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ESTIMATION AND VARIABLE SELECTION FOR GENERALIZED
ADDITIVE PARTIAL LINEAR MODELS
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and Texas A&M University

We study generalized additive partial linear models, proposing the use of
polynomial spline smoothing for estimation of nonparametric functions, and
deriving quasi-likelihood based estimators for the linear parameters. We es-
tablish asymptotic normality for the estimators of the parametric components.
The procedure avoids solving large systems of equations as in kernel-based
procedures and thus results in gains in computational simplicity. We further
develop a class of variable selection procedures for the linear parameters by
employing a nonconcave penalized quasi-likelihood, which is shown to have
an asymptotic oracle property. Monte Carlo simulations and an empirical ex-
ample are presented for illustration.

1. Introduction. Generalized linear models (GLM), introduced by Nelder
and Wedderburn (1972) and systematically summarized by McCullagh and Nelder
(1989), are a powerful tool to analyze the relationship between a discrete response
variable and covariates. Given a link function, the GLM expresses the relationship
between the dependent and independent variables through a linear functional form.
However, the GLM and associated methods may not be flexible enough when an-
alyzing complicated data generated from biological and biomedical research. The
generalized additive model (GAM), a generalization of the GLM that replaces lin-
ear components by a sum of smooth unknown functions of predictor variables, has
been proposed as an alternative and has been used widely [Hastie and Tibshirani
(1990), Wood (2006)]. The generalized additive partially linear model (GAPLM)
is a realistic, parsimonious candidate when one believes that the relationship be-
tween the dependent variable and some of the covariates has a parametric form,
while the relationship between the dependent variable and the remaining covariates
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may not be linear. GAPLM enjoys the simplicity of the GLM and the flexibility of
the GAM because it combines both parametric and nonparametric components.

There are two possible approaches for estimating the parametric component
and the nonparametric components in a GAPLM. The first is a combination of
kernel-based backfitting and local scoring, proposed by Buja, Hastie and Tibshi-
rani (1989) and detailed by Hastie and Tibshirani (1990). This method may need
to solve a large system of equations [Yu, Park and Mammen (2008)], and also
makes it difficult to introduce a penalized function for variable selection as given
in Section 4. The second is an application of the marginal integration approach
[Linton and Nielsen (1995)] to the nonparametric component of the generalized
partial linear models. They treated the summand of additive terms as a nonpara-
metric component, which is then estimated as a multivariate nonparametric func-
tion. This strategy may still suffer from the “curse of dimensionality” when the
number of additive terms is not small [Härdle et al. (2004)].

The kernel-based backfitting and marginal integration approaches are compu-
tationally expensive. Marx and Eilers (1998), Ruppert, Wand and Carroll (2003)
and Wood (2004) studied penalized regression splines, which share most of the
practical benefits of smoothing spline methods, combined with ease of use and
reduction of the computational cost of backfitting GAMs. Widely used R/Splus
packages gam and mgcv provide a convenient implementation in practice. How-
ever, no theoretical justifications are available for these procedures in the additive
case. See Li and Ruppert (2008) for recent work in the one-dimensional case.

In this paper, we will use polynomial splines to estimate the nonparametric com-
ponents. Besides asymptotic theory, we develop a flexible and convenient estima-
tion procedure for GAPLM. The use of polynomial spline smoothing in gener-
alized nonparametric models goes back to Stone (1986), who first obtained the
rate of convergence of the polynomial spline estimates for the generalized additive
model. Stone (1994) and Huang (1998) investigated polynomial spline estima-
tion for the generalized functional ANOVA model. More recently, Xue and Yang
(2006) studied estimation of the additive coefficient model for a continuous re-
sponse variable using polynomial spline methods. Our models emphasize possibly
non-Gaussian responses, and combine both parametric and nonparametric com-
ponents through a link function. Estimation is achieved through maximizing the
quasi-likelihood with polynomial spline smoothing for the nonparametric func-
tions. The convergence results of the maximum likelihood estimates for the non-
parametric parts in this article are similar to those for regression established by
Xue and Yang (2006). However, it is very challenging to establish asymptotic nor-
mality in our general context, since it cannot be viewed simply as an orthogonal
projection, due to its nonlinear structure. To the best of our knowledge, this is the
first attempt to establish asymptotic normality of the estimators for the paramet-
ric components in GAPLM. Moreover, polynomial spline smoothing is a global
smoothing method, which approximates the unknown functions via polynomial
splines characterized by a linear combination of spline basis. After the spline basis
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is chosen, the coefficients can be estimated by an efficient one-step procedure of
maximizing the quasi-likelihood function. In contrast, kernel-based methods, such
as those reviewed above, in which the maximization must be conducted repeat-
edly at every data point or a grid of values, are more time-consuming. Thus, the
application of polynomial spline smoothing in the current context is particularly
computationally efficient compared to some of its counterparts.

In practice, a large number of variables may be collected and some of the in-
significant ones should be excluded before forming a final model. It is an important
issue to select significant variables for both parametric and nonparametric regres-
sion models; see Fan and Li (2006) for a comprehensive overview of variable se-
lection. Traditional variable selection procedures such as stepwise deletion and
subset selection may be extended to the GAPLM. However, these are also com-
putationally expensive because, for each submodel, we encounter the challenges
mentioned above.

To select significant variables in semiparametric models, Li and Liang (2008)
adopted Fan and Li’s (2001) variable selection procedures for parametric mod-
els via nonconcave penalized quasi-likelihood, but their models do not cover
the GAPLM. Of course, before developing justifiable variable selection for the
GAPLM, it is important to establish asymptotic properties for the parametric com-
ponents. In this article, we propose a class of variable selection procedures for the
parametric component of the GAPLM and study the asymptotic properties of the
resulting estimator. We demonstrate how the rate of convergence of the resulting
estimate depends on the regularization parameters, and further show that the pe-
nalized quasi-likelihood estimators perform asymptotically as an oracle procedure
for selecting the model.

The rest of the article is organized as follows. In Section 2, we introduce the
GAPLM model. In Section 3, we propose polynomial spline estimators via a quasi-
likelihood approach, and study the asymptotic properties of the proposed estima-
tors. In Section 4, we describe the variable selection procedures for the parametric
component, and then prove their statistical properties. Simulation studies and an
empirical example are presented in Section 5. Regularity conditions and the proofs
of the main results are presented in the Appendix.

