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A NOTE ON THE DE LA GARZA PHENOMENON
FOR LOCALLY OPTIMAL DESIGNS

BY HOLGER DETTE1 AND VIATCHESLAV B. MELAS2

Ruhr-Universität Bochum and St. Petersburg State University

The celebrated de la Garza phenomenon states that for a polynomial re-
gression model of degree p − 1 any optimal design can be based on at most
p design points. In a remarkable paper, Yang [Ann. Statist. 38 (2010) 2499–
2524] showed that this phenomenon exists in many locally optimal design
problems for nonlinear models. In the present note, we present a different
view point on these findings using results about moment theory and Cheby-
shev systems. In particular, we show that this phenomenon occurs in an even
larger class of models than considered so far.

1. Introduction. Nonlinear regression models are widely used for modeling
dependencies between response and explanatory variables [see Seber and Wild
(1989) or Ratkowsky (1990)]. It is well known that an appropriate choice of an
experimental design can improve the quality of statistical analysis substantially,
and therefore the problem of constructing optimal designs for nonlinear regression
models has found considerable attention in the literature. Most authors concentrate
on locally optimal designs which assume that a guess for the unknown parameters
of the model is available [see Chernoff (1953), Ford, Torsney and Wu (1992), He,
Studden and Sun (1996), Fang and Hedayat (2008)]. These designs are usually
used as benchmarks for commonly used designs. Additionally, they serve as a ba-
sis for constructing optimal designs with respect to more sophisticated optimality
criteria which address for a less precise knowledge about the unknown parameters
[see Pronzato and Walter (1985) or Chaloner and Verdinelli (1995), Dette (1997),
Müller and Pázman (1998)]. It is a well-known fact that the numerical or analyt-
ical calculation of optimal designs simplifies substantially if it is known that the
optimal design is saturated, which means that the number of different experimen-
tal conditions coincides with the number of parameters in the model [see, e.g.,
He, Studden and Sun (1996), Dette and Wong (1996), Imhof and Studden (2001),
Imhof (2001), Melas (2006), Fang and Hedayat (2008) among many others].
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So, the ideal situation appears if the optimal design is in the sub-class of all
saturated designs. In a celebrated paper, de la Garza (1954) proved that for a (p −
1)th-degree polynomial regression model, any optimal design can be based on at
most p points. Khuri et al. (2006) considered a nonlinear regression model and
introduced the terminology of the de la Garza phenomenon, which means that
for any design there exists a saturated design, such that the information matrix of
the saturated design is not inferior to that of the given design under the Loewner
ordering. In a remarkable paper, Yang (2010) derived sufficient conditions on the
nonlinear regression model for the occurrence of the de la Garza phenomenon and
demonstrated that this situation appears in a broad class of nonlinear regression
models. These results generalize recent findings of Yang and Stufken (2009) for
nonlinear models with two parameters.

However, some care is necessary if these results are applied as indicated in the
following simple example of homoscedastic linear regression on the interval [0,1].
Here the information matrix of the design which advises the experimenter to take
all n observations at the point 0 is given by

XT
1 X1 =

(
n 0
0 0

)

while any other design (using the experimental conditions x1, . . . , xn) yields an
information matrix

XT
2 X2 =

⎛
⎜⎜⎜⎜⎝

n

n∑
i=1

xi

n∑
i=1

xi

n∑
i=1

x2
i

⎞
⎟⎟⎟⎟⎠ .

It is easy to see that the matrix XT
2 X2 −XT

1 X1 is indefinite (i.e., it has positive and
negative eigenvalues) whenever one of the xi is positive. Consequently, the design
corresponding to XT

1 X1 cannot be improved. On the other hand, it is also easy to
see that for any k ∈ {1, . . . , �n/2�− 1} the information matrix of the design, which
takes observations at x1 = · · · = xn−2k = 0 and at xn−2k+1 = · · · = xn = 1/2 can
be improved (with respect to the Loewner ordering) by the information matrix cor-
responding to the design x1 = · · · = xn−k = 0 and xn−k+1 = · · · = xn = 1. Thus,
there exist designs where a “real” improvement is possible, while other designs
cannot be improved. Note that the results in Yang (2010) do not provide a classifi-
cation of the two types of designs.

