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FACTOR MODELS AND VARIABLE SELECTION IN
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The paper considers linear regression problems where the number of pre-
dictor variables is possibly larger than the sample size. The basic motivation
of the study is to combine the points of view of model selection and func-
tional regression by using a factor approach: it is assumed that the predictor
vector can be decomposed into a sum of two uncorrelated random compo-
nents reflecting common factors and specific variabilities of the explanatory
variables. It is shown that the traditional assumption of a sparse vector of
parameters is restrictive in this context. Common factors may possess a sig-
nificant influence on the response variable which cannot be captured by the
specific effects of a small number of individual variables. We therefore pro-
pose to include principal components as additional explanatory variables in
an augmented regression model. We give finite sample inequalities for esti-
mates of these components. It is then shown that model selection procedures
can be used to estimate the parameters of the augmented model, and we de-
rive theoretical properties of the estimators. Finite sample performance is il-
lustrated by a simulation study.

1. Introduction. The starting point of our analysis is a high-dimensional lin-
ear regression model of the form

Yi = βT Xi + εi, i = 1, . . . , n,(1.1)

where (Yi,Xi), i = 1, . . . , n, are i.i.d. random pairs with Yi ∈ R and Xi =
(Xi1, . . . ,Xip)T ∈ R

p . We will assume without loss of generality that E(Xij ) = 0
for all j = 1, . . . , p. Furthermore, β is a vector of parameters in R

p and (εi)i=1,...,n

are centered i.i.d. real random variables independent with Xi with Var(εi) = σ 2.
The dimension p of the vector of parameters is assumed to be typically larger than
the sample size n.

Roughly speaking, model (1.1) comprises two main situations which have been
considered independently in two separate branches of statistical literature. On one
side, there is the situation where Xi represents a (high-dimensional) vector of dif-
ferent predictor variables. Another situation arises when the regressors are p dis-
cretizations (e.g., at different observations times) of a same curve. In this case
model (1.1) represents a discrete version of an underlying continuous functional
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linear model. In the two setups, very different strategies for estimating β have been
adopted, and underlying structural assumptions seem to be largely incompatible.
In this paper we will study similarities and differences of these methodologies, and
we will show that a combination of ideas developed in the two settings leads to new
estimation procedures which may be useful in a number of important applications.

The first situation is studied in a large literature on model selection in high-
dimensional regression. The basic structural assumptions can be described as fol-
lows:

• There is only a relatively small number of predictor variables with |βj | > 0
which have a significant influence on the outcome Y . In other words, the set of
nonzero coefficients is sparse, S := #{j |βj �= 0} � p.

• The correlations between different explanatory variables Xij and Xil , j �= l, are
“sufficiently” weak.

The most popular procedures to identify and estimate nonzero coefficients βj are
Lasso and the Dantzig selector. Some important references are Tibshirani (1996),
Meinshausen and Bühlmann (2006), Zhao and Yu (2006), van de Geer (2008),
Bickel, Ritov and Tsybakov (2009), Candes and Tao (2007) and Koltchinskii
(2009). Much work in this domain is based on the assumption that the columns
(X1j , . . . ,Xnj )

T , j = 1, . . . , p, of the design matrix are almost orthogonal. For
example, Candes and Tao (2007) require that “every set of columns with cardinal-
ity less than S approximately behaves like an orthonormal system.” More general
conditions have been introduced by Bickel, Ritov and Tsybakov (2009) or Zhou,
van de Geer and Bülhmann (2009). The theoretical framework developed in these
papers also allows one to study model selection for regressors with substantial
amount of correlation, and it provides a basis for the approach presented in our
paper.

In sharp contrast, the setup considered in the literature on functional regression
rests upon a very different type of structural assumptions. We will consider the
simplest case that Xij = Xi(tj ) for random functions Xi ∈ L2([0,1]) observed at
an equidistant grid tj = j

p
. Structural assumptions on coefficients and correlations

between variables can then be subsumed as follows:

• βj := β(tj )

p
, where β(t) ∈ L2([0,1]) is a continuous slope function, and as p →

∞,
∑

j βjXij =∑
j

β(tj )

p
Xi(tj ) → ∫ 1

0 β(t)Xi(t) dt .
• There are very high correlations between explanatory variables Xij = Xi(tj )

and Xil = Xi(tl), j �= l. As p → ∞, corr(Xi(tj ),Xi(tj+m)) → 1 for any
fixed m.

Some important applications as well as theoretical results on functional linear re-
gression are, for example, presented in Ramsay and Dalzell (1991), Cardot, Ferraty
and Sarda (1999), Cuevas, Febrero and Fraiman (2002), Yao, Müller and Wang
(2005), Cai and Hall (2006), Hall and Horowitz (2007), Cardot, Mas and Sarda
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(2007) and Crambes, Kneip and Sarda (2009). Obviously, in this setup no variable
Xij = Xi(tj ) corresponding to a specific observation at grid point tj will possess
a particulary high influence on Yi , and there will exist a large number of small, but
nonzero coefficients βj of size proportional to 1/p. One may argue that dimension-
ality reduction and therefore some underlying concept of “sparseness” is always
necessary when dealing with high-dimensional problems. However, in functional
regression sparseness is usually not assumed with respect to the coefficients βj , but
the model is rewritten using a “sparse” expansion of the predictor functions Xi .

The basic idea relies on the so-called Karhunen–Loève decomposition which
provides a decomposition of random functions in terms of functional principal
components of the covariance operator of Xi . In the discretized case analyzed
in this paper this amounts to consider an approximation of Xi by the principal
components of the covariance matrix � = E(XiXT

i ). In practice, often a small
number k of principal components will suffice to achieve a small L2-error. An
important points is now that even if p > n the eigenvectors corresponding to the
leading eigenvalues μ1, . . . ,μk of � can be well estimated by the eigenvectors
(estimated principal components) ψ̂ r of the empirical covariance matrix �̂. This is
due to the fact that if the predictors Xij represent discretized values of a continuous
functional variable, then for sufficiently small k the eigenvalues μ1, . . . ,μk will
necessarily be of an order larger than p√

n
and will thus exceed the magnitude of

purely random components. From a more general point of view the underlying
theory will be explained in detail in Section 4.

Based on this insight, the most frequently used approach in functional re-

gression is to approximate Xi ≈ ∑k
r=1(ψ̂

T

r Xi )ψ̂ r in terms of the first k esti-
mated principal components ψ̂1, . . . , ψ̂k , and to rely on the approximate model
Yi ≈∑k

r=1 αr ψ̂
T
r Xi + εi . Here, k serves as smoothing parameter. The new coeffi-

cients α are estimated by least squares, and β̂j =∑k
r=1 α̂r ψ̂rj . Resulting rates of

convergence are given in Hall and Horowitz (2007).
The above arguments show that a suitable regression analysis will have to take

into account the underlying structure of the explanatory variables Xij . The basic
motivation of this paper now is to combine the points of view of the above branches
of literature in order to develop a new approach for model adjustment and variable
selection in the practically important situation of strongly correlated regressors.
More precisely, we will concentrate on factor models by assuming that the Xi ∈ R

p

can be decomposed in the form

Xi = Wi + Zi , i = 1, . . . , n,(1.2)

where Wi and Zi are two uncorrelated random vectors in R
p . The random vector

Wi is intended to describe high correlations of the Xij while the components Zij ,
j = 1, . . . , p, of Zi are uncorrelated. This implies that the covariance matrix � of
Xi adopts the decomposition

� = � + �,(1.3)
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where � = E(WiWT
i ), while � is a diagonal matrix with diagonal entries

var(Zij ), j = 1, . . . , p.
Note that factor models can be found in any textbook on multivariate analysis

and must be seen as one of the major tools in order to analyze samples of high-
dimensional vectors. Also recall that a standard factor model is additionally based
on the assumption that a finite number k of factors suffices to approximate Wi

precisely. This means that the matrix � only possesses k nonzero eigenvalues. In
the following we will more generally assume that a small number of eigenvectors
of � suffices to approximate Wi with high accuracy.

We want to emphasize that the typical structural assumptions to be found in the
literature on high-dimensional regression are special cases of (1.2). If Wi = 0 and
thus Xi = Zi , we are in the situation of uncorrelated regressors which has been
widely studied in the context of model selection. On the other hand, Zi = 0 and
thus Xi = Wi reflect the structural assumption of functional regression.

In this paper we assume that Wij as well as Zij represent nonnegligible parts
of the variance of Xij . We believe that this approach may well describe the situa-
tion encountered in many relevant applications. Although standard factor models
are usually considered in the case p � n, (1.2) for large values of p may be of
particular interest in time series or spatial analysis. Indeed, factor models for large
p with a finite number k of nonzero eigenvalues of � play an important role in
the econometric study of multiple time series and panel data. Some references are
Forni and Lippi (1997), Forni et al. (2000), Stock and Watson (2002), Bernanke
and Boivin (2003) and Bai (2003, 2009).

Our objective now is to study linear regression (1.1) with respect to explanatory
variables which adopt decomposition (1.2). Each single variable Xij , j = 1, . . . , p,
then possesses a specific variability induced by Zij and may thus explain some
part of the outcome Yi . One will, of course, assume that only few variables have a
significant influence on Yi which enforces the use of model selection procedures.

On the other hand, the term Wij represents a common variability. Corresponding
principal components quantify a simultaneous variation of many individual regres-
sors. As a consequence, such principal components may possess some additional
power for predicting Yi which may go beyond the effects of individual variables.
A rigorous discussion will be given in Section 3. We want to note that the concept
of “latent variables,” embracing the common influence of a large group of individ-
ual variables, plays a prominent role in applied, parametric multivariate analysis.

These arguments motivate the main results of this paper. We propose to use an
“augmented” regression model which includes principal components as additional
explanatory variables. Established model selection procedures like the Dantzig se-
lector or the Lasso can then be applied to estimate the nonzero coefficients of the
augmented model. We then derive theoretical results providing bounds for the ac-
curacy of the resulting estimators.

The paper is organized as follows: in Section 2 we formalize our setup. We show
in Section 3 that the traditional sparseness assumption is restrictive and that a valid
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model may have to include principal components. The augmented model is thus
introduced with an estimation procedure. Section 4 deals with the problem how ac-
curately true principal components can be estimated from the sample X1, . . . ,Xn.
Finite sample inequalities are given, and we show that it is possible to obtain sen-
sible estimates of those components which explain a considerable percentage of
the total variance of all Xij , j = 1, . . . , p. Section 5 focuses on theoretical prop-
erties of the augmented model, while in Section 6 we present simulation results
illustrating the finite sample performance of our estimators.

2. The setup. We study regression of a response variable Yi on a set of i.i.d.
predictors Xi ∈ R

p , i = 1, . . . , n, which adopt decomposition (1.2) with E(Xij ) =
E(Wij ) = E(Zij ) = 0, E(ZijZik) = 0, E(WijZil) = 0, E(ZijZikZilZim) = 0 for
all j, k, l,m ∈ {1, . . . , p}, j /∈ {k, l,m}. Throughout the following sections we ad-
ditionally assume that there exist constants D0,D3 < ∞ and 0 < D1 ≤ D2 < ∞
such that with σ 2

j := Var(Zij ) the following assumption (A.1) is satisfied for all p:

(A.1) 0 < D1 ≤ σ 2
j ≤ D2,E(X2

ij ) ≤ D0,E(Z4
ij ) ≤ D3 for all j = 1, . . . , p.

Recall that � = E(XiXT
i ) is the covariance matrix of Xi with � = � + � , where

� = E(WiWT
i ) and � is a diagonal matrix with diagonal entries σ 2

j , j = 1, . . . , p.

We denote as �̂ = 1
n

∑n
i=1 XiXT

i the empirical covariance matrix based on the
sample Xi , i = 1, . . . , n.