2. The models. Let Y be the response variable, X = (X1, . . . ,Xd1)
T ∈ Rd1

and Z = (Z1, . . . ,Zd2)
T ∈ Rd2 be the covariates. We assume the conditional den-

sity of Y given (X,Z) = (x, z) belongs to the exponential family

fY |X,Z(y|x, z) = exp[yξ(x, z) − B{ξ(x, z)} + C(y)](1)

for known functions B and C , where ξ is the so-called natural parameter in para-
metric generalized linear models (GLM), is related to the unknown mean response
by

μ(x, z) = E(Y |X = x,Z = z) = B′{ξ(x, z)}.
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In parametric GLM, the mean function μ is defined via a known link function g

by g{μ(x, z)} = xTα + zTβ , where α and β are parametric vectors to be estimated.
In this article, g(μ) is modeled as an additive partial linear function

g{μ(x, z)} =
d1∑

k=1

ηk(xk) + zTβ,(2)

where β is a d2-dimensional regression parameter, {ηk}d1
k=1 are unknown and

smooth functions and E{ηk(Xk)} = 0 for 1 ≤ k ≤ d1 for identifiability.
If the conditional variance function var(Y |X = x,Z = z) = σ 2V {μ(x, z)} for

some known positive function V , then estimation of the mean can be achieved
by replacing the conditional loglikelihood function log{fY |X,Z(y|x, z)} in (1) by a
quasi-likelihood function Q(m,y), which satisfies

∂

∂m
Q(m,y) = y − m

V (m)
.

The first goal of this article is to provide a simple method of estimating β

and {ηk}d1
k=1 in model (2) based on a quasi-likelihood procedure [Severini and

Staniswalis (1994)] with polynomial splines. The second goal is to discuss how
to select significant parametric variables in this semiparametric framework.

3. Estimation method.

3.1. Maximum quasi-likelihood. Let (Yi,Xi ,Zi), i = 1, . . . , n, be indepen-
dent copies of (Y,X,Z). To avoid confusion, let η0 = ∑d1

k=1 η0k(xk) and β0 be
the true additive function and the true parameter values, respectively. For simplic-
ity, we assume that the covariate Xk is distributed on a compact interval [ak, bk],
k = 1, . . . , d1, and without loss of generality, we take all intervals [ak, bk] = [0,1],
k = 1, . . . , d1. Under smoothness assumptions, the η0k’s can be well approximated
by spline functions. Let Sn be the space of polynomial splines on [0,1] of order
r ≥ 1. We introduce a knot sequence with J interior knots

ξ−r+1 = · · · = ξ−1 = ξ0 = 0 < ξ1 < · · · < ξJ < 1 = ξJ+1 = · · · = ξJ+r ,

where J ≡ Jn increases when sample size n increases, where the precise order is
given in condition (C5) in Section 3.2. According to Stone (1985), Sn consists of
functions � satisfying:

(i) � is a polynomial of degree r − 1 on each of the subintervals Ij =
[ξj , ξj+1), j = 0, . . . , Jn − 1, IJn = [ξJn,1];

(ii) for r ≥ 2, � is r − 2 times continuously differentiable on [0,1].
Equally-spaced knots are used in this article for simplicity of proof. However other
regular knot sequences can also be used, with similar asymptotic results.
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We will consider additive spline estimates η̂ of η0. Let Gn be the collection of
functions η with the additive form η(x) = ∑d1

k=1 ηk(xk), where each component
function ηk ∈ Sn and

∑n
i=1 ηk(Xik) = 0. We seek a function η ∈ Gn and a value of

β that maximize the quasi-likelihood function

L(η,β) = n−1
n∑

i=1

Q[g−1{η(Xi) + ZT
i β}, Yi].(3)

For the kth covariate xk , let bj,k(xk) be the B-spline basis functions of order r . For
any η ∈ Gn, write η(x) = γ Tb(x), where b(x) = {bj,k(xk), j = 1, . . . , Jn + r, k =
1, . . . , d1}T is the collection of the spline basis functions, and γ = {γj,k, j =
1, . . . , Jn + r, k = 1, . . . , d1}T is the spline coefficient vector. Thus, the maximiza-
tion problem in (3) is equivalent to finding β and γ to maximize

�(γ ,β) = n−1
n∑

i=1

Q[g−1{γ Tb(Xi ) + ZT
i β}, Yi].(4)

We denote the maximizer as β̂ and γ̂ = {γ̂j,k, j = 1, . . . , Jn + r, k = 1, . . . , d1}T.
Then the spline estimator of η0 is η̂(x) = γ̂ Tb(x), and the centered spline compo-
nent function estimators are

η̂k(xk) =
Jn+r∑
j=1

γ̂j,kbj,k(xk) − n−1
n∑

i=1

Jn+r∑
j=1

γ̂j,kbj,k(Xik), k = 1, . . . , d1.

The above estimation approach can be easily implemented because this approxi-
mation results in a generalized linear model. However, theoretical justification for
this estimation approach is very challenging [Huang (1998)].

Let Nn = Jn + r − 1. We adopt the normalized B-spline space S 0
n introduced in

Xue and Yang (2006) with the following normalized basis

Bj,k(xk) = √
Nn

{
bj+1,k(xk) − E(bj+1,k)

E(b1,k)
b1,k(xk)

}
,

(5)
1 ≤ j ≤ Nn,1 ≤ k ≤ d1,

which is convenient for asymptotic analysis. Let B(x) = {Bj,k(xk), j = 1, . . . ,Nn,
k = 1, . . . , d1}T and Bi = B(Xi ). Finding (γ ,β) that maximizes (4) is mathemati-
cally equivalent to finding (γ ,β) which maximizes

n−1
n∑

i=1

Q[g−1{BT
i γ + ZT

i β}, Yi].

Then the spline estimator of η0 is η̂(x) = γ̂ TB(x), and the centered spline estima-
tors of the component functions are

η̂k(xk) =
Nn∑
j=2

γ̂j,kBj,k(xk) − n−1
n∑

i=1

Nn∑
j=2

γ̂j,kBj,k(Xik), k = 1, . . . , d1.
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We show next that estimators of both the parametric and nonparametric compo-
nents have nice asymptotic properties.

3.2. Assumptions and asymptotic results. Let v be a positive integer and
α ∈ (0,1] such that p = v + α > 2. Let H(p) be the collection of functions g

on [0,1] whose vth derivative, g(v), exists and satisfies a Lipschitz condition of
order α, |g(v)(m∗) − g(v)(m)| ≤ C|m∗ − m|α , for 0 ≤ m∗,m ≤ 1, where C is
a positive constant. Following the notation of Carroll et al. (1997), let ρ�(m) =
{dg−1(m)/dm}�/V {g−1(m)} and q�(m,y) = ∂�/∂m�Q{g−1(m), y}, so that

q1(m,y) = ∂/∂mQ{g−1(m), y} = {y − g−1(m)}ρ1(m),

q2(m,y) = ∂2/∂m2Q{g−1(m), y} = {y − g−1(m)}ρ′
1(m) − ρ2(m).

For simplicity of notation, write T = (X,Z) and A⊗2 = AAT for any matrix or
vector A. We make the following assumptions:

(C1) The function η′′
0(·) is continuous and each component function η0k(·) ∈

H(p), k = 1, . . . , d1.
(C2) The function q2(m,y) < 0 and cq < |qν

2 (m,y)| < Cq (ν = 0,1) for m ∈ R

and y in the range of the response variable.
(C3) The distribution of X is absolutely continuous and its density f is bounded

away from zero and infinity on [0,1]d1 .
(C4) The random vector Z satisfies that for any unit vector ω ∈ Rd2

c ≤ ωTE(Z⊗2|X = x)ω ≤ C.