It is the purpose of the present paper to present a more detailed view point on
these problems, which clarifies this—on a first glance—contradiction. In contrast
to the method used by Yang (2010), which is mainly algebraic, our approach is ana-
lytic and based on the theory of Chebyshev systems and moment spaces [see Karlin
and Studden (1966b)]. In particular, we will demonstrate that the de la Garza phe-
nomenon appears in any nonlinear regression model, where the functions in the
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Fisher information matrix form a Chebyshev system. Additionally, we will solve
the problem described in the previous paragraph and we will identify the suffi-
cient conditions stated in Yang (2010) as a special case of an extended Chebyshev
system. Therefore, our results generalize the recent findings of Yang (2010) in a
nontrivial way and, additionally, provide—in our opinion—a more transparent and
more complete explanation of the de la Garza phenomenon for optimal designs in
nonlinear regression models.

The remaining part of this paper is organized as follows. Section 2 provides
a brief introduction in the problem, while Section 3 contains our main results.
Finally, the new results are illustrated in a rational regression model, where the
currently available methodology cannot be used to establish the de la Garza phe-
nomenon.

2. Locally optimal designs. Consider the common nonlinear regression
model

Y = η(x, θ) + ε,(2.1)

where θ ∈ � ⊂ R
p is the vector of unknown parameters, and different observations

are assumed to be independent. The errors are normally distributed with mean 0
and variance σ 2. The variable x denotes the explanatory variable, which varies in
the design space [A,B] ⊂ R. We assume that η is a continuous and real valued
function of both arguments (x, θ) ∈ [A,B] × � and differentiable with respect to
the variable θ . A design is defined as a probability measure ξ on the interval [A,B]
with finite support [see Kiefer (1974)]. If the design ξ has masses wi at the points
xi (i = 1, . . . , k) and n observations can be made by the experimenter, this means
that the quantities win are rounded to integers, say ni , satisfying

∑k
i=1 ni = n,

and the experimenter takes ni observations at each location xi (i = 1, . . . , k). The
information matrix of an approximate design ξ is defined by

M(ξ, θ) =
∫ B

A

(
∂

∂θ
η(x, θ)

)(
∂

∂θ
η(x, θ)

)T

dξ(x),(2.2)

and it is well known [see Jennrich (1969)] that under appropriate assumptions of
regularity the covariance matrix of the least squares estimator is approximately
given by σ 2 M−1(ξ, θ)/n, where n denotes the total sample size and we assume
that the observations are taken according to the approximate design ξ .

An optimal design maximizes an appropriate functional of the information ma-
trix and numerous criteria have been proposed in the literature to discriminate be-
tween competing designs [see Silvey (1980), Pázman (1986) or Pukelsheim (2006)
among others]. Note that in nonlinear regression models the information matrix
(and as a consequence the corresponding optimal designs) depend on the unknown
parameters and are therefore called locally optimal designs [see Chernoff (1953)].
These designs require an initial guess of the unknown parameters in the model and
are used as benchmarks for many commonly used designs.
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Most of the available optimality criteria satisfy a monotonicity property with
respect to the Loewner ordering, that is

M(ξ1, θ) ≤ M(ξ2, θ) �⇒ 	(M(ξ1, θ)) ≤ 	(M(ξ2, θ)),(2.3)

where the parameter θ is fixed, ξ1, ξ2 are two competing designs and 	 denotes
an information function in the sense of Pukelsheim (2006). For this reason, it is of
interest to derive a complete class theorem in this general context which character-
izes the class of designs, which cannot be improved with respect to the Loewner
ordering of their information matrices. We call a design ξ1 admissible if there does
not exist a design ξ2, such that M(ξ1, θ) 	= M(ξ2, θ) and

M(ξ1, θ) ≤ M(ξ2, θ).(2.4)

As pointed out in Yang (2010) for many nonlinear regression models the informa-
tion matrix defined in (2.2) has a representation of the form

M(ξ, θ) = P(θ)C(ξ, θ)P T (θ),(2.5)

where P(θ) is a nonsingular p×p matrix, which does not depend on the design ξ ,
the matrix C is defined by

C(ξ, θ) =

⎛
⎜⎜⎜⎜⎝

∫ B

A

11(x) dξ(x) · · ·

∫ B

A

1p(x) dξ(x)

...
. . .

