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LAPLACE APPROXIMATION FOR ROUGH DIFFERENTIAL
EQUATION DRIVEN BY FRACTIONAL BROWNIAN MOTION

BY YUZURU INAHAMA

Nagoya University

We consider a rough differential equation indexed by a small parameter
ε > 0. When the rough differential equation is driven by fractional Brownian
motion with Hurst parameter H (1/4 < H < 1/2), we prove the Laplace-type
asymptotics for the solution as the parameter ε tends to zero.

1. Introduction. The rough path theory was invented by T. Lyons in [30] and
summarized in a book [29] with Z. Qian. See also [16, 27, 31]. Roughly speak-
ing, a rough path is a path coupled with its iterated integrals. T. Lyons generalized
the line integral of one-form along a path to the one along a rough path. This is
a pathwise integral theory and no probability measure is involved. In a natural
way, an ordinary differential equation (ODE) is generalized. This is called a rough
differential equation (RDE) in this paper. The corresponding Itô map is not only
everywhere defined, but is also locally Lipschitz continuous with respect to the
topology of geometric rough path space (Lyons’ continuity theorem). If a Wiener-
like measure is given on the geometric rough path space or, in other words, if a
Brownian rough path is mapped by the Itô map, then the solution of the corre-
sponding stochastic differential equation (SDE) of Stratonovich-type is recovered
via rough paths. In order to investigate the Brownian motion, one only needs the
double integral (i.e., the second level path) as well as the path itself (i.e., the first
level path). In short, we can obtain the solution of an SDE as the image of a con-
tinuous map. This is basically impossible in the framework of the usual stochas-
tic calculus. Recall that, in the usual stochastic calculus, stochastic integrals and
SDEs are defined by the martingale integration theory, which is quite probabilistic
by definition. Therefore, those objects have no pathwise meaning.

Brownian motion and Brownian rough path are most important and were studied
extensively. There may be other stochastic processes (i.e., probability measures on
the usual path space), however, which can be lifted to probability measures on the
geometric rough path space. The most typical example is the d-dimensional frac-
tional Brownian motion (fBM) (wH

t )0≤t≤1 = (w
H,1
t , . . . ,w

H,d
t )0≤t≤1 with Hurst

parameter H ∈ (1/4,1/2] (see Coutin–Qian [10]). Recall that, when H = 1/2, it
is the Brownian motion. It is worth noting that, if H ∈ (1/4,1/3], the third level
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path plays a role, unlike the Brownian motion case. The Schilder-type large devia-
tion for the lift of scaled fBM was proved by Millet and Sanz-Sole [32]. Combined
with Lyons’ continuity theorem and the contraction principle, this fact implies that
the solution of an RDE driven by the lift of scaled fBM also satisfies large devia-
tion.

According to [8, 9], there are several types of path integrals along fBM, namely,
(1) deterministic or pathwise integral, (2) integral with generalized covariation,
(3) the divergence operator in the sense of the Malliavin calculus, and (4) White
noise approach. Clearly, the rough path approach belongs to the first category.

More precisely, we consider the following RDE: for ε > 0,

dY ε
t = σ(Y ε

t )ε dWH
t + β(ε,Y ε

t ) dt, Y ε
0 = 0.(1.1)

Here, WH is the fractional Brownian rough path (fBRP), that is, the lift of fBM wH

and σ ∈ C∞
b (Rn,Mat(n, d)) and β ∈ C∞

b ([0,1] × Rn,Rn). Note that C∞
b denotes

the set of bounded smooth functions with bounded derivatives.
The main purpose of this paper is to prove the Laplace approximation for (the

first level path of) Y ε as ε ↘ 0. The precise statement is in Theorem 2.1 below.
Apparently, in none of the integrals (1)–(4) has the Laplace approximation been
proved for the solution of SDE (or RDE) driven by the scaled fBM. Note that it is
the precise asymptotics of the large deviation. In this paper, we will prove it in the
framework of the rough path theory for H ∈ (1/4,1/2). [The case H > 1/2 is not
so interesting from a viewpoint of rough path analysis. Our method does not work
for the case H ≤ 1/4 since the relation for the Young integral 1/p + 1/q > 1 in
equation (4.2) below fails to hold.]

The history of this kind of problem is long. A partial list could be as fol-
lows. First, Azencott [4] showed this kind of asymptotics for finite dimensional
SDEs, which is followed by Ben Arous [7]. There are similar results for in-
finite dimensional SDEs (e.g., Albeverio–Röckle–Steblovskaya [3]) as well as
SPDEs (e.g., Rovira–Tindel [35]). In the framework of the Malliavin calculus,
there are deep results on the asymptotics of the generalized expectation of gener-
alized Wiener functionals (Takanobu–Watanabe [36], Kusuoka–Stroock [25, 26],
Kusuoka–Osajima [24]) which have applications to the asymptotics for the heat
kernels on Riemannian manifolds.