(C5) The number of knots n1/(2p) 	 Nn 	 n1/4.

REMARK 1. The smoothness condition in (C1) describes a requirement on the
best rate of convergence that the functions η0k(·)’s can be approximated by func-
tions in the spline spaces. Condition (C2) is imposed to ensure the uniqueness of
the solution; see, for example, Condition 1a of Carroll et al. (1997) and Condi-
tion (i) of Li and Liang (2008). Condition (C3) requires a boundedness condition
on the covariates, which is often assumed in asymptotic analysis of nonparamet-
ric regression problems; see Condition 1 of Stone (1985), Assumption (B3)(ii) of
Huang (1999) and Assumption (C1) of Xue and Yang (2006). The boundedness as-
sumption on the support can be replaced by a finite third moment assumption, but
this will add much extra complexity to the proofs. Condition (C4) implies that the
eigenvalues of E(Z⊗2|X = x) are bounded away from 0 and ∞. Condition (C5)
gives the rate of growth of the dimension of the spline spaces relative to the sample
size.

For measurable functions ϕ1, ϕ2 on [0,1]d1 , define the empirical inner product
and the corresponding norm as

〈ϕ1, ϕ2〉n = n−1
n∑

i=1

{ϕ1(Xi )ϕ2(Xi )}, ‖ϕ‖2
n = n−1

n∑
i=1

ϕ2(Xi ).
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If ϕ1 and ϕ2 are L2-integrable, define the theoretical inner product and correspond-
ing norm as

〈ϕ1, ϕ2〉 = E{ϕ1(X)ϕ2(X)}, ‖ϕ‖2
2 = Eϕ2(X).

Let ‖ϕ‖2
nk and ‖ϕ‖2

2k be the empirical and theoretical norm of ϕ on [0,1], defined
by

‖ϕ‖2
nk = n−1

n∑
i=1

ϕ2(Xik), ‖ϕ‖2
2k = Eϕ2(Xk) =

∫ 1

0
ϕ2(xk)fk(xk) dxk,

where fk(·) is the density function of Xk .
Theorem 1 describes the rates of convergence of the nonparametric parts.

THEOREM 1. Under conditions (C1)–(C5), for k = 1, . . . , d1, ‖η̂ − η0‖2 =
OP {N1/2−p

n + (Nn/n)1/2}; ‖η̂ − η0‖n = OP {N1/2−p
n + (Nn/n)1/2}; ‖η̂k −

η0k‖2k = OP {N1/2−p
n + (Nn/n)1/2} and ‖η̂k − η0k‖nk = OP {N1/2−p

n + (Nn/

n)1/2}.
Let m0(T) = η0(X) + ZTβ0 and define

�(x) = E[Zρ2{m0(T))}|X = x]
E[ρ2{m0(T)}|X = x] , Z̃ = Z − �add(X),(6)

where

�add(x) =
d1∑

k=1

�k(xk)(7)

is the projection of � onto the Hilbert space of theoretically centered additive func-
tions with a norm ‖f ‖2

ρ2,m0
= E[f (X)2ρ2{m0(T)}]. To obtain asymptotic normal-

ity of the estimators in the linear part, we further impose the conditions:

(C6) The additive components in (7) satisfy that �k(·) ∈ H(p), k = 1, . . . , d1.
(C7) For ρ�, we have

|ρ�(m0)| ≤ Cρ and |ρ�(m) − ρ�(m0)| ≤ C∗
ρ |m − m0|

for all |m − m0| ≤ Cm,� = 1,2.

(C8) There exists a positive constant C0, such that E[{Y −g−1(m0(T))}2|T] ≤
C0, almost surely.

The next theorem shows that the maximum quasi-likelihood estimator of β0 is
root-n consistent and asymptotically normal, although the convergence rate of the
nonparametric component η0 is of course slower than root-n.

THEOREM 2. Under conditions (C1)–(C8),
√

n(β̂ −β0) → Normal(0,�−1),

where � = E[ρ2{m0(T)}Z̃⊗2].
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The proofs of these theorems are given in the Appendix.
It is worthwhile pointing out that taking the additive structure of the nuisance

parameter into account leads to a smaller asymptotic variance than that of the es-
timators which ignore the additivity [Yu and Lee (2010)]. Carroll et al. (2009) had
the same observation for a special case with repeated measurement data when g is
the identity function.

4. Selection of significant parametric variables. In this section, we develop
variable selection procedures for the parametric component of the GAPLM. We
study the asymptotic properties of the resulting estimator, illustrate how the rate
of convergence of the resulting estimate depends on the regularization parameters,
and further establish the oracle properties of the resulting estimate.

4.1. Penalized likelihood. Building upon the quasi-likelihood given in (3), we
define the penalized quasi-likelihood as

L(η,β) =
n∑

i=1

Q[g−1{η(Xi) + ZT
i β}, Yi] − n

d2∑
j=1

pλj
(|βj |),(8)

where pλj
(·) is a prespecified penalty function with a regularization parameter λj .

The penalty functions and regularization parameters in (8) are not necessarily the
same for all j . For example, we may wish to keep scientifically important vari-
ables in the final model, and therefore do not want to penalize their coefficients.
In practice, λj can be chosen by a data-driven criterion, such as cross-validation
(CV) or generalized cross-validation [GCV, Craven and Wahba (1979)].

Various penalty functions have been used in variable selection for linear regres-
sion models, for instance, the L0 penalty, in which pλj

(|β|) = 0.5λ2
j I (|β| �= 0).

The traditional best-subset variable selection can be viewed as a penalized least
squares with the L0 penalty because

∑d2
j=1 I (|βj | �= 0) is essentially the number

of nonzero regression coefficients in the model. Of course, this procedure has two
well known and severe problems. First, when the number of covariates is large, it
is computationally infeasible to do subset selection. Second, best subset variable
selection suffers from high variability and instability [Breiman (1996), Fan and Li
(2001)].

The Lasso is a regularization technique for simultaneous estimation and variable
selection [Tibshirani (1996), Zou (2006)] that avoids the drawbacks of the best
subset selection. It can be viewed as a penalized least squares estimator with the
L1 penalty, defined by pλj

(|β|) = λj |β|. Frank and Friedman (1993) considered
bridge regression with an Lq penalty, in which pλj

(|β|) = λj |β|q (0 < q < 1). The
issue of selection of the penalty function has been studied in depth by a variety
of authors. For example, Fan and Li (2001) suggested using the SCAD penalty,
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defined by

p′
λj

(β) = λj

{
I (β ≤ λj ) + (aλj − β)+

(a − 1)λj

I (β > λj )

}
for some a > 2 and β > 0,

where pλj
(0) = 0, and λj and a are two tuning parameters. Fan and Li (2001)

suggested using a = 3.7, which will be used in Section 5.
Substituting η by its estimate in (8), we obtain a penalized likelihood

LP (β) =
n∑

i=1

Q[g−1{BT
i γ̂ + ZT

i β}, Yi] − n

d2∑
j=1

pλj
(|βj |).(9)

Maximizing LP (β) in (9) yields a maximum penalized likelihood estimator β̂
MPL

.
The theorems established below demonstrate that β̂

MPL
performs asymptotically

as well as an oracle estimator.