...∫ B

A

p1(x) dξ(x) · · ·

∫ B

A

pp(x) dξ(x)

⎞
⎟⎟⎟⎟⎠(2.6)

and 
11,
12, . . . ,
pp are functions defined on the interval [A,B]. Note that these
functions usually depend on the parameter θ , but for the sake of simplicity we
do not reflect this dependence in our notation. Obviously the inequality (2.4) is
satisfied if and only if the inequality

C(ξ1, θ) ≤ C(ξ2, θ)(2.7)

is satisfied.

3. Chebyshev systems and complete class theorems. In the following dis-
cussion, we make extensive use of the property that a system of functions has the
Chebyshev property. Following Karlin and Studden (1966b), a set of k + 1 con-
tinuous functions u0, . . . , uk : [A,B] → R is called a Chebyshev system (on the
interval [A,B]) if the inequality∣∣∣∣∣∣∣∣∣

u0(x0) u0(x1) . . . u0(xk)

u1(x0) u1(x1) . . . u1(xk)
...

...
. . .

...

uk(x0) uk(x1) . . . uk(xk)

∣∣∣∣∣∣∣∣∣
> 0(3.1)
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holds for all A ≤ x0 < x1 < · · · < xk ≤ B . Note that if the determinant in (3.1)
does not vanish then either the functions u0, u1, . . . , uk−1, uk or the functions
u0, u1, . . . , uk−1,−uk form a Chebyshev system. The Chebyshev property has
widely been used to determine explicitly c-optimal designs [see He, Studden and
Sun (1996), Dette et al. (2003) or Dette et al. (2008) among many others]. On
the other hand, its application to other optimality criteria has not been studied in-
tensively. In the following discussion, we will demonstrate that this property will
essentially be the reason for the occurrence of the de la Garza phenomenon. In par-
ticular, we will show that it is essentially sufficient to obtain a complete class theo-
rem for the design problems associated with the nonlinear regression model (2.1).

For this purpose, we define the index I (ξ) of a design ξ on the interval [A,B]
as the number of support points, where the boundary points A and B (if they occur
as support points) are only counted by 1/2. Recall the definition of the matrix
C in (2.6) and denote by 
1, . . . ,
k the different elements among the functions
{
ij | 1 ≤ j, j ≤ p}, which are not equal to the constant function. Throughout this
paper, we assume


k = 
ll for some l ∈ {1, . . . , p} and
(3.2)


ij 	= 
k for all (i, j) 	= (l, l)

[see Yang (2010)]. Additionally, we put 
0(x) = 1 and assume either that

{
0,
1, . . . ,
k−1} and
(3.3)

{
0,
1, . . . ,
k−1,
k}
are Chebyshev systems or that

{
0,
1, . . . ,
k−1} and
(3.4)

{
0,
1, . . . ,
k−1,−
k}
are Chebyshev systems then the following result characterizes the class of admis-
sible designs.

THEOREM 3.1. (1) If the functions 
0(x) = 1,
1, . . . ,
k−1,
k satisfy (3.2)
and (3.3), then for any design ξ there exists a design ξ+ with at most k+2

2 support
points, such that M(ξ+, θ) ≥ M(ξ, θ). If the index of the design ξ satisfies

I (ξ) <
k

2

then the design ξ+ is uniquely determined in the class of all designs η satisfying∫ B

A

i(x) dη(x) =

∫ B

A

i(x) dξ(x), i = 0, . . . , k − 1,(3.5)

and coincides with the design ξ . Otherwise [in the case I (ξ) ≥ k
2 ], the following

two assertions are valid.
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(1a) If k is odd, then ξ+ has at most k+1
2 support points and ξ+ can be chosen

such that its support contains the point B .
(1b) If k is even, then ξ+ has at most k

2 + 1 support points and ξ+ can be chosen
such that the support of ξ+ contains the points A and B .

(2) If the functions 
0(x) = 1,
1, . . . ,
k−1,
k satisfy (3.2) and (3.4), then
for any design ξ there exists a design ξ− with at most k+2

2 support points, such
that M(ξ−, θ) ≥ M(ξ, θ). If the index of the design ξ satisfies

I (ξ) <
k

2

then the design ξ− is uniquely determined in the class of all designs η satisfy-
ing (3.5) and coincides with the design ξ . Otherwise [in the case I (ξ) ≥ k

2 ], the
following two assertions are valid.
(2a) If k is odd, then ξ− has at most k+1

2 support points and ξ− can be chosen
such that its support contains the point A.

(2b) If k is even, then ξ− has at most k
2 support points.