Eigenvalues and eigenvectors of the standardized matrices 1
p
� and 1

p
� will

play a central role. We will use λ1 ≥ λ2 ≥ · · · and μ1 ≥ μ2 ≥ · · · to denote the
eigenvalues of 1

p
� and 1

p
�, respectively, while ψ1,ψ2, . . . and δ1, δ2, . . . denote

corresponding orthonormal eigenvectors. Note that all eigenvectors of 1
p
� and �

(or 1
p
� and �) are identical, while eigenvalues differ by the factor 1/p. Standard-

ization is important to establish convergence results for large p, since the largest
eigenvalues of � tend to infinity as p → ∞.

From a conceptional point of view we will concentrate on the case that p is
large compared to n. Another crucial, qualitative assumption characterizing our
approach is the dimensionality reduction of Wi using a small number k � p

of eigenvectors (principal components) of 1
p
� such that (in a good approxima-

tion) Wi ≈ ∑k
r=1 ξirψ r . We also assume that DX = 1

p

∑p
j=1 E(X2

ij ) > DW =
1
p

∑p
j=1 E(W 2

ij ) � 1
p

. Then all leading principal components of 1
p
� corresponding

to the k largest eigenvalues explain a considerable percentage of the total variance
of Wi and Xi .

Indeed, if Wi =∑k
r=1 ξirψ r , we necessarily have λ1 ≥ DW

k
� 1

p
and μ1 ≥ λ1 ≥

DW

k
� 1

p
. Then tr( 1

p
�) =∑p

r=1 λr = 1
p

∑p
j=1 E(W 2

ij ), and the first principal com-

ponent of 1
p
� explains a considerable proportion λ1

(1/p)
∑p

j=1 E(W 2
ij )

≥ 1
k

� 1
p

of the

total variance of Wi .
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We want to emphasize that this situation is very different from the setup which is
usually considered in the literature on the analysis of high-dimensional covariance
matrices; see, for example, Bickel and Levina (2008). It is then assumed that the
variables of interest are only weakly correlated and that the largest eigenvalue μ1

of the corresponding scaled covariance matrix 1
p
� is of order 1

p
. This means that

for large p the first principal component only explains a negligible percentage of
the total variance of Xi ,

μ1
(1/p)

∑p
j=1 E(X2

ij )
= O( 1

p
). It is well known that in this case

no consistent estimates of eigenvalues and principal components can be obtained
from an eigen-decomposition of 1

p
�̂.

However, we will show in Section 4 that principal components which are able to
explain a considerable proportion of total variance can be estimated consistently.
These components will be an intrinsic part of the augmented model presented in
Section 3.

We will need a further assumption which ensures that all covariances between
the different variables are well approximated by their empirical counterparts:

(A.2) There exists a C0 < ∞ such that

sup
1≤j,l≤p

∣∣∣∣∣1n
n∑

i=1

WijWil − cov(Wij ,Wil)

∣∣∣∣∣≤ C0

√
logp

n
,(2.1)

sup
1≤j,l≤p

∣∣∣∣∣1n
n∑

i=1

ZijZil − cov(Zij ,Zil)

∣∣∣∣∣≤ C0

√
logp

n
,(2.2)

sup
1≤j,l≤p

∣∣∣∣∣1n
n∑

i=1

ZijWil

∣∣∣∣∣≤ C0

√
logp

n
,(2.3)

sup
1≤j,l≤p

∣∣∣∣∣1n
n∑

i=1

XijXil − cov(Xij ,Xil)

∣∣∣∣∣≤ C0

√
logp

n
(2.4)

hold simultaneously with probability A(n,p) > 0, where A(n,p) → 1 as n,p →
∞, logp

n
→ 0.

The following proposition provides a general sufficient condition on random
vectors for which (A.2) is satisfied provided that the rate of convergence of logp

n

to 0 is sufficiently fast.

PROPOSITION 1. Consider independent and identically distributed random
vectors Vi ∈ R

p , i = 1, . . . , n, such that for j = 1, . . . , p, E(Vij ) = 0 and

E
(
ea|Vij |)≤ C1(2.5)
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for positive constants a and C1 with moreover E(V 4
ij ) ≤ C1. Then, for any positive

constant C0 such that C
1/2
1 ≤ 1

2

√
C0n
logp

and C1 ≤ 1
8C0e

a
√

C0n/(logp)
√

logp
n

P

(
sup

1≤j,l≤p

∣∣∣∣∣1n
n∑

i=1

VijVil − cov(Vij ,Vil)

∣∣∣∣∣≤ C0

√
logp

n

)
(2.6)

≥ 1 − p2−C2
0/(8(C1+C

3/2
0 /3)) + 2p2nC1e

−(a/
√

2)(C0n/ logp)1/4
.

Note that as n,p → ∞ the right-hand side of (2.6) converges to 1 provided that
C0 is chosen sufficiently large and that p/en1−τ = O(1) for some 4/5 < τ < 1.
Therefore, assumption (A.2) is satisfied if the components of the random variables
Xij possess some exponential moments. For the specific case of centered normally
distributed random variables, a more precise bound in (2.6) may be obtained us-
ing Lemma 2.5 in Zhou, van de Geer and Bülhmann (2009) and large deviations
inequalities obtained by Zhou, Lafferty and Wassermn (2008). In this case it may
also be shown that for sufficiently large C0 events (2.1)–(2.4) hold with probability
tending to 1 as p → ∞ without any restriction on the quotient logp/n. Of course,

the rate
√

logp
n

in (2.1)–(2.4) depends on the tails of the distributions: it would
be possible to replace this rate with a slower one in case of heavier tails than in
Proposition 1. Our theoretical results could be modified accordingly.

3. The augmented model. Let us now consider the structural model (1.2)
more closely. It implies that the vector Xi of predictors can be decomposed into
two uncorrelated random vectors Wi and Zi . Each of these two components sep-
arately may possess a significant influence on the response variable Yi . Indeed, if
Wi and Zi were known, a possibly substantial improvement of model (1.1) would
consist in a regression of Yi on the 2p variables Wi and Zi

Yi =
p∑

j=1

β∗
j Wij +

p∑
j=1

βjZij + εi, i = 1, . . . , n,(3.1)

with different sets of parameters β∗
j and βj , j = 1, . . . , p, for each contributor. We

here again assume that εi , i = 1, . . . , n, are centered i.i.d. random variables with
Var(εi) = σ 2 which are independent of Wij and Zij .

By definition, Wij and Zij possess substantially different interpretations. Zij

describes the part of Xij which is uncorrelated with all other variables. A nonzero
coefficient βj �= 0 then means that the variation of Xij has a specific effect on Yi .
We will of course assume that such nonzero coefficients are sparse, �{j |βj �= 0} ≤
S for some S � p. The true variables Zij are unknown, but with β∗∗

j = β∗
j − βj

model (3.1) can obviously be rewritten in the form

Yi =
p∑

j=1

β∗∗
j Wij +

p∑
j=1

βjXij + εi, i = 1, . . . , n.(3.2)
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The variables Wij are heavily correlated. It therefore does not make any sense
to assume that for some j ∈ {1, . . . , p} any particular variable Wij possesses a
specific influence on the predictor variable. However, the term

∑p
j=1 β∗∗

j Wij may
represent an important, common effect of all predictor variables. The vectors Wi

can obviously be rewritten in terms of principal components. Let us recall that
λ1 ≥ λ2 ≥ · · · denote the eigenvalues of the standardized covariance matrix of Wi ,
1
p
� = 1

p
E(WiWT

i ) and ψ1,ψ2, . . . corresponding orthonormal eigenvectors. We
have

Wi =
p∑

r=1

(ψT
r Wi )ψ r and

p∑
j=1

β∗∗
j Wij =

p∑
r=1

α∗
r (ψT

r Wi ),

where α∗
r = ∑p

j=1 β∗∗
j ψrj . As outlined in the previous sections we now assume

that the use of principal components allows for a considerable reduction of dimen-
sionality, and that a small number of leading principal components will suffice to
describe the effects of the variable Wi . This may be seen as an analogue of the
sparseness assumption made for the Zij . More precisely, subsequent analysis will
be based on the assumption that the following augmented model holds for some
suitable k ≥ 1:

Yi =
k∑

r=1

αrξir +
p∑

j=1

βjXij + εi,(3.3)

where ξir = ψT
r Wi/

√
pλr and αr = √

pλrα
∗
r . The use of ξir instead of ψT

r Wi

is motivated by the fact that Var(ψT
r Wi ) = pλr , r = 1, . . . , k. Therefore the ξir

are standardized variables with Var(ξi1) = · · · = Var(ξi1) = 1. Fitting an aug-
mented model requires us to select an appropriate k as well as to determine sensi-
ble estimates of ξi1, . . . , ξik . Furthermore, model selection procedures like Lasso
or Dantzig have to be applied in order to retrieve the nonzero coefficients αr ,
r = 1, . . . , k, and βj , j = 1, . . . , p. These issues will be addressed in subsequent
sections.

Obviously, the augmented model may be considered as a synthesis of the stan-
dard type of models proposed in the literature on functional regression and model
selection. It generalizes the classical multivariate linear regression model (1.1). If
a k-factor model holds exactly, that is, rank(�) = k, then the only substantial re-
striction of (3.1)–(3.3) consists in the assumption that Yi depends linearly on Wi

and Zi .
We want to emphasize, however, that our analysis does not require the validity of

a k-factor model. It is only assumed that there exists “some” Zi and Wi satisfying
our assumptions which lead to (3.3) for a sparse set of coefficients βj .

3.1. Identifiability. Let β = (β1, . . . , βp)T and α = (α1, . . . , αk)
T . Since ψ r ,

r = 1, . . . , k, are eigenvectors of � we have E(ψT
r Wiψ

T
s Wi ) = 0 for all r, s =
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1, . . . , p, r �= s. By assumption the random vectors Wi and Zi are uncorrelated,
and hence E(ψT

r WiZij ) = 0 for all r, j = 1, . . . , p. Furthermore, E(ZilZij ) = 0
for all l �= j . If the augmented model (3.3) holds, some straightforward compu-
tations then show that under (A.1) for any alternative set of coefficients β∗ =
(β∗

1 , . . . , β∗
p)T , α∗ = (α∗

1 , . . . , α∗
k )T ,

E

([
k∑

r=1

(αr − α∗
r )ξir +

p∑
j=1

(βj − β∗
j )Xij

]2)

≥
k∑

r=1

(
αr − α∗

r +√
pλrψ r (β − β∗)

)2(3.4)

+ D1‖β − β∗‖2
2.

We can conclude that the coefficients αr , r = 1, . . . , k and βj , j = 1, . . . , p, in
(3.3) are uniquely determined.

Of course, an inherent difficulty of (3.3) consists of the fact that it contains the
unobserved, “latent” variables ξir = ψT

r Wi/
√

pλr . To study this problem, first
recall that our setup imposes the decomposition (1.3) of the covariance matrix �

of Xi . If a factor model with k factors holds exactly, then the � possesses rank k. It
then follows from well-established results in multivariate analysis that if k < p/2
the matrices � and � are uniquely identified. If λ1 > λ2 > · · · > λk > 0, then also
ψ1, . . . ,ψk are uniquely determined (up to sign) from the structure of �.

However, for large p, identification is possible under even more general con-
ditions. It is not necessary that a k-factor model holds exactly. We only need an
additional assumption on the magnitude of the eigenvalues of 1

p
� defining the k

principal components of Wi to be considered.

(A.3) The eigenvalues of 1
p
� are such that

min
j,l≤k,j �=l

|λj − λl| ≥ v(k), min
j≤k

λj ≥ v(k)

for some 1 ≥ v(k) > 0 with pv(k) > 6D2.