4.2. Sampling properties. We next show that with a proper choice of λj , the

maximum penalized likelihood estimator β̂
MPL

has an asymptotic oracle property.
Let β0 = (β10, . . . , βd20)

T = (βT
10,β

T
20)

T, where β10 is assumed to consist of all
nonzero components of β0 and β20 = 0 without loss of generality. Similarly we
write Z = (ZT

1 ,ZT
2 )T. Denote wn = max1≤j≤d2{|p′′

λj
(|βj0|)|, βj0 �= 0} and

an = max
1≤j≤d2

{|p′
λj

(|βj0|)|, βj0 �= 0}.(10)

THEOREM 3. Under the regularity conditions given in Section 3.2, and if
an → 0 and wn → 0 as n → ∞, then there exists a local maximizer β̂

MPL
of

LP (β) defined in (9) such that its rate of convergence is OP (n−1/2 + an), where
an is given in (10).

Next, define ξn = {p′
λ1

(|β10|) sgn(β10), . . . , p
′
λs

(|βs0|) sgn(βs0)}T and a diag-
onal matrix 	λ = diag{p′′

λ1
(|β10|), . . . , p′′

λs
(|βs0|)}, where s is the number of

nonzero components of β0. Define T1 = (X,Z1) and m0(T1) = η0(X) + ZT
1β10,

and further let

�1(x) = E[Z1ρ2{m0(T1)}|X = x]
E[ρ2{m0(T1)}|X = x] , Z̃1 = Z1 − �add

1 (X),

where �add
1 is the projection of �1 onto the Hilbert space of theoretically centered

additive functions with the norm ‖f ‖2
ρ2,m0

.

THEOREM 4. Suppose that the regularity conditions given in Section 3.2 hold,
and that lim infn→∞ lim infβj→0+ λ−1

jn p′
λjn

(|βj |) > 0. If
√

nλjn → ∞ as n → ∞,
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then the root-n consistent estimator β̂
MPL

in Theorem 3 satisfies β̂
MPL
2 = 0, and√

n(�s + 	λ){β̂MPL
1 − β10 + (�s + 	λ)

−1ξn} → Normal(0,�s), where �s =
[ρ2{m0(T1)}Z̃⊗2

1 ].

4.3. Implementation. As pointed out by Li and Liang (2008), many penalty
functions, including the L1 penalty and the SCAD penalty, are irregular at the ori-
gin and may not have a second derivative at some points. Thus, it is often difficult
to implement the Newton–Raphson algorithm directly. As in Fan and Li (2001),
Hunter and Li (2005), we approximate the penalty function locally by a quadratic
function at every step in the iteration such that the Newton–Raphson algorithm
can be modified for finding the solution of the penalized likelihood. Specifically,
given an initial value β(0) that is close to the maximizer of the penalized likeli-
hood function, the penalty pλj

(|βj |) can be locally approximated by the quadratic

function as {pλj
(|βj |)}′ = p′

λj
(|βj |) sgn(βj ) ≈ {p′

λj
(|β(0)

j |)/|β(0)
j |}βj , when β

(0)
j

is not very close to 0; otherwise, set β̂j = 0. In other words, for βj ≈ β
(0)
j ,

pλj
(|βj |) ≈ pλj

(|β(0)
j |)+ (1/2){p′

λj
(|β(0)

j |)/|β(0)
j |}(β2

j −β
(0)2
j ). For instance, this

local quadratic approximation for the L1 penalty yields

|βj | ≈ (1/2)
∣∣β(0)

j

∣∣ + (1/2)β2
j /

∣∣β(0)
j

∣∣ for βj ≈ β
(0)
j .

Standard error formula for β̂
MPL

. We follow the approach in Li and Liang

(2008) to derive a sandwich formula for the estimator β̂
MPL

. Let

�′(β) = ∂�(γ̂ ,β)

∂β
, �′′(β) = ∂2�(γ̂ ,β)

∂β ∂βT ;

	λ(β) = diag
{
p′

λ1
(|β1|)

|β1| , . . . ,
p′

λd2
(|βd2 |)

|βd2 |
}
.

A sandwich formula is given by

ĉov(β̂
MPL

) = {n�′′(β̂MPL
) − n	λ(β̂

MPL
)}−1ĉov{�′(β̂MPL

)}
× {n�′′(β̂MPL

) − n	λ(β̂
MPL

)}−1.

Following conventional techniques that arise in the likelihood setting, the above
sandwich formula can be shown to be a consistent estimator and will be shown in
our simulation study to have good accuracy for moderate sample sizes.

Choice of λj ’s. The unknown parameters (λj ) can be selected using data-driven
approaches, for example, generalized cross validation as proposed in Fan and Li
(2001). Replacing β in (4) with its estimate β̂

MPL
, we maximize �(γ , β̂

MPL
) with

respect to γ . The solution is denoted by γ̂ MPL, and the corresponding estimator of
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η0 is defined as

η̂MPL(x) = (γ̂ MPL)TB(x).(11)

Here the GCV statistic is defined by

GCV(λ1, . . . , λd2) =
∑n

i=1 D[Yi, g
−1{̂ηMPL(Xi) + ZT

i β̂
MPL}]

n{1 − e(λ1, . . . , λd2)/n}2 ,

where e(λ1, . . . , λd2) = tr[{�′′(β̂MPL
) − n	λ(β̂

MPL
)}−1�′′(β̂MPL

)] is the effective
number of parameters and D(Y,μ) is the deviance of Y corresponding to fitting
with λ. The minimization problem over a d2-dimensional space is difficult. How-
ever, Li and Liang (2008) conjectured that the magnitude of λj should be propor-
tional to the standard error of the unpenalized maximum pseudo-partial likelihood
estimator of βj . Thus, we suggest taking λj = λSE(β̂j ) in practice, where SE(β̂j )

is the estimated standard error of β̂j , the unpenalized likelihood estimate defined
in Section 3. Then the minimization problem can be reduced to a one-dimensional
problem, and the tuning parameter can be estimated by a grid search.

5. Numerical studies.

5.1. A simulation study. We simulated 100 data sets consisting of n = 100,
200 and 400 observations, respectively, from the GAPLM:

logit{pr(Y = 1)} = η1(X1) + η2(X2) + ZTβ,(12)

where

η1(x) = sin(4πx),

η2(x) = 10{exp(−3.25x) + 4 exp(−6.5x) + 3 exp(−9.75x)}
and the true parameters β = (3,1.5,0,0,0,0,2,0)T. X1 and X2 are independently
uniformly distributed on [0,1]. Z1 and Z2 are normally distributed with mean 0.5
and variance 0.09. The random vector (Z1, . . . ,Z6,X1,X2) has an autoregressive
structure with correlation coefficient ρ = 0.5.

