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We consider the problem of estimating a sparse linear regression vec-
tor B* under a Gaussian noise model, for the purpose of both prediction and
model selection. We assume that prior knowledge is available on the sparsity
pattern, namely the set of variables is partitioned into prescribed groups, only
few of which are relevant in the estimation process. This group sparsity as-
sumption suggests us to consider the Group Lasso method as a means to esti-
mate B*. We establish oracle inequalities for the prediction and ¢, estimation
errors of this estimator. These bounds hold under a restricted eigenvalue con-
dition on the design matrix. Under a stronger condition, we derive bounds for
the estimation error for mixed (2, p)-norms with 1 < p < co. When p = oo,
this result implies that a thresholded version of the Group Lasso estimator se-
lects the sparsity pattern of * with high probability. Next, we prove that the
rate of convergence of our upper bounds is optimal in a minimax sense, up
to a logarithmic factor, for all estimators over a class of group sparse vectors.
Furthermore, we establish lower bounds for the prediction and ¢, estimation
errors of the usual Lasso estimator. Using this result, we demonstrate that the
Group Lasso can achieve an improvement in the prediction and estimation
errors as compared to the Lasso.

An important application of our results is provided by the problem of es-
timating multiple regression equations simultaneously or multi-task learning.
In this case, we obtain refinements of the results in [In Proc. of the 22nd
Annual Conference on Learning Theory (COLT) (2009)], which allow us to
establish a quantitative advantage of the Group Lasso over the usual Lasso
in the multi-task setting. Finally, within the same setting, we show how our
results can be extended to more general noise distributions, of which we only
require the fourth moment to be finite. To obtain this extension, we establish
a new maximal moment inequality, which may be of independent interest.
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1. Introduction. Over the past few years there has been a great deal of at-
tention on the problem of estimating a sparse? regression vector f* from a set of
linear measurements

(1.1) y=Xp*+ W.

Here X is a given N x K design matrix and W is a zero mean random variable
modeling the presence of noise.

A main motivation behind sparse estimation comes from the observation that
in several practical applications the number of variables K is much larger than
the number N of observations, but the underlying model is known to be sparse;
see [8, 12] and references therein. In this situation, the ordinary least squares es-
timator is not well defined. A more appropriate estimation method is the £;-norm
penalized least squares method, which is commonly referred to as the Lasso. The
statistical properties of this estimator are now well understood; see, for example,
[4, 6, 7, 18, 21, 36] and references therein. In particular, it is possible to obtain
oracle inequalities on the estimation and prediction errors, which are meaningful
even in the regime K > N.

In this paper, we study the above estimation problem under additional condi-
tions on the structure of the sparsity pattern of the regression vector 8*. Specit-
ically, we assume that the set of variables can be partitioned into a number of
groups, only few of which are relevant in the estimation process. In other words,
not only we require that many components of the vector 8* are zero, but also that
many of a priori known subsets of components are all equal to zero. This struc-
tured sparsity assumption suggests us to consider the Group Lasso method [39] as
a mean to estimate 8* [see (2.2) below]. It is based on regularization with a mixed
(2, 1)-norm, namely the sum, over the set of groups, of the square norm of the
regression coefficients restricted to each of the groups. This estimator has received
significant recent attention; see [3, 10, 16, 17, 19, 24-26, 28, 31] and references
therein. Our principal goal is to clarify the advantage of this more stringent group
sparsity assumption in the estimation process over the usual sparsity assumption.
For this purpose, we shall address the issues of bounding the prediction error, the
estimation error as well as estimating the sparsity pattern. The main difference
from most of the previous work is that we obtain not only the upper bounds but
also the corresponding lower bounds, thus establish optimal rates of estimation
and prediction under group sparsity.

A main motivation for us to consider the group sparsity assumption is the prac-
tically important problem of simultaneous estimation the coefficients of multiple
regression equations

(1.2) yi=X18] + Wi,

2The phrase “B* is sparse” means that most of the components of this vector are equal to zero.
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2= X285 + Wa,

yr = XrBr + Wr.

Here X1, ..., X7 are prescribed n x M design matrices, B}, ..., B} € RM are the
unknown regression vectors which we wish to estimate, yi, ..., yr are n-dimen-
sional vectors of observations and Wi, ..., Wy are i.i.d. zero mean random noise

vectors. Examples in which this estimation problem is relevant range from multi-
task learning [2, 23, 28] and conjoint analysis [ 14, 20] to longitudinal data analysis
[11] and to the analysis of panel data [15, 38], among others. We briefly review
these different settings in the course of the paper. In particular, multi-task learning
provides a main motivation for our study. In that setting each regression equation
corresponds to a different learning task; in addition to the requirement that M > n,
we also allow for the number of tasks 7 to be much larger than n. Following [2],
we assume that there are only few common important variables which are shared
by the tasks. That is, we assume that the vectors B}, ..., B7 are not only sparse
but also have their sparsity patterns included in the same set of small cardinality.
This group sparsity assumption induces a relationship between the responses and,
as we shall see, can be used to improve estimation.

The model (1.2) can be reformulated as a single regression problem of the form
(1.1) by setting K = MT, N =nT, identifying the vector 8 by the concatena-
tion of the vectors B, ..., Br and choosing X to be a block diagonal matrix,
whose blocks are formed by the matrices Xy, ..., X7, in order. In this way, the
above sparsity assumption on the vectors f; translate in a group sparsity assump-
tion on the vector §*, where each group is associated with one of the variables.
That is, each group contains the same regression component across the different
equations (1.2). Hence, the results developed in this paper for the Group Lasso
apply to the multi-task learning problem as a special case.

1.1. Outline of the main results. We are now ready to summarize the main
contributions of this paper.

e We first establish bounds for the prediction and ¢ estimation errors for the
general Group Lasso setting; see Theorem 3.1. In particular, we include a “slow
rate” bound, which holds under no assumption on the design matrix X. We then
apply the theorem to the specific multi-task setting, leading to some refinements
of the results in [22]. Specifically, we demonstrate that as the number of tasks T
increases the dependence of the bound on the number of variables M disappears,
provided that M grows at the rate slower than exp(7"). We also note that our
estimation and prediction error bounds apply to the general case in which the
groups G ; overlap.
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e We extend previous results on the selection of the sparsity pattern for the usual
Lasso to the Group Lasso case; see Theorem 5.1. This analysis also allows us to
establish the rates of convergence of the estimators for mixed (2, p)-norms with
1 < p < oo (cf. Corollary 5.1).

e We show that the rates of convergence in the above upper bounds for the pre-
diction and (2, p)-norm estimation errors are optimal in a minimax sense (up to
a logarithmic factor) for all estimators over a class of group sparse vectors 8*;
see Theorem 6.1.

e We prove that the Group Lasso can achieve an improvement in the prediction
and estimation properties as compared to the usual Lasso. For this purpose, we
establish lower bounds for the prediction and ¢, estimation errors of the Lasso
estimator (cf. Theorem 7.1) and show that, in some important cases, they are
greater than the corresponding upper bounds for the Group Lasso, under the
same model assumptions. In particular, we clarify the advantage of the Group
Lasso over the Lasso in the multi-task learning setting.

e Finally, we present an extension of the multi-task learning analysis to more gen-
eral noise distributions having only bounded fourth moment (see Theorems 8.1
and 8.2); this extension is not straightforward and needs a new tool, the maximal
moment inequality of Lemma 9.1, which may be of independent interest.

1.2. Previous work. Our results build upon recently developed ideas in the
area of compressed sensing and sparse estimation; see, for example, [4, 8, 12, 18]
and references therein. In particular, it has been shown by different authors, under
different conditions on the design matrix, that the Lasso satisfies sparsity oracle
inequalities; see [4, 6, 7, 18, 21, 36, 41] and references therein. Closest to our
study is the paper [4], which relies upon a Restricted Eigenvalue (RE) assumption
as well as [21], which considered the problem of selection of sparsity pattern. Our
techniques of proofs build upon and extend those in these papers.

Several papers analyzing statistical properties of the Group Lasso estimator ap-
peared quite recently [3, 10, 16, 19, 24-26, 31]. Most of them are focused on the
Group Lasso for additive models [16, 19, 25, 31] or generalized linear models [24].
Special choice of groups is studied in [10]. Discussion of the Group Lasso in a rel-
atively general setting is given by Bach [3] and Nardi and Rinaldo [26]. Bach [3]
assumes that the predictors (rows of matrix X) are random with a positive definite
covariance matrix and proves results on consistent selection of sparsity pattern
J(B*) when the dimension of the model (K in our case) is fixed and N — oo.
Nardi and Rinaldo [26] address the issue of sparsity oracle inequalities in the spirit
of [4] under the simplifying assumption that all the Gram matrices ¥; (see the
definition below) are proportional to the identity matrix. However, the rates in
their bounds are not optimal (see comments in [22] and in Section 3 below) and
they do not demonstrate advantages of the Group Lasso as compared to the usual
Lasso. Obozinski et al. [28] consider the model (1.2) where all the matrices X;
are the same and all their rows are independent Gaussian random vectors with the



2168 LOUNICI, PONTIL, VAN DE GEER AND TSYBAKOV

same covariance matrix. They show that the resulting estimator achieves consistent
selection of the sparsity pattern and that there may be some improvement with re-
spect to the usual Lasso. Note that the Gaussian X, is a rather particular example,
and Obozinski et al. [28] focused on the consistent selection, rather than explor-
ing whether there is some improvement in the prediction and estimation properties
as compared to the usual Lasso. The latter issue has been addressed in our work
[22] and in the parallel work of Huang and Zhang [17]. These papers considered
only heuristic comparisons of the two estimators, that is, those based on the up-
per bounds. Also the settings treated there did not cover the problem in whole
generality. Huang and Zhang [17] considered the general Group Lasso setting but
obtained only bounds for prediction and ¢, estimation errors, while [22] focused
only on the multi-task setting, though additionally with bounds for more general
mixed (2, p)-norm estimation errors and consistent pattern selection properties.

