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We consider the problem of selecting covariates in spatial linear mod-
els with Gaussian process errors. Penalized maximum likelihood estimation
(PMLE) that enables simultaneous variable selection and parameter estima-
tion is developed and, for ease of computation, PMLE is approximated by
one-step sparse estimation (OSE). To further improve computational effi-
ciency, particularly with large sample sizes, we propose penalized maximum
covariance-tapered likelihood estimation (PMLET) and its one-step sparse
estimation (OSET). General forms of penalty functions with an emphasis on
smoothly clipped absolute deviation are used for penalized maximum like-
lihood. Theoretical properties of PMLE and OSE, as well as their approxi-
mations PMLET and OSET using covariance tapering, are derived, including
consistency, sparsity, asymptotic normality and the oracle properties. For co-
variance tapering, a by-product of our theoretical results is consistency and
asymptotic normality of maximum covariance-tapered likelihood estimates.
Finite-sample properties of the proposed methods are demonstrated in a sim-
ulation study and, for illustration, the methods are applied to analyze two real
data sets.

1. Introduction. Geostatistical models are popular tools for the analysis of
spatial data in many disciplines. It is often of interest to estimate model parameters
based on data at sampled locations and perform spatial interpolation (also known
as Kriging) of a response variable at unsampled locations within a spatial domain
of interest [2, 16, 17]. In addition, a practical issue that often arises is how to se-
lect the best model or a best subset of models among many competing ones [10].
Here we focus on selecting covariates in a spatial linear model, which we believe
is a problem that is underdeveloped in both theory and methodology despite its
importance in geostatistics. The spatial linear model for a response variable under
consideration has two additive components: a fixed linear regression term and a
stochastic error term. We assume that the error term follows a Gaussian process
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with mean zero and a covariance function that accounts for spatial dependence.
Our chief objective is to develop a set of new methods for the selection of co-
variates and establish their asymptotic properties. Moreover, we devise efficient
algorithms for computation, making these methods feasible for practical usage.

For linear regression with independent errors, variable selection has been widely
studied in the literature. The more traditional methods often involve hypothesis
testing such as F -tests in a stepwise selection procedure [3]. An alternative ap-
proach is to select models using information discrepancy such as a Kolmogorov–
Smirnov, Kullback–Leibler or Hellinger discrepancy [13]. In recent years, penal-
ized methods are becoming increasingly popular for variable selection. For exam-
ple, Tibshirani [18] developed a least absolute shrinkage and selection operator
(LASSO), whereas Fan and Li [7] proposed a nonconcave penalized likelihood
method with a smoothly clipped absolute deviation (SCAD) penalty. Efron et al.
[5] devised least angle regression (LARS) algorithms, which allow computing all
LASSO estimates along a path of its tuning parameters at a low computational or-
der. More recently, Zou [23] improved LASSO and the resulting adaptive LASSO
enjoys the oracle properties as SCAD, in terms of selecting the true model. Zou
and Li [24] proposed one-step sparse estimation in the nonconcave penalized like-
lihood approach, which retains the oracle properties and utilizes LARS algorithms.

For spatial linear models in geostatistics, in contrast, statistical methods for
a principled selection of covariates are limited. Hoeting et al. [10] suggested
Akaike’s information criterion (AIC) with a finite-sample correction for variable
selection. Like information-based selection in general, computation can be costly
especially when the number of covariates and/or the sample sizes are large. Thus,
these authors considered only a subset of the covariates that may be related to the
abundance of the orange-throated whiptail lizard in southern California, in order
to make it tractable to evaluate their AIC-based model selection. Huang and Chen
[11] developed a model selection criterion in geostatistics, but for the purpose of
Kriging rather than selection of covariates. Further, Wang and Zhu [21] proposed
penalized least squares (PLS) for a spatial linear model where the error process
is assumed to be strong mixing without the assumption of a Gaussian process.
This method includes spatial autocorrelation only indirectly in the sense that the
objective function involves a sum of squared errors ignoring spatial dependence.
A spatial block bootstrap is then used to account for spatial dependence when es-
timating the variance of PLS estimates.

Here we take an alternative, parametric approach and assume that the errors in
the spatial linear model follow a Gaussian process. Our main innovation here is
to incorporate spatial dependence directly into a penalized likelihood function and
achieve greater efficiency in the resulting penalized maximum likelihood estimates
(PMLE). Unlike computation of PLS estimates which is on the same order as or-
dinary least squares estimates, however, penalized likelihood function for a spatial
linear model will involve operations of a covariance matrix of the same size as the
number of observations. Thus, the computational cost can be prohibitively high as
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the sample size becomes large. It is essential that our new methods address this is-
sue. To that end, we utilize one-step sparse estimation (OSE) and LARS algorithms
in the computation of PMLE to gain computational efficiency. In addition, we ex-
plore covariance tapering, which further reduces computational cost by replacing
the exact covariance matrix with a sparse one [4, 9, 12]. We establish the asymp-
totic properties of both PMLE and OSE, as well as their covariance-tapered coun-
terparts. As a by-product, we establish new results for covariance-tapered MLE
which, to the best of our knowledge, have not been established before and can be
of independent interest.

The remainder of the paper is organized as follows. In Section 2 we develop pe-
nalized maximum covariance-tapered likelihood estimation (PMLET) that enables
simultaneous variable selection and parameter estimation, as well as an approxi-
mation of the PMLET by one-step sparse estimation (OSET) to enhance compu-
tational efficiency. PMLE and OSE are regarded as a special case of PMLET and
OSET. We establish asymptotic properties of PMLE and OSE in Section 3 and
those of PMLET and OSET under covariance tapering in Section 4. In Section 5
finite-sample properties of the proposed methods are investigated in a simulation
study and, for illustration, the methods are applied to analyze two real data sets.
We outline the technical proofs in Appendices A.1 and A.2.

