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UNIT ROOTS IN MOVING AVERAGES BEYOND FIRST ORDER1

BY RICHARD A. DAVIS AND LI SONG

Columbia University and Barclays Capital

The asymptotic theory of various estimators based on Gaussian likeli-
hood has been developed for the unit root and near unit root cases of a first-
order moving average model. Previous studies of the MA(1) unit root problem
rely on the special autocovariance structure of the MA(1) process, in which
case, the eigenvalues and eigenvectors of the covariance matrix of the data
vector have known analytical forms. In this paper, we take a different ap-
proach to first consider the joint likelihood by including an augmented initial
value as a parameter and then recover the exact likelihood by integrating out
the initial value. This approach by-passes the difficulty of computing an ex-
plicit decomposition of the covariance matrix and can be used to study unit
root behavior in moving averages beyond first order. The asymptotics of the
generalized likelihood ratio (GLR) statistic for testing unit roots are also stud-
ied. The GLR test has operating characteristics that are competitive with the
locally best invariant unbiased (LBIU) test of Tanaka for some local alterna-
tives and dominates for all other alternatives.

1. Introduction. In this paper we consider inference for moving average
models that possess one or more unit roots in the moving average polynomial.
To introduce the problem, let’s first consider the MA(1) model given by

Xt = Zt − θ0Zt−1,(1.1)

where θ0 ∈ R, {Zt } is a sequence of independent and identically distributed (i.i.d.)
random variables with EZt = 0,EZ2

t = σ 2
0 and density function fZ . The MA(1)

model is invertible if and only if |θ0| < 1, since in this case Zt can be represented
explicitly in terms of past values of Xt , that is,

Zt =
∞∑

j=0

θ
j
0 Xt−j .

Under this invertibility constraint, standard estimation procedures that produce
asymptotically normal estimates are readily available. For example, if θ̂ represents
the maximum likelihood estimator, found by maximizing the Gaussian likelihood
based on the data X1, . . . ,Xn, then it is well known (see Brockwell and Davis [6])
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that
√

n(θ̂ − θ0)
d→ N(0,1 − θ2

0 ).(1.2)

From the form of the limiting variance in (1.2), the asymptotic behavior of θ̂ , let
alone the scaling, is not immediately clear in the unit root case corresponding to
θ0 = 1.

In the case fZ is Gaussian, the parameters θ0 and σ 2 are not identifiable without
the constraint |θ0| ≤ 1. In particular, the profile Gaussian log-likelihood, obtained
by concentrating out the variance parameter, satisfies

Ln(θ) = Ln(1/θ).(1.3)

It follows that θ = 1 is a critical value of the profile likelihood, and hence there
is a positive probability that θ = 1 is indeed the maximum likelihood estimator. If
θ0 = 1, then it turns out that this probability does not vanish asymptotically (see,
e.g., Anderson and Takemura [1], Tanaka [21] and Davis and Dunsmuir [10]). This
phenomenon is referred to as the pile-up effect. For the case that θ0 = 1 or is near
one in the sense that θ0 = 1 + γ /n, it was shown in Davis and Dunsmuir [10] that

n(θ̂ − θ0)
d→ ξγ ,

where ξγ is a random variable with a discrete component at 0, corresponding to the
asymptotic pile-up effect, and a continuous component. Most of the early work on
this problem was based on explicit knowledge of the eigenvectors and eigenvalues
of the covariance matrix for observations from an MA(1) process; see Anderson
and Takemura [1]. Recently, Breidt et al. [4] and Davis and Song [13] looked
at model (1.1) under the Laplace likelihood and the Gaussian likelihood without
resorting to knowledge of the precise form of eigenvectors and eigenvalues of the
covariance matrix. Instead they introduced an auxiliary variable, which acts like
an initial value and can be integrated out to form the likelihood.

With a couple exceptions, most of previous work dealt exclusively with the
zero-mean case. Sargan and Bhargava [17] and Shephard [18] showed that for the
nonzero mean case, the so-called pile-up effect is more severe than the zero mean
case. Chen, Davis and Song [8] extended the results from Davis and Dunsmuir
[10] to regression models with errors from a noninvertible MA(1) process. It is
shown that, with a mean term present in the model, the pile-up probability goes up
to more than 0.95.

The MA unit root problem can arise in many modeling contexts, especially if
a time series exhibits trend and seasonality. For example, in personal communica-
tion, Richard Smith has mentioned the presence of a unit in modeling some envi-
ronmental time series related to climate change [19]. After detrending and fitting
an ARMA model to the time series, Smith noticed that the MA component ap-
peared to have a unit root. One explanation for this phenomenon is that detrending
often involves the application of a high-pass filter to the time series. In particular,
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the filter diminishes or obliterates any power in the time series at low frequencies
(including the 0 frequency). Consequently, the detrended data will have a spectrum
with 0 power at frequency 0, which can only be fitted with ARMA process that has
a unit root in the MA component. While we only consider unit roots in higher or-
der moving averages in this paper, we believe the techniques developed here will
be applicable in a more general framework of an ARMA model. This will be the
subject of future investigation.

In this paper, we will use the stochastic approaches described in [4] and [13]
to first study the case when there is a regression component in the time series and
errors are generated from noninvertible MA(1). A vital issue in extending these
results to higher order MA models is the scaling required for the auxiliary variable.
The scaling used for the regression problem in the MA(1) case provides insight into
the way in which the auxiliary variable should be scaled in the higher order case.
Quite surprisingly, when there is only one unit root in the MA(2) process, that is,

Xt = Zt + c1Zt−1 + c2Zt−2,(1.4)

where −c1 − c2 = 1 and {Zt } ∼ i.i.d. (0, σ 2), the asymptotic distribution of the
maximum likelihood estimator (ĉ1, ĉ2)

′ is exactly the same as in invertible MA(2)
case; see [6]. That is,

√
n

(
ĉ1 − c1
ĉ2 − c2

)
d→ N

(
0,

[
1 − c2

2 c1(1 − c2)

c1(1 − c2) 1 − c2
2

])
.(1.5)

One difference, however, is that ĉ1 and ĉ2 are now totally dependent asymptotically
[c1(1 − c2) = (1 − c2)

2].
As seen from (1.3), the first derivative of the profile likelihood function is al-

ways 0 when θ = 1. Therefore, the development of typical score tests or Wald tests
is intractable in this case. Davis, Chen and Dunsmuir [9] used the asymptotic re-
sult from [10] to develop a test of H0 : θ = 1 based on θ̂MLE and the generalized
likelihood ratio. Interestingly, we will see that the estimator of the unit root in the
MA(2) case has the same limit distribution as the corresponding estimator in the
MA(1) case. Thus, we can extend the methods used in the MA(1) case to test for
unit roots in the MA(2) case.

The paper is organized as follows. In Section 2, we demonstrate our method
of proof applied to the MA(1) model with regression. This case plays a key role
in the extension to higher order MAs. Section 3 contains the results for the unit
root problem in the MA(2) case. In Section 4, we compare likelihood based tests
with Tanaka’s locally best invariant and unbiased (LBIU) test [20] for testing the
presence of a unit root. It is shown that the likelihood ratio test performs quite
well in comparison to the LBIU test. In Section 5, numerical simulation results
are presented to illustrate the theory of Section 3. In Section 6, there is a brief
discussion that connects the auxiliary variables in higher order MAs with terms
in a regression model with MA(1) errors. Finally, in Section 7, the procedure for
handling the MA(q) case with q ≥ 3 is outlined. It is shown that the tools used
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in the MA(1) and MA(2) cases are still applicable and are, in fact, sufficient in
dealing with higher order cases.