PROOF. We only present a proof of the first part (1) of the theorem, the second
part follows by similar arguments. For i = 0, . . . , k let

di(ξ) =
∫ B

A

i(x) dξ(x)

denote the ith “moment” and define

�dk(ξ) = (d0(ξ), . . . , dk(ξ))T

as the vector of all “moments” up to the order k. Consider two designs ξ1 and ξ2
with

�dk−1(ξ1) = �dk−1(ξ2) and dk(ξ1) ≤ dk(ξ2),

then for any vector z = (z1, . . . , zp)T ∈ R
p we have for some l ∈ {1, . . . , p}

zT (
C(ξ2, θ) − C(ξ1, θ)

)
z ≥ z2

l

(
dk(ξ2) − dk(ξ1)

) ≥ 0,

which means that

C(ξ2, θ) ≥ C(ξ1, θ).

Now let for a fixed vector of “moments” �dk−1(ξ)

d+
k = sup{dk(η) | η design on [A,B] with �dk−1(η) = �dk−1(ξ)}

denote the maximum of the kth “moment” over the set of all designs with fixed
“moments” up to the order k − 1. Due to the compactness of the design space and
the continuity of the functions 
0, . . . ,
k , there exists a design ξ+ such that

dj (ξ
+) = dj (ξ); j = 0, . . . , k − 1,(3.6)

dk(ξ
+) = d+ ≥ dk(ξ).(3.7)
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This shows (by the argument at the beginning of the proof and the discussion at
the end of the previous section)

M(ξ+, θ) ≥ M(ξ, θ).(3.8)

Moreover, it follows from Chapter II, Section 6 of Karlin and Studden (1966b) that
the point �dk(ξ

+) is a boundary point of the “moment space”

Mk = { �dk(η) | η design on [A,B]}.
Consequently, we obtain from Theorem 2.1 in Karlin and Studden (1966b) that the
design ξ+ is based on at most k+2

2 support points, which proves the first part of
the statement.

We now consider the cases (1a) and (1b). The vector �dk−1(ξ) is either a bound-
ary point or an interior point of the (k−1)th moment space Mk−1. The first case is
characterized by an index satisfying I (ξ) < k/2 and there exists a unique measure
ξ̃ with “moments” up to the order k specified by �dk−1(ξ). To prove this statement
regarding uniqueness suppose that I (ξ) < k

2 and that there exists a further design,
say ξ̃ , with this property. A simple counting argument shows that the total number
of distinct points, say x1, . . . , xt among the support points of both representations
is at most k. If it would be less than k we could take additional support points with
corresponding vanishing weights and thus without less of generality, we can as-
sume that the number of distinct points is equal to k. Therefore, there would exist
k different points

A ≤ x0 < x1 < · · · < xk−1 ≤ B

such that


μ = 0,

where the matrix 
 is given by


 =

⎛
⎜⎜⎜⎝


0(x0) 
0(x1) . . . 
0(xk−1)


1(x0) 
1(x1) . . . 
1(xk−1)
...

...
. . .

...


k−1(x0) 
k−1(x1) . . . 
k−1(xk−1)

⎞
⎟⎟⎟⎠

and the vector μ 	= 0 has components

μi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ωi, xi ∈ supp ξ, xi /∈ supp ξ̃ ,
−ω̃i, xi /∈ supp ξ, xi ∈ supp ξ̃ ,
ωi − ω̃i, xi ∈ supp ξ ∩ supp ξ̃ ,
0, xi /∈ supp ξ, xi /∈ supp ξ̃

(here ωi and ω̃i denote the weights of the designs ξ and ξ̃ , resp.). Because μ 	=
0 it follows from here that det
 = 0 which is impossible by the definition of
Chebyshev systems. Consequently, a design with moments specified by (3.5) is
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uniquely determined and therefore we take ξ+ = ξ̃ , which has at most k+1
2 support

points [see Theorem 2.1 in Karlin and Studden (1966b), page 42].
If the index of the design ξ satisfies I (ξ) ≥ k/2 it follows from the discussion in

Chapter II, Section 6 in Karlin and Studden (1966b) that the design ξ+ defined by
(3.6) and (3.7) is the upper principal representation of the vector �dk−1(ξ), which
means that its index is precisely k

2 and its support includes the point B . Note that
for this argument we require condition (3.3).

