos

(
kiπ

n

)

+ (−1)s cos
(

kπ

2

)
+ cos(kπ)

]

= 1

n

[
2

s−1∑
i=1

(−1)i cos
(

kiπ

n

)
+ (−1)s cos

(
kπ

2

)
+ cos(kπ)

]

= 1

n

{(
cos

(
kπ

4s

))−1[
cos

(
πk

4s
− π

)
+ cos

(
πk

4s
+ π

2
(k + 2s − 2)

)]
+ 2

}

= 1

n
{(−1) + (−1)2s−1 + 2} = 0,

where we have again used well-known results on trigonometric summation [see
Jolley (1961), formula (428)]. Therefore we obtain equality (A.3) in the case n =
2s, s = 2l − 1 and k = 2(2r − 1). The other cases can be proved in a similar way,
and the details are omitted for the sake of brevity.
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