2. MA(1) with nonzero mean. In this section, we will extend the methods of
Breidt et al. [4] and Davis and Song [13] to a regression model with MA(1) errors.
These results turn out to have connections with the asymptotics in the higher order
unit root cases (see Section 6). First, consider the model

Xt =
p∑

k=0

bk0fk(t/n) + Zt − θ0Zt−1,(2.1)

where {Zt } is defined as in (1.1), θ0 = 1, bk0, k = 0, . . . , p, are regression coeffi-
cients and fk(t/n), k = 0, . . . , p, are covariates at time t . Notice that the covariates
fk(t/n) are also assumed to be functions on [0,1]. Note that the detrended series
Yt = Xt −∑p

k=0 bkfk(t/n) has exactly the same likelihood as the one for the zero-
mean case. As shown in [13], by concentrating out the scale parameter σ , max-
imizing the joint Gaussian likelihood is equivalent to minimizing the following
objective function:

ln(
b, θ, zinit) =
n∑

t=0

z2
t for |θ | ≤ 1,(2.2)

where 
b = (b0, . . . , bp)′, Zinit = Z0, and zi is given by

zi = Yi + θYi−1 + · · · + θi−1Y1 + θizinit

=
(
Xi −

p∑
k=0

bkfk(i/n)

)
+ θ

(
Xi−1 −

p∑
k=0

bkfk

(
(i − 1)/n

)) + · · ·

+ θi−1

(
X1 −

p∑
k=0

bkfk(1/n)

)
+ θizinit

=
(
Zi − Zi−1 +

p∑
k=0

bk0fk(i/n) −
p∑

k=0

bkfk(i/n)

)
+ · · ·

+ θi−1

(
Z1 − Z0 +

p∑
k=0

bk0fk(1/n) −
p∑

k=0

bkfk(1/n)

)
+ θizinit

= Zi − (1 − θ)

i−1∑
j=0

θi−1−j − θi(Z0 − zinit)

+
p∑

k=0

(bk0 − bk)

(
i∑

j=1

θi−jfk(j/n)

)
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:= Zi − yi +
p∑

k=0

(bk0 − bk)

(
i∑

j=1

θi−jfk(j/n)

)

:= Zi − wi.

As in [13], we adopt the parametrization for θ and zinit given by

θ = 1 + β

n
and zinit = Z0 + ασ0√

n
.

Further set

bk = bk0 + ηkσ0

n3/2 .(2.3)

Note that (2.3) essentially characterizes the convergence rate of the estimated
bk to its true value bk0. At first glance, this parameterization may look odd
since it depends on the known parameter values, which are unavailable. This
form of reparameterization is used only for deriving the asymptotic theory of the
maximum likelihood estimators and not for estimation purposes. One notes that
β = n(θ − 1), ηk = n3/2(bk − bk0), so that the asymptotics of the MLE θ̂ and b̂k

of the associated parameters are found by the limiting behavior of β̂ = n(θ̂ − 1),
η̂k = n3/2(b̂k −bk0). Hence, it is not necessary to know the true values in this anal-
ysis. The scaling n3/2 for the regression coefficients is an artifact of the assumption
that the regressors take the form fk(t/n) that is imposed on the problem. This also
results in a clean expression for the limit.

Under the (
η,β,α) parameterization, it is easily seen [13], minimizing ln(
b, θ,

zinit) with respect to 
b, θ, zinit is equivalent to minimizing the function

Un(
η,β,α) ≡ 1

σ 2
0

[ln(
b, θ, zinit) − ln(
b0,1,Z0)](2.4)

with respect to 
η,β and α. Then using the weak convergence results in Davis and
Song [13],

Un(
η,β,α)

= 1

σ 2
0

n∑
i=0

z2
i − Z2

i = −2
n∑

i=0

wiZi

σ 2
0

+
n∑

i=0

w2
i

σ 2
0

d→ 2β

∫ 1

0

∫ s

0
eβ(s−t) dW(t) dW(s) + 2α

∫ 1

0
eβs dW(s)

− 2
p∑

k=0

ηk

∫ 1

0

(∫ s

0
eβ(s−t)fk(t) dt

)
dW(s)

+
∫ 1

0

(
β

∫ s

0
eβ(s−t) dW(t) + αeβs −

p∑
k=0

ηk

∫ s

0
eβ(s−t)fk(t) dt

)2

ds

:= U(
η,β,α),
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where “
d→” indicates weak convergence on C(Rp+1 × (−∞,0]×R). Throughout

this paper, when referring to convergence of stochastic processes on C(Rk), the

notation “
d→” (“

p→”) means convergence in distribution (probability) on C(K)

where K is any compact set in R
k .

As a special case of a polynomial, set fk(t) = tk . In this case, the limiting pro-
cess U(
η,β,α) is

U(
η,β,α)

= 2β

∫ 1

0

∫ s

0
eβ(s−t) dW(t) dW(s)

+ 2α

∫ 1

0
eβs dW(s) − 2

p∑
k=0

ηk

∫ 1

0

(∫ s

0
eβ(s−t)tkdt

)
dW(s)

+
∫ 1

0

(
β

∫ s

0
eβ(s−t) dW(t) + αeβs −

p∑
k=0

ηk

∫ s

0
eβ(s−t)tk dt

)2

ds.

From now on we consider the simple case of just a nonzero mean, that is, p = 0
and f0(t) = 1. The formula further simplifies to

U(η0, β,α)

= 2β

∫ 1

0

∫ s

0
eβ(s−t) dW(t) dW(s)

(2.5)

+ 2α

∫ 1

0
eβs dW(s) − 2η0

∫ 1

0

1 − eβs

β
dW(s)

+
∫ 1

0

(
β

∫ s

0
eβ(s−t) dW(t) + αeβs − η0

1 − eβs

β

)2

ds.

As shown in [13], one can recover the exact likelihood by integrating out the
initial parameter effects. More specifically,

f (xn, zinit) =
n∏

t=0

f (zt )

=
(

1√
2πσ 2

)n+1

exp
{
−

∑n
t=0 z2

t

2σ 2

}

=
(

1√
2πσ 2

)n+1

exp
{
− ln(b0, θ, zinit) − ln(b00,1,Z0) + ∑n

t=0 Z2
t

2σ 2

}

=
(

1√
2πσ 2

)n+1

exp
{
−

∑n
t=0 Z2

t

2σ 2

}
exp

{
−Un(η0, β,α)σ 2

0

2σ 2

}
,
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integrating out the augmented variable zinit yields

f (xn) =
∫ +∞
−∞

f (xn, zinit) dzinit

=
(

1√
2πσ 2

)n+1

exp
{
−

∑n
t=0 Z2

t

2σ 2

}
(2.6)

× σ0√
n

∫ +∞
−∞

exp
{
−Un(η0, β,α)σ 2

0

2σ 2

}
dα.

A similar argument as in [13] then shows that by profiling out the variance
parameter σ 2 the exact profile log-likelihood Ln(η0, β) has the following property:

Ln(η0, β) − Ln(η0,0)

d→ L∗(η0, β)

= log
∫ +∞
−∞

exp
{
−U(η0, β,α)

2

}
dα(2.7)

− log
∫ +∞
−∞

exp
{
−U(η0,0, α)

2

}
dα.

The weak convergence results on C(R2) in (2.7) can be used to show conver-
gence in distribution of a sequence of local maximizers of the objective functions
Ln to the maximizer of the limit process L provided the latter is unique almost
surely. This is the content of Remark 1 (see also Lemma 2.2) of Davis, Knight and
Liu [12], which for ease of reference, we state a version here.

REMARK 2.1. Suppose {Ln(·)} is a sequence of stochastic processes which
converge in distribution to L(·) on C(Rk). If L has a unique maximizer β̃ a.s., then
there exists a sequence of local maximizers {β̂n} of {Ln} that converge in distribu-
tion to β̃ . Note that this is consistent with many of the statements made in the clas-
sical theory for maximum likelihood (see, e.g., Theorem 7.1.1 of Lehmann [15])
and for inference in nonstandard time series models; see Theorems 8.2.1 and 8.6.1
in Rosenblatt [16], Breidt et al. [5], Andrews et al. [3] and Andrews et al. [2].
In some cases, for example, if the {Ln} have concave sample paths, this can be
strengthened to convergence of the global maximizers of Ln. See also Davis, Chen
and Dunsmuir [9], Davis and Dunsmuir [11], Breidt et a.l [5] for examples of other
cases when {Ln} are not concave.