1.3. Plan of the paper. This paper is organized as follows. In Section 2, we
define the Group Lasso estimator and describe its application to the multi-task
learning problem. In Sections 3 and 4, we study the oracle properties of this esti-
mator in the case of Gaussian noise, presenting upper bounds on the prediction and
estimation errors. In Section 5, under a stronger condition on the design matrices,
we describe a simple modification of our method and show that it selects the cor-
rect sparsity pattern with an overwhelming probability. Next, in Section 6, we show
that the rates of convergence in our upper bounds on prediction and (2, p)-norm
estimation errors with 1 < p < oo are optimal in a minimax sense, up to a logarith-
mic factor. In Section 7, we provide a lower bound for the Lasso estimator, which
allows us to quantify the advantage of the Group Lasso over the Lasso under the
group sparsity assumption. In Section 8, we discuss an extension of our results for
multi-task learning to more general noise distributions. Finally, Section 9 presents
a new maximal moment inequality (an extension of Nemirovski’s inequality from
the second to arbitrary moments), which is needed in the proofs of Section 8.

2. Method. In this section, we introduce the notation and describe the esti-
mation method, which we analyze in the paper. We consider the linear regression
model

(2.1) y=XB*+ W,

where g* € RK is the vector of regression coefficients, X is an N x K design
matrix, y € R¥ is the response vector and W € R¥ is a random noise vector which
will be specified later. We also denote by xlT, s x; the rows of matrix X. Unless
otherwise specified, all vectors are meant to be column vectors. Hereafter, for every
positive integer £, we let N, be the set of integers from 1 and up to £. Throughout
the paper, we assume that X is a deterministic matrix. However, it should be noted
that our results extend in a standard way (as discussed, e.g., in [4, 8]) to random X
satisfying the assumptions stated below with high probability.
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We choose M < K and let the sets G, ..., Gy form a prescribed partition
of the index set Ng in M sets. That is, Ng = Uyzl G; and, for every j # J,
G;NGj =2. Forevery j € Ny, welet K; = |G | be the cardinality of G; and
denote by X¢; the N x K j sub-matrix of X formed by the columns indexed by G ;.
We also use the notation ¥ = X " X/N and ¥ = ngXG ;/ N for the normalized
Gram matrices of X and Xg i respectively.

For every 8 € RX, we introduce the notation 8/ = (B;:k € G j) and, for every
1 < p < oo, we define the mixed (2, p)-norm of § as

o= (%( 2. 5§>p/2>1/p - (é I ||”)W

j=1 "keG;
and the (2, oco)-norm of g as

_ J
{3 oo = max }3
l ”2, 1<j<M 1871l

where || - || is the standard Euclidean norm.

If J € Ny, we let B be the vector (8/I{j € J}:j € Ny), where I{-} denotes
the indicator function. Finally, we set J(8) = {j: 8/ #0, j € Ny} and M(B) =
|J(B)| where |J| denotes the cardinality of set J € Ny,. The set J(8) contains the
indices of the relevant groups and the number M (8) the number of such groups.
Note that when M = K we have G; = {j}, j € Nk, and |Bll2,, = | Bll p, where
Bl p is the £, norm of B.

The main assumption we make on §* is that it is group sparse, which means
that M (B*) is much smaller than M.

Our main goal is to estimate the vector f* as well as its sparsity pattern J(8*)
from y. To this end, we consider the Group Lasso estimator. It is defined to be a
solution ,é of the optimization problem

|1 M ‘
(2.2) ming - 1XB = yI*+23a;1871: p € RE ¢,
j=1
where A1, ..., Apy are positive parameters, which we shall specify later.

In order to study the statistical properties of this estimator, it is useful to present
the optimality conditions for a solution of the problem (2.2). Since the objective
function in (2.2) is convex, ,3 is a solution of (2.2) if and only if O (the K-dimen-
sional zero vector) belongs to the subdifferential of the objective function. In turn,
this condition is equivalent to the requirement that

v ! X 2) €29 Mx- 3
- (ﬁ” ﬂ—yll)e ; A1),
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where d denotes the subdifferential (see, e.g., [5] for more information on convex
analysis). Note that

a(}éwﬂn)

. 7 . . .
= {9 eRK:9/ =1 ||//Zj|| if B/ #0,and ||67] <X;if B/ =0, j eNM}.
Thus, ,3 is a solution of (2.2) if and only if
23) LxTooxpy =L g 20
. — y— =Aj 1 y
N 1871
LioxeT™ Ay o B
2.4) N”(X (y—XB) | <4; if B/ =0.

Note that, on the left-hand side of (2.3) we may write Xgi y—X ,3) in place of

(XT( y—X 3 ))/. In what follows, we always use the latter writing to avoid multiple
notation.

2.1. Simultaneous estimation of multiple regression equations and multi-task
learning. As an application of the above ideas, we consider the problem of es-
timating multiple linear regression equations simultaneously. More precisely, we
consider multiple Gaussian regression models,

yi=X187+ Wi,

y2=Xo285 + Wa,
(2.5

yr =XrBr + Wr,

where, for each t € N7, we let X; be a prescribed n x M design matrix, 8 € RM
the unknown vector of regression coefficients and y; an n-dimensional vector of
observations. We assume that Wy, ..., Wr are i.i.d. zero mean random vectors.

We study this problem under the assumption that the sparsity patterns of vectors
B} are for any ¢ contained in the same set of small cardinality s. In other words,
the response variable associated with each equation in (2.5) depends only on some
members of a small subset of the corresponding predictor variables, which is pre-
served across the different equations. We consider as our estimator a solution of
the optimization problem

T

1/2
(1 1 M /T
(2.6) min ?Z;nxtﬁ,—y,n%zxZ(Zﬁ}j) Bi,....pr e RM

=1 j=1 \r=1
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with some tuning parameter A > 0. As we have already mentioned in the Introduc-
tion, this estimator is an instance of the Group Lasso estimator described above.
Indeed, set K = MT, N =nT,let 8 € RX be the vector obtained by stacking the
vectors fBi,...,Br and let y and W be the random vectors formed by stacking
the vectors yy, ..., yr and the vectors Wy, ..., Wr, respectively. We identify each
row index of X with a double index (¢,i) € Ny x N, and each column index with
(t, j) € N7 x Nyy. In this special case, the matrix X is block diagonal and its zth
block is formed by the n x M matrix X, corresponding to “task ¢.” Moreover, the
groups are defined as G; = {(¢, j):t € Nr} and the parameters A ; in (2.2) are all
set equal to a common value A. Within this setting, we see that (2.6) is a special
case of (2.2).

Finally, note that the vectors J = (Bij:teN T)T are formed by the coefficients
corresponding to the jth variable “across the tasks.” The set J(B8) = {j: 8/ #
0, j € N/} contains the indices of the relevant variables present in at least one of
the vectors 1, ..., Br and the number M (8) = |J (B)| quantifies the level of group
sparsity across the tasks. The structured sparsity (or group sparsity) assumption has
the form M (B*) < s where s is some integer much smaller than M.

Our interest in this model with group sparsity is mainly motivated by multi-task
learning. Let us briefly discuss this setting as well as other applications, in which
the problem of estimating multiple regression equations arises.

Multi-task learning. In machine learning, the problem of multi-task learning
has received much attention recently; see [2, 21, 23, 28] and references therein.
Here, each regression equation corresponds to a different “learning task.” In this
context, the tasks often correspond to binary classification, namely the response
variables are binary. For instance, in image detection each task ¢ is associated with
a particular type of visual object (e.g., face, car, chair, etc.), the rows x; of the
design matrix X, represent an image and y;; is a binary label, which, say, takes
the value 1 if the image depicts the object associated with task ¢ and the value —1
otherwise. In this setting, the number of samples # is typically much smaller than
the number of tasks 7. A main goal of multi-task learning is to exploit possible
relationships across the tasks to aid the learning process. Note also that in a number
of multi-task learning applications, the task design matrices X, are different across
the tasks; see, for example, [2] for a discussion.

Conjoint analysis. In marketing research, an important problem is the analy-
sis of datasets concerning the ratings of different products by different customers,
with the purpose of improving products; see, for example, [1, 14, 20] and refer-
ences therein. Here, the index ¢ € Ny refers to the customers and the index i € N,
refers to the different ratings provided by a customer. Products are represented by
(possibly many) categorical or continuous variables (e.g., size, brand, color, price
etc.). The observation y;; is the rating of product x;; by the ¢th customer (like in
multi-task learning, the design matrix X; varies with ¢). A main goal of conjoint



2172 LOUNICI, PONTIL, VAN DE GEER AND TSYBAKOV

analysis is to find common factors which determine people’s preferences to prod-
ucts. In this context, the variable selection method we analyze in this paper may
be useful to “visualize” peoples perception of products [1].

Seemingly unrelated regressions (SUR). In econometrics, the problem of esti-
mating the regression vectors B, in (2.5) is often referred to as seemingly unre-
lated regressions (SUR) [40] (see also [34] and references therein). In this context,
the index i € N, usually refers to time and the equations (2.5) are equivalently
represented as n systems of linear equations, indexed by time. The underlying
assumption in the SUR model is that the matrices X; are of rank M, which neces-
sarily requires that n > M. Here we do not make such an assumption. We cover the
case n < M and show how, under a sparsity assumption, we can reliably estimate
the regression vectors. The classical SUR model assumes that the noise variables
are zero mean correlated Gaussian, with cov(W;, W) = o5t L, xn, s, t € Nr. This
induces a relation between the responses that can be used to improve estimation.
In our model, such a relation also exists but it is described in a different way, for
example, we can consider that the sparsity patterns of vectors B}, ..., 7 are the
same.