2. Maximum likelihood estimation: Penalization and covariance tapering.

2.1. Spatial linear model and maximum likelihood estimation. For a spatial
domain of interest R in R

d , we consider a spatial process {y(s) : s ∈ R} such that

y(s) = x(s)T β + ε(s),(2.1)

where x(s) = (x1(s), . . . , xp(s))T is a p × 1 vector of covariates at location s and
β = (β1, . . . , βp)T is a p × 1 vector of regression coefficients. We assume that the
error process {ε(s) : s ∈ R} is a Gaussian process with mean zero and a covariance
function

γ (s, s′; θ) = cov{ε(s), ε(s′)},(2.2)

where s, s′ ∈ R and θ is a q × 1 vector of covariance function parameters.
Let s1, . . . , sN denote N sampling sites in R. Let y = (y(s1), . . . , y(sN))T de-

note an N × 1 vector of response variables and xj = (xj (s1), . . . , xj (sN))T denote
an N × 1 vector of the j th covariate with j = 1, . . . , p, at the N sampling sites.
Further, let X = [x1, . . . ,xp] denote an N × p design matrix of covariates and
� = [γ (si , si′ ; θ)]Ni,i′=1 denote an N × N covariance matrix. In this paper, we con-
sider general forms for the the covariance matrix � and describe suitable regularity
conditions in Sections 3 and 4. By (2.1) and (2.2), we have

y ∼ N(Xβ,�).(2.3)
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Let η = (βT , θT )T denote a (p + q) × 1 vector of model parameters consisting
of both regression coefficients β and covariance function parameters θ . By (2.3),
the log-likelihood function of η is

�(η;y,X) = −(N/2) log(2π) − (1/2) log|�|
(2.4)

− (1/2)(y − Xβ)T �−1(y − Xβ).

Let η̂MLE = arg maxη{�(η;y,X)} denote the maximum likelihood estimate (MLE)
of η.

2.2. Covariance tapering and penalized maximum likelihood. It is well known
that computation of MLE for a spatial linear model is of order N3 and can be very
demanding when the sample size N increases [2]. There are various approaches to
alleviating the computational cost. Here we consider covariance tapering, which
could effectively reduce our computational cost in practice. Furrer et al. [9] con-
sidered tapering for Kriging and demonstrated that not only tapering enhances
computational efficiency but also achieves asymptotically optimality in terms of
mean squared prediction errors under infill asymptotics. For parameter estimation
via maximum likelihood, Kaufman et al. [12] established consistency of tapered
MLE, whereas Du et al. [4] established the asymptotic distribution, also under in-
fill asymptotics. However, both Kaufman et al. [12] and Du et al. [4] focused on
the parameters in the Matérn family of covariance functions and did not consider
estimation of the regression coefficients. In contrast, our primary interest is in the
estimation of regression coefficients and we investigate the asymptotic properties
under increasing domain asymptotics, which, to the best of our knowledge, have
not been established in the literature before.

Recall that � = [γ (si , si′)]Ni,i′=1 is the covariance matrix of y. Assuming second-
order stationarity and isotropy, we let γ (d) = γ (s, s′), where d = ‖s − s′‖ is the
lag distance between two sampling sites s and s′ in R. Let KT(d,ω) denote a
tapering function, which is an isotropic autocorrelation function when 0 < d < ω

and 0 when d ≥ ω, for a given threshold distance ω > 0. Compactly supported
correlation functions can be used as the tapering functions [22]. For example,

KT(d,ω) = (1 − d/ω)+,(2.5)

where x+ = max{x,0}, in which case the correlation is 0 at lag distance greater
than the threshold distance ω. Let �(ω) = [KT(dii′,ω)]Ni,i′=1 denote an N × N

tapering matrix. Then a tapered covariance matrix of � is defined as �T = � ◦
�(ω), where ◦ denotes the Hadamard product (i.e., elementwise product).

We approximate the log-likelihood function by replacing � in (2.4) with the ta-
pered covariance matrix �T and obtain a covariance-tapered log-likelihood func-
tion

�T(η;y,X) = −(N/2) log(2π) − (1/2) log|�T|
(2.6)

− (1/2)(y − Xβ)T �−1
T (y − Xβ).
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We let η̂MLET
= arg maxη{�T(η;y,X)} denote the maximum covariance-tapered

likelihood estimate (MLET) of η.
Let �k,T = ∂�T/∂θk = �k ◦ �(ω), �k

T = ∂�−1
T /∂θk = �k ◦ �(ω), �kk′,T =

∂2�T/∂θk ∂θk′ = �kk′ ◦ �(ω), and �kk′
T = ∂2�−1

T /∂θk ∂θk′ = �kk′ ◦ �(ω) denote
the covariance-tapered version of �k , �k , �kk′ and �kk′

, respectively. From (2.6),
�′

T(β) = XT �−1
T (y − Xβ) and the kth element of �′

T(θ) is −(1/2) tr(�−1
T �k,T) −

(1/2)(y − Xβ)T �k
T(y − Xβ). Moreover, �′′

T(β,β) = −XT �−1
T X, the kth col-

umn of �′′
T(β, θ) is XT �k

T(y − Xβ), and the (k, k′)th entry of �′′
T(θ , θ) is

−(1/2){tr(�−1
T �kk′,T + �k

T�k′,T) + (y − Xβ)T �kk′
T (y − Xβ)}. Since E{−�′′

T(β ,
θ)} = 0, the covariance-tapered information matrix of η is IT(η) = diag{IT(β),
IT(θ)}, where IT(β) = E{−�′′

T(β,β)} = XT �−1
T X and the (k, k′)th entry of

IT(θ) = E{−�′′
T(θ , θ)} is tkk′,T/2 with tkk′,T = tr(�−1

T �k,T�−1
T �k′,T) = tr(�T�k

T ×
�T�k′

T ).
Now, we define a covariance-tapered penalized log-likelihood function as

QT(η) = �T(η;y,X) − N

p∑
j=1

pλ(|βj |),(2.7)

where �T(η;y,X) is a covariance-tapered log-likelihood function as defined
in (2.6). Moreover, we let η̂PMLET

= arg maxη{QT(η)} denote the penalized maxi-
mum covariance-tapered likelihood estimate (PMLET) of η.