Returning to our example, under the case when θ0 = 1, that is, β = 0, the limit of
the exact likelihood is L(η0, β = 0). This corresponds to the situation of inference
about the mean term when it is known that the driving noise is an MA(1) process
with a unit root. Since the Gaussian likelihood is a quadratic function of regression
coefficients, L(η0, β = 0) is a quadratic function in η0. Applying Remark 2.1, we
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obtain that the MLE η̂0 converges in distribution to η̃0, the global maximizer of
L(η0, β = 0). In particular, η̃0 is the value that makes ∂

∂η0
L(η0, β = 0) = 0. Since

∂

∂η0
L(η0, β = 0)

=
∫ +∞
−∞ exp{−U(η0, β = 0, α)/2}(−(1/2)(∂U(η0, β = 0, α)/∂η0)) dα∫ +∞

−∞ exp{−U(η0, β = 0, α)/2}dα
,

where

U(η0, β = 0, α) = 2αW(1) − 2η0

∫ 1

0
s dW(s) +

∫ 1

0
(α − sη0)

2 ds

and

∂

∂η0
U(η0, β = 0, α) = 2η0

∫ 1

0
s2 ds − 2

∫ 1

0
s dW(s) − 2α

∫ 1

0
s ds.

Solving ∂
∂η0

L(η0, β = 0) = 0, we find that

η̃0 = 12
∫ 1

0
s dW(s) − 6W(1) ∼ N(0,12)(2.8)

and hence

n3/2(b̂0,n − b0) = σ0η̂0,n
d→ N(0,12σ 2

0 ).(2.9)

This counter-intuitive result was also obtained earlier by Chen et al. [8]. It says
the MLE of the mean term in the process would behave like a normal distribution
asymptotically, but with convergence rate n3/2. Notice that, even if one does not
know the true value of θ , the MLE of the mean term would still behave very much
like (2.9) due to the large pile-up effect in this case. However, the MLE is not
asymptotically normal, if both b0 and θ are estimated.

3. MA(2) with unit roots. The above approach, which also works in the in-
vertible case, does not rely on detailed knowledge of the form of the eigenvectors
and eigenvalues of the covariance matrix. Hence it has the potential to work in
higher order models where the eigenvector and eigenvalue structure is not known
explicitly. We will concentrate on the MA(2) process in this section and further
illustrate our methods.

In the following section, we consider the model given in (1.4), where parameters
c1, c2 ∈ , the triangular shaped region depicted in Figure 1. The interior of this
region corresponds to the invertibility region of the parameter space. Note that
the triangular region is separated into complex roots and real roots of the MA
polynomial 1 + c1z + c2z

2 by a quadratic curve c2
1 − 4c2 = 0.

If the parameters are on the boundary of the  region, it indicates presence of
unit roots. Otherwise, the model is said to be invertible; see also Brockwell and
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FIG. 1.  region defined by −c1 − c2 ≤ 1, c1 − c2 ≤ 1, |c2| ≤ 1.

Davis [6]. Model (1.4) can also be represented in terms of the roots of the MA
polynomial by

Xt = (1 + c1B + c2B2)Zt

= (1 − θ0B)(1 − α0B)Zt ,

where c1 = −θ0 − α0 and c2 = θ0α0.

3.1. Case 1: |α0| < 1 and θ0 = 1. This case corresponds to the situation of
only one unit root in the MA polynomial, that is, the boundary AB in Figure 1.
Let Ln(θ,α) be the profile likelihood of an MA(2) process. Again, we adopt the
parametrization

θ = 1 + β

n
, β ≤ 0,

and

α = α0 + γ√
n
, γ ∈ R.

For convenience, define the intermediate process Yt = (1 − α0B)Zt and observe
that

Xt = (1 − θ0B)(1 − α0B)Zt = (1 − θ0B)Yt .

In the MA(2) case, two augmented initial variables Zinit and Yinit are needed. These
initial variables and the joint likelihood have a simple form, that is,

Zinit = Z−1 and Yinit = Z0 − α0Zinit,(3.1)
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fX,Yinit,Zinit(xn, yinit, zinit) = fY,Yinit,Zinit(yn, yinit, zinit)

= fZ,Zinit(zn, zinit)

=
n∏

j=−1

fZ(zj ).

As what has been shown in the MA(1) case, the key of our method is to calculate
the formula for the residual ri := Zi − zi , which can be obtained from

zi = yi + αyi−1 + · · · + αi−1y1 + αiyinit + αi+1zinit

=
(

i∑
j=1

θi−jXj + θiyinit

)
+ α

(
i−1∑
j=1

θi−1−jXj + θi−1yinit

)
+ · · ·

+ αi−1(X1 + θyinit) + αiyinit + αi+1zinit

=
i∑

j=1

θi−j+1 − αi−j+1

θ − α
Xj + θi+1 − αi+1

θ − α
yinit + αi+1zinit

= Zi − (θ0 − θ)(θ − α0)

θ − α

i−1∑
j=−1

θi−j−1Zj(3.2)

− (α0 − α)(θ0 − α)

θ − α

i−1∑
j=−1

αi−j−1Zj + θi+1 − αi+1

θ − α
(yinit − Y0)

+ αi+1(zinit − Z−1) + (θ0 − θ)
θ i+1 − αi+1

θ − α
Z−1

= Zi − ri,(3.3)

where the fourth equation (3.2) comes from the fact that Xj = Zj − (θ0 + α0) ×
Zj−1 + θ0α0Zj−2 and Y0 = Z0 − α0Z−1. Therefore, the residuals ri are given by

ri = (θ0 − θ)(θ − α0)

θ − α

i−1∑
j=−1

θi−j−1Zj

+ (α0 − α)(θ0 − α)

θ − α

i−1∑
j=−1

αi−j−1Zj − θi+1 − αi+1

θ − α
(yinit − Y0)(3.4)

− αi+1(zinit − Z−1) − (θ0 − θ)
θ i+1 − αi+1

θ − α
Z−1.

Notice that the residuals ri no longer have a neat form as in the MA(1) case. This
is what makes the MA(2) case more interesting yet more complicated.
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In the following calculations, let

yinit = Y0 + σ0η1√
n

and zinit = Z−1 + σ0η2√
n

.

With a similar argument as in [13], we opt to minimize the objective function

Un(β, γ, η1, η2) = −2
n∑

i=−1

riZi

σ 2
0

+
n∑

i=−1

r2
i

σ 2
0

.(3.5)

First note that ri = Ai + Bi + Ci + Di , where

Ai := (θ0 − θ)(θ − α0)

θ − α

i−1∑
j=−1

θi−j−1Zj − θi+1 − αi+1

θ − α
(yinit − Y0),

Bi := (α0 − α)(θ0 − α)

θ − α

i−1∑
j=−1

αi−j−1Zj ,

Ci := −αi+1(zinit − Z−1),

Di := −(θ0 − θ)
θ i+1 − αi+1

θ − α
Z−1.