Longitudinal and panel data. Another related context is longitudinal data anal-
ysis [11] as well as the analysis of panel data [15, 38]. Panel data refers to a dataset
which contains observations of different phenomena observed over multiple in-
stances of time (e.g., election studies, political economy data, etc.). The models
used to analyze panel data appear to be related to the SUR model described above,
but there is a large variety of model assumptions on the structure of the regression
coefficients; see, for example, [15]. To our knowledge, sparsity assumptions have
not been put forward for analysis within this context.

3. Sparsity oracle inequalities. Let 1 <s < M be an integer that gives an
upper bound on the group sparsity M (8*) of the true regression vector 8*. We
make the following assumption.

ASSUMPTION 3.1. There exists a positive number x = « (s) such that

[ XA K j j
inj——=——:JI <5, AeR"\ {0}, ) A;[A7] <3 )»jIIAJII}ZK,
T Z Z

where J¢ denotes the complement of the set of indices J.

To emphasize the dependency of Assumption 3.1 on s, we will sometimes refer
to it as Assumption RE(s). This is a natural extension to our setting of the Re-
stricted Eigenvalue assumption for the usual Lasso and Dantzig selector from [4].
The £1 norms are now replaced by (weighted) mixed (2, 1)-norms.
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Several simple sufficient conditions for Assumption 3.1 in the Lasso case, that
is, when all the groups G ; have size 1, are given in [4]. Similar sufficient condi-
tions can be stated in our more general setting. For example, Assumption 3.1 is
immediately satisfied if X T X/N has a positive minimal eigenvalue. More inter-
estingly, it is enough to suppose that the matrix X ' X /N satisfies a coherence type
condition, as shown in Lemma B.3 below.

To state our first result, we need some more notation. For every symmet-
ric and positive semi-definite matrix A, we denote by tr(A), ||Allg and || A]|
the trace, Frobenius and spectral norms of A, respectively. If py,..., ox are

the eigenvalues of A, we have that tr(A) = Z;‘:l ois 1Allg = le ,ol.2 and
Al = max;—i,....k 0i-

LEMMA 3.1. Consider the model (2.1), and let M > 2, N > 1. Assume that
W e RN is a random vector with i.i.d. N'(0, 02) Gaussian components, o2 >0.
For every j € Ny, recall that ¥ ; = ng X, /N and choose

20
(3.1 )»'Z—\/tr(q")-i-z Will(2g logM + /K jqlog M),
Jj \/ﬁ j Il ]l”( q 108 jq10g )

where q is a positive parameter. Then with probability at least 1 —2M =4 for any
solution B of problem (2.2) and all B € RX we have that

1 R M N .
~ X —BOIP+ D A187 - Bl

j=1

(3.2)
< %uxw —BHIF+4 > aymin(I18/, 1187 — B71D.
JjeJ(B)
(33) LIxTx @ - gy < 22
N =27
(3.4) MPB) < 2Pm x5 g2,
)‘minN

where Amin = min;—

M Aj and Pmax is the maximum eigenvalue of the matrix
XTX/N.

.....

Lemma 3.1 adapts techniques from [4] to the context of Group Lasso and as that
it may appear to be similar to the results in [26]. However, there are substantial dif-
ferences. The most important one is that the stochastic part of the error is treated
differently, so that the bounds in [26] are coarser (not of the optimal order of mag-
nitude). The corresponding result in [26] (Lemma 4.3 of that paper) considers spe-
cific asymptotics of N, K, K j, M under the assumption ¥; = 1 K;xK; whereas our
results are nonasymptotic, and they hold for any configurations of N, K, K;, M
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and for a general class of matrices W ;. The argument in [26] is based on the Gaus-
sian tail bound, which is a simplification, whereas we use the chi-square tails as
we will see it in the proof below. As a consequence, the regularization parameter

in [26] is (with our notation) A; = % K jlog M whereas, under the assumption

W = Ix,;xk; of [20], our parameter can be chosen as A j = % /2K ; + 5qlogM,

that is, of smaller order of magnitude. Since the rates of convergence are deter-
mined by the choice of A, [26] establishes the same rates for the group Lasso as
for the usual Lasso, and does not reveal the advantages of structured sparsity, in
particular, the dimension independence phenomenon (cf. discussion in Section 7
below).

PROOF OF LEMMA 3.1. For all 8 € RX, we have

1 A M . 1 M 4
N||Xﬁ—}7||2+2z)»j||ﬁj||§N||Xﬂ—)’||2+22)»j||ﬁj||,
j=1 j=1
which, using y = Xg* 4+ W, is equivalent to
1

IX(B — BHII* < i||X<ﬁ —BHI* + 3WTX(ﬁ - B)
N - N N

(3.5)

M . A

+2) 2B = 1B 1D

j=1

By the Cauchy—Schwarz inequality, we have that
A M . A s .
WIX(B—B) <) IXTWY 1B~ 1.
j=1

For every j € Ny, consider the random event

M
(3.6) A= 4;.
j=1
where
L x T ﬁ}
3.7) A ={ w21

We note that

1 A3 YN i€ —1)
PA)=P(] —W'X;.X. W —J}>=IP’({ i=1 JL o0 })
A =F(| 3 X, XG, W = Pl
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where &1, ..., &y are 1.i.d. standard Gaussian, vj 1, ..., v; y denote the eigenval-
ues of the matrix Xg ngj /N, among which the positive ones are the same as those

of ¥, and the quantity x; is defined as
AN/ (4o?) — (V)

X; =

! V219,
We apply Lemma B.1 to upper bound the probability of the complement of the
event A ;. Specifically, we choose v =v; = (v 1,...,v; n), X =x; and m(v) =

(¥l /11¥ |lgr and conclude from Lemma B.1 that

2

X
P(AS) <2 (— J >
A = 2 = e 1 1719 )

We now choose x; so that the right-hand side of the above inequality is smaller
than 2M ~9. A direct computation yields that

xj = 2001/ llreg log M + \/2(|||‘Pj|||/||‘IJjIIFrq log M)? +2qlog M,

which, using the subadditivity property of the square root and the inequality
1Vlle < \/Kij IV [l gives inequality (3.1). We conclude, by a union bound, under
the above condition on the parameters A ;, that P(A°) < 2M 1=4_ Then, it follows
from inequality (3.5), with probability at least 1 — 2M =, that

1 . M .. ‘
NIIX(ﬁ —BOHIF+ DY a187 - B

j=1

1 M A . .
=< NIIX(,B —BHIP+2Y 2B =B+ 18711871
j=1
1 . ; n .
=< Nllx(ﬁ —BHIP+4 Y aymin(I8711L 187 — B,
JeJ(B)
which coincides with inequality (3.2).

To prove (3.3), we use the inequality

(3.8) (XT(y—XxB) | <2,

1
<l
which follows from the optimality conditions (2.3) and (2.4). Moreover, using
equation (2.1) and the triangle inequality, we obtain that

1 A ; 1 A i 1 .
NI XB =8| = SIXTXB =) |+ ZIX W,

The result then follows by combining the last inequality with inequality (3.8) and
using the definition of the event A.
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Finally, we prove (3.4). First, observe that, on the event .A, it holds, uniformly
over j € Ny, that

%Il (XTX@-p |25 ipio

This fact follows from (2.3), (2.1) and the definition of the event .A. The following
chain yields the result:

~ 4 1 ~ ;
MB) <5 2 IKTXE =)
jeJB)

4 R .
=3 S I(xXTXB -9

min®" e (f)

szmnNzuxTX(ﬂ BHI?
4¢max 2 a2
=52 yIXG =01

where, in the last line we have used the fact that the eigenvalues of X ' X/N are
bounded from above by ¢max. U

Note that parameter ¢ controls the probability under which inequalities (3.2)—
(3.4) hold true. Alternatively, setting the confidence parameter § = 2M'~9, we
may express inequality (3.1) and the bounds of Lemma 3.1 as functions of §.

The matrix norms appearing in inequality (3.1) can be easily computed. In par-
ticular, the computation of the trace norm of matrix W; requires O (N sz.) time,
while the computation of the spectral norm may require O (K 13.N ) time. On the
other hand, if K; > N, the computational complexity can be reduced to O (N 2K i)
and O (N3K ), respectively, noting that the trace and spectral norms of matrix W;
are the same as the respective norms of matrix Xg; X . However, as we shall
see in the next section, in the multi-task learning case, these computations can be
substantially facilitated.

We are now ready to state the main result of this section.

THEOREM 3.1. Consider the model (2.1) and let M > 2, N > 1. Assume that
W e RN is a random vector with i.i.d. N'(0, o) Gaussian components, o2 > 0.
For every j € Ny, define the matrix W; = X—(E,XGJ /N and choose

\/_ tr(¥;) +2/1W;ll(2g log M + /K jqglog M).
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Then with probability at least 1 — 2M'~4, for any solution ,3 of problem (2.2) we
have that

1 n
(3.9) X B - BN < 4)1B*|l2.1 max Aj.

If, in addition, M(B*) < s and Assumption RE(sz holds with k = k(s), then with
probability at least 1 — 2M =4, for any solution B of problem (2.2) we have that

1 N
(3.10) NIIX(ﬂ—ﬂ*)IIZ ° oy
2 T
. 16 A2
(3.11) 1= B lan<— 3 .
K jed (%) min
)\'2
(3.12) M) < ¢max X o
K2 . A
jeJ(B*) “min

where Amin =min;—y . p Aj and Pmax is the maximum eigenvalue of the matrix
XTX/N. Finally, if, in addition, Assumption RE(2s) holds, then with the same
probability for any solution B of problem (2.2) we have that

410 Ljespn ¥
K% (2s) )Mmin\/g '

The oracle inequality (3.10) of Theorem 3.1 can be generalized to include the
bias term as follows.