In the following we will qualitatively assume that k � p as well as v(k) � 1/p.
More specific assumptions will be made in the sequel. Note that eigenvectors are
only unique up to sign changes. In the following we will always assume that the
right “versions” are used. This will go without saying.

THEOREM 1. Let ξ∗
ir := δT

r Xi√
pμr

and Pk = Ip −∑k
j=1 ψjψ

T
j . Under assump-

tions (A.1) and (A.2) we have for all r = 1, . . . , k, j = 1, . . . , p and all k,p satis-
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fying (A.3):

|μr − λr | ≤ D2

p
,(3.5)

‖ψ r − δr‖2 ≤ 2D2

pv(k)
,

(3.6)

δ2
rj ≤ D0

pv(k)
,

E([ξir − ξ∗
ir ]2) ≤ D2

pμr

+ (8λ1 + 1)D2
2

p2v(k)2μr

,

(3.7)

E

([
ξir − ψT

r Xi√
pλr

]2)
≤ D2

pλr

,

E

([
k∑

r=1

αrξir −
k∑

r=1

αrξ
∗
ir

]2)
≤ k

k∑
r=1

α2
r

(
D2

pμr

+ (8λ1 + 1)D2
2

p2v(k)2μr

)
.(3.8)

For small p, standard factor analysis uses special algorithms in order to iden-
tify ψ r . The theorem tells us that for large p this is unnecessary since then the
eigenvectors δr of 1

p
� provide a good approximation. The predictor ξ∗

ir of ξir pos-
sesses an error of order 1/

√
p. The error decreases as p increases, and ξ∗

ir thus
yields a good approximation of ξir if p is large. Indeed, if p → ∞ [for fixed μr ,
v(k), D1 and D2] then by (3.7) we have E([ξir − ξ∗

ir ]2) → 0. Furthermore, by (3.8)
the error in predicting

∑k
r=1 αrξir + ∑p

j=1 βjXij by
∑k

r=1 αrξ
∗
ir + ∑p

j=1 βjXij

converges to zero as p → ∞.
A crucial prerequisite for a reasonable analysis of the model is sparseness of

the coefficients βj . Note that if p is large compared to n, then by (3.8) the error
in replacing ξir by ξ∗

ir is negligible compared to the estimation error induced by
the existence of the error terms εi . If k � p and �{j |βj �= 0} � p, then the true
coefficients αr and βj provide a sparse solution of the regression problem.

Established theoretical results [see Bickel, Ritov and Tsybakov (2009)] show
that under some regularity conditions (validity of the “restricted eigenvalue con-
ditions”) model selection procedures allow to identify such sparse solutions even
if there are multiple vectors of coefficients satisfying the normal equations. The
latter is of course always the case if p > n. Indeed, we will show in the following
sections that factors can be consistently estimated from the data, and that a suitable
application of Lasso or the Dantzig-selector leads to consistent estimators α̂r , β̂j

satisfying supr |αr − α̂r | →P 0, supj |βj − β̂j | →P 0, as n,p → ∞.
When replacing ξir by ξ∗

ir , there are alternative sets of coefficients leading to

the same prediction error as in (3.8). This is due to the fact that ξ∗
ir =∑p

j=1
δrjXij√

pμr
.
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However, all these alternative solutions are nonsparse and cannot be identified by
Lasso or other procedures. In particular, it is easily seen that

k∑
r=1

αrξ
∗
ir +

p∑
j=1

βjXij =
p∑

j=1

βLR
j Xij

(3.9)

with βLR
j := βj +

k∑
r=1

αr

δrj√
pμr

.

By (3.6) all values δ2
rj are of order 1/(pv(k)). Since

∑
j δ2

rj = 1, this implies that

many δ2
rj are nonzero. Therefore, if αr �= 0 for some r ∈ {1, . . . , k}, then {j |βLR

j �=
0} contains a large number of small, nonzero coefficients and is not at all sparse.
If p is large compared to n no known estimation procedure will be able to provide
consistent estimates of these coefficients.

Summarizing the above discussion we can conclude:

(1) If the variables Xij are heavily correlated and follow an approximate fac-
tor model, then one may reasonably expect substantial effects of the common,
joint variation of all variables and, consequently, nonzero coefficients β∗

j and αr in
(3.1) and (3.3). But then a “bet on sparsity” is unjustifiable when dealing with the
standard regression model (1.1). It follows from (3.9) that for large p model (1.1)
holds approximately for a nonsparse set of coefficients βLR

j , since many small,
nonzero coefficients are necessary in order to capture the effects of the common
joint variation.

(2) The augmented model offers a remedy to this problem by pooling possi-
ble effects of the joint variation using a small number of additional variables. To-
gether with the familiar assumption of a small number of variables possessing a
specific influence, this leads to a sparse model with at most k + S nonzero coeffi-
cients which can be recovered from model selection procedures like Lasso or the
Dantzig-selector.

(3) In practice, even if (3.3) only holds approximately, since a too-small value
of k has been selected, it may be able to quantify at least some important part of the
effects discussed above. Compared to an analysis based on a standard model (1.1),
this may lead to a substantial improvement of model fit as well as to more reliable
interpretations of significant variables.

3.2. Estimation. For a pre-specified k ≥ 1 we now define a procedure for es-
timating the components of the corresponding augmented model (3.3) from given
data. This obviously specifies suitable procedures for approximating the unknown
values ξir as well as to apply subsequent model selection procedures in order to
retrieve nonzero coefficients αr and βj , r = 1, . . . , k, j = 1, . . . , p. A discussion
of the choice of k can be found in the next section.
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Recall from Theorem 1 that for large p the eigenvectors ψ1, . . . ,ψk of 1
p
�

are well approximated by the eigenvectors of the standardized covariance matrix
1
p
�. This motivates us to use the empirical principal components of X1, . . . ,Xn in

order to determine estimates of ψ r and ξir . Theoretical support will be given in
the next section. Define λ̂1 ≥ λ̂2 ≥ · · · as the eigenvalues of the standardized em-
pirical covariance matrix 1

p
�̂ = 1

np

∑n
i=1 XT

i Xi , while ψ̂1, ψ̂2, . . . are associated
orthonormal eigenvectors. We then estimate ξir by

ξ̂ir = ψ̂
T

r Xi/

√
pλ̂r , r = 1, . . . , k, i = 1, . . . , n.

When replacing ξir by ξ̂ir in (3.3), a direct application of model selection pro-
cedures does not seem to be adequate, since ξ̂ir and the predictor variables Xij

are heavily correlated. We therefore rely on a projected model. Consider the pro-
jection matrix on the orthogonal space of the space spanned by the eigenvectors
corresponding to the k largest eigenvalues of 1

p
�̂

P̂k = Ip −
k∑

r=1

ψ̂ r ψ̂
T
r .

Then model (3.3) can be rewritten for i = 1, . . . , n,

Yi =
k∑

r=1

α̃r ξ̂ir +
p∑

j=1

β̃j

(P̂kXi)j

((1/n)
∑n

i=1(P̂kXi )
2
j )

1/2
+ ε̃i + εi,(3.10)

where α̃r = αr +
√

pλ̂r

∑p
j=1 ψ̂rjβj , β̃j = βj (

1
n

∑n
i=1(P̂kXi)

2
j )

1/2 and ε̃i =∑k
r=1 αr(ξir − ξ̂ir ). It will be shown in the next section that for large n and p

the additional error term ε̃ can be assumed to be reasonably small.
In the following we will use X̃i to denote the vectors with entries X̃ij :=

(P̂kXi )j

((1/n)
∑n

l=1(P̂kXl )
2
j )1/2 . Furthermore, consider the (k +p)-dimensional vector of pre-

dictors 	i := (̂ξi1, . . . , ξ̂ik , X̃i1, . . . , X̃ip)T . The Gram matrix in model (3.10) is a
block matrix defined as

1

n

n∑
i=1

	i	
T
i =

⎛⎜⎝ Ik 0

0
1

n

n∑
i=1

X̃iX̃T
i

⎞⎟⎠ ,

where Ik is the identity matrix of size k. Note that the normalization of the pre-
dictors in (3.10) implies that the diagonal elements of the Gram matrix above are
equal to 1.

Arguing now that the vector of parameters θ := (α̃1, . . . , α̃k, β̃1, . . . , β̃p)T

in model (3.10) is (k + S)-sparse, we may use a selection procedure to re-
cover/estimate the nonnull parameters. In the following we will concentrate on
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the Lasso estimator introduced in Tibshirani (1996). For a pre-specified parameter
ρ > 0, an estimator θ is then obtained as

θ̂ = arg min
θ̃∈Rk+p

1

n
‖Y − 	θ̃‖2 + 2ρ‖θ̃‖1,(3.11)

	 being the n × (k + p)-dimensional matrix with rows 	i . We can alternatively
use the Dantzig selector introduced in Candes and Tao (2007).

Finally, from θ̂ , we define corresponding estimators for αr , r = 1, . . . , k, and
βj , j = 1, . . . , p, in the unprojected model (3.3).

β̂j =
̂̃βj

((1/n)
∑n

i=1(P̂kXi)
2
j )

1/2
, j = 1, . . . , p,

and

α̂r = ̂̃αr −
√

pλ̂r

p∑
j=1

ψ̂rj β̂j , r = 1, . . . , k.

4. High-dimensional factor analysis: Theoretical results. The following
theorem shows that principal components which are able to explain a consider-
able proportion of total variance can be estimated consistently.

For simplicity, we will concentrate on the case that n as well as p >
√

n are
large enough such that

(A.4) C0(logp/n)1/2 ≥ D0
p

and v(k) ≥ 6(D2/p + C0(logp/n)1/2).

THEOREM 2. Under assumptions (A.1)–(A.4) and under events (2.1)–(2.4)
we have for all r = 1, . . . , k and all j = 1, . . . , p,

|λr − λ̂r | ≤ D2

p
+ C0(logp/n)1/2(4.1)

‖ψ r − ψ̂ r‖2 ≤ 2
D2/p + C0(logp/n)1/2

v(k)
,(4.2)

ψ2
rj ≤ D0 − D1

pλr

≤ D0 − D1

pv(k)
,(4.3)

ψ̂2
rj ≤ D0 + C0(logp/n)1/2

pλ̂r
(4.4)

≤ 6

5

D0 + C0(logp/n)1/2

pv(k)
.

Theorem 2 shows that for sufficiently large p (p >
√

n) the eigenvalues and
eigenvectors of 1

p
�̂ provide reasonable estimates of λr and ψ r for r = 1, . . . , k.
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Quite obviously it is not possible to determine sensible estimates of all p principal
components of 1

p
�. Following the proposition it is required that λr as well as μr

be of order at least
√

logp
n

. Any smaller component cannot be distinguished from
pure “noise” components. Up to the logp-term this corresponds to the results of
Hall and Hosseini-Nasab (2006) who study the problem of the number of principal
components that can be consistently estimated in a functional principal component
analysis.

The above insights are helpful for selecting an appropriate k in a real data appli-
cation. In tendency, a suitable factor model will incorporate k components which
explain a large percentage of the total variance of Xi , while λk+1 is very small. If
for a sample of high-dimensional vectors Xi a principal component analysis leads
to the conclusion that the first (or second, third, . . .) principal components explains
a large percentage of the total (empirical) variance of the observations, then such
a component cannot be generated by “noise” but reflects an underlying structure.
In particular, such a component may play a crucial role in modeling a response
variable Yi according to an augmented regression model of the form (3.3).