To determine the weak limit of −2
∑n

i=−1
riZi

σ 2
0

in (3.5) in the continuous function

space, note that

−2
n∑

i=−1

AiZi

σ 2
0

= 2
(θ − θ0)(θ − α0)

θ − α

n∑
i=−1

i−1∑
j=−1

θi−j−1 Zj

σ0

Zi

σ0

+ 2η1√
n(θ − α)

n∑
i=−1

θi+1 Zi

σ0
− 2η1√

n(θ − α)

n∑
i=−1

αi+1 Zi

σ0

= 2
β(1 − α0 + β/n)

1 − α0 + β/n − γ /
√

n

n∑
i=−1

i−1∑
j=−1

(
1 + β

n

)i−j−1 Zj

σ0

Zi√
nσ0

(3.6)

+ 2η1

(1 − α0 + β/n − γ /
√

n)

n∑
i=−1

(
1 + β

n

)i+1 Zi√
nσ0

− 2η1√
n(1 − α0 + β/n − γ /

√
n)

n∑
i=−1

(
α0 + γ√

n

)i+1 Zi√
nσ0

d→ 2β

∫ 1

0

∫ s

0
eβ(s−t) dW(t) dW(s) + 2η1

1 − α0

∫ 1

0
eβs dW(s),
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where the last term disappears in the limit due to the fact that |α0| < 1. Similarly,
we have

−2
n∑

i=−1

BiZi

σ 2
0

= 2
(α − α0)(1 − α)

θ − α

n∑
i=−1

i−1∑
j=−1

αi−j−1 Zj

σ0

Zi

σ0

= 2
γ (1 − α0 − γ /

√
n)

1 − α0 + β/n − γ /
√

n

×
n∑

i=−1

i−1∑
j=−1

(
α0 + γ√

n

)i−j−1 Zj

σ0

Zi√
nσ0

= 2γ

n∑
i=−1

i−1∑
j=−1

α
i−j−1
0

Zj

σ0

Zi√
nσ0

+ op(1)(3.7)

d→ 2γN,(3.8)

where N ∼ N(0, 1
1−α2

0
). The third equality holds because |α0| is strictly smaller

than 1, and op(1) is uniform in γ on any compact set of R. The weak convergence
from (3.7) to (3.8) follows from martingale central limit theorem; see Hall and
Heyde [14]. It can also be shown that N and the W(t) process from (3.6) are
independent; see Theorem 2.2 in Chan and Wei [7].

Following similar arguments, it is easy to show that

−2
n∑

i=−1

CiZi

σ 2
0

p→ 0 and − 2
n∑

i=−1

DiZi

σ 2
0

p→ 0.

For the second term in (3.5), writing

n∑
i=−1

r2
i

σ 2
0

=
n∑

i=−1

A2
i + B2

i + C2
i + D2

i

σ 2
0

+
n∑

i=−1

2AiBi + 2AiCi + 2AiDi + 2BiCi + 2BiDi + 2CiDi

σ 2
0

,

and using Corollary 2.10 in [13], we have

n∑
i=−1

A2
i

σ 2
0

d→
∫ 1

0

(
β

∫ s

0
eβ(s−t) dW(t) + η1

1 − α0
eβs

)2

ds,(3.9)

n∑
i=−1

B2
i

σ 2
0

p→ γ 2 var(N).(3.10)
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Moreover, it is relatively easy to show that
n∑

i=−1

C2
i

σ 2
0

p→ 0 and
n∑

i=−1

D2
i

σ 2
0

p→ 0.(3.11)

Next we show that all the cross product terms also vanish in the limit, namely,
n∑

i=−1

2AiBi + 2AiCi + 2AiDi + 2BiCi + 2BiDi + 2CiDi

σ 2
0

p→ 0.(3.12)

Here we only give the details for showing
∑n

i=−1
AiBi

σ 2
0

p→ 0; the other cases can

be proved in an analogous manner. Notice that for any fixed M > 0 and any β ∈
[−M,0],

n∑
i=−1

AiBi

σ 2
0

= β/n(1 − α0 + β/n)γ /
√

n(1 − α0 − γ /
√

n)

(1 − α0 + β/n − γ /
√

n)2

×
n∑

i=−1

(
i−1∑

j=−1

αi−j−1 Zj

σ0

)(
i−1∑

j=−1

θi−j−1 Zj

σ0

)

+ (γ /
√

n)(1 − α0 − γ /
√

n)(η1/
√

n)

(1 − α0 + β/n − γ /
√

n)2

×
n∑

i=−1

[
(θ i+1 − αi+1)

i−1∑
j=−1

αi−j−1 Zj

σ0

]
(3.13)

= βγ

n

n∑
i=−1

(
i−1∑

j=−1

α
i−j−1
0

Zj

σ0

)(
i−1∑

j=−1

(
1 + β

n

)i−j−1 Zj√
nσ0

)

+ γ η1

n

n∑
i=1

[(
1 + β

n

)i+1 i−1∑
j=−1

α
i−j−1
0

Zj

σ0

]

× γ η1

n

n∑
i=−1

i−1∑
j=−1

α
2i−j
0

Zj

σ0
+ op(1),

where op(1) is uniform in β and γ on any compact set in R
− × R. Setting Ri =∑i

j=−1 α
i−j
0 Zj/σ0, it follows that Ri is a stationary AR(1) process satisfying

Ri = α0Ri−1 + Zi/σ0.

Since |α0| < 1, we can apply Theorem 3.7. in Tanaka [21] to obtain

Sn(t) := 1√
n

[nt]∑
i=0

Ri
d→ α̃S(t),
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where α̃ = ∑∞
l=0 αl

0 = 1
1−α0

and S(t) is a standard Brownian motion. Also, since
Ri is adapted to the σ -fields Fi generated by Z0, . . . ,Zi . By Theorem 2.1 in [13],
we obtain

1√
n

n∑
i=−1

(
1 + β

n

)i+1

Ri−1
d→ α̃

∫ 1

0
eβs dS(s) on C[−M,0].

Therefore,

γ η1

n

n∑
i=−1

[(
1 + β

n

)i+1 i−1∑
j=−1

α
i−j−1
0

Zj

σ0

]
p→ 0 on C[−M,0].(3.14)

It is also easy to see that

γ η1

n

n∑
i=−1

i−1∑
j=−1

α
2i−j
0

Zj

σ0
= γ η1

n

n∑
i=1

αi+1
0 Ri−1

p→ 0.(3.15)

Since
n∑

i=−1

(
i−1∑

j=−1

(
1 + β

n

)i−j−1 Zj√
nσ0

)
Ri−1√

n
(3.16)

is in the form of the double sum in Theorem 2.8 in [13], except that {Ri} is no
longer a martingale difference sequence. However, we can still follow the proof
of Theorem 2.8 in [13] and show that (3.16) has a nondegenerate weak limit in
C[−M,0]. It follows that

βγ

n

n∑
i=−1

(
i−1∑

j=−1

α
i−j−1
0

Zj

σ0

)(
i−1∑

j=−1

(
1 + β

n

)i−j−1 Zj√
nσ0

)

(3.17)

= βγ√
n

n∑
i=−1

(
i−1∑

j=−1

(
1 + β

n

)i−j−1 Zj√
nσ0

)
Ri−1√

n

p→ 0.

Thus, combining (3.14), (3.15) and (3.17), we conclude that the terms in (3.13) go
to 0 in probability on C[−M,0]. The convergence in probability of the other terms
in (3.12) can also be proved in a similar way. To sum up, we have shown the key
stochastic process convergence result, that is,

Un(β, γ, η1, η2)

d→ U(β,γ, η1)
(3.18)

= 2β

∫ 1

0

∫ s

0
eβ(s−t) dW(t) dW(s) + 2γN + 2η1

1 − α0

∫ 1

0
eβs dW(s)

+
∫ 1

0

(
β

∫ s

0
eβ(s−t) dW(t) + η1

1 − α0
eβs

)2

ds + γ 2 var(N).
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Using (3.18), one can easily derive the asymptotics for the exact profile log-
likelihood denoted by Ln(β, γ ). In particular,

Ln(β, γ ) − Ln(0,0)

d→ log
∫ +∞
−∞

exp
{
−U(β,γ, η1)

2

}
dη1(3.19)

− log
∫ +∞
−∞

exp
{
−U(0,0, η1)

2

}
dη1

:= L∗(β, γ )

= −γN − γ 2

2
var(N) + log

∫ +∞
−∞

exp
{
−U(β,η∗)

2

}
dη∗(3.20)

− log
∫ +∞
−∞

exp
{
−U(0, η∗)

2

}
dη∗,

where η∗ = η1
1−α0

and U(β,η∗) is given by

U(β,η∗) = 2
∫ 1

0

[
β

∫ s

0
eβ(s−t) dW(t) + η∗eβs

]
dW(s)

(3.21)

+
∫ 1

0

[
β

∫ s

0
eβ(s−t) dW(t) + η∗eβs

]2

ds,

which is the limiting process of the joint likelihood obtained in the unit root MA(1)
case, see also Davis and Song [13]. We state the key result of this paper in the
following theorem.