Consequently, if k = 2m + 1 is odd, the upper principal representation ξ+ has
index m+ 1

2 and precisely m+1 support points including the point B . On the other
hand, if k = 2m is even, ξ+ has m + 1 support points and the boundary points A

and B of the design interval are support points because the index of the design ξ+
is m.

The proof of part (2) of Theorem 3.1 is similar [where the upper principal repre-
sentation has to be replaced by the lower principal representation using condition
(3.4)] and omitted. �

REMARK 3.2. (a) Note that Theorem 2.1 in Karlin and Studden [(1966b),
Chapter II] refers to moment spaces corresponding to not necessarily bounded
measures and the inclusion of the constant function in the system under consid-
eration guarantees its application to a moment space corresponding to probability
measures as required in the proof of Theorem 3.1. An alternative explanation can
be given by the generalized equivalence theorem as stated in Pukelsheim (2006). It
follows from this result that for an optimal design (with respect to the commonly
used criteria) there exist some constants, say ai ∈ R, i = 1, . . . , k, such that for all
support points of the optimal design the identity

k∑
i=1

ai
i(x) = c

is satisfied, where c denotes a constant (e.g., for the D-optimality criterion c is the
number of parameters). Since an optimal design is admissible, the inclusion of the
constant function guarantees that the index of these designs is at most k/2. Note
that this is a sufficient but, generally speaking, not necessary condition.

(b) Note that it follows from the proof of Theorem 3.1 that the conditions (3.6)
and (3.7) imply (3.8), that is, the superiority of the information matrix of the de-
sign ξ+ with respect to the Loewner ordering. In many cases (e.g., polynomial
regression models), the converse direction is also true and in these cases it follows
from the proof of Theorem 3.1 that a design ξ with index I (ξ) < k

2 can only be
“improved” (with respect to the Loewner ordering of the corresponding informa-
tion matrices) by itself. In fact we are not aware of any case where the converse
direction does not hold.

(c) Note also that Theorem 3.1 provides a solution to the problem indicated in
the example of the Introduction. In the linear regression model we have k = 2,
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therefore we can use the given design ξ1 (concentrating all observations at x = 0)
as an “improvement” of ξ1. However, because the index of ξ1 is 1/2 < 1 the design
ξ1 can only be improved by itself (see the previous remark). In particular, there
does not exist a design ξ which takes observations at x = 1 and improves ξ1 in the
sense M(ξ) ≥ M(ξ1).

(d) It is also worthwhile to mention that a design improving the given design ξ

is not necessarily unique. Consider, for example, again the linear regression model
on the interval [0,1] and the design ξ which has equal masses at the points 0 and
3/4. The information matrix of ξ is given by

M(ξ) =
(

1 3
8

3
8

9
32

)
.

Now define for any p ∈ [1
2 , 5

8 ] a design ξ+
p with masses p and 1 − p at the points

0 and 3
8(1−p)

, respectively. Then it follows that

M(ξ+
p ) =

⎛
⎜⎜⎝

1
3

8
3

8

9

64(1 − p)

⎞
⎟⎟⎠

and M(ξ+
p ) ≥ M(ξ) for any p ∈ [1

2 , 5
8 ]. Note that the choice p = 5

8 gives the upper
principal representation ξ+ = ξ+

5/8 with index 1 and support points 0 and 1, while

for p ∈ [1
2 , 5

8) we have index I (ξ+
p ) = 3/2.

In the remaining part of this section, we will relate the result of Theorem 3.1 to
the recent findings of Yang (2010). Note that—in contrast to Theorem 1 and 2 of
Yang (2010)—our Theorem 3.1 does not require the differentiability of the func-
tions 
j . Moreover, in some cases it provides a better description of the admissible
designs. For a more detailed explanation, we note that a Chebyshev system of func-
tions {u0, . . . , uk} is called an extended Chebyshev system, if and only if for any
a0, . . . , ak ∈ R with

∑k
i=0 a2

i 	= 0 the function

k∑
i=0

aiui(x)

has at most k zeros counted with multiplicities in the interval [A,B]. Note that
this definition is equivalent to the definition given in Karlin and Studden (1966b).
It is in fact proved in Karlin and Studden [(1966b), Section 1.2] for the case of
system ui(t) = t i , i = 0, . . . , n. And the argument can be applied for general case.
Moreover, by definition, an extended Chebyshev system is always a Chebyshev
system.