Bai and Ng (2002) develop criteria of selecting the dimension k in a high-
dimensional factor model. They rely on an adaptation of the well-known AIC
and BIC procedures in model selection. One possible approach is as follows:
Select a maximal possible dimension kmax and estimate σ̄ 2 = 1

p

∑p
j=1 σ 2

j by

σ̂ 2 = 1
np

∑n
i=1

∑p
j=1(Xij −∑kmax

r=1 (ψ̂T
r Xi )ψ̂rj )

2. Then determine an estimate k̂ by
minimizing

1

np

n∑
i=1

p∑
j=1

(
Xij −

κ∑
r=1

(ψ̂ rXi)ψ̂rj

)2

+ κσ̂ 2
(

n + p

np

)
log min{n,p}(4.5)

over κ = 1, . . . , kmax. Bai and Ng (2002) show that under some regularity condi-
tions this criterium (as well as a number of alternative versions) provides asymp-
totically consistent estimates of the true factor dimension k as n,p → ∞. In our
context these regularity conditions are satisfied if (A.1)–(A.4) hold for all n and p,
supj,p E(Z8

ij ) < ∞ and if there exists some B0 > 0 such that λk ≥ B0 > 0, for all
n,p.

Now recall the modified version (3.10) of the augmented model used in our es-
timation procedure. The following theorem establishes bounds for the projections
(P̂kXi)j as well as for the additional error terms ε̃i . Let Pk = Ip −∑k

j=1 ψjψ
T
j

denote the population version of P̂k .

THEOREM 3. Assume (A.1) and (A.2). There then exist constants M1, M2,
M3 < ∞, such that for all n,p, k satisfying (A.3) and (A.4), all j, l ∈ {1, . . . , p},
j �= l,

1

n

n∑
i=1

(P̂kXi)
2
j ≥ σ 2

j − M1
kn−1/2√logp

v(k)1/2 ,(4.6)
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n∑

i=1

(P̂kXi)
2
j − σ 2

j

∣∣∣∣∣≤ E((PkWi )
2
j ) + M2

kn−1/2√logp

v(k)3/2(4.7)

hold with probability A(n,p), while

1

n

n∑
i=1

ε̃2
i = 1

n

n∑
i=1

(
k∑

r=1

(̂ξir − ξir )αr

)2

(4.8)

≤ kα2
sumM3

v(k)3

(
logp

n
+ v(k)2

p

)
holds with probability at least A(n,p) − k

n
. Here, α2

sum =∑k
r=1 α2

r .

Note that if Xi satisfies a k-dimensional factor model, that is, if the rank of
1
p
� is equal to k, then PkWi = 0. The theorem then states that for large n and p

the projected variables (P̂kXi )j , j = 1, . . . , k, “in average” behave similarly to the
specific variables Zij . Variances will be close to σ 2

j = Var(Zij ).

5. Theoretical properties of the augmented model. We come back to
model (3.3). As shown in Section 3.2, the Lasso or the Dantzig selector may
be used to determine estimators of the parameters of the model. Identification of
sparse solutions as well as consistency of estimators require structural assumptions
on the explanatory variables. The weakest assumption on the correlations between
different variables seems to be the so-called restricted eigenvalue condition in-
troduced by Bickel, Ritov and Tsybakov (2009); see also Zhou, van de Geer and
Bülhmann (2009).

We first provide a theoretical result which shows that for large n,p the design
matrix of the projected model (3.10) satisfies the restricted eigenvalue conditions
given in Bickel, Ritov and Tsybakov (2009) with high probability. We will addi-
tionally assume that n,p are large enough such that

(A.5) D1/2 > M1
kn−1/2√logp

v(k)1/2 ,

where M1 is defined as in Theorem 3.
Let J0 denote an arbitrary subset of indices, J0 ⊂ {1, . . . , p} with |J0| ≤ k + S.

For a vector a ∈ R
k+p , let aJ0 be the vector in R

k+p which has the same coordi-
nates as a on J0 and zero coordinates on the complement J c

0 of J0. We define in the
same way aJ c

0
. Now for k+S ≤ (k+p)/2 and for an integer m ≥ k+S, S+m ≤ p,

denote by Jm the subset of {1, . . . , k + p} corresponding to m largest in absolute
value coordinates of a outside of J0, and define J0,m := J0 ∪ Jm. Furthermore, let
(x)+ = max{x,0}.

PROPOSITION 2. Assume (A.1) and (A.2). There then exists a constant M4 <

∞, such that for all n,p, k, S, k + S ≤ (k + p)/2, satisfying (A.3)–(A.5), and
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c0 = 1,3

κ(k + S, k + S, c0)

:= min
J0⊂{1,...,k+p} : |J0|≤k+S

min
� �=0 : ‖�Jc

0
‖1≤c0‖�J0‖1

[�T (1/n)
∑n

i=1 	i	
T
i �]1/2

‖�J0,k+S
‖2

(5.1)

≥
(

D1

D0 + C0n−1/2
√

logp
− 8(k + S)c0M4k

2n−1/2√logp

v(k)(D1 − M1kv(k)1/2n−1/2
√

logp)

)1/2

+
=: Kn,p(k, S, c0)

holds with probability A(n,p).

Asymptotically, if n and p are large, then Kn,p(k, S, c0) > 0, c0 = 1,3, pro-
vided that k, S and 1/v(k) are sufficiently small compared to n,p. In this case
the proposition implies that with high probability the restricted eigenvalue condi-
tion RE(k + S, k + S, c0) of Bickel, Ritov and Tsybakov (2009) [i.e., κ(k + S, k +
S, c0) > 0] is satisfied. The same holds for the conditions RE(k + S, c0) which
require κ(k + S, c0) > 0, where

κ(k + S, c0)

:= min
J0⊂{1,...,k+p} : |J0|≤k+S

min
��=0 : ‖�Jc

0
‖1≤c0‖�J0‖1

[�T (1/n)
∑n

i=1 	i	
T
i �]1/2

‖�J0‖2

≥ κ(k + S, k + S, c0).

The following theorem now provides bounds for the L1 estimation error and
the L2 prediction loss for the Lasso estimator of the coefficients of the augmented
model. It generalizes the results of Theorem 7.2 of Bickel, Ritov and Tsybakov
(2009) obtained under the standard linear regression model. In our analysis merely
the values of κ(k + S, c0) for c0 = 3 are of interest. However, only slight adapta-
tions of the proofs are necessary in order to derive generalizations of the bounds
provided by Bickel, Ritov and Tsybakov (2009) for the Dantzig selector (c0 = 1)
and for the Lq loss, 1 < q ≤ 2. In the latter case, κ(k +S, c0) has to be replaced by
κ(k + S, k + S, c0). In the following, let M1 and M3 be defined as in Theorem 3.

THEOREM 4. Assume (A.1), (A.2) and suppose that the error terms εi in
model (3.3) are independent N (0, σ 2) random variables with σ 2 > 0. Now con-
sider the Lasso estimator θ̂ defined by (3.11) with

ρ = Aσ

√
log(k + p)

n
+ M5αsum

v(k)3/2

√
logp

n
,

where A > 2
√

2, M5 is a positive constant and αsum =∑k
r=1 |αr |.
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If M5 < ∞ is sufficiently large, then for all n,p, k, k + S ≤ (k + p)/2, satisfy-
ing (A.3)–(A.5) as well as Kn,p(k, S,3) > 0, the following inequalities hold with

probability at least A(n,p) − (p + k)−A2/2:

k∑
r=1

|α̂r − αr | ≤ 16(k + S)

κ2

(5.2)

× ρ

(
1 + k(D0 + C0n

−1/2√logp)1/2

(D1 − M1(kn−1/2
√

logp/v(k)1/2))1/2

)
,

p∑
j=1

|β̂j − βj | ≤ 16(k + S)

κ2(D1 − M1(kn−1/2
√

logp/v(k)1/2))1/2
ρ,(5.3)

where κ = κ(k + S,3). Moreover,

1

n

n∑
i=1

(
k∑

r=1

ξ̂ir α̂r +
p∑

j=1

Xij β̂j −
(

k∑
r=1

ξirαr +
p∑

j=1

Xijβj

))2

(5.4)

≤ 32(k + S)

κ2 ρ2 + 2kα2
sumM3

v(k)3

(
logp

n
+ v(k)2

p

)
holds with probability at least A(n,p) − (p + k)−A2/2 − k

n
.

Of course, the main message of the theorem is asymptotic in nature. If n,p

tend to infinity for fixed values of k and S, then the L1 estimation error and the
L2 prediction error converge at rates

√
logp/n and logp/n + 1/p, respectively.

For values of k and S tending to infinity as the sample size tends to infinity, the
rates are more complicated. In particular, they depend on how fast v(k) converges
to zero as k → ∞. Similar results hold for the estimators based on the Dantzig
selector.

REMARK 1. Note that Proposition 2 as well as the results of Theorem 4
heavily depend on the validity of assumption (A.1) and the corresponding value
0 < D1 ≤ infj σ 2

j , where σ 2
j = var(Zij ). It is immediately seen that the smaller

the D1 the smaller the value of κ(k + S, k + S, c0) in (5.1). This means that all
variables Xij = Wij + Zij , j = 1, . . . , p have to possess a sufficiently large spe-
cific variation which is not shared by other variables. For large p this may be
seen as a restrictive assumption. In such a situation one may consider a restricted
version of model (3.3), where variables with extremely small values of σ 2

j are
eliminated. But for large n,p we can infer from Theorem 3 that a small value of
1
n

∑n
i=1(P̂kXi )

2
j indicates that also σ 2

j is small. Hence, an extension of our method
consists of introducing some threshold Dthresh > 0 and discarding all those vari-
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ables Xij , j ∈ {1, . . . , p}, with 1
n

∑n
i=1(P̂kXi)

2
j < Dthresh. A precise analysis is not

in the scope of the present paper.

REMARK 2. If α1 = · · · = αk = 0 the augmented model reduces to the stan-
dard linear regression model (1.1) with a sparse set of coefficients, �{j |βj �=
0} ≤ S for some S ≤ p. An application of our estimation procedure is then un-
necessary, and coefficients may be estimated by traditional model selection pro-
cedures. Bounds on estimation errors can therefore be directly obtained from the
results of Bickel, Ritov and Tsybakov (2009), provided that the restricted eigen-
value conditions are satisfied. But in this situation a slight adaptation of the proof
of Proposition 2 allows us to establish a result similar to (5.1) for the standardized
variables X∗

ij := Xij/(
1
n

∑n
i=1 X2

ij )
1/2. Define X∗ as the n×p-matrix with generic

elements X∗
ij . When assuming (A.1), (A.2) as well as D1 − 3C0n

−1/2√logp > 0,
then for S ≤ p/2 the following inequality holds with probability A(n,p):

κ(S,S, c0)

:= min
J0⊂{1,...,p} : |J0|≤S

min
��=0 : ‖�Jc

0
‖1≤c0‖�J0‖1

[�T (1/n)
∑n

i=1 X∗
i X∗T

i �]1/2

‖�J0,S
‖2

(5.5)

≥
(

D1

D0 + C0n−1/2
√

logp
− 8Sc0C0n

−1/2√logp

D1 − 3C0n−1/2
√

logp

)1/2

+
,

where c0 = 1,3. Recall, however, from the discussion in Section 3.1 that α1 =
· · · = αk = 0 is a restrictive condition in the context of highly correlated regressors.

6. Simulation study. In this section we study the finite sample performance
of the estimators discussed in the proceeding sections. We consider a factor
model with k = 2 factors. The first factor is ψ1j = 1/

√
p, j = 1, . . . , p, while

the second factor is given by ψ2j = 1/
√

p, j = 1, . . . , p/2, and ψ2j = −1/
√

p,
j = p/2+1, . . . , p. For different values of n,p,α1, α2 and 0 < λ1 < 1,0 < λ2 < 1
observations (Xi , Yi) with var(Xij ) = 1, j = 1, . . . , p, are generated according to
the model

Xij =√
pλ1ξi1ψ1j +√

pλ2ξi2ψ2j + Zij ,(6.1)

Yi = α1ξi1 + α2ξi1 +
p∑

j=1

βjXij + εi,(6.2)

where ξir ∼ N(0,1), r = 1,2, Zij ∼ N(0,1 − λ1 − λ2), and εi ∼ N(0, σ 2) are
independent variables. Our study is based on S = �{j |βj �= 0} = 4 nonzero β-
coefficients whose values are β10 = 1, β20 = 0.3, β21 = −0.3 and β40 = −1, while
the error variance is set to σ 2 = 0.1.