THEOREM 3.1. Consider the model given in (1.4) with two roots θ and α

which are parameterized by

θ = 1 + β

n
and α = α0 + γ√

n
.

Denote the profile log-likelihood based on a Gaussian likelihood as Ln(β, γ ).
Then Ln(β, γ ) satisfies

Ln(β, γ ) − Ln(0,0)
d→ L∗(β, γ ) on C([−∞,0] × R),

where

L∗(β, γ ) = −γN − γ 2

2
var(N) + U∗(β)

(3.22)
d= −γN − γ 2

2
var(N) + 1

2
Z0(β).
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The processes U∗(β) and Z0(β) are defined by

U∗(β) = log
∫ +∞
−∞

exp
{
−U(β,α)

2

}
dα

(3.23)

− log
∫ +∞
−∞

exp
{
−U(0, α)

2

}
dα

and

Z0(β) =
∞∑

k=1

β2π2k2X2
k

(π2k2 + β2)π2k2 +
∞∑

k=1

log
(

π2k2

π2k2 + β2

)
.(3.24)

Furthermore, there exists a sequence of local maxima β̂n, γ̂n of Ln(β, γ ) con-
verging in distribution to β̃MLE, γ̃MLE, the global maximum of the limiting process
U∗(β, γ ). If model (1.4) has, at most, one unit root, then for the estimators ĉ1
and ĉ2, we have

√
n

(
ĉ1 − c1
ĉ2 − c2

)
d→ N

(
0,

[
1 − c2

2 c1(1 − c2)

c1(1 − c2) 1 − c2
2

])
.(3.25)

REMARK 3.2. The equivalence in distribution of the processes U∗(β) and
1
2Z0(β) is given in Theorem 4.3 in Davis and Song [13]. As mentioned in Davis
and Dunsmiur [10], convergence on C(-∞,0] does not necessarily imply conver-
gence of the corresponding global maximizers. Additional arguments were re-
quired to show that the maximum likelihood estimator converged in distribution
to the global maximizer of the limit process. We suspect that the same holds here
for β̂MLE,n and γ̂MLE,n and simulation results, some of which are contained in
Sections 4 and 5, bear this out.

REMARK 3.3. To establish the convergence in (3.25), if there is exactly one
unit root, then

√
n(ĉ1 − c1) = − β̂MLE√

n
− γ̂MLE

d→ −γ̃MLE = N

var(N)

d= N(0,1 − α2
0) = N(0,1 − c2

2),

√
n(ĉ2 − c2) = γ̂MLE + α0β̂MLE√

n
+ γ̂MLEβ̂MLE

n

d→ γ̃MLE

= − N

var(N)

d= N(0,1 − α2
0) = N(0,1 − c2

2).

Here, we use the fact that β̃MLE < ∞ a.s. as stated in (Theorem 4.3 in [13]). One
can also calculate the limiting asymptotic covariance of ĉ1 and ĉ2 as

−var(γ̃MLE) = −(1 − α2
0) = −(1 + α0)(1 − α0)

= c1(1 − c2).
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REMARK 3.4. The above theorem says that when |α0| < 1 and θ0 = 1, we
have a similar asymptotic result for c1 and c2 as in the invertible case. If we only
consider the original parameters c1 and c2, the effect of the unit root disappears in
the limit. But

√
n(ĉ1 − c1) and

√
n(ĉ2 − c2) are perfectly dependent in the limit,

since c1(1 − c2) = 1 − c2
2.

REMARK 3.5. The estimated roots θ̂ and α̂ calculated from ĉ1 and ĉ2 are
asymptotically independent. Interestingly, β̃MLE corresponding to the unit root in
MA(2) has exactly the same distribution as the β̃MLE in the MA(1) case. So the
pile-up and other properties of β̃MLE follow exactly from those in the MA(1) case.
It may seem surprising that the unit root in the MA(2) model (when there is only
one unit root) behaves asymptotically just like the unit root in MA(1) case. To see
this, consider the situation where we are given the parameter α and α = α0. In this
case, γ = 0 and

Ln(β,0) − Ln(0,0)
d→ log

∫ +∞
−∞

exp
{
−U(β,η∗)

2

}
dη∗

− log
∫ +∞
−∞

exp
{
−U(0, η∗)

2

}
dη∗,

which is the limiting process of the exact profile log-likelihood in the MA(1) case.
On the other hand when α is given, θ becomes the only parameter that needs to be
estimated

Xt = (1 − α0B)(1 − θB)Zt .(3.26)

Because of the invertibility of the operator 1 − α0B, we can get an intermediate
process Yt by inverting the operator. Namely,

Yt := 1

(1 − α0B)
Xt =

∞∑
k=0

αk
0Xt−k = (1 − θB)Zt .(3.27)

Since we are dealing with asymptotics, inverting the operator 1 − α0B is feasible.
Therefore, the transformed process Yt is indeed an MA(1) process with the true
parameter θ0 = 1. Then it follows naturally that the properties of the estimator of
θ in this situation should be equivalent to those of θ in a unit root MA(1) process.

3.2. MA(2) with two unit roots. In moving from the unit root problem for the
MA(1) model to the MA(2) model, several new and challenging problems arise. In
this subsection, we discuss some issues when there are two unit roots in the MA
polynomial.



UNIT ROOTS IN MOVING AVERAGES 3079

3.2.1. Case 2: c2 = 1 and c1 �= ±2. This corresponds to the case that the true
parameters are on the boundary c2 = 1, that is, the boundary AC in Figure 1, which
means the two roots live on the unit circle and are not real valued. Denote the two
generic complex valued roots of the MA polynomial by φ = re


iθ and φ̄ = re−
iθ .
To avoid confusion in notation, we use 
i to represent

√−1. A rather different
representation of the residuals ri is used in this case, that is,

ri = (φ0 − φ)(φ − φ̄0)

φ − φ̄

i−1∑
j=−1

φi−j−1Zj

+ (φ̄0 − φ̄)(φ0 − φ̄)

φ − φ̄

i−1∑
j=−1

φ̄i−j−1Zj

− φi+1 − φ̄i+1

φ − φ̄
(zinit,0 − Z0)(3.28)

+ φφ̄(φi − φ̄i)

φ − φ̄
(zinit,−1 − Z−1)

+ (φ + φ̄ − φ0 − φ̄0)(φ
i+1 − φ̄i+1)

φ − φ̄
Z−1.

We also adopt the parameterization for r , θ and two initial variables given by

r = 1 + β

n
and θ = θ0 + γ

n
,

zinit,0 = Z0 + σ0η1√
n

and zinit,−1 = Z−1 + σ0η2√
n

.