In the framework of the rough path theory, Aida studied this problem for finite
dimensional Brownian rough paths and gave a new proof for the results in [4, 7].
The same problem for infinite dimensional Brownian rough paths was studied in
[18, 20], which has an application to Brownian motion over loop groups.

The organization of this paper is as follows: In Section 2 we give a precise state-
ment of our main result. In Section 3 we review the rough path theory and frac-
tional Brownian rough path. In Section 4 we prove the Hilbert–Schmidt property
of the Hessian of the Itô map restricted on the Cameron–Martin space HH of fBM.
For those who understand the proof of Laplace approximation for Brownian rough
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path as in [2, 18, 20], this is the most difficult part, because the Cameron–Martin
space of fBM is not understood very well. However, thanks to Friz–Victoir’s result
(Proposition 3.4), such Cameron–Martin paths are Young integrable and, therefore,
the Hessian is computable. In Section 5 we give a probabilistic representation of
(the stochastic extension of) the Hessian. In Section 6 we give a proof of the main
theorem. In Section 7 we consider the Laplace approximation for an RDE, which
involves a fractional order term of ε > 0. This has an application to the short time
asymptotics of integral quantities of the solution of a fixed RDE driven by fBM.
(Similar problems were studied in [5, 34]).

REMARK 1.1. All the results in this paper hold for the case H = 1/2, too,
with trivial modifications. The only reason we do not treat the case H = 1/2 (i.e.,
the usual Brownian case) is because those results are already well known in that
case.

2. Statement of main result.

2.1. Assumption and main result. In this section we state our main results
in this paper. Throughout this paper, the time interval is [0,1] except otherwise
stated. Let 1/4 < H < 1/2 and let HH be the Cameron–Martin subspace of the
d-dimensional fBM (wH

t )0≤t≤1. By Friz–Victoir’s result, which will be explained
in Proposition 3.4 below, k ∈ HH is of finite q-variation for any (H + 1/2)−1 <

q < 2. Hence, the following ODE makes sense in the q-variational setting in the
sense of the Young integration:

dyt = σ(yt ) dkt + β(0, yt ) dt, y0 = 0.

Note that y is again of finite q-variation and we will write y = �(k).
Now we set the following assumptions. In short, we assume that there is only

one point that attains the minimum of F� and the Hessian at the point is nonde-
generate. These are typical assumptions for Laplace’s method of this kind. The
space of continuous paths in Rn with finite p′-variation starting at 0 is denoted by

C
p′-var
0 (Rn). Note that the self-adjoint operator A in the fourth assumption turns

out to be Hilbert–Schmidt in Theorem 4.1 below.

(H1): F and G are real-valued bounded continuous functions on C
p′-var
0 (Rn)

for some p′ > 1/H .
(H2): The function F� := F ◦ � + ‖ · ‖2

HH /2 attains its minimum at a unique
point γ ∈ HH . We will write φ0 = �(γ ).

(H3): F and G are m+3 and m+1 times Fréchet differentiable on a neighbor-

hood U(φ0) of φ0 ∈ C
p′-var
0 (Rn), respectively. Moreover, there are positive con-

stants M1,M2, . . . such that

|∇jF (η)〈z, . . . , z〉| ≤ Mj‖z‖j

p′-var (j = 1, . . . ,m + 3),

|∇jG(η)〈z, . . . , z〉| ≤ Mj‖z‖j

p′-var (j = 1, . . . ,m + 1)
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hold for any η ∈ U(φ0) and z ∈ C
p′-var
0 (Rn).

(H4): At the point γ ∈ HH , the bounded self-adjoint operator A on HH , which
corresponds to the Hessian ∇2(F ◦ �)(γ )|HH ×HH , is strictly larger than −IdHH

(in the form sense).

Under these assumptions, the following Laplace-type asymptotics hold. Explic-
itly, the constant c = ∇F(φ0)〈θ1〉, where θ1 will be given in (6.4) below. [Below,
Y ε,1 = (Y ε)1 denotes the first level path of Y ε .]