The parameters of the augmented model with k = 2 are estimated by using
the Lasso-based estimation procedure described in Section 3.2. The behavior of
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FIG. 1. Paths of Lasso estimates for the augmented model (left panel) and the standard linear
model (right panel) in dependence of ρ; black—estimates of nonzero βj ; red—estimates of coeffi-
cients with βj = 0; blue—̂̃αr .

the estimates is compared to the Lasso estimates of the coefficients of a standard
regression model (1.1). All results reported in this section are obtained by applying
the LARS-package by Hastie and Efron implemented in R. All tables are based on
1,000 repetitions of the simulation experiments. The corresponding R-code can be
obtained from the authors upon request.

Figure 1 and Table 1 refer to the situation with λ1 = 0.4, λ2 = 0.2, α1 = 1 and
α2 = −0.5. We then have var(Xij ) = 1, j = 1, . . . , p, while the first and second
factor explain 40% and 20% of the total variance of Xij , respectively.

Figure 1 shows estimation results of one typical simulation with n = p = 100.
The left panel contains the parameter estimates for the augmented model. The
paths of estimated coefficients β̂j for the 4 significant variables (black lines), the
96 variables with βj = 0 (red lines), as well as of the untransformed estimates ̂̃αr

(blue lines) of αr , r = 1,2, are plotted as a function of ρ. The four significant
coefficients as well as α1 and α2 can immediately been identified in the figure.
The right panel shows a corresponding plot of estimated coefficients when Lasso
is directly applied to the standard regression model (1.1). As has to be expected
by (3.9) the necessity of compensating the effects of α1, α2 by a large number of
small, nonzero coefficients generates a general “noise level” which makes it diffi-
cult to identify the four significant variables in (6.2). The penalties ρ in the figure
as well as in subsequent tables have to be interpreted in terms of the scaling used
by the LARS-algorithm and have to be multiplied with 2/n in order to correspond
to the standardization used in the proceeding sections.

The upper part of Table 1 provides simulation results with respect to the aug-
mented model for different sample sizes n and p. In order to access the quality of
parameter estimates we evaluate

∑2
r=1 |α̂r − αr | as well as

∑p
j=1 |β̂r − βr | at the
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TABLE 1
Estimation errors for different sample sizes (λ1 = 0.4, λ2 = 0.2, α1 = 1, α2 = −0.5)

Sample sizes Parameter estimates Prediction

n p
∑ |α̂r − αr | ∑ |β̂r − βr | Opt. ρ Sample Exact Opt. ρ CP

Lasso applied to augmented model:

50 50 0.3334 0.8389 4.53 0.0498 0.1004 1.76 1.55
100 100 0.2500 0.5774 6.84 0.0328 0.0480 3.50 3.29
250 250 0.1602 0.3752 12.27 0.0167 0.0199 7.55 7.22
500 500 0.1150 0.2752 18.99 0.0096 0.0106 12.66 12.21

5,000 100 0.0378 0.0733 48.33 0.0152 0.0154 27.48 26.74
100 2,000 0.2741 0.8664 10.58 0.0420 0.0651 5.42 5.24

n p
∑ |β̂r − βLR

r | ∑ |β̂r − βr | Sample Exact Opt. ρ

Lasso applied to standard linear regression model:

50 50 2.2597 1.8403 0.0521 0.1370 0.92
100 100 2.2898 1.9090 0.0415 0.0725 1.90
250 250 2.3653 1.7661 0.0257 0.0345 4.12
500 500 2.4716 1.7104 0.0174 0.0207 6.87

5,000 100 0.5376 1.5492 0.0161 0.0168 10.14
100 2,000 3.7571 2.2954 0.0523 0.1038 3.17

optimal value of ρ, where the minimum of
∑2

r=1 |α̂r −αr |+∑p
j=1 |β̂r −βr | is ob-

tained. Moreover, we record the value of ρ where the minimal sample prediction
error

1

n

n∑
i=1

( 2∑
r=1

αrξir +
p∑

j=1

βjXij −
( 2∑

r=1

α̂r ξ̂ir +
p∑

j=1

β̂jXij

))2

(6.3)

ia attained. For the same value ρ we also determine the exact prediction error

E

( 2∑
r=1

αrξn+1,r +
p∑

j=1

βjXn+1,j −
( 2∑

r=1

α̂r ξ̂n+1,r +
p∑

j=1

β̂jXn+1,j

))2

(6.4)

for a new observation Xn+1 independent of X1, . . . ,Xn. The columns of Table 1 re-
port the average values of the corresponding quantities over the 1,000 replications.
To get some insight into a practical choice of the penalty, the last column addi-
tionally yields the average value of the parameters ρ minimizing the CP -statistics.
CP is computed by using the R-routine “summary.lars” and plugging in the true
error variance σ 2 = 0.1. We see that in all situations the average value of ρ min-
imizing CP is very close to the average ρ providing the smallest prediction error.
The penalties for optimal parameter estimation are, of course, larger.
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It is immediately seen that the quality of estimates considerably increases when
going from n = p = 50 to n = p = 500. An interesting result consists of the fact
that the prediction error is smaller for n = p = 500 than for n = 5,000, p = 100.
This may be interpreted as a consequence of (3.8).

The lower part of Table 1 provides corresponding simulation results with re-
spect to Lasso estimates based on the standard regression model. In addition to the
minimal error

∑p
r=1 |β̂r − βr | in estimating the parameters βj of (6.2) we present

the minimal L1-distance
∑p

r=1 |β̂r − βLR
r |, where βLR

1 , . . . , βLR
p is the (nonsparse)

set of parameters minimizing the population prediction error. Sample and exact
prediction errors are obtained by straightforward modifications of (6.3) and (6.4).
Quite obviously, no reasonable parameter estimates are obtained in the cases with
p ≥ n. Only for n = 5,000, p = 100, the table indicates a comparably small er-
ror

∑p
r=1 |β̂r − βLR

r |. The prediction error shows a somewhat better behavior. It
is, however, always larger than the prediction error of the augmented model. The
relative difference increases with p.

It was mentioned in Section 4 that a suitable criterion to estimate the dimen-
sion k of an approximate factor model consists in minimizing (4.5). This criterion
proved to work well in our simulation study. Recall that the true factor dimension
is k = 2. For n = p = 50 the average value of the estimate k̂ determined by (4.5)
is 2.64. In all other situations reported in Table 1 an estimate k̂ = 2 is obtained in
each of the 1,000 replications.

Finally, Table 2 contains simulations results for n = 100, p = 250, and differ-
ent values of λ1, λ2, α1, α2. All columns have to be interpreted similar to those of
Table 1. For α1 = 1, α2 = −0.5 suitable parameter estimates can obviously only
been determined by applying the augmented model. For α1 = α2 = 0 model (6.2)
reduces to a sparse, standard linear regression model. It is then clearly unneces-
sary to apply the augmented model. Both methods then lead to roughly equivalent
parameter estimates.

We want to emphasize that λ1 = 0.06, λ2 = 0.03 constitutes a particularly dif-
ficult situation. Then the first and second factor only explain 6% and 3% of the
variance of Xij . Consequently, v(k) is very small and one will expect a fairly large
error in estimating ξir . Somewhat surprisingly the augmented model still provides
reasonable parameter estimates, the only problem in this case seems to be a fairly
large prediction error.

Another difficult situation in an opposite direction is λ1 = 0.6, λ2 = 0.3. Then
both factors together explain 90% of the variability of Xij , while Zij only explains
the remaining 10%. Consequently, D1 is very small and one may expect problems
in the context of the restricted eigenvalue condition. The table shows that this case
yields the smallest prediction error, but the quality of parameter estimates deterio-
rates.
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TABLE 2
Estimation errors under different setups (n = 100,p = 250)

Parameter estimates Prediction

λ1 λ2 α1 α2
∑ |α̂r − αr | ∑ |β̂r − βr | Opt. ρ Sample Exact Opt. ρ

Lasso applied to augmented model:

0.06 0.03 1 −0.5 0.3191 0.6104 10.37 0.0670 0.2259 2.46
0.2 0.1 1 −0.5 0.2529 0.5335 8.19 0.0414 0.0727 3.92
0.4 0.2 1 −0.5 0.2500 0.6498 7.86 0.0319 0.0454 4.35
0.6 0.3 1 −0.5 0.2866 1.1683 8.46 0.0273 0.0350 4.56
0.06 0.03 0 0 0.0908 0.4238 7.42 0.0257 0.0311 4.62
0.2 0.1 0 0 0.1044 0.4788 7.64 0.0257 0.0316 4.69
0.4 0.2 0 0 0.1192 0.6400 7.84 0.0250 0.0314 4.74
0.6 0.3 0 0 0.1825 1.1745 8.78 0.0221 0.0276 5.13

λ1 λ2 α1 α2
∑ |β̂r − βLR

r | ∑ |β̂r − βr | Sample Exact Opt. ρ

Lasso applied to standard linear regression model:

0.06 0.03 1 −0.5 5.0599 1.9673 0.0777 0.3758 1.95
0.2 0.1 1 −0.5 3.4465 2.3662 0.0583 0.1403 2.63
0.4 0.2 1 −0.5 2.9215 2.0191 0.0425 0.0721 2.45
0.6 0.3 1 −0.5 3.2014 2.2246 0.0277 0.0387 1.47
0.06 0.03 0 0 0.4259 0.4259 0.0216 0.0285 4.80
0.2 0.1 0 0 0.4955 0.4955 0.0222 0.0295 4.24
0.4 0.2 0 0 0.6580 0.6580 0.0228 0.0303 3.17
0.6 0.3 0 0 1.1990 1.1990 0.0215 0.0283 1.66

APPENDIX

PROOF OF PROPOSITION 1. Define Qijl = VijVil − E(VijVil), i = 1, . . . , n,
1 ≤ j, l ≤ p. For any C > 0 and ε > 0, noting that E(Qijl) = 0, we have

P

(∣∣∣∣∣1n
n∑

i=1

VijVil − E(VijVil)

∣∣∣∣∣> ε

)

= P

(∣∣∣∣∣1n
n∑

i=1

Qijl

∣∣∣∣∣> ε

)

= P

(∣∣∣∣∣1n
n∑

i=1

QijlI (|Qijl| ≤ C) − E
(
QijlI (|Qijl| ≤ C)

)

+ QijlI (|Qijl| > C) − E
(
QijlI (|Qijl| > C)

)∣∣∣∣∣> ε

)
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≤ P

(∣∣∣∣∣1n
n∑

i=1

QijlI (|Qijl| ≤ C) − E
(
QijlI (|Qijl| ≤ C)

)∣∣∣∣∣> ε/2

)

+ P

(∣∣∣∣∣1n
n∑

i=1

QijlI (|Qijl| > C) − E
(
QijlI (|Qijl| > C)

)∣∣∣∣∣> ε/2

)
,

where I (·) is the indicator function. We have∣∣QijlI (|Qijl| ≤ C) − E
(
QijlI (|Qijl| ≤ C)

)∣∣≤ 2C

and

E
((

QijlI (|Qijl| ≤ C) − E
(
QijlI (|Qijl| ≤ C)

))2)≤ Var(VijVil)

≤ (E(V 4
ij )E(V 4

il ))
1/2

≤ C1.

Applying the Bernstein inequality for bounded centered random variables [see
Hoeffding (1963)] we get

P

(∣∣∣∣∣1n
n∑

i=1

QijlI (|Qijl| ≤ C) − E
(
QijlI (|Qijl| ≤ C)

)∣∣∣∣∣> ε

2

)
(A.1)

≤ exp
{ −ε2n

8(C1 + Cε/3)

}
.