Again, we study the limiting process of −2
∑n

i=−1
riZi

σ 2
0

+∑n
i=−1

r2
i

σ 2
0

. Here we only

present the first term of
∑n

i=−1
riZi

σ 2
0

for illustration; the limit of the other terms can

be derived in a similar fashion. By Theorem 2.8 in [13], we obtain

1

n

n∑
i=0

i−1∑
j=−1

φi−j ZjZi

σ 2
0

=
n∑

i=0

(
i−1∑

j=−1

(
1 + β

n

)i−j

exp
{

iγ i − j

n

}
e−
iθ0jZj√

nσ0

)
e

iθ0iZi√
nσ0

d→
∫ 1

0

∫ s

0
eβ(s−t)+
iγ (s−t) dW(t) dW(s),

where W(t) is a two-dimensional Brownian motion, W(t) = W1(t) + 
iW2(t),
W(t) = W1(t) − 
iW2(t) and W1(t) and W2(t) are the corresponding weak lim-
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its of the sum

W1,n(t) =
[nt]∑
k=0

cos(kθ0)
Zk√
nσ0

and W2,n(t) =
[nt]∑
k=0

sin(kθ0)
Zk√
nσ0

.

The weak convergence of W1,n(t) and W2,n(t) to two independent Brownian mo-
tions is guaranteed by Theorem 2.2 in Chan and Wei [7].

By Theorem 2.1 in [13] we have

1√
n

n∑
i=0

φi Zi

σ0

d→
∫ 1

0
eβs+
iγ s dW(s).

Therefore, (3.28) leads to

−2
n∑

i=−1

riZi

σ 2
0

d→ 4�
{
(γ cos θ0 − γ sin θ0 + β cos θ0 +
iβ sin θ0)e

−
iθ0

×
∫ 1

0

∫ s

0
eβ(s−t)+
iγ (s−t) dW(t) dW(s)

}
(3.29)

+ 4η1�
{

e

iθ0

2
i sin θ0

∫ 1

0
eβs+
iγ s dW(s)

}

− 4η2�
{

1

2
i sin θ0

∫ 1

0
eβs+
iγ s dW(s)

}
,

where �{·} means the real part of a complex function. The weak limit of∑n
i=−1 r2

i /σ 2
0 can also be computed in an analogous manner using Corollary 2.10

in [13]. However, the weak limit of
∑n

i=−1 r2
i /σ 2

0 has an even more complicated
form than (3.29).

By integrating out the auxiliary variables, the exact likelihood can be recovered
as well. However, the form of the joint likelihood function is much more compli-
cated than the one computed in the one unit root case. The asymptotic properties
and pile-up probabilities in this case remain unknown.

3.2.2. Case 3: c2 = 1 and c1 = −2. This corresponds to the vertex A in the
-region in Figure 1. It is convenient to first consider a special case of local asymp-
totics when the approach to the corner is through the boundary −c1 − c2 = 1. With
this constraint, the dimension of the parameters has been reduced from two to one.
We parameterize the MA(2) in this case by

Xt = Zt − (θ + 1)Zt−1 + θZt−2(3.30)

and define a Zinit and a Yinit as in (3.1), but with different normalization, that is,

θ = 1 + β

n
, Yinit = Y0 + σ0η1

n3/2 and Zinit = Z−1 + σ0η2√
n

.(3.31)
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Then, with the help of the theorems in Davis and Song [13], it follows that

Un(β,η1, η2) = −2
n∑

i=−1

riZi

σ 2
0

+
n∑

i=−1

r2
i

σ 2
0

d→ 2β

∫ 1

0

∫ s

0
eβ(s−t) dW(t) dW(s)

(3.32)

+ 2η2

∫ 1

0
eβs dW(s) − 2η1

β

∫ 1

0
(1 − eβs) dW(s)

+
∫ 1

0

(
β

∫ s

0
eβ(s−t) dW(t) + η2e

βs − 2η1
1 − eβs

β

)2

ds.

There is a connection between this limiting process and the one in (2.5) derived
for the limiting process for an MA(1) model with a nonzero mean. Notice that
in (2.5), U(η0, β,α) is exactly the process we just derived with η1 and η2 replaced
by α and η0. This leads us to an interesting connection of the mean term in the
lower order MA model and the initial value in the higher order MA model, which
we will discuss further in the Section 6.

Alternatively, if we do not impose the constraint −c1 − c2 = 1, there are
two possible ways to parameterize the roots. First, the vertex can be approached
through the real region, where c1 = −θ − α, c2 = θα and the roots are parameter-
ized further as

θ = 1 + β

n
and α = 1 + γ

n
,

which makes

c1 = −1 −
(

1 + β + γ

n

)
and c2 = 1 + β + γ

n
+ o

(
1

n

)
.

The second parameterization is through the complex region, in which the roots are
re


iθ and re−
iθ with c1 = −2r cos(θ), c2 = r2. The radius and the angular parts are
further parameterized as

r = 1 + β

n
and θ = γ

n
,

which implies

c1 = −1 −
(

1 + 2β

n

)
+ o

(
1

n

)
and c2 = 1 + 2β

n
+ o

(
1

n

)
.

Therefore, in either case, if we ignore the higher order terms, c1 and c2 can be
approximated as

c1 = −1 −
(

1 + ζ

n

)
and c2 = 1 + ζ

n
.

This parameterization, however, is exactly the one we have seen in the conditional
case, which suggests that one of the unit roots has pile-up with probability one
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asymptotically while the other unit root behaves like the unit root in the conditional
case; see (3.30) and (3.32). This claim is also supported by the simulation results;
see Table 4 in Section 5.

4. Testing for a unit root in an MA(2) model. A direct application of the
results in the previous section is testing for the presence of a unit root in the MA(2)
model. For the testing problem, we extend the idea of a generalized likelihood ratio
test proposed in Davis, Chen and Dunsmuir [9] to the MA(2) case. Tests based on
β̂MLE are also considered in this section. We will compare these tests with the
score-type test of Tanaka [20].

To specify our hypothesis testing problem in the MA(2) case, the null hypothesis
is H0: there is exactly one unit root in the MA polynomial, and the alternative is
HA: there are no unit roots. The asymptotic theory of the previous section allows us
to approximate the nominal power against local alternatives. To set up the problem,
for the model

Xt = Zt −
(
α + 1 + β

n

)
Zt−1 + α

(
1 + β

n

)
Zt−2

with |α| < 1. We want to test H0 :β = 0 versus HA :β < 0.
To describe the test based on the generalized likelihood ratio, let GLRn =

2(Ln(β̂MLE, γ̂MLE) − Ln(0, γ̂MLE,0)), where γ̂MLE,0 is the MLE of γ when β = 0.

An application of Theorem 3.1 gives GLRn
d→ L∗(β̃MLE, γ̃MLE) − L∗(0, γ̃MLE) =

U∗(β̃MLE), where L∗(β, γ ) and U∗(β) are given in (3.22) and (3.23) and γ̃MLE =
−N/var(N). Notice that the limit distribution of GLRn only depends on β̃MLE,
and γ serves as a nuisance parameter, which does not play a role in the limit.
Define the (1 − α)th asymptotic quantile bGLR(α) and bMLE(α) as

P
(
U∗(β̃MLE) > bGLR(α)

) = α and P
(
β̃MLE > bMLE(α)

) = α.

Since the limiting random variables U∗(β̃MLE) and β̃MLE are the same as in the
MA(1) unit root case, the critical values of bGLR(α) and bMLE(α) are the same as
those provided in Table 3.2 of Davis, Chen and Dunsmuir [9].

There has been limited research on the testing for a unit root in the MA(2)
case. One approach, proposed by Tanaka, was based on a score type of statistic,
which is locally best invariant and unbiased (LBIU). However, implementation of
this test requires choosing a sequence ln → ∞ at a suitable rate. One choice is
ln = o(n1/4), yet this may not always work well, especially if α > 0; see also [20].
Next we compare the power curves of the three tests for sample size n = 50.