For penalty functions, we mainly consider smoothly clipped absolute deviation
(SCAD) defined as

pλ(β) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ|β|, if |β| ≤ λ,

λ2 + (a − 1)−1(aλ|β| − β2/2 − aλ2 + λ2/2),

if λ < |β| ≤ aλ,

(a + 1)λ2/2, if |β| > aλ,

(2.8)

for some a > 2 [6]. For i.i.d. error in standard linear regression, variable selec-
tion and parameter estimation under the SCAD penalty are shown to possess three
desirable properties: unbiasedness, sparsity and continuity [7]. For spatial linear
regression (2.1), these properties continue to hold for the SCAD penalty following
arguments similar to those in Wang and Zhu [21].

To compute PMLET under the SCAD penalty, Fan and Li [7] proposed a locally
quadratic approximation (LQA) of the penalty function and a Newton–Raphson al-
gorithm. Although fast, a drawback of the LQA algorithm is that once a regression
coefficient is shrunk to zero, it remains to be zero in the remainder iterations. More
recently, Zou and Li [24] developed a unified algorithm to improve computational
efficiency, which, unlike the LQA algorithm, is based on the locally linear ap-
proximation (LLA) of the penalty function. Moreover, Zou and Li [24] proposed
one-step LLA estimation that approximates the solution after just one iteration in
a Newton–Raphson-type algorithm starting at the MLE. We extend this one-step
LLA estimation to approximate PMLET for the spatial linear model as follows.
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ALGORITHM 1. At the initialization step, we let η
(0)
T = η̂MLET

with β
(0)
T =

β̂MLET
and θ

(0)
T = θ̂MLET. We then update β by maximizing

Q∗
T(β) = −(1/2)(y − Xβ)T �T

(
θ

(0)
T

)−1
(y − Xβ) − N

p∑
j=1

p′
λ

(∣∣β(0)
jT

∣∣)|βj |(2.9)

with respect to β , where the first term is from (2.6) and the second term is an LLA
of the penalty function in (2.7). The resulting one-step sparse estimate (OSE) of
β is denoted as β̂OSET

. We may also update θ by maximizing (2.6) with respect
to θ given β̂OSET

. The resulting OSE of θ is denoted as θ̂OSET. We let η̂OSET
=

(β̂
T

OSET
, θ̂

T

OSET
)T denote the OSET of η, which approximates η̂PMLET

.
It is worth mentioning an alternative covariance-tapered log-likelihood func-

tion [12],

�T2(η;y,X) = −(N/2) log(2π) − (1/2) log|�T|
(2.10)

− (1/2)(y − Xβ)T {�−1
T ◦ �(ω)}(y − Xβ).

If the alternative covariance tapering is used in Algorithm 1, the resulting estimates
of parameters, especially the range parameter, tend to be more accurate, but require
more time to compute �−1

T ◦ �(ω) than �−1
T . For a numerical comparison, see

Section 6.1 in Chu et al. [1].
Finally, two tuning parameters, λ and a, in the SCAD penalty (2.8) need to be

estimated. For computational ease, we fix a = 3.7 as recommended by Fan and
Li [7]. To determine λ, we use the Bayesian information criterion (BIC); see Wang
et al. [20]. In particular, let

σ̂ 2(λ) = N−1{y − Xβ̂(λ)}T �{̂θ(λ)}−1{y − Xβ̂(λ)},(2.11)

where β̂(λ) and θ̂(λ) are the PMLE obtained for a given λ, and let

BIC(λ) = N log{σ̂ 2(λ)} + k(λ) log(N),(2.12)

where k(λ) is the number of nonzero regression coefficients [19]. Thus, an estimate
of λ is λ̂ = arg minλ{BIC(λ)}.

When �(ω) is a matrix of 1’s, �T = � and �T(·) = �(·). Similarly, we hence-
forth obtain needed counterparts of the notation in this section under maximum
likelihood without covariance tapering by omitting T. For details regarding such
notation, see Section 2 of Chu et al. [1].

3. Asymptotic properties of PMLE and OSE.

3.1. Notation and assumptions. We let β0 = (β10, . . . , βp0)
T = (βT

10,β
T
20)

T

denote the true regression coefficients, where without loss of generality β10 is an



PMLE AND VARIABLE SELECTION IN GEOSTATISTICS 2613

s × 1 vector of nonzero regression coefficients and β20 = 0 is a (p − s) × 1 zero
vector. Let θ0 denote the vector of true covariance function parameters.

We consider the asymptotic framework in Mardia and Marshall [14] and let
n denote the stage of the asymptotics. In particular, write Rn = R, Nn = N ,
and λn = λ. Furthermore, define an = max1≤j≤p{|p′

λn
(|βj0|)| :βj0 
= 0} and

bn = max1≤j≤p{|p′′
λn

(|βj0|)| :βj0 
= 0}. Also, let φ(β) = (p′
λ(|β1|) sgn(β1), . . . ,

p′
λ(|βp|) sgn(βp))T and �(β) = diag{p′′

λ(|β1|), . . . , p′′
λ(|βp|)}. Moreover, denote

φn(β) = φ(β) and �n(β) = �(β), both evaluated at λn. For all other quantities
that depend on n, the stage n will be in either the left superscript or the right sub-
script.

Recall that ntkk′ = tr(n�−1n�k
n�−1n�k′). Let μ1 ≤ · · · ≤ μNn denote the

eigenvalues of n�. For l = 1, . . . ,Nn, let μk
l denote the eigenvalues of n�k such

that |μk
1| ≤ · · · ≤ |μk

Nn
| and let μkk′

l denote the eigenvalues of n�kk′ such that

|μkk′
1 | ≤ · · · ≤ |μkk′

Nn
|.

For an Nn×Nn matrix A = (aij )
Nn

i,j=1, the Frobenius, max and spectral norm are

defined as ‖A‖F = (
∑Nn

i=1
∑Nn

j=1 a2
ij )

1/2, ‖A‖max = max{|aij | : i, j = 1, . . . ,Nn}
and ‖A‖s = max{|μl(A)| : l = 1, . . . ,Nn}, where μl(A) is the lth eigenvalue of A.