We have now

P

(∣∣∣∣∣1n
n∑

i=1

QijlI (|Qijl| > C) − E
(
QijlI (|Qijl| > C)

)∣∣∣∣∣> ε/2

)
(A.2)

≤
n∑

i=1

P(|Qijl| > C) + P
(
E
(|Qijl|I (|Qijl| > C)

)
> ε/4

)
.

Using Markov’s inequality and (2.5) we obtain

P(|Qijl | > C) ≤ P
(|Vij | >

√
C/2

)+ P
(|Vil| >

√
C/2

)
+ P

(
(E(V 2

ij )E(V 2
il ))

1/2 > C/2
)

(A.3)

≤ 2C1

ea
√

C/2
+ P

(
(E(V 2

ij )E(V 2
il ))

1/2 > C/2
)
.

Choose ε = C0
√

logp/n and C = √
C0n/ logp, where C0 is a positive constant

such that C
1/2
1 ≤ 1

2

√
C0n logp and C1 ≤ 1

8C0e
a
√

C0n/ logp
√

logp/n. Note now
that

P
(
(E(V 2

ij )E(V 2
il ))

1/2 > C/2
)= 0,
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while

E
(|Qijl|I (|Qijl| > C)

)≤ (E(V 2
ij )E(V 2

il ))
1/2P(|Qijl| > C) ≤ 2C

3/2
1

ea
√

C0n/ logp
,

which implies

P
(
E
(|Qijl|I (|Qijl| > C)

)
> ε/4

)= 0.

Inequalities (A.1), (A.2) and (A.3) lead finally to

P

(∣∣∣∣∣1n
n∑

i=1

VijVil − E(VijVil)

∣∣∣∣∣> C0

√
logp

n

)
(A.4)

≤ p−C2
0/(8(C1+C

3/2
0 /3)) + 2nC1e

−(a/2)(n/ logp)1/4
.

The result (2.6) is now a consequence of (A.4) since

P

(
sup

1≤j,l≤p

∣∣∣∣∣1n
n∑

i=1

VijVil − E(VijVil)

∣∣∣∣∣> C0

√
logp

n

)

≤
p∑

j=1

p∑
l=1

P

(∣∣∣∣∣1n
n∑

i=1

VijVil − E(VijVil)

∣∣∣∣∣> C0

√
logp

n

)
.

�

PROOF OF THEOREM 1. For any symmetric matrix A, we denote by λ1(A) >

λ2(A) > · · · its eigenvalues. Weyl’s perturbation theorem [see, e.g., Bhatia (1997),
page 63] implies that for any symmetric matrices A and B and all r = 1,2, . . .

|λr(A + B) − λr(A)| ≤ ‖B‖,(A.5)

where ‖B‖ is the usual matrix norm defined as

‖B‖ = sup
‖u‖2=1

(uT BBT u)1/2.

Since 1
p
� = 1

p
� + 1

p
� , (A.5) leads to |μr − λr | ≤ ‖ 1

p
�‖. By assumption, 1

p
� is

a diagonal matrix with diagonal entries D1
p

≤ σ 2
i

p
≤ D2

p
, j = 1, . . . , p. Therefore

‖ 1
p
�‖ ≤ D2

p
and (3.5) is an immediate consequence.

In order to verify (3.6) first note that Lemma A.1 of Kneip and Utikal (2001)
implies that for symmetric matrices A and B

‖ψ r (A + B) − ψ r (A)‖2 ≤ ‖B‖
minj �=r |λj (A) − λr(A)|

(A.6)

+ 6‖B‖2

minj �=r |λj (A) − λr(A)|2 ,
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where ψ1(A), ψ2(A), . . . are the eigenvectors corresponding to the eigenvalues
λ1(A) > λ2(A) > · · · . By assumption (A.3) this implies

‖μr − ψr‖2 ≤ ‖(1/p)�‖
v(k)

+ 6‖(1/p)�‖2

v(k)2 ≤ 2D2

pv(k)

for all r = 1, . . . , k. Since D0 ≥ E(X2
ij ) =∑p

r=1 δ2
rjpμr , the second part of (3.6)

follows from D0 ≥ δ2
rjpμr , j = 1, . . . , p.

By (A.3) we necessarily have δr ≥ λr ≥ v(k) for all r = 1, . . . , k. Consequently,√
μr − √

λr = μr−λr√
μr+√

λr
≤ μr−λr

2
√

v(k)
. Furthermore, note that ξ∗

ir = ξir + δT
r Zi√
pμr

+
( δr√

pμr
− ψr√

pλr
)T Wi . Since Wi and Zi are uncorrelated, (3.5) and (3.6) lead to

E([ξir − ξ∗
ir ]2)

= 1

μr

δT
r

1

p
�δr

+
(

δr − ψr√
μr

+
√

μr − √
λr√

μr

√
λr

ψ r

)T 1

p
�

(
δr − ψ r√

μr

+
√

μr − √
λr√

μr

√
λr

ψ r

)

≤ D2

pμr

+ 2
λ1

μr

‖δr − ψ r‖2 + 2
1

μr

(√
μr −√

λr

)2
≤ D2

pμr

+ 8λ1D
2
2

μrp2v(k)2 + D2
2

2μrp2v(k)
.

Since ψr√
pλr

T
Xi = ξir + ψr√

pλr

T
Zi the second part of (3.7) follows from similar

arguments. Finally, using the Cauchy–Schwarz inequality (3.8) is a straightforward
consequence of (3.7). �

PROOF OF THEOREM 2. With A = � and B = �̂−� = �̂−�+� , inequality
(A.5) implies that for all r ∈ {1, . . . , k}

|̂λr − λr | ≤
∥∥∥∥ 1

p
� + 1

p
(�̂ − �)

∥∥∥∥≤
∥∥∥∥ 1

p
�

∥∥∥∥+
∥∥∥∥ 1

p
(�̂ − �)

∥∥∥∥.(A.7)

But under events (2.1)–(2.4) we have∥∥∥∥ 1

p
(�̂ − �)

∥∥∥∥
= sup

‖u‖2=1

[
uT 1

p2 (�̂ − �)2u
]1/2

= sup
‖u‖2=1

[
1

p2

p∑
j=1

( p∑
l=1

(
1

n

n∑
i=1

Xi,jXi,l − Cov(Xi,j ,Xi,l)

)
ul

)2]1/2
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≤ sup
‖u‖2=1

[
1

p2

p∑
j=1

‖u‖2
2

p∑
l=1

(
1

n

n∑
i=1

Xi,jXi,l − Cov(Xi,j ,Xi,l)

)2]1/2

≤ C0

√
logp

n
.

On the other hand, ‖ 1
p
�‖ ≤ D2

p
, and we can conclude that

∥∥∥∥ 1

p
�

∥∥∥∥+
∥∥∥∥ 1

p
(�̂ − �)

∥∥∥∥≤ D2

p
+ C0

√
logp

n
.(A.8)

Relation (4.1) now is an immediate consequence of (A.7) and (A.8).
Relations (A.6) and (A.8) together with (A.3), (A.4) and (2.1)–(2.4) lead to

‖ψ̂ r − ψ r‖2 ≤ ‖(1/p)� + (1/p)(�̂ − �)‖
minj �=l |λj − λl|

+ 6‖(1/p)� + (1/p)(�̂ − �)‖2
2

minj �=l |λj − λl|2

≤ D2/p + C0(logp/n)1/2

v(k)

+ 6(D2/p + C0(logp/n)1/2)2

v(k)2

≤ 2
D2/p + C0(logp/n)1/2

v(k)
,

which gives (4.2). It remains to show (4.3) and (4.4). Note that the spectral decom-
positions of � and �̂ imply that for all j = 1, . . . , p

E(W 2
ij ) =

p∑
r=1

ψ2
rjpλr,

1

n

n∑
i=1

X2
ij =

p∑
r=1

ψ̂2
rjpλ̂r .

Under events (2.1)–(2.4) we therefore obtain for all r ≤ k

ψ2
rj ≤ E(W 2

ij )

pλr

≤ D0 − D1

pλr

≤ D0 − D1

pv(k)
,(A.9)

ψ̂2
rj ≤ (1/n)

∑n
i=1 X2

ij

pλ̂r

≤ D0 + C0(logp/n)1/2

pλ̂r

.(A.10)

But by assumptions (A.3) and (A.4), relation (4.1) leads to λ̂r ≥ 5v(k)
6 . Equations

(4.3) and (4.4) then are immediate consequences of (A.9) and (A.10) �
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PROOF OF THEOREM 3. Choose an arbitrary j ∈ {1, . . . , p}. Note that
(P̂kXi)j = Xij −∑k

r=1 ψ̂rj ψ̂
T
r Xi . Since Xij = Wij +Zij we obtain the decompo-

sition

1

n

n∑
i=1

(P̂kXi)
2
j = 1

n

n∑
i=1

(
Wij −

k∑
r=1

ψ̂rj ψ̂
T

r Xi

)2

+ 2
1

n

n∑
i=1

Zij

(
Wij −

k∑
r=1

ψ̂rj ψ̂
T
r Xi

)
(A.11)

+ 1

n

n∑
i=1

Z2
ij .

Under events (2.1)–(2.4), we have |σ 2
j − 1

n

∑n
i=1 Z2

ij | ≤ C0n
−1/2√logp as

well as | 1
n

∑n
i=1 ZijWij | ≤ C0n

−1/2√logp. Furthermore, E(ZijXij ) = σ 2
j and

E(ZijXil) = 0 for j �= l. Therefore,∣∣∣∣∣
k∑

r=1

ψ̂rj

(
1

n

n∑
i=1

Zij ψ̂
T

r Xi

)∣∣∣∣∣≤
k∑

r=1

ψ̂2
rjσ

2
j + 2C0

√
logp

n

k∑
r=1

|ψ̂rj |
( p∑

l=1

|ψ̂rl|
)
.

Obviously,
∑p

l=1 |ψ̂rl| ≤
√

p
∑p

l=1 ψ̂2
rl = √

p. It now follows from Theorem 2 that
there exists a constant M1 < ∞, which can be chosen independently of all values
n,p, k, S satisfying assumptions (A.3) and (A.4), such that

1

n

n∑
i=1

(P̂kXi )
2
j − σ 2

j ≥ 1

n

n∑
i=1

(
Wij −

k∑
r=1

ψ̂rj ψ̂
T

r Xi

)2

− M1
k

v(k)1/2

√
logp

n
(A.12)

≥ −M1
k

v(k)1/2

√
logp

n
.

Since events (2.1)–(2.4) have probability A(n,p), assertion (4.6) is an immediate
consequence.

In order to show (4.7) first recall that the eigenvectors of 1
p
�̂ possess the well-

known “best basis” property, that is,

1

n

n∑
i=1

‖P̂kXi‖2
2 = 1

n

n∑
i=1

∥∥∥∥∥Xi −
k∑

r=1

ψ̂ r (ψ̂
T

r Xi )

∥∥∥∥∥
2

2

= min
w1,...,wk∈Rp

1

n

n∑
i=1

min
θ1,...,θk∈R

∥∥∥∥∥Xi −
k∑

r=1

θrwr

∥∥∥∥∥
2

2

.



FACTOR MODELS AND VARIABLE SELECTION 2437

For j = 1, . . . , p and r = 1, . . . , k define ψ̃
(j)

r ∈ R
p by ψ̃

(j)
rj = ψrj and ψ̃

(j)
rl = ψ̂rl ,

l �= j . The above property then implies that for any j

1

n

n∑
i=1

‖P̂kXi‖2
2 ≤ 1

n

n∑
i=1

∥∥∥∥∥Xi −
k∑

r=1

ψ̃
(j)

r (ψ̂
T

r Xi)

∥∥∥∥∥
2

2

.