In order to determine the number of knots in the approximation, we performed
a simulation with 1,000 runs for each sample size. In each run, we fit, without any
variable selection procedure, all possible spline approximations with 0–7 internal
knots for each nonparametric component. The internal knots were equally spaced
quantiles from the simulated data. We recorded the combination of the numbers of
knots used by the best approximation, which had the smallest prediction error (PE),
defined as

PE = 1

n

n∑
i=1

{
logit−1(BT

i γ̂ + ZT
i β̂) − logit−1(

η(Xi) + ZT
i β

)}2
.(13)

(2,2) and (5,3) are most frequently chosen for sample sizes 100 and 400, respec-
tively. These combinations were used in the simulations for the variable selection
procedures.
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TABLE 1
Results from the simulation study in Section 5.1. C, I and MRME stand for the average number of

the five zero coefficients correctly set to 0, the average number of the three nonzero coefficients
incorrectly set to 0, and the median of the relative model errors. The model errors are defined in (14)

n Method C I MRME

100 ORACLE 5 0 0.27
SCAD 4.29 0.93 0.60
Lasso 3.83 0.67 0.51
BIC 4.53 0.95 0.54

400 ORACLE 5 0 0.33
SCAD 4.81 0.27 0.49
Lasso 3.89 0.10 0.67
BIC 4.90 0.35 0.46

The proposed selection procedures were applied to this model and B-splines
were used to approximate the two nonparametric functions. In the simulation and
also the empirical example in Section 5.2, the estimates from ordinary logistic
regression were used as the starting values in the fitting procedure.

To study model fit, we also defined model error (ME) for the parametric part by

ME(β̂) = (β̂ − β)TE(ZZT)(β̂ − β).(14)

The relative model error is defined as the ratio of the model error between the fitted
model using variable selection methods and using ordinary logistic regression.

The simulation results are reported in Table 1, in which the columns labeled
with “C” give the average number of the five zero coefficients correctly set to 0, the
columns labeled with “I” give the average number of the three nonzero coefficients
incorrectly set to 0, and the columns labeled with “MRME” give the median of the
relative model errors.

Summarizing Table 1, we conclude that BIC performs the best in terms of cor-
rectly identifying zero coefficients, followed by SCAD and LASSO. On the other
hand, BIC is also more likely to set nonzero coefficients to zero, followed by
SCAD and LASSO. This indicates that BIC most aggressively reduce the model
complexity, while LASSO tends to include more variables in the models. SCAD
is a useful compromise between these two procedures. With an increase of sam-
ple sizes, both SCAD and BIC nearly perform as if they had Oracle property. The
MRME values of the three procedures are comparable. Results of the cases not
depicted here have characteristics similar to those shown in Table 1. Readers may
refer to the online supplemental materials.

We also performed a simulation with correlated covariates. We generated the
response Y from model (12) again but with β = (3.00,1.50,2.00). The covariates
Z1, Z2, X1 and X2 were marginally normal with mean zero and variance 0.09.
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In order, (Z1,Z2,X1,X2) had autoregressive correlation coefficient ρ, while Z3

is Bernoulli with success probability 0.5. We considered two scenarios: (i) mod-
erately correlated covariates (ρ = 0.5) and (ii) highly correlated (ρ = 0.7) covari-
ates. We did 1,000 simulation runs for each case with sample sizes n = 100,200
and 400. From our simulation, we observe that the estimator becomes more unsta-
ble when the correlation among covariates is higher. In scenario (i), all simulation
runs converged. However, there were 6, 3 and 7 cases of nonconvergence over
the 1,000 simulation runs for sample sizes 100,200 and 400, respectively, in sce-
nario (ii). In addition, the variance and bias of the fitted functions in scenario (ii)
were much larger than those in scenario (i), especially on the boundaries of the
covariates’ support. This can be observed in Figures 1 and 2, which present the
mean, absolute value of bias and variance of the fitted nonparametric functions

FIG. 1. The mean, absolute value of the bias and variance of the fitted nonparametric functions
when n = 100 and ρ = 0.5 [the left panel for η1(x1) and the right for η2(x2)]. 95% CB stands for
the 95% confidence band.
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FIG. 2. The mean, absolute value of the bias and variance of the fitted nonparametric functions
when n = 100 and ρ = 0.7. The left panel is for η1(x1) and the right panel is for η2(x2). Here 95%
CB stands for the 95% confidence band.

for ρ = 0.5 and ρ = 0.7 with sample size n = 100. Similar results are obtained for
sample sizes n = 200 and 400, but are not given here.

5.2. An empirical example. We now apply the GAPLM and our variable se-
lection procedure to a data set from the Pima Indian diabetes study [Smith et al.
(1988)]. This data set is obtained from the UCI Repository of Machine Learning
Databases, and is selected from a larger data set held by the National Institutes
of Diabetes and Digestive and Kidney Diseases. All patients in this database are
Pima Indian women at least 21 years old and living near Phoenix, Arizona. The
response Y is the indicator of a positive test for diabetes. Independent variables
from this data set include: NumPreg, the number of pregnancies; DBP, diastolic
blood pressure (mmHg); DPF, diabetes pedigree function; PGC, the plasma glu-
cose concentration after two hours in an oral glucose tolerance test; BMI, body
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TABLE 2
Results for the Pima study. Left panel: estimated values, associated standard errors and P -values

by using GLM. Right panel: Estimates, associated standard errors using the GAPLM with the
proposed variable selection procedures

GLM GAPLM

Est. s.e. z value Pr(>|z|) SCAD (s.e.) LASSO (s.e.) BIC (s.e.)

NumPreg 0.118 0.033 3.527 0 0 (0) 0.021 (0.019) 0 (0)
DBP −0.009 0.009 −1.035 0.301 0 (0) −0.006 (0.005) 0 (0)
DPF 0.961 0.306 3.135 0.002 0.958 (0.312) 0.813 (0.262) 0.958 (0.312)
PGC 0.035 0.004 9.763 0 0.036 (0.004) 0.034 (0.003) 0.036 (0.004)
BMI 0.091 0.016 5.777 0
AGE 0.017 0.01 1.723 0.085

mass index [weight in kg/(height in m)2]; and AGE (years). There are in total
724 complete observations in this data set.

In this example, we explore the impact of these covariates on the probability of
a positive test. We first fit the data set using a linear logistic regression model: the
estimated results are listed in the left panel of Table 2. These results indicate that
NumPreg, DPF, PGC and BMI are statistically significant, while DBP and AGE
are not statistically significant.

However, a closer investigation shows that the effect of AGE and BMI on the
logit transformation of the probability of a positive test may be nonlinear, see Fig-
ure 3. Thus, we employ the following GAPLM for this data analysis,

logit{P(Y = 1)} = η0 + β1NumPreg + β2DBP + β3DPF
(15)

+ β4PGC + η1(BMI) + η2(AGE).

Using B-splines to approximate η1(BMI) and η2(AGE), we adopt 5-fold cross-
validation to select knots and find that the approximation with no internal knots
performs well for the both nonparametric components.