The following regularity conditions are assumed for Theorems 3.1 and 3.2:

(A.1) For θ ∈ � where � is an open subset of R
q such that η ∈ R

p × �, the
covariance function γ (·, ·; θ) is twice differentiable with respect to θ with con-
tinuous second-order derivatives and is positive definite in the sense that, for any
Nn ≥ 1 and s1, . . . , sNn , the covariance matrix � = [γ (si , sj ; θ)]Nn

i,j=1 is positive
definite.

(A.2) There exist positive constants C, Ck and Ckk′ , such that limn→∞ μNn =
C < ∞, limn→∞ |μk

Nn
| = Ck < ∞, limn→∞ |μkk′

Nn
| = Ckk′ < ∞ for all k, k′ =

1, . . . , q .
(A.3) For some δ > 0, there exist positive constants Dk , Dkk′ and D∗

kk′ such

that (i) ‖n�k‖−2
F = DkN

−1/2−δ
n for k = 1, . . . , q; (ii) either ‖n�k + n�k′‖−2

F =
Dkk′N−1/2−δ

n or ‖n�k − n�k′‖−2
F = D∗

kk′N
−1/2−δ
n for any k 
= k′.

(A.4) For any k, k′ = 1, . . . , q , (i) nakk′ = limn→∞{ntkk′(ntkk
ntk′k′)−1/2} ex-

ists and An = (nakk′)qk,k′=1 is nonsingular; (ii) |ntkk
ntk′k′−1| and |ntk′k′ntkk

−1| are
bounded.

(A.5) The design matrix X has full rank p and is uniformly bounded in max
norm with limn→∞(XT X)−1 = 0.

(A.6) There exists a positive constant C0, such that ‖n�−1‖s < C0 < ∞.
(A.7) For β ∈ R

p and θ ∈ �, N−1
n In(β) → J(β) and N−1

n In(θ) → J(θ) as
n → ∞.

(A.8) an = O(N
−1/2
n ) and bn → 0 as n → ∞.

(A.9) There exist positive constants c1 and c2 such that, when β1, β2 > c1λn,
|p′′

λn
(β1) − p′′

λn
(β2)| ≤ c2|β1 − β2|.
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(A.10) λn → 0,N
1/2
n λn → ∞ as n → ∞.

(A.11) lim infn→∞ lim infβ→0+ λ−1
n p′

λn
(β) > 0.

Conditions (A.2), (A.3)(i), (A.4)(i) and (A.5) are assumed in Mardia and Mar-
shall [14]. Conditions (A.1) and (A.5) are standard assumptions for MLE, whereas
(A.2), (A.3)(i), (A.4)(i) and (A.6) ensure smoothness, growth and convergence of
the information matrix [14]. Together with (A.7), they yield a central limit theo-
rem of �′(η) and convergence in probability of �′′(η). For establishing Theorems
3.1 and 3.2, only the parts (i) of (A.3) and (A.4) are used. Moreover, the implicit
asymptotic framework is increasing the domain, where the sample size Nn grows
at the increase of the spatial domain Rn [14]. Finally, (A.8)–(A.11) are mild reg-
ularity conditions regarding the penalty function and are sufficient for Theorems
3.1 and 3.2 to hold [7] and [8].

3.2. Consistency and asymptotic normality of PMLE.

THEOREM 3.1. Under (A.1)–(A.9), there exists, with probability tending to
one, a local maximizer nη̂ of Q(η) such that ‖nη̂ − η0‖ = Op(N

−1/2
n + an). If, in

addition, (A.10)–(A.11) hold, then nη̂ = (nβ̂T
1 , nβ̂T

2 , nθ̂T )T satisfies:

(i) Sparsity: nβ̂2 = 0 with probability tending to 1.
(ii) Asymptotic normality:

N1/2
n {J(β10) + �n(β10)}[nβ̂1 − β10 + {J(β10) + �n(β10)}−1φn(β10)]

D−→ N(0,J(β10)),

N1/2
n (nθ̂ − θ0)

D−→ N(0,J(θ0)
−1),

where J(β10) and �n(β10) consist of the first s × s upper-left submatrix of J(β0)

and �n(β0), respectively.

Theorem 3.1 establishes the asymptotic properties of PMLE. Under (A.1)–
(A.9), there exists a local maximizer converging to the true parameter at the rate
Op(N

−1/2
n + an). Since an = O(N

−1/2
n ) from (A.8), the local maximizer is root-

Nn consistent. As shown in Fan and Li [7], the SCAD penalty function satisfies
(A.8)–(A.11) by choosing an appropriate tuning parameter λn. Therefore, by The-
orem 3.1, the PMLE under the SCAD penalty possesses the sparsity property and
asymptotic normality. Moreover, when the sample size Nn is sufficiently large,
�n(β10) will be close to zero. That is, performance of the PMLE is asymptotically
as efficient as the MLE of β1 when knowing β2 = 0. The arguments above hold
for other penalty functions such as Lq penalty with q < 1, but not q = 1.
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3.3. Consistency and asymptotic normality of OSE.

THEOREM 3.2. Suppose that the initial value nη(0) satisfies nη(0) − η0 =
Op(N

−1/2
n ). For the SCAD penalty, under (A.1)–(A.7) and (A.10), the OSE

nη̂OSE = (nβ̂T
1,OSE, nβ̂T

2,OSE, nθ̂T
OSE)T satisfies:

(i) Sparsity: nβ̂2,OSE = 0 with probability tending to 1.
(ii) Asymptotic normality:

N1/2
n (nβ̂1,OSE − β10)

D−→ N(0,J(β10)
−1),

N1/2
n (nθ̂OSE − θ0)

D−→ N(0,J(θ0)
−1),

where J(β10) consists of the first s × s upper-left submatrix of J(β0).

Theorem 3.2 establishes the asymptotic properties of OSE such that the OSE
is sparse and asymptotically normal under the SCAD penalty. The OSE for β1
and θ has the same limiting distribution as the PMLE and thus achieves the same
efficiency. In fact, Theorem 3.2 holds for another general class of penalty functions
such that p′

λn
(·) = λnp(·) where p′(·) is continuous on (0,∞), and there is some

α > 0 such that p′(β) = O(β−α) as β → 0+ [24]. Following similar arguments
for the SCAD penalty in our Theorem 3.2 and those in Zou and Li [24], it can be
shown that, if N

(1+α)/2
n λn → ∞ and N

1/2
n λn → 0, Theorem 3.2 continues to hold.