A simple way of constructing an extended Chebyshev system is the following
[see Karlin and Studden (1966b), page 19]. Let w0, . . . ,wk be functions on the
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interval [A,B] which are either positive or negative. We now consider the new
functions

u0(x) = w0(x),

u1(x) = w0(x)

∫ x

A
w1(t1) dt1,

(3.9)
...

uk(x) = w0(x)

∫ x

A
w1(t1)

∫ t2

A
w2(t2) · · ·

∫ tk−1

A
wk(tk) dtk · · · dt1.

A direct calculation shows that the Wronskian determinant of the functions
u0, . . . , uk is given by

Wx(u0, . . . , uk) =

∣∣∣∣∣∣∣∣∣∣

u0(x) u′
0(x) · · · u

(k)
0 (x)

u1(x) u′
1(x) · · · u

(k)
1 (x)

...
...

. . .
...

uk(x) u′
k(x) · · · u

(k)
k (x)

∣∣∣∣∣∣∣∣∣∣
(3.10)

= (w0(x))k+1(w1(x))k · · · (wk−1(x))2wk(x)

and it is shown in Chapter XI in Karlin and Studden (1966b) that the set
{u0, . . . , uk} of k times differentiable function is an extended Chebyshev system if
and only if

Wx(u0, . . . , uk) > 0

for all x ∈ [A,B]. On the other hand, this representation provides a construc-
tive method for checking if a given system of k times differentiable functions
{u0, . . . , uk} is a Chebyshev system on the interval [A,B]. To be precise, define
w0(x) = u0(x) and recursively differential operators

Djf = d

dx

(
f

wj

)
; j = 0, . . . , k,(3.11)

wj+1 = (DjDj−1 · · ·D0)uj+1; j = 0,1, . . . , k − 1.(3.12)

Consequently, the set {u0, . . . , uk} is a Chebyshev system if the functions
w0, . . . ,wk calculated by (3.11) and (3.12) are all positive on the interval [A,B].

REMARK 3.3. Yang (2010) constructed a triangle array of functions {fl,t |
t = 1, . . . , k; t ≤ l ≤ k} from the functions 
1, . . . ,
k induced by the nonlinear
regression model (2.1) using the recursion

fl,t (x) =
⎧⎪⎨
⎪⎩


 ′
l (x), t = 1, . . . , k,(
fl,t−1(x)

ft−1,t−1(x)

)′
, 2 ≤ t ≤ k; t ≤ l ≤ k.
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It is now easy to see that the functions w1, . . . ,wk obtained from (3.11) and (3.12)
with w0 = 1, uj = 
j (j = 1, . . . , k) are precisely the functions fll defined by
Yang (2010). As a consequence, we will obtain the main result of Yang (2010)
as a special case of our Theorem 3.1 (note that our assumptions regarding the
differentiability are slightly weaker than in this reference).

THEOREM 3.4. Let 
1, . . . ,
k denote the k different functions in the infor-
mation matrix (3.1) corresponding to the nonlinear regression model which are
not equal to the constant function. Assume that 
j is (j + 1) times continuously
differentiable, define w0 = 1 and for j = 0, . . . , k − 1

wj+1 = DjDj−1 · · ·D0
j+1

and assume that condition (3.2) is satisfied. If

F(x) = w1(x) · · ·wk(x) 	= 0

for all x ∈ [A,B], then for any given design ξ there exists a design ξ̃ , such that
I (ξ̃ ) ≤ k

2

M(ξ̃, θ) ≥ M(ξ, θ).

If the index of the design ξ satisfies I (ξ) < k
2 then ξ̃ is uniquely determined in

the class of all designs η with moments specified by (3.5) and coincides with the
design ξ . Otherwise [in the case I (ξ) ≥ k

2 ] the following assertions are valid.

(1a) If k is odd and F(x) < 0 on the interval [A,B], then the design ξ̃ has at
most (k + 1)/2 support points and ξ̃ can be chosen such that the point A is a
support point.

(1b) If k is odd and F(x) > 0 on the interval [A,B], then the design ξ̃ has at
most (k + 1)/2 support points and ξ̃ can be chosen such that the point B is a
support point.

(2a) If k is even and F(x) < 0 on the interval [A,B], then the design ξ̃ has at
most k/2 support points.

(2b) If k is even and F(x) > 0 on the interval [A,B], then the design ξ̃ has at
most k/2 + 1 support points and ξ̃ can be chosen such that the points A and
B are support points.