We applied the proposed variable selection procedures to the model (15), and
the estimated coefficients and their standard errors are listed in the right panel of
Table 2. Both SCAD and BIC suggest that DPF and PGC enter the model, whereas
NumPreg and DBP are suggested not to enter. However, the LASSO suggests an in-
clusion of NumPreg and DBP. This may be because LASSO admits many variables
in general, as we observed in the simulation studies. The nonparametric estimators
of η1(BMI) and η2(AGE), which are obtained by using the SCAD-based proce-
dure, are similar to the solid lines in Figure 3. It is worth pointing that the effect
of AGE on the probability of a positive test shows a concave pattern, and women
whose age is around 50 have the highest probability of developing diabetes. Impor-
tantly, the linear logistic regression model does not reveal this significant effect.
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FIG. 3. The patterns of the nonparametric functions of BMI and Age (solid lines) with ± s.e.
(shaded areas) using the R function, gam, for the Pima study.

It is interesting that the variable NumPreg is statistically insignificant when we
fit the data using GAPLM with the proposed variable selection procedure, but
shows a statistically significant impact when we use GLM. One might reasonably
conjecture that this phenomenon might be due to model misspecification. To test
this, we conducted a simulation as follows. We generated the response variables
using the estimates and functions obtained by GAPLM with the SCAD. Then we
fit a GLM for the generated data set. We repeated the generation and fitting pro-
cedures 5,000 times and found that NumPreg is identified positively significant
67.42% percent of the time at level 0.05 in the GLMs. For DBP, DPF, PGC, BMI
and AGE, the percentages that they are identified as statistically significant at the
level 0.05 are 4.52%, 90.36%, 100% and 99.98% and 56.58%, respectively. This
means that NumPreg can incorrectly enter the model, with more than 65% proba-
bility, when a wrong model is used, while DBP, DPF, PGC, BMI and AGE seem
correctly to be classified as insignificant and significant covariates even with this
wrong GLM model.

6. Concluding remarks. We have proposed an effective polynomial spline
technique for the GAPLM, then developed variable selection procedures to iden-
tify which linear predictors should be included in the final model fitting. The con-
tributions we made to the existing literature can be summarized in three ways:
(i) the procedures are computationally efficient, theoretically reliable, and intu-
itively appealing; (ii) the estimators of the linear components, which are often of
primary interest, are asymptotically normal; and (iii) the variable selection pro-
cedure for the linear components has an asymptotic oracle property. We believe
that our approach can be extended to the case of longitudinal data [Lin and Carroll
(2006)], although the technical details are by no means straightforward.

An important question in using GAPLM in practice is which covariates should
be included in the linear component. We suggest proceeding as follows. The con-
tinuous covariates are put in the nonparametric part and the discrete covariates in
the parametric part. If the estimation results show that some of the continuous co-
variate effects can be described by certain parametric forms such as a linear form,
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either by formal testing or by visualization, then a new model can be fit with those
continuous covariate effects moved to the parametric part. The procedure can be
iterated several times if needed. In this way, one can take full advantage of the flex-
ible exploratory analysis provided by the proposed method. However, developing
a more efficient and automatic criterion warrants future study. It is worth pointing
out the proposed procedure may be instable for high-dimensional data, and may
encounter collinear problems. Addressing these challenging questions is part of
ongoing work.

APPENDIX

Throughout the article, let ‖ ·‖ be the Euclidean norm and ‖ϕ‖∞ = supm |ϕ(m)|
be the supremum norm of a function ϕ on [0,1]. For any matrix A, denote its L2
norm as ‖A‖2 = sup‖x‖�=0 ‖Ax‖/‖x‖, the largest eigenvalue.

A.1. Technical lemmas. In the following, let F be a class of measurable
functions. For probability measure Q, the L2(Q)-norm of a function f ∈ F is
defined by (

∫ |f |2 dQ)1/2. According to van der Vaart and Wellner (1996), the
δ-covering number N (δ, F ,L2(Q)) is the smallest value of N for which there
exist functions f1, . . . , fN , such that for each f ∈ F , ‖f − fj‖ ≤ δ for some
j ∈ {1, . . . , N }. The δ-covering number with bracketing N[·](δ, F ,L2(Q)) is the
smallest value of N for which there exist pairs of functions {[f L

j , f U
j ]}N

j=1 with
‖f U

j − f L
j ‖ ≤ δ, such that for each f ∈ F , there is a j ∈ {1, . . . , N } such that

f L
j ≤ f ≤ f U

j . The δ-entropy with bracketing is defined as log N[·](δ, F ,L2(Q)).

Denote J[·](δ, F ,L2(Q)) = ∫ δ
0

√
1 + log N[·](ε, F ,L2(Q))dε. Let Qn be the em-

pirical measure of Q. Denote Gn = √
n(Qn −Q) and ‖Gn‖F = supf ∈F |Gnf | for

any measurable class of functions F .
We state several preliminary lemmas first, whose proofs are included in the

supplemental materials. Lemmas 1–3 will be used to prove the remaining lemmas
and the main results. Lemmas 4 and 5 are used to prove Theorems 1–3.

LEMMA 1 [Lemma 3.4.2 of van der Vaart and Wellner (1996)]. Let M0 be a fi-
nite positive constant. Let F be a uniformly bounded class of measurable functions
such that Qf 2 < δ2 and ‖f ‖∞ < M0. Then

E∗
Q‖Gn‖F ≤ C0J[·](δ, F ,L2(Q))

{
1 + J[·](δ, F ,L2(Q))

δ2
√

n
M0

}
,

where C0 is a finite constant independent of n.

LEMMA 2 [Lemma A.2 of Huang (1999)]. For any δ > 0, let

�n = {η(x) + zTβ; ‖β − β0‖ ≤ δ, η ∈ Gn,‖η − η0‖2 ≤ δ}.
Then, for any ε ≤ δ, log N[·](δ,�n,L2(P )) ≤ cNn log(δ/ε).
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For simplicity, let

Di = (BT
i ,ZT

i ), Wn = n−1
n∑

i=1

DT
i Di .(16)

LEMMA 3. Under conditions (C1)–(C5), for the above random matrix Wn,
there exists a positive constant C such that ‖W−1

n ‖2 ≤ C, a.s.

According to a result of de Boor [(2001), page 149], for any function g ∈ H(p)

with p < r − 1, there exists a function g̃ ∈ S 0
n , such that ‖g̃ − g‖∞ ≤ CN

−p
n ,

where C is some fixed positive constant. For η0 satisfying (C1), we can find
γ̃ = {γ̃j,k, j = 1, . . . ,Nn, k = 1, . . . , d1}T and an additive spline function η̃ =
γ̃ TB(x) ∈ Gn, such that

‖η̃ − η0‖∞ = O(N−p
n ).(17)

Let

β̃ = arg max
β

n−1
n∑

i=1

Q[g−1{η̃(Xi) + ZT
i β}, Yi].(18)

In the following, let m0i ≡ m0(Ti ) = η0(Xi ) + ZT
i β0 and εi = Yi − g−1(m0i ).