In practice, we set the initial value nη(0) to be the MLE nη̂MLE, as it satisfies the
consistency condition.

4. Asymptotic properties under covariance tapering.

4.1. Notation and assumptions. In order to establish the asymptotic properties
under covariance tapering, we continue to assume (A.1)–(A.11). We now restrict
our attention to a second-order stationary error process in R

2 with an isotropic
covariance function γ (d), where d ≥ 0 is the lag distance. We also assume that the
distance between any two sampling sites is greater than a constant [14]. As for the
tapering function, we consider (2.5).

Let γk(d) = ∂γ (d)/∂θk , γkk′(d) = ∂2γ (d)/∂θk ∂θk′ , for k, k′ = 1, . . . , q . Two
additional regularity conditions are assumed for Theorems 4.2 and 4.3:

(A.12) 0 < infn{ωnN
−1/2
n } ≤ supn{ωnN

−1/2
n } < ∞, where ωn = ω is the

threshold distance in the tapering function (2.5).
(A.13) There exists a nonincreasing function γ0 with

∫ ∞
0 u2γ0(u) du < ∞ such

that max{|γ (u)|, |γk(u)|, |γk,k′(u)|} ≤ γ0(u) for all u ∈ (0,∞) and 1 ≤ k, k′ ≤ q .

From (A.12), the threshold distance ωn is bounded away from 0 and grows at
the rate of N

1/2
n . The condition in (A.13) has to do with the covariance function. It

can be shown that they hold for some of the commonly-used covariance functions
such as the Matérn class. Details are given in Appendix D of Chu et al. [1].
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4.2. Consistency and asymptotic normality of PMLET.

PROPOSITION 4.1. Under (A.1)–(A.7) and (A.12)–(A.13), the MLET
nη̂MLET

is asymptotically normal with

N1/2
n (nη̂MLET

− η0)
D−→ N(0,J(η0)

−1).

Proposition 4.1 establishes the asymptotic normality of MLET. In particular,
MLE and MLET have the same limiting distribution. This implies that, under
the regularity conditions, covariance-tapered MLE achieves the same efficiency
as MLE. Thus, in Algorithm 1 for computing the OSET, we may set the initial
parameter values to nη̂MLET

.

THEOREM 4.2. Under (A.1)–(A.9) and (A.12)–(A.13), there exists, with
probability tending to one, a local maximizer nη̂T of QT(η) defined in (2.7) such
that ‖nη̂T − η0‖ = Op(N

−1/2
n + an). If, in addition, (A.10)–(A.11) hold, then

nη̂T = (nβ̂T
1,T, nβ̂T

2,T, nθ̂T
T )T satisfies:

(i) Sparsity: nβ̂2,T = 0 with probability tending to 1.
(ii) Asymptotic normality:

N1/2
n {J(β10) + �n(β10)}[nβ̂1,T − β10 + {J(β10) + �n(β10)}−1φn(β10)]

D−→ N(0,J(β10)),

N1/2
n (nθ̂T − θ0)

D−→ N(0,J(θ0)
−1),

where J(β10) and �n(β10) consist of the first s × s upper-left submatrix of J(β0)

and �n(β0), respectively.

In Theorem 4.2, PMLET is shown to be consistent, sparse and asymptotically
normal. In particular, PMLET has the same asymptotic distribution as PMLE in
Theorem 3.1. That is, PMLET achieves the same efficiency and oracle property as
PMLE asymptotically, yet in the mean time is more computationally efficient.

4.3. Consistency and asymptotic normality of OSET.

THEOREM 4.3. Suppose that the initial value nη
(0)
T in Algorithm 1 satisfies

nη
(0)
T − η0 = Op(N

−1/2
n ). For the SCAD penalty function, under (A.1)–(A.7),

(A.10) and (A.12)–(A.13), the OSET
nη̂OSET

= (nβ̂T
1,OSET

, nβ̂T
2,OSET

, nθ̂T
OSET

)T

satisfies:

(i) Sparsity: nβ̂2,OSET
= 0 with probability tending to 1.
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(ii) Asymptotic normality:

N1/2
n (nβ̂1,OSET

− β10)
D−→ N(0,J(β10)

−1),

N1/2
n (nθ̂OSET − θ0)

D−→ N(0,J(θ0)
−1),

where J(β10) consists of the first s × s upper-left submatrix of J(β0).

Theorem 4.3 establishes the asymptotic properties of OSET under the SCAD
penalty. In particular, OSET achieves the same limiting distribution as OSE of
β1 and θ in Theorem 3.2 and thus the same efficiency. Furthermore, similar to
Theorem 3.2, Theorem 4.3 holds for the class of penalty functions such that
p′

λn
(·) = λnp(·) where p′(·) is continuous on (0,∞), and there is some α > 0

such that p′(β) = O(β−α) as β → 0+, provided that N
(1+α)/2
n λn → ∞ and

N
1/2
n λn → 0.

5. Numerical examples.

5.1. Simulation study. We now conduct a simulation study to investigate the
finite-sample properties of OSE and OSET. The spatial domain of interest is as-
sumed to be a square [0, l]2 of side lengths l = 5,10,15. The sample sizes are set
to be N = 100,400,900 for l = 5,10,15, respectively, with a fixed sampling den-
sity of 4. For regression, we generate seven covariates that follow standard normal
distributions with a cross-covariate correlation of 0.5. The regression coefficients
are set to be β = (4,3,2,1,0,0,0)T . We standardize the covariates to have mean
0 and variance 1 and standardize y to have mean 0. Thus, there will be no intercept
in the vector of regression coefficients β . For spatial dependence, the error terms
follow an exponential covariance function γ (d) = σ 2(1 − c) exp(−d/r), where
σ 2 = 9 is the variance, c = 0.2 is the nugget effect and r = 1 is the range parame-
ter. For each choice of sample size N , a total of 100 data sets are simulated.