(3.13) 18— B*Il <

THEOREM 3.2. Let the assumptions of Lemma 3.1 be satisfied and let As-
sumption 3.1 hold with k = k (s) and with factor 3 replaced by . Then with prob-
ability at least 1 — 2M =4, for any solution B of problem (2.2) we have

2
—IIX(ﬁ B <mm{ Yoo+ NIIX(ﬂ—ﬁ*)llztﬂeRK,M(ﬁ)fs}.
JeJ(B)

This result is of interest when 8* is only assumed to be approximately sparse,
that is, when there exists a set of indices Jy with cardinality smaller than s such
that || (8%) IS |? is small. The proof of this theorem is omitted here but can be found
in the Arxiv version of this paper.

We end this section by a remark about the Group Lasso estimator with overlap-
ping groups, that is, when Ng = U?’Izl G;but G;NGj # @ forsome j, j' € Ny,
J # j'. We refer to [42] for motivation and discussion of the statistical relevance
of group sparsity with overlapping groups. Inspection of the proofs of Lemma 3.1
and Theorem 3.1 immediately yields the following conclusion.
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REMARK 3.1. Inequalities (3.2) and (3.3) in Lemma 3.1 and inequalities
(3.10)—(3.12) in Theorem 3.1 remain valid without additional assumptions in the
case of overlapping groups G, ..., Gy.

4. Sparsity oracle inequalities for multi-task learning. We now apply the
above results to the multi-task learning problem described in Section 2.1. In this
setting, K = MT and N = nT, where T is the number of tasks, n is the sample
size for each task and M is the nominal dimension of unknown regression param-
eters for each task. Also, forevery j e Ny, K; =T and W; = (1/T)Irx7, where
It «7 isthe T x T identity matrix. This fact is a consequence of the block diagonal
structure of the design matrix X and the assumption that the variables are normal-
ized to one, namely all the diagonal elements of the matrix (1/n)X " X are equal
to one. It follows that tr(W;) =1 and || W || = 1/T. The regularization parameters
A are all equal to the same value A, cf. (2.6). Therefore, (3.1) takes the form

20 2
4.1 A > 14+ 2 (2qlog M +/Tqlog M).
4.1 T T(q g qlog M)

In particular, Lemma 3.1 and Theorem 3.1 are valid for

. 220 1+s_qlogM
~nT 2 T
since the right-hand side of this inequality is greater than that of (4.1).
For the convenience of the reader, we state the Restricted Eigenvalue assump-
tion for the multi-task case [22].

ASSUMPTION 4.1.  There exists a positive number xyT = kMmT(s) such that

| IXAL MT
min I <5, Ae RVNA{O}, [Ayellz.1 < 31[Asll2,1 ¢ = kmr,

VallAyll

where J¢ denotes the complement of the set of indices J.

We note that parameters x, ¢max defined in Section 3 correspond to «mT/ VT
and ¢mT/ T, respectively, where ¢mt is the largest eigenvalue of the matrix
XTX/n.

Using the above observations, we obtain the following corollary of Theo-
rem 3.1.

COROLLARY 4.1. Consider the multi-task model (2.5) for M > 2 and T,
n> 1. Assume that W € RN is a random vector with i.id. N'(0,0?%) Gaussian
components, 0% > 0, and all diagonal elements of the matrix X" X /n are equal
to 1. Set

A

_ 2«/30 (1 n AlogM)l/2
 nT T ’
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where A > 5/2. Then with probability at least 1 — 2M =243 for any solution ,3
of problem (2.6) we have that

1 . 8v20 Alog M\ /2
4.2 —IX(B—BHI* < (1 ) o1
4.2) nT” B—=BOI" = Ny + T 1871121
If, in addition, it holds that M(8*) < s and Assumption 4.1 holds with kMt =

M (8), then with probability at least 1 —2M =243 for any solution B of problem
(2.6) we have that

12802 s AlogM
43) —IIX(/B B2 < (1+ )
KMT
| IO 32[0 s ( AlogM>1/2
4.4 — B - < 1+ :
4.4) ﬁH,B Bll21 < 2 7 T
64
(4.5) M@B) < "M s,
MT

where ¢ is the largest eigenvalue of the matrix X ' X /n. Finally, if, in addition,
kMt (2s) > 0, then with the same probability for any solution 8 of problem (2.6)
we have that

1~ . 1650 [s Alog M\ '/?
4. — 8- /=1 :
0 ﬁllﬂ P fol%ﬂ(zs) n( T )

Note that the values T and +/7 in the denominators of the left-hand sides of
inequalities (4.3), (4.4) and (4.6) appear quite naturally. For instance, the norm
I ,3 — B*ll2,1 in (4.4) is a sum of M terms each of which is a Euclidean norm
of a vector in R, and thus it is of the order /7 if all the components are equal.
Therefore, (4.4) can be interpreted as a correctly normalized “error per coefficient”
bound.

Corollary 4.1 is valid for any fixed n, M, T'; the approach is nonasymptotic.
Some relations between these parameters are relevant in the particular applications
and various asymptotics can be derived as special cases. For example, in multi-task
learning it is natural to assume that 7" > n, and the motivation for our approach is
the strongest if also M > n. The bounds of Corollary 4.1 are meaningful if the
sparsity index s is small as compared to the sample size n and the logarithm of the
dimension log M is not too large as compared to 7.

More interestingly, the dependency on the dimension M in the bounds is neg-
ligible if the number of tasks 7 is larger than log M. In this regime, no relation
between the sample size n and the dimension M is required. This is quite in con-
trast to the standard results on sparse recovery where the condition

log(dimension) < sample size
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is considered as sine qua non constraint. For example, Corollary 4.1 gives mean-
ingful bounds if M = exp(n”) for arbitrarily large y > 0, provided that T > n? .

Finally, note that Corollary 4.1 is in the same spirit as a result that we obtained
in [22] but there are two important differences. First, in [22] we considered larger
values of A, namely with (1 + ‘Lll(’—‘(;TM)l/2 in place of (1 + AIOTgM)I/Z, and we
obtained a result with higher probability. We switch here to the smaller XA since it
leads to minimax rate optimality, cf. lower bounds below. The second difference
is that we include now the “slow rate” result (4.2), which guarantees convergence
of the prediction loss with no restriction on the matrix X ' X, provided that the
norm (2, 1)-norm of 8* is bounded. For example, if the absolute values of all
components of §* do not exceed some constant Bmax, then ||f*]2.1 < ,Bmaxsﬁ
and the bound (4.2) is of the order ﬁ(l + AlngM)l/z.

5. Coordinate-wise estimation and selection of sparsity pattern. In this
section we show how from any solution of (2.2), we can estimate the correct spar-
sity pattern J(8*) with high probability. We also establish bounds for estimation
of 8*in all (2, p) norms with 1 < p < oo under a stronger condition than Assump-
tion 3.1.

Recall that we use the notation W = %X T X for the Gram matrix of the design.
We introduce some additional notation which will be used throughout this sec-
tion. For any j, j’ in Ny, we define the matrix W[, j'] = 1 X—r XG (note that

W[j, j1=W; for any j). We denote by W[j, j'l;, where te NK S NKJ,/,

the (¢,¢')th element of matrix W[j, j']. For any A € RX and j € Ny we set
AN = (At:t ENKJ)
In this section, we assume that the following condition holds true.

ASSUMPTION 5.1. There exist some integer s > 1 and some constant o > 1
such that:

(1) Forany j e Njysand t € NKj, it holds that (W[, j1);; = ¢ and

m1n¢ 1
max

W[,
1§t,t/§Kj,t7ét/|( v Derl < 14or A maxs /KK

(2) Forany j # j' € Ny, it holds that

. _ Amin®
max v/, A min
lgtgmin(Kj,Kj/)l( (s 7 Dl < Tdahms
and
mm¢ 1

max (W

1<t<K;,1<t'<K /1t s ])” = 14 A maxs /KK ; L
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This assumption is an extension to the general Group Lasso setting of the coher-
ence condition of [22] introduced in the particular multi-task setting. Indeed, in the
multi-task case Kj =T, Amin = Amax, and for any j € Ny, the matrix X j is block
diagonal with the 7th block of size n x 1 formed by the jth column of the matrix X,
(recall the notation in Section 2.1) and ¢ = 1/T. It follows that (W[, j'1);» =0
forany j, j’ € Nys and t # ¢’ € Ny. Then Assumption 5.1 reduces to the following:
max < <7 [(¥[j, j'Di.¢| < o7 whenever j % j’ and (¥[}, j1);; = 7. Thus, we
see that for the multi-task model Assumption 5.1 takes the form of the usual co-
herence assumption for each of the 7' separate regression problems. We also note
that, the coherence assumption in [22] was formulated with the numerical con-
stant 7 instead of 14. The larger constant here is due to the fact that we consider
the general model with not necessarily block diagonal design matrix, in contrast to
the multi-task setting of [22].

Lemma B.3, which is presented in Appendix B, establishes that Assumption 5.1
implies Assumption 3.1. Note also that, by an argument as in [21], it is not hard to
show that under Assumption 5.1 any group s-sparse vector 8* satisfying (2.1) is
unique.

Theorem 3.1 provides bounds for compound measures of risk, that is, depend-
ing simultaneously on all the vectors B/. An important question is to evaluate the
performance of estimators for each of the components 8/ separately. The next the-
orem provides a bound of this type and, as a consequence, a result on the selection
of sparsity pattern.