Further let

m̃0(t) = η̃(x) + zTβ0, m̃0i ≡ m̃0(Ti ) = η̃(Xi ) + ZT
i β0.

LEMMA 4. Under conditions (C1)–(C5),
√

n(β̃ − β0) → Normal(0,A−1 ×
	1A−1), where β̃ is in (18), A = E[ρ2{m0(T)}Z⊗2] and 	1 = E[q2

1 {m0(T)}Z⊗2].

In the following, denote θ̃ = (γ̃ T, β̃
T
)T, θ̂ = (γ̂ T, β̂

T
)T and

m̃i ≡ m̃(Ti ) = η̃(Xi ) + ZT
i β̃ = BT

i γ̃ + ZT
i β̃.(19)

LEMMA 5. Under conditions (C1)–(C5),

‖θ̂ − θ̃‖ = OP {N1/2−p
n + (Nn/n)−1/2}.

A.2. Proof of Theorem 1. According to Lemma 5,

‖η̂ − η̃‖2
2 = ‖(γ̂ − γ̃ )TB‖2

2 = (γ̂ − γ̃ )TE

[
n−1

n∑
i=1

B⊗2
i

]
(γ̂ − γ̃ )

≤ C‖γ̂ − γ̃ ‖2
2,

thus ‖η̂ − η̃‖2 = OP {N1/2−p
n + (Nn/n)1/2} and

‖η̂ − η0‖2 ≤ ‖η̂ − η̃‖2 + ‖η̃ − η0‖2 = OP {N1/2−p
n + (Nn/n)1/2} + OP (N−p

n )

= OP {N1/2−p
n + (Nn/n)1/2}.
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By Lemma 1 of Stone (1985), ‖η̂k −η0k‖2k = OP {N1/2−p
n + (Nn/n)1/2}, for each

1 ≤ k ≤ d1. Equation (17) implies that ‖η̂ − η̃‖n = OP {N1/2−p
n + (Nn/n)1/2}.

Then

‖η̂ − η0‖n ≤ ‖η̂ − η̃‖n + ‖η̃ − η0‖n

= OP {N1/2−p
n + (Nn/n)1/2} + OP (N−p

n )

= OP {N1/2−p
n + (Nn/n)1/2}.

Similarly,

sup
η1,η2∈S 0

n

∣∣∣∣〈η1, η2〉n − 〈η1, η2〉
‖η1‖2‖η2‖2

∣∣∣∣ = OP

{(
log(n)Nn/n

)1/2}
and ‖η̂k − η0k‖nk = OP {N1/2−p

n + (Nn/n)1/2}, for any k = 1, . . . , d1.

A.3. Proof of Theorem 2. We first verify that

n−1
n∑

i=1

ρ2(m0i )Z̃i�(Xi )
T(β̂ − β0) = oP (n−1/2),(20)

n−1
n∑

i=1

{(η̂ − η0)(Xi )}ρ2(m0i )Z̃i = oP (n−1/2),(21)

where Z̃ is defined in (6).
Define

Mn = {m(x, z) = η(x) + zTβ :η ∈ Gn}.(22)

Noting that ρ2 is a fixed bounded function under (C7), we have E[(η̂ −
η0)(X)ρ2(m0)Z̃l]2 ≤ O(‖m̂ − m0‖2

2), for l = 1, . . . , d2. By Lemma 2, the loga-
rithm of the ε-bracketing number of the class of functions

A1(δ) = {
ρ2{m(x, z)}{z − �(x)} :m ∈ Mn,‖m − m0‖ ≤ δ

}
is c{Nn log(δ/ε) + log(δ−1)}, so the corresponding entropy integral

J[·](δ, A1(δ),‖ · ‖) ≤ cδ{N1/2
n + log1/2(δ−1)}.

According to Lemmas 4 and 5 and Theorem 1, ‖m̂ − m0‖2 = OP {N1/2−p
n +

(Nn/n)1/2}. By Lemma 7 of Stone (1986), we have ‖η̂ − η0‖∞ ≤ cN
1/2
n ‖η̂ −

η0‖2 = OP (N
1−p
n + Nnn

−1/2), thus

‖m̂ − m0‖∞ = OP (N1−p
n + Nnn

−1/2).(23)
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Thus by Lemma 1 and Theorem 1, for rn = {N1/2−p
n + (Nn/n)1/2}−1,

E

∣∣∣∣∣n−1
n∑

i=1

{(η̂ − η0)(Xi )}ρ2(m0i )Z̃i − E[(η̂ − η0)(X)ρ2{m0(T)}Z̃]
∣∣∣∣∣

≤ n−1/2Cr−1
n {N1/2

n + log1/2(rn)}
[
1 + cr−1

n {N1/2
n + log1/2(rn)}
r−2
n

√
n

M0

]
≤ O(1)n−1/2r−1

n {N1/2
n + log1/2(rn)},

where r−1
n {N1/2

n + log1/2(rn)} = o(1) according to condition (C5). By the defini-
tion of Z̃, for any measurable function φ, E[φ(X)ρ2{m0(T)}Z̃] = 0. Hence (21)
holds. Similarly, (20) follows from Lemmas 1 and 5.

According to condition (C6), the projection function �add(x) = ∑d1
k=1 �k(xk),

where the theoretically centered function �k ∈ H(p). By the result of de Boor
[(2001), page 149], there exists an empirically centered function �̂k ∈ S 0

n , such
that ‖�̂k −�k‖∞ = OP (N

−p
n ), k = 1, . . . , d1. Denote �̂add(x) = ∑d1

k=1 �̂k(xk) and
clearly �̂add ∈ Gn. For any ν ∈ Rd2 , define m̂ν = m̂(x, z) + νT{z − �̂add(x)} =
{η̂(x) − νT�̂add(x)} + (β̂ + ν)Tz ∈ Mn, where Mn is given in (22). Note that
m̂ν maximizes the function l̂n(m) = n−1 ∑n

i=1 Q[g−1{m(Ti )}, Yi] for all m ∈ Mn

when ν = 0, thus ∂
∂ν l̂n(m̂ν)|ν=0 = 0. For simplicity, denote m̂i ≡ m̂(Ti ), and we

have

0 ≡ ∂

∂ν
l̂n(m̂ν)

∣∣∣∣
ν=0

= n−1
n∑

i=1

q1(m̂i, Yi)Z̃i + OP (N−p
n ).(24)

For the first term in (24), we get

n−1
n∑

i=1

q1(m̂i, Yi)Z̃i = n−1
n∑

i=1

q1(m0i , Yi)Z̃i

+ n−1
n∑

i=1

q2(m0i , Yi)(m̂i − m0i )Z̃i

(25)

+ n−1
n∑

i=1

q ′
2(m̄i, Yi)(m̂i − m0i )

2Z̃i

= I + II + III.