For each simulated data set, we compute OSE and OSET using Algorithm 1.
For OSET, we consider different threshold values for covariance tapering ω =
l/2k for k = 1,2, . . . . We present only the case of ω = l/4 to save space. Our
methods are compared against several alternatives. Of particular interest is OSE
under a standard linear regression where spatial autocorrelation is unaccounted for
in the penalized loglikelihood function. This would be akin to PLS under SCAD
in Wang and Zhu [21] and will be referred to as OSEAlt1. In addition, we modify
the initialization step of Algorithm 1 by using MLE under the true model which
is unknown but assumed to be known. This is an attempt to evaluate the effect of
starting values and will be referred to as OSEAlt2. Last, we consider a benchmark
case, referred to as OSEAlt3, where the true model is assumed to be known and the
MLE of the nonzero regression coefficients and the covariance function parameters
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are computed. Our OSE and OSET will be compared against this benchmark to
evaluate the oracle properties.

For each choice of sample size N , we first compute the average numbers of cor-
rectly (C0) and incorrectly (I0) identified zero-valued regression coefficients from
OSE β̂OSE and OSET β̂OSET

, as well as those from OSEAlt1 and OSEAlt2. The true
number of zero-valued regression coefficients is 3 as is assumed in OSEAlt3. Then,
we compute means of the nonzero-valued OSE β̂1,OSE and OSET β̂1,OSET

, as well
as the corresponding covariance function parameters θ̂OSE and θ̂OSET. We estimate
standard deviations (SDs) of the parameter estimates using the information matrix.
The true SD is approximated by the median of the sample SD (SDm) of the 100
parameter estimates. The results are given in Tables 1–3.

In terms of variable selection, C0 tends to the true value 3 and I0 tends to 0, as
the sample size N increases, for OSE, OSET, OSEAlt1 and OSEAlt2. When the sam-

TABLE 1
The average number of correctly identified 0 coefficients (C0), average number of incorrectly
identified 0 coefficients (I0), mean, standard deviation (SD) and median estimated standard

deviation (SDm) under OSE, OSET, OSEAlt1, OSEAlt2 and OSEAlt3 for sample size N = 100

Method Truth OSE OSET OSEAlt1 OSEAlt2 OSEAlt3

C0 3 2.79 2.84 2.84 2.95 3.00
I0 0.06 0.10 0.32 0.06 0.00

β1 4.00 4.01 4.03 4.17 4.01 4.01
SD 0.28 0.29 0.39 0.27 0.27
SDm 0.26 0.27 0.36 0.26 0.26

β2 3.00 3.04 3.03 3.08 3.04 3.03
SD 0.30 0.30 0.41 0.30 0.29
SDm 0.25 0.26 0.36 0.25 0.25

β3 2.00 1.94 1.97 2.00 1.94 1.93
SD 0.29 0.31 0.50 0.28 0.28
SDm 0.25 0.26 0.36 0.26 0.26

β4 1.00 1.02 1.03 0.78 1.03 1.02
SD 0.35 0.40 0.55 0.33 0.26
SDm 0.24 0.24 0.26 0.24 0.26

r 1.00 0.79 6.31 – 0.83 0.84
SD 0.54 2.14 – 0.57 0.57
SDm 0.48 17.65 – 0.51 0.51

c 0.20 0.16 0.23 – 0.17 0.17
SD 0.12 0.13 – 0.12 0.12
SDm 0.11 0.19 – 0.11 0.11

σ 2 9.00 7.96 7.14 7.74 8.03 8.03
SD 2.28 1.53 2.06 2.36 2.36
SDm 2.21 4.79 1.16 2.28 2.28
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TABLE 2
The average number of correctly identified 0 coefficients (C0), average number of incorrectly
identified 0 coefficients (I0), mean, standard deviation (SD) and median estimated standard

deviation (SDm) under OSE, OSET, OSEAlt1, OSEAlt2 and OSEAlt3 for sample size N = 400

Method Truth OSE OSET OSEAlt1 OSEAlt2 OSEAlt3

C0 3 2.97 2.97 2.97 2.98 3.00
I0 0.00 0.00 0.01 0.00 0.00

β1 4.00 3.98 3.98 3.98 3.99 3.99
SD 0.14 0.14 0.20 0.14 0.14
SDm 0.13 0.13 0.19 0.13 0.13

β2 3.00 3.02 3.03 3.03 3.02 3.02
SD 0.14 0.14 0.21 0.13 0.13
SDm 0.13 0.13 0.19 0.13 0.13

β3 2.00 2.01 2.01 2.01 2.01 2.01
SD 0.12 0.12 0.17 0.12 0.12
SDm 0.13 0.13 0.19 0.13 0.13

β4 1.00 0.99 1.00 0.96 1.00 1.00
SD 0.12 0.12 0.26 0.12 0.12
SDm 0.13 0.13 0.19 0.13 0.13

r 1.00 0.90 2.87 – 0.90 0.90
SD 0.29 4.08 – 0.29 0.29
SDm 0.25 5.24 – 0.25 0.25

c 0.20 0.19 0.29 – 0.19 0.19
SD 0.06 0.07 – 0.06 0.06
SDm 0.05 0.11 – 0.05 0.05

σ 2 9.00 8.70 8.25 8.71 8.70 8.70
SD 1.39 1.00 1.37 1.39 1.39
SDm 1.29 2.95 0.63 1.29 1.29

ple size is relatively small (N = 100), OSEAlt2 has the best performance with the
largest C0 and smallest I0, reflecting the effect of starting values in Algorithm 1.
But it is not practical, as we do not know what the true model is in actual data
analysis. OSEAlt1 assuming no spatial dependence in the regression model seems
to over-shrink the regression coefficients. While C0 = 2.84 is close to 3 under
OSEAlt1, I0 = 0.32 is also large, compared to our OSE and OSET. Between OSE
and OSET, it appears that C0 is slightly better, but I0 is slightly worse for OSET
than OSE.