Figure 2 below shows the power curves based on MLE, GLR and LBIU tests,
when the invertible root α in the MA(2) model is −0.3 and −0.5, respectively.
Since the score-type test of Tanaka is demonstrated to be locally best invariant
unbiased, it has a very small edge on the GLR test up to the local alternative 4
or so. Thereafter, the GLR test increasingly outperforms the LBIU test by a wide
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FIG. 2. Power curve with respect to local alternatives when α = −0.3 (upper) and when α = −0.5
(lower). Sample size n = 50. The size of the test is set to be 0.05.

margin. When the sample size is 50, the local alternative parameter corresponds to
θ = 1 − 4/50 = 0.92. Also, as seen in Figure 2, the power function based on the
MLE dominates the power function of the LBIU test for local alternatives greater
than 8 or 9.

In the case when α > 0 especially for small sample sizes like 50, the behavior
of the tests based on MLE and LBIU are very poor. This is because when α >

0 and there is one unit root, the two parameters c1 and c2 lie on the boundary
−c1 − c2 = 1 which is close to the complex region boundary c2

1 − 4c2 = 0. But
our asymptotic results are derived in a way which assumes that the two roots are
only approaching the limit through the real region. This holds asymptotically, but
in finite sample cases, when we maximize the likelihood jointly over c1 and c2, it is
likely that the two maximizers would fall into the complex region. As α gets closer
to −1 this effect becomes more severe. Thus we do not recommend using the test
based on the MLE when the invertible root is likely to be negative. Using the test
based on MLE usually gives larger size of the test. The LBIU is not good in this
case either as pointed out in Tanaka [20]. The upper tail probabilities are greatly
underestimated when α gets closer to −1, and hence H0 tends to be accepted much
more often. Simulation results show that when the sample size is 50, and the true α

is 0.3 and 0.5, the corresponding size of the LBIU test is 0.0119 and 0.0015 which
are much smaller than the nominal size 0.05. GLR seems to be the best among the
three choices. This is due to the fact that the GLR only considers the maximum
value of the likelihood ratio instead of the MLE of c1 and c2. Therefore, even if
ĉ1 and ĉ2 are in the complex region, the GLR test can still be carried out whereas
the test based on β̂MLE is not even well defined in this case. Although the size of
the GLR test is often slightly greater than the nominal size, GLR gives the best
performance under this situation.

Finally, we compare these tests when α = 0; that is, the model is in fact a unit
root MA(1). The test developed for the MA(2) case is still applicable. The results
are summarized in Figure 3. Clearly, the power functions of the tests designed for
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FIG. 3. Power curve with respect to local alternatives when α = 0. Sample size n = 50. The size of
the test is set to be 0.05.

the MA(1) dominate the power functions of their counterparts designed for the
MA(2). However, it is surprising that for large local alternatives (greater than 9 or
so), the GLR for the MA(2) model outperforms the LBIU for the MA(1) model.

5. Numerical simulations. In this section, we present simulation results that
illustrate the theory from Section 3. Realizations were simulated from the MA(2)
process given by

Xt = Zt − (1 + α)Zt−1 + αZt−2,(5.1)

where α takes the values 0.3, 0 and −0.3, respectively. The MA(2) model was
replicated 10,000 times for each choice of α, and then the MLEs for the MA(2)
coefficients θ1 and θ2 were calculated for each replicate. The empirical pile-up
probability, the empirical variance and MSE of the MLEs are reported in Tables
1 to 3. Notice that the numbers in the tables for the variance and the MSE are
reported for the normalized estimates

√
n(ĉi − ci), i = 1,2.

As seen in the tables, the correlation of ĉ1 and ĉ2 is increasing to 1 with the
sample size. The variances and the MSEs are converging to the theoretical value

TABLE 1
Summary of the case: α = 0.3

Sample Pile-up Variance MSE Variance MSE Correlation
size probability of c1 of c1 of c2 of c2 of c1 and c2

25 0.5436 2.1701 2.1970 2.4455 2.6536 0.9347
50 0.6041 1.4063 1.4118 1.4967 1.5553 0.9644

100 0.6234 1.1108 1.1108 1.1490 1.1636 0.9815
400 0.6398 0.9788 0.9788 0.9854 0.9890 0.9953

1,000 0.6437 0.9290 0.9290 0.9327 0.9338 0.9981
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TABLE 2
Summary of the case: α = 0 [MA(1) with a unit root]

Sample Pile-up Variance MSE Variance MSE Correlation
size probability of c1 of c1 of c2 of c2 of c1 and c2

25 0.5870 2.1624 2.1629 2.5037 2.6355 0.8792
50 0.6182 1.3661 1.3670 1.4690 1.5053 0.9378

100 0.6220 1.1661 1.1670 1.2082 1.2224 0.9662
400 0.6318 1.0440 1.0441 1.0544 1.0578 0.9918

1,000 0.6334 1.0329 1.0330 1.0351 1.0384 0.9966

1 − c2
2. As pointed out in [10] and [9], the asymptotic results work remarkably

well even for small sample sizes in the MA(1) case. Here, although the pile-up
probability is still 0.6518, the rates vary depending on α. For α > 0, rates are slow
while for α < 0 rates are much faster. From the derivation of the asymptotic results,
there are error terms in the likelihood that vanish asymptotically and contribute to
a more lethargic rate of convergence. Again the asymptotic results were derived
assuming the roots are always in the real region, which only holds asymptotically.
When the sample size is small and α > 0, the MLEs of c1 and c2 are more likely to
be in the complex region than those when α < 0. Thus the limiting process would
approximate the likelihood function poorly when α > 0, which in turn results in
less pile-up in smaller sample sizes.

Table 4 summarizes the pile-up effects for the model considered in Sec-
tion 3.2.2, where the two roots of the MA polynomial are both 1. In one real-
ization, the estimators are said to exhibit a pile-up if the MLEs of c1 and c2 are on
the boundary −c1 − c2 = 1.

As seen in the table, the pile-up probability is increasing to 1 with sample size.
However, the claimed 100% probability of pile-up is not a good approximation for
small sample sizes. Even when n = 500, the pile-up is only about 80%.

TABLE 3
Summary of the case: α = −0.3

Sample Pile-up Variance MSE Variance MSE Correlation
size probability of c1 of c1 of c2 of c2 of c1 and c2

25 0.6171 1.8370 1.8806 2.1654 2.2287 0.7950
50 0.6347 1.2820 1.3053 1.3647 1.3820 0.8938

100 0.6447 1.0748 1.0853 1.1215 1.1299 0.9397
400 0.6472 0.9245 0.9267 0.9316 0.9339 0.9822

1,000 0.6511 0.9232 0.9242 0.9256 0.9263 0.9933
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TABLE 4
Pile-up probabilities for the case: c1 = −2

Sample size Pile-up probability

100 0.246
500 0.804

1,000 0.961
5,000 0.999

6. Unit roots and differencing. As pointed out in Section 3.2.2, there is a
link between the mean term in the lower order MA model and the initial value in
the higher order MA model. To illustrate this, consider the simple case when

Yt = μ0 + Zt,

where {Zt } ∼ i.i.d. (0, σ 2
0 ). So Yt is an i.i.d. sequence with a common mean. It is

clear that
√

n(μ̂ − μ0)
d→ N(0, σ 2

0 ),

where μ̂ is the MLE of μ obtained by maximizing the objective Gaussian likeli-
hood function. Now suppose we difference the time series to obtain

Xt = (1 − B)Yt = Zt − Zt−1,

which becomes an MA(1) process with a unit root. The initial value as defined
before of this differenced process is

Zinit = Z0 = Y0 − μ0.

From the results in Theorem 4.2 in [13], if it is known that an MA(1) time series
has a unit root, that is, β = 0, we have

U(β = 0, α) = 2αW(1) + α2.