We decompose II into two terms II1 and II2 as follows:

II = n−1
n∑

i=1

q2(m0i , Yi)Z̃i{(η̂ − η0)(Xi )} + n−1
n∑

i=1

q2(m0i , Yi)Z̃iZT
i (β̂ − β0)

= II1 + II2.
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We next show that

II1 = II∗1 + oP (n−1/2),(26)

where II∗1 = −n−1 ∑n
i=1 ρ2(m0i )Z̃i{(η̂ − η0)(Xi )}. Using an argument similar to

the proof of Lemma 5, we have

(η̂ − η0)(Xi) = BT
i KV−1

n

{
n−1

n∑
i=1

q1(m0i , Yi)DT
i + oP (N−p

n )

}
,

where K = (INnd1,0(Nnd1)×d2) and INnd1 is a diagonal matrix. Note that the expec-
tation of the square of the sth column of n−1/2(II1 − II∗1) is

E

[
n−1/2

n∑
i=1

{q2(m0i , Yi) + ρ2(m0i )}Z̃is(η̂ − η0)(Xi )

]2

= n−1
n∑

i=1

n∑
j=1

E{εiεjρ
′
1(m0i )ρ

′
1(m0j )Z̃isZ̃js(η̂ − η0)(Xi )(η̂ − η0)(Xj )}

= n−3
n∑

i=1

n∑
j=1

n∑
k=1

n∑
l=1

E{εiεj εkεlρ
′
1(m0i )ρ

′
1(m0j )ρ1(m0k)ρ1(m0l)

× Z̃isZ̃jsBT
i KV−1

n DT
i BT

j KV−1
n DT

j }
+ o(nN−2p

n ) = o(1), s = 1, . . . , d2.

Thus, (26) holds by Markov’s inequality. Based on (21), we have II∗1 = oP (n−1/2).
Using similar arguments and (20) and (21), we can show that

II2 = −n−1
n∑

i=1

ρ2(m0i )Z̃iZT
i (β̂ − β0) + oP (n−1/2)

= −n−1
n∑

i=1

ρ2(m0i )Z̃
⊗2
i (β̂ − β0) + oP (n−1/2).

According to (23) and condition (C5), we have

III = n−1
n∑

i=1

q ′
2(m̄i, Yi)(m̂i − m0i )

2Z̃i

≤ C‖m̂ − m0‖2∞ = Op

{
N2(1−p)

n + N2
nn−1}

= oP (n−1/2).

Combining (24) and (25), we have

0 = n−1
n∑

i=1

q1(m0i , Yi)Z̃i + {
E[ρ2{m0(T)}Z̃⊗2] + oP (1)

}
(β̂ − β0) + oP (n−1/2).



1848 WANG, LIU, LIANG AND CARROLL

Note that

E[ρ2
1{m0(T)}ε2Z̃⊗2] = E[E(ε2|T)ρ2

1{m0(T)}Z̃⊗2] = E[ρ2{m0(T)}Z̃⊗2].
Thus the desired distribution of β̂ follows.

A.4. Proof of Theorem 3. Let τn = n−1/2 + an. It suffices to show that for
any given ζ > 0, there exists a large constant C such that

pr
{

sup
‖u‖=C

LP (β0 + τnu) < LP (β0)
}

≥ 1 − ζ.(27)

Denote

Un,1 =
n∑

i=1

[
Q

{
g−1(

η̂MPL(Xi ) + ZT
i (β0 + τnu)

)
, Yi

}
− Q

{
g−1(

η̂MPL(Xi) + ZT
i β0

)
, Yi

}]
and Un,2 = −n

∑s
j=1{pλn(|βj0 + τnvj |) − pλn(|βj0|)}, where s is the number

of components of β10. Note that pλn(0) = 0 and pλn(|β|) ≥ 0 for all β . Thus,
LP (β0 + τnu)− LP (β0) ≤ Un,1 +Un,2. Let m̂MPL

0i = η̂MPL(Xi)+ZT
i β0. For Un,1,

note that

Un,1 =
n∑

i=1

[Q{g−1(m̂MPL
0i + τnuTZi ), Yi} − Q{g−1(m̂MPL

0i ), Yi}].

Mimicking the proof for Theorem 2 indicates that

Un,1 = τnuT
n∑

i=1

q1(m0i , Yi)Z̃i + n

2
τ 2
n uT�u + oP (1),(28)

where the orders of the first term and the second term are OP (n1/2τn) and
OP (nτ 2

n ), respectively. For Un,2, by a Taylor expansion and the Cauchy–Schwarz
inequality, n−1Un,2 is bounded by

√
sτnan‖u‖ + τ 2

nwn‖u‖2 = Cτ 2
n (

√
s + wnC).

As wn → 0, both the first and second terms on the right-hand side of (28) dominate
Un,2, by taking C sufficiently large. Hence, (27) holds for sufficiently large C.

A.5. Proof of Theorem 4. The proof of β̂
MPL
2 = 0 is similar to that of Lem-

ma 3 in Li and Liang (2008). We therefore omit the details and refer to the proof
of that lemma.

Let m̂MPL(x, z1) = η̂MPL(x)+zT
1 β10, for η̂MPL in (11), and m0(T1i ) = ηT

0 (Xi )+
ZT

i1β10. Define M1n = {m(x, z1) = η(x)+ zT
1 β1 :η ∈ Gn}. For any ν1 ∈ Rs , where

s is the dimension of β10, define

m̂MPL
ν1

(t1) = m̂(x, z1) + νT
1 z̃1 = {η̂MPL(x) − νT

1 �1(x)} + (β̂
MPL
1 + ν1)

Tz1.
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Note that m̂MPL
ν1

maximizes
∑n

i=1 Q[g−1{m0(T1i )}, Yi] − n
∑s

j=1 pλjn
(|β̂MPL

j1 +
vj1|) for all m ∈ M1n when ν1 = 0. Mimicking the proof for Theorem 2 indicates
that

0 = n−1
n∑

i=1

q1{m0(T1i ), Yi}Z̃1i + {p′
λjn

(|βj0|) sign(βj0)}sj=1 + oP (n−1/2)

+ {
E[ρ2{m0(T1)}Z̃⊗2

1 ] + oP (1)
}
(β̂

MPL
1 − β10)

+
{

s∑
j=1

p′′
λjn

(|βj0|) + oP (1)

}
(β̂

MPL
j1 − βj0).

Thus, asymptotic normality follows because

0 = n−1
n∑

i=1

q1{m0(T1i ), Yi}Z̃1i + ξn + oP (n−1/2)

+ {�s + 	λ + oP (1)}(β̂MPL
1 − β10),

E[ρ2
1{m0(T1)}{Y − m0(T1)}2Z̃⊗2

1 ] = E[ρ2{m0(T1)}Z̃⊗2
1 ].
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SUPPLEMENTARY MATERIAL

Detailed proofs and additional simulation results of: Estimation and vari-
able selection for generalized additive partial linear models (DOI: 10.1214/11-
AOS885SUPP; .pdf). The supplemental materials contain detailed proofs and ad-
ditional simulation results.
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