THEOREM 5.1. Let the assumptions of Theorem 3.1 be satisfied and let As-
sumption 5.1 hold with the same s. Set

(5.1 C:<§+7(a1—il))'

Then with probability at least 1 — 2M =4, for any solution B of problem (2.2) we
have that

N . c
(5-2) ||/8 - ,3 ”2,00 = _)\max-
If, in addition,

. 2c
5.3 min NN > —Amaxs
(5.3) ;i 1Bl g max

then with the same probability for any solution B of problem (2.2) the set of indices
R - A) c

(5.4) J=4j:1B Il > gkmax

estimates correctly the sparsity pattern J(8*), that is,

J=J(BY.
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The verification of Assumption 5.1 and the application of Theorem 5.1 require
the computation of the quantities Apax = max; A; and Apip = min; A;, which in
turn require the computation of the matrix norms appearing in (3.1), an issue which
has been discussed earlier. Note also that the threshold value appearing in (5.3) is
well defined provided we know an upper bound s on the size of the group sparsity
pattern of vector 8*, an upper bound o on the variance of the Gaussian noise, as
well as the validity of Assumption 5.1. Finally, note that assumption of type (5.3)
is inevitable in the context of selection of sparsity pattern. It says that the vectors
(B*)7 cannot be arbitrarily close to zero for j in the pattern. Their norms should
be at least somewhat larger than the noise level.

Theorems 3.1 and 5.1 imply the following corollary.

COROLLARY 5.1. Let the assumptions of Theorem 3.1 be satisfied and let
Assumption 5.1 hold with the same s. Then with probability at least 1 —2M =g,
for any solution B of problem (2.2) and any 1 < p < 0o we have that

N c1 AN
(55) ||,3 - l8 ||2,p < —Amax Z PO — s
¢ ]GJ(ﬂ*) )\min)\max
where
16 \'/7 /3 16 \'7l/r
5.6 = T )
-0 ‘ (a—l) (2*7(0:—1))

If, in addition, (5.3) holds, then with the same probability for any solution ,3 of
problem (2.2) and any 1 < p < 0o we have that

A2 1/p

A C1

(5.7) 18 — B*la.p < —Amax(E - ) ,
¢ j jAmin)\max

where J is defined in (5.4).

Note that we introduce inequalities (5.2) and (5.7) valid with probability close
to 1 because their right-hand sides are data driven, and so they can be used as
confidence bands for the unknown parameter 8* in mixed (2, p)-norms.

We finally derive a corollary of Theorem 5.1 for the multi-task setting, which is
straightforward in view of the above results.

COROLLARY 5.2. Consider the multi-task model (2.5) for M > 2 and T,
n > 1. Let the assumptions of Theorem 5.1 be satisfied and set

_ 2«/30 (1 n AlogM)l/2
- nT T ’

A
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where A > 5/2. Then with probability at least 1 — 2M =243 for any solution ,3
of problem (2.6) and any 1 < p < 0o we have

1 4 N 2y 2cios1/P Alog M\ /2
(5.8) 1B~ Bl < 7(1 " )
VT v r
where ci is the constant defined in (5.6) and we set x'/°° =1 for any x > 0. If, in
addition,

(5.9) 1(B*) || >

4+/2co (1 n AlogM)l/2
Jw)¢* Jn T ’

then with the same probability for any solution ,é of problem (2.6) the set of indices

. 1 .. 242 Alog M\ /2
(5.10) J=b:7%WW> f;“O+ ff ) }

estimates correctly the sparsity pattern J(8*), that is,
J=J(BY.

6. Minimax lower bounds for arbitrary estimators. In this section, we con-
sider again the multi-task model as in Sections 2.1 and 4. We will show that the
rate of convergence obtained in Corollary 4.1 is optimal in a minimax sense (up to
a logarithmic factor) for all estimators over a class of group sparse vectors. This
will be done under the following mild condition on matrix X.

ASSUMPTION 6.1. There exist positive constants «1 and «, such that for any
vector A € RMT\ {0} with M(A) <2s we have

XA 5 IXAIP _

> K7, (b) <k
njag? =t TN

(a)

Note that part (b) of Assumption 6.1 is automatically satisfied with K% = ¢MT

. T . . .
where ¢npr is the spectral norm of matrix X X /n. The reason for introducing this
assumption is that the 2s-restricted maximal eigenvalue K22 can be much smaller

than the spectral norm of X "x /n, which would result in a sharper lower bound;
see Theorem 6.1 below.

In what follows, we fix T > 1, M > 2, s < M /2 and denote by GS(s, M, T) the
set of vectors B € RMT such that M(B) <s. Let £:RT — R* be a nondecreasing
function such that £(0) =0 and £ 0.

THEOREM 6.1. Consider the multi-task model (2.5) for M >2 and T,n > 1.
Assume that W € RN is a random vector with i.i.d. N (0, c?) Gaussian compo-
nents, o2 > 0. Suppose that s < M /2 and let part (b) of Assumption 6.1 be satis-
fied. Define

gsl/l’ <1 n log(eM/s)
K2 ﬁ

1/2
> , 1<p<=<oo,

wn,p = T =
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where we set s1/°° = 1. Then there exist positive constants b, ¢ depending only on
£(+) and p such that

_ 1
(6.1) inf  sup ]Ez(bwl—
T B*eGS(s,M,T) “PJT

where inf; denotes the infimum over all estimators t of B*. If, in addition, part (a)
of Assumption 6.1 is satisfied, then there exist positive constants b, ¢ depending
only on £(-) such that

T —ﬁ*nz,p) >,

_ 1
(6.2) inf  sup Ee(bl//rZ_li”X(f - ﬁ*)||> >C.
T B*eGS(s,M,T) 2 i1/nT

PROOF. Fix p and write for brevity v, = v, , where it causes no ambiguity.
Throughout this proof, we set x!/* = 1 for any x > 0. We consider first the case
T <log(eM/s). Set0=(0,...,0) e RT, 1=(1,...,1) € RT. Define the set of
vectors

Q={weRM:0/ €{0,1},j=1,..., M, and M(w) <s},
and its dilation
C(Q) = {y Y. po/s"P 0w e Q},

where y > 0 is an absolute constant to be chosen later. Note that C(2) C
GS(s,M,T).

For any o, o' in , we have M (0 — ') < 2s. Thus, for = y ¥, ,0/s'/P, g/ =
Y Y, po’ /sl/ P parts (a) and (b) of Assumption 6.1 imply, respectively,

2.,2.1.2 /
1 K (w, T
6.3) ~xB—Xxp/|2 = L w””’f :
n s2/p
2.,2.1.2 /
1 K (w,"T
(6.4) ~1xp — X < 2¥ VipP ,
n SZ/P

where p(w, w') = Zyzl I{w/ # ()7} and I{-} denotes the indicator function.
This and the definition of v, , yield that if part (a) of Assumption 6.1 holds, then
for all w, o’ € Q2 we have

1 K202 log(eM/s)
65  —=IXB—XpI> =L <1+ g/ )p(w,a/).
nT Kyn T

Also, by definition of g, B,
1

6.6
(6.6) JT

yo (1 4 log(eM/s)

12
/ l/p /
N - ) (p(@, 0N P1{w# @),

1B —Bll2p =



ORACLE INEQUALITIES UNDER GROUP SPARSITY 2185

For § € RV, we denote by Py the probability distribution of N'(6, o2 Iy x y) Gaus-
sian random vector. We denote by IC(P, Q) the Kullback-Leibler divergence be-
tween the probability measures P and Q. Then, under part (b) of Assumption 6.1,

1
K(Pxp. Pxp) = 55 IXP — XB'|I?
K22)/2
— 202s2/p
<y2s[T +1log(eM/s)]
< 2y2s log(eM/s),

n ,%’p,o(a), T
(6.7)

where we used that p(w, @) < 2s for all w, »" € Q. Lemma 8.3 in [32] guarantees
the existence of a subset A of € such that

log(IN]) = & 1og(¥)

(6.8)
p(w, ) >s/4 Yo, 0’ e N, 0 # o,

for some absolute constant ¢ > 0, where || denotes the cardinality of A/. Com-
bining this with (6.5) and (6.6), we find that the finite set of vectors C()) is such
that, for all 8, 8/ € C(N), B # B/,

1 yosl/p log(eM/s) 1/2_ y
JT 4Py /n T = 3 Vns

and under part (a) of Assumption 6.1,

1 K2o2s log(eM/s) y?
L ixg— xg2 > 24 <1 )Z_zz.
T IXE = XBI =y e . TRARLE
Furthermore, by (6.7) and (6.8) for all 8, 8’ € C(N) under part (b) of Assump-
tion 6.1 we have

1B = Bll2.p =

K(Pxp, Pxp) < 7 log(IN) = 7 log(IC(\)])

for an absolute constant ¥ > 0 chosen small enough. Thus, the result follows by
application of Theorem 2.7 in [35].
The case T > log(eM/s) is treated in the auxiliary file. [

As a consequence of Theorem 6.1, we get, for example, the lower bounds for the
squared loss £(u) = u? and for the indicator loss £(u) = I{u > 1}. The indicator
loss is relevant for comparison with the upper bounds of Corollaries 4.1 and 5.2.
For example, Theorem 6.1 with this loss and p = 1,2 implies that there exists
B* € GS(s, M, T) such that, for any estimator t of 8%,

L”X(T—IB*)H >C\/E(1+1Og(eﬂ)l/2
nT - n T
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1 . 5 log(eM/s)\ />
T8 ||zc\/£(1+f) ,

1 . s log(eM /s)\ '/
N LaAOE cﬁ(l 4 DEC)
with a positive probability (independent of n, s, M, T') where C > 0 is some con-
stant. The rate on the right-hand side of these inequalities is of the same order as
in the corresponding upper bounds in Corollary 4.1, modulo that log M is replaced
here by log(eM/s). We conjecture that the factor log(eM/s) and not log M cor-
responds to the optimal rate; actually, we know that this conjecture is true when
T =1 and the risk is defined by the prediction error with £(u) = u?[32].