PROOF. Let us define 
0(x) = 1 and note that

F(x) = Wx(
0, . . . ,
k)

Wx(
0, . . . ,
k−1)
.

Thus if F(x) > 0 then condition (3.3) is fulfilled and if F(x) < 0, then condition
(3.4) is fulfilled. Now Theorem 3.4 is an immediate corollary of Theorem 3.1. �
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REMARK 3.5. Note that if the constant function appears among the different
functions {
ij | 1 ≤ i ≤ j ≤ p} in the information matrix (3.1) it is not counted in
Theorem 3.4 or Theorem 2 of Yang (2010) (see the proof of Theorems 3 and 5–7
in this reference).

A number of interesting applications of Theorem 3.4 are given in Yang (2010).
Note that in all examples considered there the functions under consideration gen-
erate a special type of Chebyshev systems, namely extended Chebyshev systems
that can be generated by formulas (3.7). This follows from Remark 3.3 and the dis-
cussion before Theorem 3.4. Note that several other interesting examples for the
case of two parameters are given in Yang and Stufken (2009). All these examples
are based on Lemma 1 from that paper and the conditions of this lemma are in fact
imply that the system of the three functions (corresponding to different elements
of the information matrix) is an extended Chebyshev system. Thus, these examples
can also be considered as particular cases of Theorem 3.1.

The main advantage of Theorem 3.1 consists in the fact that the de la Garza
phenomenon can be established by proving that the system under consideration is
a Chebyshev system. For this purpose, several methods are available which dif-
fer from the approach presented in Yang (2010) and in the next section we will
consider an example illustrating the usefulness of Theorem 3.1.

4. An application to rational regression models. In this section, we present
a class of nonlinear regression models where Theorem 3.4 [or Theorem 2 in Yang
(2010)] is not directly applicable, but the de la Garza phenomenon can be estab-
lished by an application of Theorem 3.1. For this purpose, we consider rational
regression models of the form

η(x, θ) = P(x, θ(1))

Q(x, θ(2))
,(4.1)

where

P
(
x, θ(1)

) = θ1 + θ2x + · · · + θlx
(l−1),

Q
(
x, θ(2)

) = 1 + θl+1x + · · · + θs+lx
s

are polynomials of degree l −1 and s, respectively, with corresponding parameters

θ(1) = (θ1, . . . , θl)
T , θ(2) = (θl+1, . . . , θl+s)

T .

It is shown in He, Studden and Sun (1996) that the information matrix for this
model can be written in the form

M(ξ, θ) = B(θ)C(ξ, θ)B(θ),

where θ = (θ1, . . . , θl+s)
T , B denotes an appropriate matrix [see He, Studden and

Sun (1996)], the matrix C is given by

C(ξ, θ) =
∫ B

A
[1/Q4(x)]h(x)h(x)T dξ(x),
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h(x) = (1, x, . . . , xp−1)T denotes the vector of monomials with p = l + s and
Q(x) is a polynomial of degree s. Therefore, it follows that the different functions
in the information matrix are given by


1(x) = 1/Q4(x), . . . ,
k(x) = xk−1/Q4(x),

where k = 2p−1. Define 
0(x) = 1, then it is well known [see Karlin and Studden
(1966a)] that under the conditions:

(a) Q(x) does not vanish in the interval [A,B];
(b) [Q4(x)](2p−1) does not vanish in the interval [A,B]
the functions 
0,
1, . . . ,
2p−1 generate a Chebyshev system on the interval
[A,B] and Theorem 3.1 is applicable here.

However, we will give an alternative proof of this property which yields—as
a by-product—a constructive condition under which the condition (b) is fulfilled.
Assume that Q4(x) > 0 for all x ∈ [A,B] and note that a Chebyshev system re-
mains a Chebyshev system after multiplication of all functions by a positive func-
tion. Thus, in order to apply Theorem 3.1 it is sufficient to prove that the functions

1, x, x2, . . . , x2p−2,−Q4(x)

generate a Chebyshev system on the interval [A,B]. The following lemma pro-
vides a sufficient condition for this property.

LEMMA 4.1. Assume that the polynomial Q(x) has only real roots which are
either all smaller than A or larger than B . If s > l − 1, then the functions

1, x, x2, . . . , x2p−2, εQ4(x),

generate a Chebyshev system on the interval [A,B], where ε = +1 if the roots are
smaller than A and ε = −1 if the roots larger than B .