Since the vectors P̂kXi and Xi −∑p
r=1 ψ̃

(j)

r (ψ̂T
r Xi) only differ in the j th element,

one can conclude that for any j = 1, . . . , p

1

n

n∑
i=1

(P̂kXi)
2
j ≤ 1

n

n∑
i=1

(
Xij −

k∑
r=1

ψrj (ψ̂
T
r Xi )

)2

.(A.13)

The spectral decomposition of �̂ implies that �̂ =∑p
r=1 pλ̂r ψ̂ r ψ̂

T
r with

pλ̂r = 1

n

n∑
i=1

(ψ̂
T

r Xi )
2,

1

n

n∑
i=1

(ψ̂T
r Xi )(ψ̂

T

s Xi) = 0, s �= r.

It therefore follows from (A.13) that

1

n

n∑
i=1

(P̂kXi)
2
j ≤ 1

n

n∑
i=1

X2
ij − 2

k∑
r=1

ψrj ψ̂
T

r

(
1

n

n∑
i=1

Xij Xi

)
(A.14)

+
k∑

r=1

ψ2
rjpλ̂r .

We obtain E(X2
ij ) = E(W 2

ij )+ σ 2
j as well as E(XijXil) = E(WijWil) for j �= l. At

the same time under events (2.1)–(2.4),∣∣∣∣∣
k∑

r=1

ψrj ψ̂
T
r

(
1

n

n∑
i=1

Xij Xi

)
−

k∑
r=1

ψrjψ
T
r E(Wij Wi )

∣∣∣∣∣
≤ C0n

−1/2
√

logp

k∑
r=1

|ψrj |
( p∑

l=1

|ψ̂rl|
)

+
k∑

r=1

|ψrj ||(ψ r − ψ̂ r )
T

E(Wij Wi)|

+
k∑

r=1

|ψrj ||ψ̂rj |σ 2
j .

Note that E(WijWik) ≤ D0 − D1 for all j, k = 1, . . . , p. By the Cauchy–Schwarz
inequality, Theorem 2 and Assumption (A.4), we have

|(ψ r − ψ̂ r )
T
E(Wij Wi )| ≤ ‖ψ r − ψ̂ r‖2‖E(Wij Wi )‖2

≤ 10C0n
−1/2√logp

v(k)

√
p(D0 − D1)



2438 A. KNEIP AND P. SARDA

as well as
∑p

l=1 |ψ̂rl| ≤
√

p
∑p

l=1 ψ̂2
rl = √

p. The bounds for ψrj and ψ̂rl derived
in Theorem 2 then imply that under events (2.1)–(2.4) there exists a constant
M̃2 < ∞, which can be chosen independently of all values n,p, k, S satisfying
assumptions (A.3) and (A.4), such that∣∣∣∣∣

k∑
r=1

ψrj ψ̂
T
r

(
1

n

n∑
i=1

Xij Xi

)
−

k∑
r=1

ψrjψ
T
r E(Wij Wi )

∣∣∣∣∣
(A.15)

≤ M̃2
k

v(k)3/2 n−1/2
√

logp.

At the same time, by Theorem 2 it follows that there exist constants M̃∗
2 , M̃∗∗

2 < ∞
such that and r = 1, . . . , k,

|pλ̂r − pλr | ≤ M̃∗
2 pn−1/2

√
logp,

(A.16)

|ψ2
rjpλ̂r − ψ2

rjpλr | ≤ M̃∗∗
2

v(k)
n−1/2

√
logp.

Note that E((ψT
r Wi)

2) = pλr . Under events (2.1)–(2.4), we can now conclude
from (A.14)–(A.16) that there exists a constant M̃∗∗∗

2 < ∞, which can be chosen
independently of all values n,p, k, S satisfying Assumptions (A.3) and (A.4), such
that

1

n

n∑
i=1

(P̂kXi)
2
j

≤
∣∣∣∣∣σ 2

j + E(W 2
ij ) − 2

k∑
r=1

ψrjψ
T
r E(Wij Wi ) +

k∑
r=1

ψ2
rjpλr

∣∣∣∣∣
(A.17)

+ M̃∗∗∗
2

k

v(k)
n−1/2(√logp

)2
= σ 2

j + E((PkWi )
2
j ) + M̃∗∗∗

2
k

v(k)
n−1/2

√
logp.

Relations (A.12) and (A.17) imply that under (2.1)–(2.4)

1

n

n∑
i=1

(
Wij −

k∑
r=1

ψ̂rj ψ̂
T

r Xi

)2

(A.18)

≤ E((PkWi )
2
j ) + M∗

2
k

v(k)3/2 n−1/2
√

logp

holds with M∗
2 ≤ M1 + M̃∗∗∗

2 . Since events (2.1)–(2.4) have probability A(n,p),
assertion (4.7) of Theorem 3 now is an immediate consequence of (A.12), (A.17)
and (A.18).
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It remains to show (4.8). We have

1

n

n∑
i=1

(
k∑

r=1

(̂ξir − ξir )αr

)2

≤ α2
sum

1

n

n∑
i=1

k∑
r=1

(̂ξir − ξir )
2(A.19)

≤ α2
sum

(
2

k∑
r=1

1

n

n∑
i=1

(
ψ̂

T

r Xi√
pλ̂r

− ψT
r Xi√
pλr

)2

+ 2
k∑

r=1

1

n

n∑
i=1

(
ψT

r Zi√
pλr

)2)
.

But for all r = 1, . . . , k

1

n

n∑
i=1

(
ψ̂

T

r Xi√
pλ̂r

− ψT
r Xi√
pλr

)2

≤ 2

n

n∑
i=1

(

√
λ̂r − √

λr)
2(ψ̂T

r Xi)
2

pλrλ̂r

(A.20)

+ 2

n

n∑
i=1

((ψ r − ψ̂ r )
T Xi)

2

pλr

,

and Theorem 2 and assumptions (A.1)–(A.4) imply that under events (2.1)–(2.4)
there exist some constants M∗

3 ,M∗∗
3 < ∞, which can be chosen independently of

all values n,p, k, S satisfying assumptions (A.3) and (A.4), such that

1

n

n∑
i=1

(

√
λ̂r − √

λr)
2(ψ̂T

r Xi )
2

pλrλ̂r

= (̂λr − λr)
2

(

√
λ̂r + √

λr)2λs

≤ M∗
3

v(k)2

logp

n
(A.21)

and

1

n

n∑
i=1

((ψ r − ψ̂ r )
T Xi )

2

pλr

≤ ‖|ψ r − ψ̂ r‖2
2

pλr

1

n

n∑
i=1

‖Xi‖2
2 ≤ M∗∗

3

v(k)3

logp

n
(A.22)

hold for all r = 1, . . . , k.

Now note that our setup implies that 1
n

∑n
i=1 E((

ψT
r Zi√
pλr

)2) ≤ D2
pv(k)

and Var( 1
n

×∑n
i=1(

ψT
r Zi√
pλr

)2) ≤ D3+2D2
2

nv(k)2p2 hold for all r = 1, . . . , k. The Chebyshev inequality thus
implies that the event

1

n

n∑
i=1

(
ψT

r Zi√
pλr

)2

≤ D2 +
√

D3 + 2D2
2

pv(k)
for all r = 1, . . . , k(A.23)

holds with probability at least 1 − k
n

. We can thus infer from (A.26)–(A.22) that
there exists some positive constant M3 < ∞, which can be chosen independently



2440 A. KNEIP AND P. SARDA

of the values n,p, k, S satisfying (A.3)–(A.5), such that under events (2.1)–(2.4)
and (A.23)

1

n

n∑
i=1

(
k∑

r=1

(̂ξir − ξir )αr

)2

≤ α2
sum

(
4k(M∗

3 + M∗∗
3 )

v(k)3

logp

n
+ 2k(D2 +

√
D3 + 2D2

2)

pv(k)

)
.

Recall that events (2.1)–(2.4) and (A.24) simultaneously hold with probability at
least A(n,p) − (p + k)−A2/8, while (A.23) is satisfied with probability at least

1− k
n

. This proves assertion (4.8) with M3 = 4(M∗
3 +M∗∗

3 )+2(D2 +
√

D3 + 2D2
2).
�

PROOF OF PROPOSITION 2. Let Q̂k denote the p × p diagonal matrix with

diagonal entries 1/
√

1
n

∑n
l=1(P̂kXl)

2
1, . . . ,1/

√
1
n

∑n
l=1(P̂kXl)2

p and split the (k +
p)-dimensional vector � in two vectors �1 and �2, where �1 is the k-dimensional
vector with the k upper components of �, and �2 is the p-dimensional vector with
the p lower components of �. Then

�T 1

n

n∑
i=1

	i	
T
i � = �T

1 �1 + �T
2

1

n

n∑
i=1

Q̂kP̂kXiXT
i P̂kQ̂k�2

≥ �T
1 �1 + �T

2 Q̂kP̂k�P̂kQ̂k�2

+ �T
2 Q̂kP̂k(�̂ − �)P̂kQ̂k�2.

The matrix � is a diagonal matrix with entries σ 2
1 , . . . , σ 2

p , and ψ̂T
r �ψ̂ s ≤ D2 for

all r, s. Together with the bounds for ψ̂rj derived in Theorem 2 we can conclude
that under (2.1)–(2.4) there exists a constant M∗

4 < ∞, which can be chosen in-
dependently of all values n,p, k, S satisfying assumptions (A.3) and (A.4), such
that

�T
2 Q̂kP̂k�P̂kQ̂k�2

= �T
2 Q̂k�Q̂k�2 − 2

k∑
r=1

�T
2 Q̂kψ̂ r ψ̂

T
r �Q̂k�2

+
k∑

r=1
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s=1

Q̂k�
T
2 ψ̂ r ψ̂

T
r �ψ̂ sψ̂

T

s Q̂k�2

≥
(

D1

maxj ((1/n)
∑n

l=1(P̂kXl)
2
j )

− 2kM∗
4 + k2M∗

4

pv(k)minj ((1/n)
∑n

l=1(P̂kXl)
2
j )

)
‖�2‖2

2.
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We have

max
j

1

n

n∑
i=1

(P̂kXi)
2
j ≤ max

j

1

n

n∑
i=1

X2
ij ≤ D0 + max

j

∣∣∣∣∣1n
n∑

i=1

X2
ij − E(X2

ij )

∣∣∣∣∣,
and since D1 ≤ D0, this leads under (2.1)–(2.4) to

�T
1 �1 + �T

2 Q̂kP̂k�P̂kQ̂k�2

≥
(

D1

D0 + C0n1/2
√

logp
− 2kM∗

4 + k2M∗
4

pv(k)minj ((1/n)
∑n

l=1(P̂kXl)
2
j )

)
‖�‖2

2.