A weaker version of Theorem 6.1, with £(u) = u?, p = 2 and suboptimal rate
of the order [slog(M/s)/(n T)]l/2 is established in [17].

and

REMARK 6.1. For the model with usual (nongrouped) sparsity, which cor-
responds to T = 1, the set GS(s, M, 1) coincides with the £p-ball of radius s
in RM | Therefore, Theorem 6.1 generalizes the minimax lower bounds on £g-balls
recently obtained in [30] and [32] for the usual sparsity model. Those papers con-
sidered only the prediction error and the ¢, error under the squared loss £(u) = u®.
Theorem 6.1 covers any £, error with 1 < p < oo and applies with general loss
functions £(-). As a particular instance, for the indicator loss £(u) = I{u > 1} and
T =1, the lower bounds of Theorem 6.1 show that the upper bounds for the predic-
tion error and the £, errors (1 < p < 00) of the usual Lasso estimator established
in [4] and [21] cannot be improved in a minimax sense on £g-balls up to logarith-
mic factors. Note that this conclusion cannot be deduced from the lower bounds of
[30] and [32].

7. Lower bounds for the Lasso. In this section, we establish lower bounds on
the prediction and estimation accuracy of the Lasso estimator. As a consequence,
we can emphasize the advantages of using the Group Lasso estimator as compared
to the usual Lasso in some important particular cases.

The Lasso estimator is a solution of the minimization problem

o1
(7.1) min —[IX8 = yII> +2r [ Blh,
BeRK N
where |81 = Zle |Bj| and r is a positive parameter. The following notations

apply only to this section. For any vector 8 € RX and any subset J € Ng, we
denote by B|; the vector in RX which has the same coordinates as 8 on J and
zero coordinates on the complement J of J, J'(8) ={j:B; #0} and M'(B) =
17" (B)I.

We will use the following standard assumption on the matrix X (the Restricted
Eigenvalue condition in [4]).
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ASSUMPTION 7.1.  Fix s’ > 1. There exists a positive number k" such that

[ IXA] L ,
min] A8 <y A eRE (0, 3 1A <3 |A-|}zx,
{«/NIIAuII JZJ ! ,Z, !

where J¢ denotes the complement of the set of indices J.

THEOREM 7.1. Let Assumption 7.1 be satisfied. Assume that W € RN is
a random vector with i.i.d. N(0,0?%) Gaussian components, 02 >0. Set r =

Ao qﬂngK where A > 2+/2 and ¢ is the maximal diagonal element of the ma-
trix ¥ = %XTX. If ,31‘ is a solution of problem (77.1), then with probability at
least 1 — K'=A*/8 we have

Looiar a2 aproary Ao @ log K
(7.2) N IXBT=BOI" = M (B )W

AL ox Ao A Plog K
(7.3) 1B~ =87l Z—2¢maX\/M(ﬁ )

where ¢max is the maximum eigenvalue of the matrix V. If, in addition, M'(B*) <
/
s’, and

El

/

_ .. N 3 16s
A4)  min{ VBl € N B # 01> (5 + oy max (W )

where WV ji denotes the (j, k)th entry of matrix V, then with the same probability
we have

(7.5) M'(BL) = M’ (%).

Let us emphasize that the Theorem 7.1 establishes lower bounds, which hold
for every Lasso solution if ,3 L 1S not unique.

Theorem 7.1 highlights several limitations of the usual Lasso as compared to
the Group Lasso. Let us explain this point in the multi-task learning case. There,
the usual Lasso estimator B~ is a solution of the following optimization problem

T

. 1 1 T M
min ?Z;nxtﬂ,—yl||2+2r22|ﬁ,,-| :

=1 t=1j=1

By comparing the prediction error lower bound in Theorem 7.1 for this estimator
with the corresponding upper bound for Group Lasso estimator derived in Corol-
lary 4.1, we reach the following conclusions.

e The usual Lasso does not enjoy any dimension independence phenomenon as
compared to the Group Lasso.
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In the multi-task learning setting, we have N =n7T, K = MT. Assume that
the tasks’ design matrices are orthogonal, namely X ,T X:/n = Iy sy for every
t € Ny. Hence, W = ITyx7m/T, so that ¢pax =¢ =1/T and W;; = 1/T for
all j. Let a special instance of group sparsity assumption be realized, namely, all
vectors B, have exactly s nonzero entries at the same positions. Then, M (8*) =
s and M'(B*) = sT. Moreover, condition (7.4) simplifies to the requirement that

340 [log(MT
min |7 > 247 [PEMT).
B30 2 n

We conclude by inequalities (7.2) and (7.5) that, with probability at least 1 —

(MT) 1 7A2/8,
7.6 L ix @t - g1y 2 a20% 2EMD)
nT 4n
This bound holds no matter what the number of tasks 7 is. In contrast, the
bounds in Corollary 4.1 can be made independent of the dimension M and of
the number of tasks T provided that T > log M. Specifically, under the above
assumptions we have, recalling Definition 4.1, that kT > 1 and by (4.3), with
probability close to 1, every Group Lasso solution 3 satisfies

AlogM)

(7.7) inX(B = 128025(1 +
nT n

This dimension independence phenomenon for the Group Lasso holds in more
general situations. Consider, for example, the regression model (1.1) where the
Gram matrix of the design W is not block diagonal but the diagonal blocks are
of the form ¥; = Ik xk; (this is the setting of [26]). By (3.10), the choice

Aj= 20 K j +5glog M gives that, with probability at least 1 —2M =g,

TN
1 . 6402
FIXB=BII == 3 (K +5qlogM)
JEJ(B*)
6402

=<

2+59) > K
JEJ(B*)
where the second inequality holds true if K; >log M,V j € J(B¥).

e The Group Lasso achieves faster rates of convergence in some cases as com-
pared to the usual Lasso. We consider separately two cases. The first one is
already discussed the preceding remark. It corresponds to 7 > log M. Then the
upper bound for the Group Lasso (7.7) is smaller than the lower bound (7.6)
for the Lasso by a logarithmic factor. This factor can be large if T is large,
for example, exponential in n, so that (7.6) gives no convergence result for the
Lasso. The second case is T < log M. Then the lower bound (7.6) is of the or-
der s(log M) /n, while the upper bound (7.7) is of the order s(log M)/(nT). The
ratio is of the order T in favor of the Group Lasso.

k2N
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In (7.6) and (7.7), we have only compared the prediction errors of the two estima-
tors. In view of inequality (4.6) and Theorem 7.1, similar observations are valid
for the £, estimation errors.

8. Non-Gaussian noise. In this section, we show that the above results ex-
tend to non-Gaussian noise. We consider here the multi-task setting described in
Section 2.1 and we only assume that the components of random vector W are in-
dependent with zero mean and finite fourth moment E[W4] As we shall see, the
results remain similar to those of the previous sections, though the concentration
effect is weaker.

We need the following technical assumption.

ASSUMPTION 8.1. The matrix X is such that

max(anax [(xri) > f

teNy

for a finite constant x,.

This assumption is quite mild. It is satisfied, for example, if all (x;;); are
bounded in absolute value by a constant uniformly in i, ¢, j. We have the two
following theorems.

THEOREM 8.1. Consider the model (2.1) for any M > 2, T,n > 1. As-
sume that the components of random vector W are independent with zero mean,
max;eNy, jeNy E[W;‘j] <b*, all diagonal elements of the matrix XTX/n are equal
to 1 and M(B*) < s. Let also Assumption 8.1 be satisfied. Set

x«b (1 (logM)3/2+8)1/2
nT \/T

. . e / 2417172
with § > 0. Then with probability at least 1 — 4 log(zM()lggSE§§)22 +11;1)) e for any

A=

solution B of problem (2.6) we have
4);*{9 (1 (lOg 1\1)3/2+8)1/2ll *”2 1

If, in addition, Assumption 4.1 holds, then with the same probability for any solu-
tion B of problem (2.6) we have

8.1 —IIX(ﬂ BHI? <

62 IXG- P o (1+W)
| wT JT ’
| VT = MT [ JT ’
64

KMT
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where ¢mr is the largest eigenvalue of the matrix X' X/ n. If, in addition,
kMt (2s) > 0, then with the same probability for any solution S of problem (2.6)
we have

I % 4/ 10x.b [s (log M)3/2+5 > 1/2
— B - Ay bl (§ I el A I
N LA e (1+ =

THEOREM 8.2. Consider the model (2.1) for M > 2, T,n > 1. Let the as-
sumptions of Theorem 8.1 be satisfied and let Assumption 5.1 hold with the same s.

Set
3 16
i (2 4+ —2 Vi
¢ <2+7(a—1)>x

Let A be as in Theorem 8.1. Then with probability at least

4/Tog2M)[(8log(12M))* + 111/2

1 —
(log M)3/2+6

for any solution ,é of problem (2.6) we have
(lOg M)3/2+8 ) 1/2

;:W ﬁmw_vﬁo .

If, in addition, it holds that

(log M)3/2+3 1/2
= (14 B
jed (") f NG VT
then with the same probability for any solution B of problem (2.6) the set of indices

R LY (log M)3/>3\ 1/2
J:{':— >—(1—|——) }
AN JT
estimates correctly the sparsity pattern J(8%):

J=J(B".

We note that the proofs of Theorems 8.1 and 8.2 are identical to those of The-
orems 3.1 and 5.1, respectively, except that we use Lemma A.1 (see Appendix A)
instead of Lemma 3.1 to treat the stochastic part.

9. Maximal moment inequality. In this section, we prove the following in-
equality for the mth moment of maxima of sums of independent random variables.