PROOF. Based on the assumptions about Q(x), the polynomial Q4(x) can
be written as c

∏4s
i=1(x − αi), where αi are not necessary distinct. Clearly,

(Q4(x))(k) = c
∑

Ak

∏
j∈Ak

(x − αj ), where Ak is the set of all possible sub-
sets of {1, . . . ,4s} with 4s − k elements. Define xmin and xmax as the smallest
and largest root of Q(x), then all derivatives of Q4(x) of even order less than
4s − 1 are positive outside of the interval [xmin, xmax]. Define u0(x) = 1, u1(x) =
x, . . . , u2p−2(x) = x2p−2, u2p−1(x) = Q4(x). By formulas (3.11) and (3.12), we
can easily calculate that w0(x) = 1,wj (x) = j, j = 1, . . . ,2p − 2,w2p−1(x) =
[Q4(x)](2p−1). Thus, if s > l − 1 it follows that w2p−1(x) is negative for x < xmin

and positive for A > x > xmax. Therefore (note that [Q4(x)](2p−1) has no roots in
the interval [A,B]), we have w2p−1(x) > 0 for all x ∈ [A,B]. Now the assertion
of Lemma 4.1 follows from the formula for the Wronskian determinant in (3.10)
and the fact that a positive Wronskian determinant is sufficient for the Chebyshev
property of the functions u0, . . . , u2p−1. �
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The following result is now an immediate consequence of Lemma 4.1 and The-
orem 3.1 (note that we do not repeat the statement of uniqueness of the latter
result).

THEOREM 4.2. Consider the rational regression model (4.1). Assume that
s > l − 1 and that the polynomial Q(x) has only real roots, which are either all
smaller than A or larger than B . Then for any design ξ there exists a design ξ̃ with
at most p support points, such that M(ξ, θ) ≤ M(ξ̃, θ). Moreover:

(1) if the index of ξ satisfies I (ξ) ≥ p − 1
2 and all roots of the polynomial Q are

smaller than A, then ξ̃ can be chosen such that the support of ξ̃ contains the
point A,

(2) if the index of ξ satisfies I (ξ) ≥ p − 1
2 and all roots of the polynomial Q are

larger than B, then ξ̃ can be chosen such that the support of ξ̃ contains the
point B .

REMARK 4.3. (a) Theorem 4.2 is an extension of Theorem 5 in He, Studden
and Sun (1996) who investigated only locally D-optimal designs.

(b) Note that Yang (2010) considered the classical weighted polynomial regres-
sion model where the different functions in the information matrix are given by

j(x) = λ(x)xj−1, j = 1, . . . ,2p − 1, where λ is a positive function on the inte-
rior of the design space, which is called efficiency function [see Dette and Tramp-
isch (2010)]. His findings can be generalized in the following way. If there exists
a function g(x) such that(

d

dx

)j(
d

dx
(λ(x)xj−1)/g(x)

)
= cj , g(x) > 0, x ∈ [A,B],(4.2)

for some constants cj ∈ R \ {0}, j = 1, . . . ,2p − 1, then one can denote


̂1(x) =
∫ x

0
g(t) dt, 
̂j = 
j−1, j = 1, . . . ,2p − 1,

and obtains a system of functions satisfying the assumptions of Theorem 3.4. In
particular, in Theorem 9 of Yang (2010) for the case λ(x) = exp(x2) the func-
tion g(x) = λ(x) = exp(x2) is appropriate, while the case λ(x) = (1 − x)α+1(1 +
x)β+1, α > −1, β > −1 requires the choice g(x) = (1 − x)α(1 + x)β . Moreover,
the differential equation (4.2) shows that there are many other efficiency functions
for which the de la Garza phenomenon in the weighted polynomial regression
model occurs. For example, if λ(x) = 1/(1 + x)n, A > −1, n > 2p − 2 one could
use

g(x) = 1/(1 + x)(n+2)

and it follows that for the weighted polynomial regression model with this effi-
ciency function any optimal design can be based on at most p points. However,
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for the rational model of the form (4.1) such a technique seemingly does not work.
The alternative way is to prove that the functions 1, x, . . . , xk, λ(x)−1 generate a
Chebyshev system and to use the new Theorem 3.1 to establish the de la Garza
phenomenon. Such a method has been realized for the rational model (4.1) in the
proof of Theorem 4.2.
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