Clearly, α̃ = −W(1) and with our parameterization of zinit, we have

α̂ =
√

n(zinit − Z0)

σ0
=

√
n(Y0 − μ̂ − Y0 + μ0)

σ0

= −
√

n(μ̂ − μ0)

σ0

d→ α̃ = −W(1)
d= N(0,1),

which is consistent with the classical result. Therefore we can conclude that when-
ever we have an MA model with a unit root, the information stored in the initial
value comes from the information of the mean term from the undifferenced se-
ries. So differencing the series will not get rid of the mean parameter; instead,
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differencing creates a new parameter Zinit which behaves like the mean in the un-
differenced series and its effect persists even asymptotically. With this, we can
now explain easily the result in (2.9). Turning to a little more complicated model
consisting of i.i.d. noise and a linear trend, that is,

Yt = μ0 + b0t + Zt,(6.1)

which, after differencing, delivers an MA(1) model with a unit root and a nonzero
mean given by

Xt = (1 − B)Yt = b0 + Zt − Zt−1.

From (2.9), we know n3/2(b̂ − b0)
d→ N(0,12σ 2

0 ). But this can be obtained much
more easily by analyzing the model (6.1). This is just a simple application of linear
regression, and we can get exactly the same asymptotic result for b̂.

Now consider the model from Section 2,

Yt = b0 + Zt − θZt−1,

where θ = 1 + β
n

is near or on the unit circle. By differencing we obtain

Xt = (1 − B)Yt = Zt − (1 + θ)Zt−1 + θZt−2.

If we define Zinit as before and

Yinit = Y0 = b0 + Z0 − Z−1,

then yinit − Yinit can be viewed as b̂ − b0. Since b̂ converges at the rate of n3/2, so
does yinit. This explains the parametrization given in (3.31) as well as the resem-
blance of (2.5) and (3.32).

7. Going beyond second order. The techniques proposed in this paper can
be adapted to handle the unit root problem for MA(q) with q ≥ 3. However, the
complexity of the argument, mostly in terms of bookkeeping, also increases with
the order q . In this section, we outline the procedure for the MA(3) case, from
which extensions to larger orders are straightforward.

Suppose {Xt } follows an MA(3) model, which is parameterized in terms of the
reciprocals of the zeros of the MA polynomial, that is,

Xt = Zt − (θ0 + φ0 + ψ0)Zt−1

+ (θ0φ0 + θ0ψ0 + φ0ψ0)Zt−2 − θ0φ0ψ0Zt−3

= (1 − θ0B)(1 − φ0B)(1 − ψ0B)Zt(7.1)

= (1 − θ0B)(1 − φ0B)Yt

= (1 − θ0B)Wt .

For simplicity, assume θ0 �= φ0 �= ψ0. Now we form two intermediate processes
Yt and Wt and consider three augmented initial variables defined by Zinit = Z−2,
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Yinit = Z−1 + ψ0Zinit and Winit = Y0 + φ0Yinit. Similar arguments as in Section 3
show that the joint likelihood of (X,Winit, Yinit,Zinit) has a simple form given by

fX,Winit,Yinit,Zinit(xn,winit, yinit, zinit) =
n∏

j=−2

fZ(zj ).

As in the MA(1) and MA(2) cases, maximizing this joint likelihood is essentially
equivalent to minimizing the objective function

Un = 1

σ 2
0

n∑
i=−2

(z2
i − Z2

i ).

The key to this analysis is to write out the explicit expression for zi which is basi-
cally an estimator for Zi . The following equations are straightforward to derive:

wk =
k∑

l=1

θk−lXl + θkwinit,(7.2)

yj =
j∑

k=1

φj−kwk + φjwinit + φj+1yinit,(7.3)

zi =
i∑

j=1

ψi−j yj + ψiwinit + ψi(φ + ψ)yinit + ψi+2zinit.(7.4)

Plugging (7.2) into (7.3), we obtain

yj =
j∑

k=1

θj−k+1 − φj−k+1

θ − φ
Xk + θj+1 − φj+1

θ − φ
winit + φj+1yinit,(7.5)

and plugging this into (7.4), we obtain

zi =
i∑

j=1

(
θφ(θ i−j+1 − φi−j+1)

+ θψ(ψi−j+1 − θi−j+1) + φψ(φi−j+1 − ψi−j+1)
)

× (
(θ − ψ)(ψ − φ)(φ − θ)

)−1
Xj

+
(

θ2(θ i − ψi)

(θ − φ)(θ − ψ)
− φ2(φi − ψi)

(θ − φ)(φ − ψ)
+ ψi

)
winit

+ φi+2 − ψi+2

φ − ψ
yinit + ψi+2zinit.

While this is a more complicated looking expression than the one encountered in
the MA(2) case, the coefficient of Xj in the sum looks very similar to (3.2), only
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with more terms. Now replacing Xj with (7.1), zi can be written as

zi = Zi −
i−1∑

j=−2

Cz
i,jZj

− Cw
i (winit − Winit) − C

y
i (yinit − Yinit) − Cz

i (zinit − Zinit)(7.6)

= Zi − ri,

where Cz
i,j is the coefficient for Zj in zi and is a combination of θi−j , φi−j and

ψi−j , and Cw
i , C

y
i and Cz

i are coefficients for winit − Winit, yinit − Yinit and zinit −
Zinit. They are linear combinations of θi , φi and ψi . For illustration, assume the
MA(3) model has only one unit root with |ψ0| < 1, |φ0| < 1 and θ0 = 1. We can
then reparameterize the parameters as

θ = 1 + β

n
, β ≤ 0, φ = φ0 + α√

n
and ψ = ψ0 + γ√

n
,

and the initial values as

winit = Winit + σ0ηw√
n

, yinit = Yinit + σ0ηy√
n

and zinit = Zinit + σ0ηz√
n

.

Then the objective function Un becomes

Un(β,α, γ, ηw,ηy, ηz)

= −2
n∑

i=−2

riZi

σ 2
0

+
n∑

i=−2

r2
i

σ 2
0

(7.7)

= −2
n∑

i=−2

(
i−1∑

j=−2

Cz
i,j

Zj

σ0
+ Cw

i ηw√
n

+ C
y
i ηy√
n

+ Cz
i ηz√
n

)
Zi

σ0

+
n∑

i=−2

(
i−1∑

j=−2

Cz
i,j

Zj

σ0
+ Cw

i ηw√
n

+ C
y
i ηy√
n

+ Cz
i ηz√
n

)2

.

Because of the special structure of Cz
i,j , Cw

i , C
y
i and Cz

i , the sum in (7.7) consists
of terms that have a similar structure to quantities like

1

n

n∑
i=−2

i−1∑
j=−2

(
1 + β

n

)i−j Zj

σ0

Zi

σ0
and

n∑
i=−2

(
1 + β

n

)i Zi√
nσ0

,

that were used in the MA(1) and MA(2) cases. By using a martingale central limit
theorem and theorems proved in Davis and Song [13], one can establish the weak
convergence of Un(β,α, γ, ηw,ηy, ηz) to a random element U(β,α, γ, ηw,ηy, ηz)

in C(R6). Now arguing as in Section 3, the initial variables can be integrated out,
and the limiting process of the exact profile log-likelihood can be established.
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For general q > 3, the residual ri = zi − Zi has the form

ri =
i−1∑

j=−q+1

Cz
i,jZj +

q∑
k=1

Ck
i (initk − INITk),

where {INIT1, . . . , INITq} are q augmented initial variables, defined either through
the i.i.d. random variables Zt or through the intermediate processes like Yt in the
above example. Furthermore, Cz

i,j is only a linear combination of (θ
i−j
1 , . . . , θ

i−j
q ),

where (θ1, . . . , θq) are reciprocals of the roots of the MA(q) polynomial. Coeffi-
cients Ck

i , k = 1, . . . , q , are only linear combinations of (θ i
1, . . . , θ

i
q). This spe-

cial structure of ri allows us to apply the weak convergence theorems proved in
Davis and Song [13] to find the limiting process of Un = −2

∑n
i=−q+1 riZi/σ

2
0 +∑n

i=−q+1 r2
i /σ 2

0 , from which the limiting behavior of the maximum likelihood es-
timators of the θi’s can be derived.
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