LEMMA 9.1 (Maximal moment inequality). Let Zy,..., Z, be independent
random vectors in RM, and let Z;, j denote the jth component of Z;. Then for any
m>1and M > 1 we have

m m/2
>§[810g(c(m)M)]m/2E<[ max Zz } )

=j=M;

Z(Zl J Ezi,j)

max
1<]<M



ORACLE INEQUALITIES UNDER GROUP SPARSITY 2191

where ¢(m) = min{c > 0:¢™" ! — 1 < (c — 2)M}. In particular, 2 < c(m) <
el 41,

Before giving the proof, we make some comments. The case m = 2 of Lem-
ma 9.1 implies—modulo constants—Nemirovski’s inequality (see [27], page 188,
and [13], Corollary 2.4). In general, Nemirovski’s inequality concerns the sec-
ond moment of £,-norms (1 < p < 00) of sums of independent random variables
in RM™  whereas we only consider p = oco. On the other hand, even for m =2 Lem-
ma 9.1 is more general than what is given by Nemirovski’s inequality because we
interchange the maximum and the sum on the right-hand side. The case M =1
of Lemma 9.1 yields the Marcinkiewicz—Zygmund inequality (see [29], page 82),
and as an immediate consequence the inequality

(CAY) <

for independent zero-mean random variables &;. Thus, as a particular instance, we
give a short proof of (9.1) and provide the explicit constant. This constant is of
the optimal order in m but larger than the one obtainable from the recent sharp
moment inequality due to Rio [33].

) [8log(c(m))]™/>n™/?~ IZE@, . om=2,

i=1

PROOF OF (9.1). Let (¢y,...,¢&,) be a sequence of i.i.d. Rademacher random
variables independent of Z = (Zy, ..., Z,). Let Ez denote conditional expectation
given Z. By Hoeftding’s inequality, for all L > 0 and all i and j,

(9.2) Ez expl[Z;,jei /L] < explZ} ;/(2L7)].
Define

Using successively Jensen’s inequality [the function x — log™ (x 4+ ™~ ! — 1) is
concave for x > 1], the inequality P! < ¥ 4+¢7*, Vx € R, the independence of &;,
and (9.2), we obtain

Ez(¢™) < L"Ezlog"{expl¢ /L] + ™' — 1}
< L™log™{Ezexpl¢ /L] + "' — 1}

M n
<L™ logm{ZEZexp[ ZZi,jsi /L:| +em - 1}

n
m m 2 2 m—1 _
< L"log {2Mexp|:énja§xM;Zi’j/(2L ):| +e 1}.
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Note that 2Mx + ¢™ 1 — 1 < ¢(m)Mx for all x > 1, where c(m) is the constant
defined in the statement of the lemma. This and the previous display yield

Ez(™) < L™ log™ :c(m)M exp|:énjanM ; Zﬁj/(zLQ):| }

maxj<j< Z2
=Lm{log(c(m)M)+ =M iy } .

212
Choosing
[ | maxisjsm Y2}
2log(c(m)M)
gives
n m m/2
E Zi i <21 M Z
Z(linjiXM; i, jEi )_[ og(c(m)M) max > }
Hence,
m n m/2
2 2
]E(lingLxM ZZ, j&i ) < [21og(c(m)M)1™/ ]E([Ig}aSXM;ZU} )

Finally, we de-symmetrize (see Lemma 2.3.1, page 108, in [37]):
my 1/m
(IE max ) < 2<E max
1<j<M|? 1<j<M|?

APPENDIX A: PROOFS

n

Z(z,, ~EZ;)) Zz e

my 1/m
> . D

A.l. Proof of Theorem 3.1. Inequality (3.9) follows immediately from
(3.2) with B8 = B*. We now prove the remaining assertions. Let J = J(8%) =
{j:(B*)7 #0} and let A = 8 — B*. By inequality (3.2) with 8 = 8* we have, on
the event A, that

(A.1) —||XA|| <4y alIaT <4 Y 23AlL
jeJ jeJ

Moreover by the same inequality, on the event 4, we have that Z?’Iz 1Aj A/ <
43 iy AjlIAY]|, which implies that 3" ;¢ e Aj | A7 || <33 ;c; AjIIA/||. Thus, by
Assumption 3.1

XA
(A.2) 1A < ”K I
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Now, (3.10) follows from (A.1) and (A.2).
Inequality (3.11) follows by noting that, by (3.2),

M

| . IXA|
Yol =4y aal <4 (Y a3a, <4 inﬁ
j=1 jeJ jeJ jeJ o

and then using (3.10) and Y12 | A7 < 3L (1A (12 / Amin-

Inequality (3.12) follows from (3.4) and (3.10).

Finally, we prove (3.13). Let J’ be the set of indices in J¢ corresponding to s
largest values of A ; | A7||. Consider the set Jo, = J U J’. Note that | Jog| < 2s. Let
J (k) be the index of the kth largest element of the set {A || ATl j € J¢}. Then,

M| ATP) < ST AT/ k.
jeJ¢

This and the fact that 3~ jc A A7) <3 Yjerhj | A7 on the event A implies

00 £11\2
ANTE (Qreye MellATID
2 MIATE = Y]

2
jels, k=s+1 k
= Crese MellAD? _ 9 peys el AID?
o s - s
O MDA ey ADI AR
- s - s '

Therefore, it follows that
9
dminll Aye 17 < = D" MllA R I
§ jeJ
and, in turn, that
10 « 1,2
(A3) IAI? < =" llan ™
§ je]kmm

Next note from (A.1) that

1
(A4) S IXAI7 <4 /ZJA%MAJQ:H.
S

In addition, 3 ;¢ je A A7) <3 Yjerh | A/ easily implies that
Do AIATI =3 )0 alAl.

jeJs J€J2s
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Combining Assumption RE(2s) with (A.4) we have, on the event A, that

4\/2]'6.] )‘5

A <
185l =555

This inequality and (A.3) yield (3.13).

A.2. Proof of Theorem 5.1. Set K., = maxi<;<y K;. We define first for
any j,j € Ny the Koo x Koo matrix W[j, j'] as follows. If j # j’, we have
(1, i Drenig, weng, =L, 'V and (V1j, j'Dee =0 1> K orif ¢ > K.
If j = j" we have (W[}, jDr.reng, = WL, j1 = ¢k, xk; and (VL) jDep =0 if
t > Kjorift' > K. Similarly, for any A € RX and any j € Ny we set A/ € RKe
such that (&{)teNKj = AJ and A{ =0foranyr > K;.

Set A = B — B*. We have

(A.5) PlIAN2,00 < 1WAll2,00 + (W — @Ik x k) All2,00-

Using Cauchy—Schwarz’s inequality, we obtain

”(\Ij - ¢IK><K)A”2,00

-K; ; m Ky y 2-1/2
= max Z(Z Z(ﬁf[j,j’nt,ﬂii/”

l=j=M Li=1 \j'=1¢=1

K m \2912
< max Z(Z(\I’[LJ./])t,tA{)}

<j<
I=i=M{ ;3\ 5

(A.6)

Ki s m Ky \ 29172
+ max [z(z 5 @u,m)l,ﬂﬁ,&” |

I=j=M t=1 \j'=1t'=1,t'#t

We now treat the first term on the right-hand side of (A.6). We have, using As-
sumption 5.1 and Minkowski’s inequality for the Euclidean norm in RX/, that

Kj M . 241/2 A ¢ Kj M y 241/2
o[BS 50 | < e [ (S0 |

l=j=M =1 \j'=1 t=1\j'=1
)Lmin(p X
< ——IAll.1
14aAmaxs
)Lmin(p
< ——lAll.1,

14admaxs



ORACLE INEQUALITIES UNDER GROUP SPARSITY 2195

since ||A||2,1 < ||All2,1 by definition of A. Next, we treat the second term in the
right-hand side of (A.6). Cauchy—Schwarz’s inequality gives

K; M Ky \ 2712
13%JZ(Zj§j(MLﬂmAQ]

t=1 \j'=1t'=1,t'#t

Kj % 2-1/2
Amin® 1 M 1A

< '

<t s [ L3 (3 1

Jz 1\j/=1¢=1

A]

l'Illl'l M J
< T 2 Z

140 Amaxs o \/>
S L) PN
14atAmaxs 14 A maxs ’
Combining the four above displays, we get
1Al200 < W A0 + ™Al
' ¢ ' l4aAmaxs

Thus, by inequalities (3.3) and (3.11), with probability at least 1 —2M =9, it holds

that
3 16
”A”Z,oo =< % + W )»max-

By Lemma B.3, ax? = (a — 1)¢, which yields the first result of the theorem. The
second result follows from the first one in an obvious way.

A.3. Proof of Corollary 5.1. Set A = ,3 — B. Forany p > 1, we use the norm
interpolation inequality

1 1-1
1Az, < IA1YTlAlL /P

Combining inequalities (3.11) and (5.2) with k = /(1 — 1/a)¢ (cf. Lemma B.3)
and the last inequality yields (5.5). Inequality (5.7) is then straightforward in view
of Theorem 5.1.

A.4. Proof of Theorem 6.1: Case T > log(eM/s). Consider now the case
T > log(eM/s). Introduce the set of vectors
Q' ={weRM:v=(0,...,0M), 0 €{0, 1}7 if j <5 and @’ = 0 otherwise}

and the associated dilated set C(2') defined as above. Note that C(2) C
GS(s,M, T).
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For any w,o’ € Q/, we define p'(w,w’) = ?’[:1 Zthll{wzj + a);j} =

=1 iy o # ;).
We assume first that 7 > 16 and s > 16. Then Varshamov-Gilbert lemma (see
Lemma 2.9 in [35]) guarantees that there exists a subset N’ of €’ such that

V| =25,
(A7)

Ts
,o/(a),a)/)z? Vo, 0’ e N0 #o'.