In terms of estimation of the nonzero regression coefficients, both accuracy and
precision improve as the sample size N increases, for all five OSE cases consid-
ered here. While the accuracy is similar between OSEAlt1 and our OSE and OSET,
a striking feature is the larger SD of OSEAlt1 when compared with our OSE and
OSET, for all three sample sizes N = 100,400,900. This suggests that, by in-
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TABLE 3
The average number of correctly identified 0 coefficients (C0), average number of incorrectly
identified 0 coefficients (I0), mean, standard deviation (SD) and median estimated standard

deviation (SDm) under OSE, OSET, OSEAlt1, OSEAlt2 and OSEAlt3 for sample size N = 900

Method Truth OSE OSET OSEAlt1 OSEAlt2 OSEAlt3

C0 3 3.00 3.00 3.00 3.00 3.00
I0 0.00 0.00 0.00 0.00 0.00

β1 4.00 4.00 4.01 4.03 4.00 4.00
SD 0.10 0.10 0.13 0.10 0.10
SDm 0.09 0.09 0.13 0.09 0.09

β2 3.00 3.01 3.01 2.99 3.01 3.01
SD 0.08 0.08 0.12 0.08 0.08
SDm 0.09 0.09 0.13 0.09 0.09

β3 2.00 1.98 1.99 1.98 1.98 1.98
SD 0.08 0.08 0.11 0.08 0.08
SDm 0.09 0.09 0.13 0.09 0.09

β4 1.00 1.00 1.00 1.01 1.00 1.00
SD 0.09 0.09 0.13 0.09 0.09
SDm 0.09 0.09 0.13 0.09 0.09

r 1.00 0.94 1.44 – 0.94 0.94
SD 0.17 0.50 – 0.17 0.17
SDm 0.17 0.40 – 0.17 0.17

c 0.20 0.19 0.25 – 0.19 0.19
SD 0.04 0.04 – 0.04 0.04
SDm 0.04 0.04 – 0.04 0.04

σ 2 9.00 8.80 8.50 8.80 8.80 8.80
SD 0.90 0.74 0.87 0.90 0.90
SDm 0.85 1.15 0.42 0.85 0.85

cluding spatial dependence directly in the penalized likelihood function, we gain
statistical efficiency in parameter estimation. For the small sample size (N = 100),
SD based on the information matrix without accounting for spatial dependence ap-
pears to underestimate the true variation estimated by SDm. Furthermore, the SD’s
of OSE and OSET tend to those in the benchmark case OSEAlt3 as the sample size
increases, confirming the oracle properties established in Sections 3 and 4. For 100
simulations, it takes about 1 second, 30 seconds and 4 minutes per simulation for
sample sizes N = 100, 400, 900, respectively.

Based on these simulation results, it may be tempting to consider using OSEAlt1
to select variables and then OSEAlt3 for parameter estimation when the sample size
is reasonably large, as a means of saving computational time. We contend that this
is not necessary, as our OSE or OSET enables variable selection and parameter
estimation simultaneously, at the similar computational cost. Moreover, in prac-
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tice, it is not always clear how large a sample size at hand really is, as an effective
sample size is influenced by factors such as the strength of spatial dependence in
the error process.

5.2. Data examples. The first data example consists of January precipitation
(inches per 24-hour period) on the log scale from 259 weather stations in the state
of Colorado [15]. Candidate covariates are elevation, slope, aspect and seven spec-
tral bands from a MODIS satellite imagery (B1M through B7M). It is of interest
to investigate the relationship between precipitation and these covariates.

We first fit a spatial linear model with an exponential covariance function via
maximum likelihood. The parameter estimates and their standard errors in Table 4
suggest that the regression coefficients for elevation, B1M, B4M, B6M and B7M
are possibly significant. Among the covariance function parameters, of most inter-
est is the range parameter, which is significantly different from zero. This indicates
that there is spatial autocorrelation among the errors in the linear regression. Our
OSE method selects elevation and B4M, and shrinks all the other regression co-
efficients to zero. The covariance function parameter estimates are close to the
MLE. For comparison, we fit a standard linear regression with i.i.d. errors and
the corresponding OSEAlt1 selects slope and aspect in addition to elevation and
B4M. However, the regression coefficients for slope and aspect do not appear to
be significant.

TABLE 4
Regression coefficient estimates and standard deviations (SD) using maximum likelihood (MLE)

and one-step sparse estimation (OSE) under a spatial linear model with an exponential covariance
function for the Gaussian error process, as well as OSE under a standard linear model

with i.i.d. errors (OSEAlt1)

Terms MLE SD OSE SD OSEAlt1 SD

Regression coefficients

Elevation 0.305 0.055 0.228 0.054 0.195 0.044
Slope 0.016 0.026 – – 0.035 0.040
Aspect −0.004 0.022 – – 0.032 0.034
B1M 0.214 0.157 – – – –
B2M 0.058 0.064 – – – –
B3M 0.017 0.109 – – – –
B4M −0.404 0.183 −0.089 0.034 −0.264 0.045
B5M 0.043 0.089 – – – –
B6M −0.162 0.116 – – – –
B7M 0.172 0.098 – – – –

Covariance function parameters

Range 0.967 0.368 1.043 0.417 – –
Nugget 0.183 0.061 0.196 0.064 – –
σ 2 0.287 0.067 0.304 0.074 0.289 0.026
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In addition, we apply our method to the whiptail lizard data as described in
Section 1. There are 148 sites, and the response variable is the abundance of lizards
at each site. There are 26 covariates regarding location, vegetation, flora, soil and
ants. Hoeting et al. [10] considered only 6 covariates after a separate prescreening
procedure, and selected 2 covariates in their final model. In this paper, we consider
all 26 covariates simultaneously, and interestingly reach the same final model. For
details of the results, see Section 6.2 in Chu et al. [1].

APPENDIX: TECHNICAL DETAILS

For ease of notation, we suppress n in ntkk′ , nakk′ , n�, In, An, nη̂, nβ̂ and nθ̂ .
The detailed proofs of all lemmas and theorems are given in Chu et al. [1].

A.1. Asymptotic properties of PMLE and OSE.