On the other hand

�T
2 Q̂kP̂k(�̂ − �)P̂kQ̂k�2

= (�2,J0,k+S
+ �2,JC

0,k+S
)T Q̂kP̂k(�̂ − �)P̂kQ̂k(�2,J0,k+S

+ �2,JC
0,k+S

)

= �T
2,J0,k+S

Q̂kP̂k(�̂ − �)P̂kQ̂k�2,J0,k+S

+ �T

2,JC
0,k+S

Q̂kP̂k(�̂ − �)P̂kQ̂k�2,JC
0,k+S

+ 2�T
2,J0,k+S

Q̂kP̂k(�̂ − �)P̂kQ̂k�2,JC
0,k+S

,

where �2,J0,k+S
, respectively, �2,JC

0,k+S
, is the p-dimensional vector with the last

p coordinates of �J0,k+S
, respectively, �JC

0,k+S
. The Cauchy–Schwarz inequality

leads to ‖�J0,k+S
‖1 ≤ (2(k + S))1/2‖�J0,k+S

‖2. Since ‖�JC
0,k+S

‖1 ≤ c0‖�J0,k+S
‖1

we have

|�T
2,J0,k+S

Q̂kP̂k(�̂ − �)P̂kQ̂k�2,JC
0,k+S

|
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j,l

∣∣(Q̂kP̂k(�̂ − �)P̂kQ̂k

)
j,l

∣∣‖�2,J0,k+S
‖1‖�2,JC
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‖1
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∣∣(Q̂kP̂k(�̂ − �)P̂kQ̂k

)
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‖1

≤ c0 max
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)
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‖2

1

≤ 2(k + S)c0 max
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∣∣(Q̂kP̂k(�̂ − �)P̂kQ̂k

)
j,l

∣∣‖�J0,k+S
‖2

2,

and the same upper bound holds for the terms �T
2,J0,k+S

Q̂kP̂k(�̂ − �)P̂kQ̂k ×
�2,J0,k+S

and �T

2,JC
0,k+S

Q̂kP̂k(�̂ − �)P̂kQ̂k�2,JC
0,k+S

so that

�T
2 Q̂kP̂k(�̂ − �)P̂kQ̂k�2

≤ 8(k + S)c0 max
j,l

∣∣(Q̂kP̂k(�̂ − �)P̂kQ̂k

)
j,l

∣∣‖�J0,k+S
‖2

2.



2442 A. KNEIP AND P. SARDA

Obviously, ψ̂T
r (�̂ − �)ψ̂ s ≤ p maxj,l | 1

n

∑n
i=1 Xi,jXi,l − Cov(Xi,j ,Xi,l| for all

r, s. Using Theorem 2, one can infer that under (2.1)–(2.4),

max
j,l

∣∣(Q̂kP̂k(�̂ − �)P̂kQ̂k

)
j,l

∣∣
≤ maxj,l |(1/n)

∑n
i=1 Xi,jXi,l − Cov(Xi,j ,Xi,l)|

minj ((1/n)
∑n

l=1(P̂kXl)
2
j )

+ 2
k∑

r=1

max
j,l

∣∣(ψ̂ r ψ̂
T

r (�̂ − �)
)
j,l

∣∣
+

k∑
r=1

k∑
s=1

max
j,l

∣∣(ψ̂ r ψ̂
T
r (�̂ − �)ψ̂ sψ̂

T

s

)
j,l

∣∣
≤ M∗∗

4 (k2/v(k))n−1/2√logp

minj ((1/n)
∑n

l=1(P̂kXl)
2
j )

,

where the constant M∗∗
4 < ∞ can be chosen independently of all values n,p, k, S

satisfying assumptions (A.3) and (A.4). When combining the above inequalities,
the desired result follows from (A.5) and the bound on minj

1
n

∑n
i=1(P̂kXi )

2
j to be

obtained from (4.6) �

PROOF OF THEOREM 4. The first step of the proof consists of showing that
under events (2.1)–(2.4) the following inequality holds with probability at least
1 − (p + k)1−A2/8

2
∥∥∥∥1

n
	T (Y − 	θ)

∥∥∥∥∞
≤ ρ,(A.24)

where ρ = Aσ

√
log(k+p)

n
+ M5αsum

v(k)3/2

√
logp

n
, A > 2

√
2 and M5 is a sufficiently large

positive constant.
Since Wij ,Zij and, hence, ξ̂ir and X̃ij are independent of the i.i.d. error terms

εi ∼ N (0, σ 2), it follows from standard arguments that

sup
1≤r≤k,1≤j≤p

{
2

n

∣∣∣∣∣
n∑

i=1

ξ̂irεi

∣∣∣∣∣, 2

n

∣∣∣∣∣
n∑

i=1

X̃ij εi

∣∣∣∣∣
}

≤ Aσ

√
log(k + p)

n
(A.25)

holds with probability at least 1 − (p + k)1−A2/8. Therefore, in order to prove
(A.24) it only remains to show that under events (2.1)–(2.4) there exists a positive
constant M5 < ∞, which can be chosen independently of the values n,p, k, S

satisfying (A.3)–(A.5), such that

sup
1≤r≤k,1≤j≤p

{
2

n

∣∣∣∣∣
n∑

i=1

ξ̂ir ε̃i

∣∣∣∣∣, 2

n

∣∣∣∣∣
n∑

i=1

X̃ij ε̃i

∣∣∣∣∣
}

≤ M5αsum

v(k)3/2

√
logp

n
.(A.26)



FACTOR MODELS AND VARIABLE SELECTION 2443

We will now prove (A.26). For all r = 1, . . . , k we have∣∣∣∣∣1n
n∑

i=1

ξ̂ir ε̃i

∣∣∣∣∣=
∣∣∣∣∣1n

n∑
i=1

ξ̂ir

k∑
s=1

αs(̂ξis − ξis)

∣∣∣∣∣
=
∣∣∣∣∣1n
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ξ̂ir
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αs
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s Wi√
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T
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)∣∣∣∣∣
=
∣∣∣∣∣
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s=1

αs

1

n

n∑
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ξ̂ir

(
ψT

s Xi√
pλs

− ψ̂
T

s Xi√
pλ̂s

− ψT
s Zi√
pλs

)∣∣∣∣∣
≤ αsum sup

s

(∣∣∣∣∣1n
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(

√
λ̂s − √
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T

s Xi√
pλsλ̂s

∣∣∣∣∣
+
∣∣∣∣∣1n
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i=1
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T Xi√

pλs
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∣∣∣∣∣1n
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ξ̂ir

ψT
s Zi√
pλs

∣∣∣∣∣
)
.

Using the Cauchy–Schwarz inequality and the fact that 1
n

∑n
i=1 ξ̂2

ir = 1, inequali-
ties (A.21) and (A.22) imply that under events (2.1)–(2.4), one obtains∣∣∣∣∣1n

n∑
i=1

ξ̂ir ε̃i

∣∣∣∣∣
≤ αsum sup

s
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1
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√
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T
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2
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(A.27)

+
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1

n

n∑
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((ψ s − ψ̂ s)
T Xi)

2
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)1/2

+
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ξ̂ir

ψT
s Zi√
pλs

∣∣∣∣∣
)

≤ αsum

(√
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3
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logp
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+
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3
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logp
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)
.

Since also 1
n

∑n
i=1 X̃2

ij = 1, similar arguments show that under (2.1)–(2.4)

∣∣∣∣∣1n
n∑
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X̃ij ε̃i
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logp
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(A.28)

+ sup
s

∣∣∣∣∣1n
n∑

i=1

X̃ij

ψT
s Zi√
pλs

∣∣∣∣∣
)
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for all j = 1, . . . , p. The Cauchy–Schwarz inequality yields
∑p

l=1 |ψ̂rl| ≤ √
p,∑p

l=1 |ψrl| ≤ √
p, as well as

p∑
l=1

∣∣∣∣∣
k∑

r=1

ψ̂rj ψ̂rl

∣∣∣∣∣≤ √
p

√√√√√ p∑
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(
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= √
p

√√√√ k∑
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k∑
s=1

ψ̂rj ψ̂sj

p∑
l=1

ψ̂rlψ̂sl

≤√
kp sup

r
|ψ̂rj |.

Necessarily, v(k) ≤ D0/k and hence k ≤ D0/v(k). It therefore follows from (4.3),
(4.4), (4.6) and (A.5) that under events (2.1)–(2.4) there are some constants M∗∗∗

5 ,
M̃∗∗∗

5 such that for all r, s = 1, . . . , k and j = 1, . . . , p,∣∣∣∣∣1n
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ξ̂ir
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s Zi√
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∣∣∣∣∣1n

n∑
i=1

1

p

√
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∣∣∣∣∣
(A.29)

≤ M∗∗∗
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√
logp

n

and ∣∣∣∣∣1n
n∑

i=1

X̃ij

ψT
s Zi√
pλs

∣∣∣∣∣=
∣∣∣∣∣1n

n∑
i=1

p∑
j ′=1

(Xij −∑k
r=1 ψ̂rj ψ̂

T
r Xi )ψsj ′Zij ′

((1/n)
∑n

i=1(P̂kXi)
2
j )

1/2
√

pλs

∣∣∣∣∣
(A.30)

≤ M̃∗∗∗
5

v(k)3/2

√
logp

n
.

Result (A.26) is now a direct consequence of (A.27)–(A.30). Note that all constants
in (A.27)–(A.30) and thus also the constant M5 < ∞ can be chosen independently
of the values n,p, k, S satisfying (A.3)–(A.5).

Under event (A.24) as well as Kn,p(k, S,3) > 0, inequalities (B.1), (4.1), (B.27)
and (B.30) of Bickel, Ritov and Tsybakov (2009) may be transferred in our context
which yields

‖(̂θ − θ)J0‖2 ≤ 4ρ
√

k + S/κ2, ‖θ̂ − θ‖1 ≤ 4‖(̂θ − θ)J0‖1,(A.31)

where J0 is the set of nonnull coefficients of θ . This implies that

k∑
r=1

|̂̃αr − α̃r | +
p∑

j=1

|̂̃βj − β̃j | ≤ 16
k + S

κ2 ρ.(A.32)

Events (2.1)–(2.4) hold with probability A(n,p), and therefore the probability
of event (A.24) is at least A(n,p) − (p + k)1−A2/8. When combining (4.4), (4.6)
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and (A.32), inequalities (5.2) and (5.3) follow from the definitions of β̃j and α̃r ,
since under (2.1)–(2.4)

p∑
j=1

|β̂j − βj | =
p∑

j=1

|̂̃βj − β̃j |
((1/n)

∑n
i=1(P̂kXi )

2
j )

1/2

≤
∑p

j=1 |̂̃βj − β̃j |
(D1 − M1(kn−1/2

√
logp/v(k)1/2))1/2

and

k∑
r=1

|α̂r − αr | =
k∑

r=1

∣∣∣∣∣̂̃αr − α̃r −
√

pλ̂r

p∑
j=1

ψ̂rj (β̂j − βj )

∣∣∣∣∣
≤

k∑
r=1

|̂̃αr − α̃r | + k
(
D0 + C0n

−1/2
√

logp
)1/2

p∑
j=1

|β̂j − βj |.

It remains to prove assertion (5.4) on the prediction error. We have

1

n

n∑
i=1

(
k∑

r=1

ξ̂ir α̂r − ξirαr +
p∑

j=1

Xij (β̂j − βj )

)2

= 1

n

n∑
i=1

(
k∑

r=1

ξ̂ir (̂̃αr − α̃r ) +
p∑

j=1

X̃ij (
̂̃βj − β̃j ) +

k∑
r=1

(̂ξir − ξir )αr

)2

(A.33)

≤ 2

n

n∑
i=1

(
k∑

r=1

ξ̂ir (̂̃αr − α̃r ) +
p∑

j=1

X̃ij (
̂̃βj − β̃j )

)2

+ 2

n

n∑
i=1

(
k∑

r=1

(̂ξir − ξir )αr

)2

.

Under event (A.24) as well as Kn,p(k, S,3) > 0, the first part of inequalities (B.31)
in the proof of Theorem 7.2 of Bickel, Ritov and Tsybakov (2009) leads to

2

n

n∑
i=1

(
k∑

r=1

ξ̂ir (̂̃αr − α̃r ) +
p∑

j=1

X̃ij (
̂̃βj − β̃j )

)2

≤ 32(k + S)

κ2 ρ2.(A.34)

Under events (2.1)–(2.4), (A.24) as well as (A.23), inequality (5.4) now follows
from (A.33), (A.34) and (4.8). The assertion then is a consequence of the fact that
(2.1)–(2.4) are satisfied with probability A(n,p), while (A.24) and (A.23) hold
with probabilities at least 1 − (p + k)−A2/8 and 1 − k

n
, respectively. �
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