Next for any w, o’ € N’ we have M (w — ') < 2s, and thus under parts (a) and (b)

of Assumption 6.1 we have, respectively,

K1y Yap (@, o)
SZ/P

1 m2
;leﬂ—Xﬂ - >

El

K372 (@, )
s2/p ’

1 m2
;IIXﬂ—Xﬂ - <

where B = y Y, w/s'/P, B’ =y, /s'/P are any two elements of C(N”).
Now, using Lemma B.2 in Appendix B we get that, for all w, o’ € N such that
w# o,

VpJT
s

(A8) o -/l = (75

Thus, for all B, B’ € C(N”) such that 8 # B’ we have

1 o YV , 4
ﬁ“ﬂ—ﬂ l2.p = m”w—w l2.p = 161/1’4%1

(recall that ¥, = ¥, ), and under part (a) of Assumption 6.1,

]/_25'/(120’2 (1 log(eM/S)> _ y—ZKZIﬂZ
8 K2}’l T 8 1 n,2'

1 m2
— X —XB'|I” =
nT 5

Furthermore, for all 8, 8’ € C(N”) under part (b) of Assumption 6.1,
K(Pxg. Pxp) <2y°sT < {log(IC(N"))),

where, in view of (A.7), the last inequality holds for an absolute constant y > 0
chosen small enough. We apply again Theorem 2.7 in [35] to get the result.

Finally, if 7 > log(eM/s) and T < 16, s < 16, then the rate ¥, is of the order
1/n. This is the standard parametric rate and the lower bounds are easily obtained
by reduction to distinguishing between two elements of GS(s, M, T).
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A.5. Proof of Theorem 7.1. Inequality (B.3) in [4] yields (7.2) on the event
A= {LI1X " Wlloo < 5) of probability P(A) > 1 — K1=A°/3,
Next, (7.3) follows from (7.2) and the inequality

1 4 A n
N(ﬁL — B TXTX(BL — ) < pmaxll BE — B¥II°.

We now prove (7.5). If M’(BL) < M’(B*) then there exists j € J/(BL)¢ N
J'(B%). Set A = B* — BL and recall that ¥ = %XTX. Using that any Lasso solu-
tion EL satisfies

1 LA
N(X (y — XBL)),; =sign(Bbyr,  if BE #£0,
(A9)

1 A N
N(X (v —Xph);|=m, if B =

and the triangle inequality we get, on the event A, that [(WA);| < %’ Conse-

quently,

0851 = W5 A |—‘(M>J S WA

Py
(A.10) ’

2
Next, Corollary B.2 in [4] yields that, on the event A4,

3r
< — + [A]l1 max |W .
J#k

A gl <31AeEs ;-

Thus, the Cauchy—Schwarz inequality, Assumption 7.1 and [4], inequality (7.8),
give that, on the event A,

AT < 4] Ay sl <4V A |

(A.11)
4f 12 165’
K

—/2 r.

Combining (A.10) and (A.11) ylelds, on the event A, that
v gt 3 16s ”
| jj,3j|§ E‘Fﬁrjniﬂ ikl ),

which contradicts the condition (7.4).

A.6. Proofs of Theorems 8.1 and 8.2. The proofs of Theorems 8.1 and 8.2
are identical to those of Theorems 3.1 and 5.1 except that we use Lemma A.1
below instead of Lemma 3.1 to treat the stochastic part.
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LEMMA A.l1. Consider the model (2.1), and let M > 2, N > 1. Assume
that the components of random vector W are independent with zero mean,
max;eNy, jeNy E[Wf}] < b*, all diagonal elements of the matrix XTX/n are equal
to 1. Set

xb <1 (log M)3/2+8

~nT «/T
A= 2., 111/2
with § > 0. Then with probability at least 1 — 4 log(ZM()IE)(:E%}ZZg)) 1l , for any

solution /§ of problem (2.6) and all B € RX we have that

12
Aj=A= ) VjeNy

1 . M .. ‘
NIIX(ﬂ — B+ A187 - B

(A.12) | =
= Ix®- BHIZ+4x Y min(IB/11. 187 — B,
JjeJ(B)
(A.13) L xTx@ - gy <2
' N -2
(A.14) M) < 20m v 3 — pryP
' ~ AN ’

where Gmax is the maximum eigenvalue of the matrix X ' X/N .

PROOF. The proof of this lemma is identical to that of Lemma 3.1 up to a
modification of the bound on P(A€). We consider now the event

T n 2
A:{mﬂﬁ/]li( Z(Z(x,,-)jwn-) S)\HT}.

J=1 Nl =1 \i=1I

Define the random variables

n 2 n
Yij = (Z(x,»,-wti) =2 lea)PEIWEL. j=1....M.=1...T

We have

0 2
(Z(xti)thi> > (MT)2>

i=1

T
P(AY) = IP’(énjE;XM Z

t=1

T
<P Y, > 2b2 T M3/2+8
< (énjing 1 > x2b*nV/T (log M)

Emaxi<j<m | Y1— ¥l
= x202n/T (log M)¥2+0
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Applying the maximal moment inequality of Lemma 9.1 below with m =1 and
constant ¢(1) = 2 we obtain

(A.15)

T 1/2
2
5,/810g(2M)|:ZE<11<nja<xMYtj>:|
T n 4 1/2
4.4 2
54,/1og(2M){b xin T+;}E<énjanM ;(xzi)jwti )} .
= 1=

By the maximal moment inequality of Lemma 9.1 with m = 4 and constant c(4) =
12 (since M > 2) the last expectation is bounded, forany r =1,..., T, as

4 n 2
) =@ log<12M>>2E<[§énja§>5W (xm?Wﬁ} )

Setting for brevity X; = maxj<;< M(x,,-)? we have

n 2 n
e([32 moy i | ) <ot Somr 30)
i=1 ==

i#k i=1

n

> i) j Wi

I=j=M|—

E( max
M

2
n
—p* (Z fi) < b*xin?.
i=1
Combining the above four displays yields

4/Tog2M)[(8log(12M))* + 1]1/?
(log M)3/2+6 ’ O

P(AY) <

APPENDIX B: AUXILIARY RESULTS

Here, we collect some auxiliary results which we have used in the paper.
The first result is taken from [9], equation (27), and was used in the proof of
Lemma 3.1.

LEMMA B.1. Let &,...,&N be iid. N@O, 1), v=(v1,...,Un) #0, ny =
m ZIN=1(§,~2 — Dv; and m(v) = Hﬁ’ll}lﬁo. We have, for all x > 0, that

2
P(ny| > x) < 2exp<—2(1 + \foxm(v)))'
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LEMMA B.2. Let T > 16 and s > 16. If w and ' are two elements of
N’ such that p'(w,w’) > %, then the cardinality of the set J(w, ') ={j <

Sith:1 Hayj #a);j} > 16} is greater than or equal to 16.

PROOF. Assume that |J(w,®’)| < s/16. Then, denoting by J(w, @) the
complement of J(w, @), and using that | J (w, ®')°| <, we get

T
pllwa)= Y Y Hoy#o)+ (0 o)T <Ts/8,
jeJ(w,0')¢ t=1

which contradicts the premise of the lemma. [J

The next lemma provides the link between Assumptions 5.1 and 3.1 and was
used extensively in our analysis in Section 5.

LEMMA B.3. Let Assumption 5.1 be satisfied. Then Assumption 3.1 is satis-

fiedwithk = /(1 —1/a)¢.

PROOF. We use here the notations introduced in the proof of Theorem 5.1.
For any subset J of Nj; such that [J| <s and any A € RX, we have

Kj Kj’

AT = dlxx)Asl < S SO S I, DA 1AL

J,jeJt=1t=1

min(Kj,Kj/)
= > > WL DA A
j.jel =1

K K.f/ ; -/
+ 302 D ML DAL IA ).

jojledt=1t'=1,t'#t

We now treat separately the first and second terms in the right-hand side of the
above display. For the first term we have, using consecutively Assumption 5.1,
Cauchy—Schwarz and Minkowski’s inequality for the Euclidean norm in RX/, that

K

p
) Zwu IDedllAd AT ] < 14“;“ Z(ZW)
J.j'eJ t=1 max$ ; Z jeJ
Amind
<A,
A AmaxS
Amin®d
AR

~ 1doAmax
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For the second term we get, using Assumption 5.1 and Cauchy—Schwarz’s inequal-
ity twice, that

K; Ky _
YT 1L D llA] A |_14“;“¢S<Z ZW)

j.jledt=1t'=1t'#t Jz 1
)\, .
< 2l a2,
14a X max
Combining the two above displays yields
AJUAS ATV = dlkxk)A
A2 1A 112

14a X max
We proceed similarly to treat the quantity |A jc WA y|. We have, using Assump-

tion 5.1, Cauchy—Schwarz and Minkowski’s inequalities, that

NGO Z.VIES ZI(\D[J I DedllA1A]
jeJe,jled t=1

Kj Ky o,
+ D Y D VLD 1A 1A

jeJe,jled t=1t'=1,t"#t

)\min‘p
—||A e A
= Tdohs 1A ell2,1l1As]12,1
mind 5o
l (TX ) (S X i)
140{)\maxs <J€Jl‘ 1 jeJet=1 KJ
2)Vmin(ll)
— A A je .
= b A2, 11 A gell2,1

Next we have, for any vector A € RX satisfying the inequality 3 jege Al Al <

) A )
1Azl =2 IaT1= 37 ==liA)]

jeJe jege rmmn

>l

jeJ

min

< 3)\max

o )\'min

IAll2,1.
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Combining these inequalities, we find that

(3]
(4]
(5]

(6]
(7]
[8]
(9]
[10]

[11]

[12]

[13]
[14]
[15]
[16]
[17]

(18]

ATWA . ATUA; 2A]. WA,
a2 = llagl? IAs]?

2mind 120114413,
14odmax  ldas||Ay|?

(-2 :
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