LEMMA 1. Under (A.1)–(A.7), for any given η ∈ R
p × �, we have, as n →

∞,

N−1/2
n �′(η)

D−→ N(0,J(η)), N−1
n �′′(η)

P−→ −J(η),

where J(η) = diag{J(β),J(θ)}.
REMARK. Lemma 1 establishes the asymptotic behavior of the first-order and

the second-order derivatives of the log-likelihood function �(η), scaled by N
−1/2
n

and N−1
n , respectively. In addition, by Theorem 2 of Mardia and Marshall [14],

η̂MLE is consistent and asymptotically normal with ‖η̂MLE − η0‖ = Op(N
−1/2
n )

and N
1/2
n (̂ηMLE −η0)

D−→ N(0,J(η0)
−1). Moreover, for a random vector η∗, such

that ‖I(η)1/2(η∗ − η)‖ = Op(1), by Theorem 2 of Mardia and Marshall [14], we

have N−1
n �′′(η∗) P−→ −J(η). These results will be used repeatedly in the proof of

Theorems 3.1 and 3.2.

PROOF OF THEOREM 3.1. The proof follows from Lemma 1 and arguments
extended from Theorems 1 and 2 in Fan and Li [7]. See details in Chu et al. [1].

�

PROOF OF THEOREM 3.2. The proof follows from Lemma 1 and arguments
extended from Theorem 5 in Zou and Li [24]. See details in Chu et al. [1]. �

A.2. Asymptotic properties of PMLET and OSET. Let |A| denote the car-
dinality of a discrete set A. Let μ1,T ≤ · · · ≤ μNn,T denote the eigenvalues of ta-
pered covariance matrix �T. Let μk

l,T denote the eigenvalues of �k,T such that

|μk
1,T| ≤ · · · ≤ |μk

Nn,T| and let μkk′
l,T denote the eigenvalues of �kk′,T such that

|μkk′
1,T| ≤ · · · ≤ |μkk′

Nn,T|. For a matrix A, we let μmin(A) denote the minimum eigen-

value of A. Also, recall that tkk′,T = tr(�−1
T �k,T�−1

T �k′,T).
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LEMMA 2. Under (A.12)–(A.13), we have:

(i) ‖� − �T‖∞ = O(N−1/2
n ); (ii) ‖�k − �k,T‖∞ = O(N−1/2

n );
(iii) ‖�kk′ − �kk′,T‖∞ = O(N−1/2

n ).

REMARK. Lemma 2 establishes that the order of the difference between the
covariance matrix � and the tapered covariance matrix �T is N

−1/2
n , as well as

that of the first-order and the second-order derivatives of the covariance matrices.
These results are used when establishing Lemma 3.

LEMMA 3. Under (A.1)–(A.4), (A.6) and (A.12), (A.13), we have:

(C.1) limn→∞ μNn,T = C < ∞, limn→∞|μk
Nn,T| = Ck < ∞, limn→∞|μkk′

Nn,T| =
Ckk′ < ∞ for any k, k′ = 1, . . . , q .

(C.2) For k = 1, . . . , q , ‖�k,T‖−2
F = O(N

−1/2−δ
n ), for some δ > 0.

(C.3) ‖�−1
T ‖s < C0 < ∞.

(C.4) For any k, k′ = 1, . . . , q , akk′,T = lim{tkk′,T(tkk,Ttk′k′,T)−1/2} exists and
is equal to akk′ = lim{tkk′(tkktk′k′)−1/2}. That is, AT = (akk′,T)

q

k,k′=1 = A =
(akk′)qk,k′=1 and is nonsingular.

REMARK. Conditions (C.1)–(C.4) are the covariance tapering counterparts of
(A.2), (A.3)(i), (A.4)(i) and (A.6). Together with (A.5), they yield Proposition 4.1.
In fact, Lemmas 2 and 3 hold for other tapering functions such as truncated poly-
nomial functions of d/ω with constant term equal to 1 when d < ω, and 0 oth-
erwise [22]. Furthermore, (A.12) can be weakened to 0 < infn{ωnN

−1/2+τ
n } ≤

supn{ωnN
−1/2+τ
n } < ∞, with τ < min{1/2, δ}.

LEMMA 4. Under (A.1)–(A.7) and (A.12)–(A.13), for any given η ∈ R
p ×�,

we have

N−1/2
n �′

T(η)
D−→ N(0,J(η)) and N−1

n �′′
T(η)

P−→ −J(η),

where recall that J(η) = diag{J(β),J(θ)}.

REMARK. Lemma 4 establishes the asymptotic behavior of the first-order
and the second-order derivatives of the covariance-tapered log-likelihood func-
tion �T(η). The rates of convergence and the limiting distributions are the same as
those for the log-likelihood function. As in Lemma 1, it follows that MLET η̂MLET

is consistent and asymptotically normal, as is given in Proposition 4.1. These re-
sults will be used to establish Theorems 4.2 and 4.3 and play the same role as
Lemma 1 when showing Theorems 3.1 and 3.2.
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PROOF OF PROPOSITION 4.1. From Lemma 3, (C.1)–(C.4) are satisfied. To-
gether with (A.5), the regularity conditions of Theorem 2 of Mardia and Marshall
[14] hold. Thus, the result in Proposition 4.1 follows. �

PROOF OF THEOREM 4.2. The proof of Theorem 4.2 is similar to that of
Theorem 3.1. The main differences are that the parameter estimates η̂PMLE, log-
likelihood function �(η) and penalized log-likelihood Q(η) are replaced with their
covariance-tapered counterparts η̂PMLET

, �T(η) and QT(η), respectively. Further-
more, we replace the results from Lemma 1 with those from Lemma 4, which holds
due to Lemmas 2 and 3 under the additional assumptions (A.12) and (A.13). �

PROOF OF THEOREM 4.3. The proof of Theorem 4.3 is similar to that of
Theorem 3.2, but we replace the parameter estimates η̂OSE, log-likelihood func-
tion �(η) and Q∗(β) with their covariance-tapered counterparts η̂OSET

, �T(η) and
Q∗

T(β), respectively. As before, we replace the results from Lemma 1 with those
from Lemma 4, where the additional conditions (A.12) and (A.13) are assumed
and Lemmas 2 and 3 are applied. �
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