THEOREM 2.1. Let the coefficients σ : Rn → Mat(n, d) and β : [0,1]×Rn →
Rn be C∞

b . Then, under Assumptions (H1)–(H4), we have the following asymptotic
expansion as ε ↘ 0: there are real constants c and α0, α1, . . . such that

E
[
G(Y ε,1) exp

(−F(Y ε,1)/ε2)]
= exp

(−F�(γ )/ε2)
exp(−c/ε) · (

α0 + α1ε + · · · + αmεm + O(εm+1)
)

for any m ≥ 0.

REMARK 2.2. The only reason for the boundedness assumption for σ and b

is for safety. It is an important and difficult problem whether Lyons’ continuity
theorem holds for unbounded coefficients under a mild growth condition. (One of
such attempts can be found in [17]). If we have such an extension of the conti-
nuity theorem, then Theorem 2.1 could easily be generalized because localization
around γ is crucially used in the proof (see Section 6 below).

2.2. A heuristic “proof”. Some readers who are not familiar with Laplace-
type asymptotics may find the argument in this paper too complicated. So, in this
subsection, we try to help them get a bird’s eye view of the proof of the main
theorem. The argument in this subsection is very heuristic and has no rigorous
meaning.

In this subsection, we denote a generic (rough) path by w (instead of wH or
WH ) and assume for simplicity that G ≡ 1 and β is independent of ε so that
Y ε = �(εw) holds at least formally. As physicists often do, we will write the law
of fBM μH heuristically as μH(dw) = Z−1 exp(−|w|2HH /2)Dw, where Dw is the
nonexistent “Lebesgue measure” and Z is a “normalizing constant.”

In this case, we study the following quantity:∫
exp

(
−F(�(εw))

ε2

)
μH(dw)

(2.1)

= 1

Z

∫
exp

(
−F ◦ �(εw) + |εw|2HH /2

ε2

)
Dw.

Note that the functional F� in (H2) appears on the right-hand side above. It
achieves the minimum at γ . So, as in the calculus for freshmen, one can easily
imagine that (1/2) × Hessian at w = γ plays a very important role.
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Let us continue. By shifting w �→ w + (γ /ε), the right-hand side of (2.1) is
equal to

1

Z

∫
exp

(
−F ◦ �(εw + γ ) + |εw + γ |2HH /2

ε2

)
Dw

= 1

Z

∫
exp

[
− 1

ε2

{
F�(γ ) + ε · 0 + ε2

2
(〈Aw,w〉 + |w|2HH ) + O(ε3)

}]
Dw

(2.2)

= e−F�(�)/ε2
∫

exp
[
−〈Aw,w〉

2
+ O(ε)

]
μH(dw)

∼ e−F�(�)/ε2
∫

exp
[
−〈Aw,w〉

2

]
μH(dw) as ε ↘ 0.

Note that what we did is the Taylor expansion of F ◦ � at w = γ . Here, the first
order term vanishes, because γ is a stationary point. When the Taylor expansion as
above is done, some kind of localization is usually necessary. In this case, however,
we can localize around γ , thanks to the large deviation principle.

As we have seen, the Taylor expansion of F ◦ � plays a central role. Since
we assumed Fréchet differentiability of F around φ0 = �(γ ), the key point is the
Taylor expansion of the Itô map w �→ �(w) around γ . This part is rather hard, but
was already proved in the author’s previous paper [19]. See Theorem 3.2 below,
which is a special case of the result in [19].

To make this argument rigorous, we also need integrability of exp(−〈A•,•〉/2)

with respect to μH . If A is Hilbert–Schmidt and A > −Id in the form sense, this is
integrable and its expectation is written in terms of the Carleman–Fredholm deter-
minant det2(Id + A). See Lemma 5.4 and Remark 5.5. Therefore, it is important
to prove the Hilbert–Schmidt property of A. (Precisely, the quadratic form 〈A•,•〉
must be replaced by its stochastic extension, i.e., the element of the second order
Wiener chaos corresponding to the Hilbert–Schmidt operator A.)

3. A review of fractional Brownian rough paths. In this section we recall
that d-dimensional fBM (wH

t )0≤t≤1 with Hurst parameter H ∈ (1/4,1/2) can
be lifted as a random variable on the geometric rough path space G�p(Rd) for
1/H < p < [1/H ] + 1 (Coutin–Qian [10] or Section 4.5 of Lyons–Qian [29]).
When H ∈ (1/4,1/3], not only the first and the second level paths, but also the
third level paths play a role.

3.1. Geometric rough paths, Lyons’ continuity theorem and Taylor expansion of
Itô maps. In this subsection we recall definitions of geometric rough paths, and a
rough differential equation (RDE) and Lyons’ continuity theorem for the Itô map.
We also review (stochastic) Taylor expansion for Itô maps around a “nice” path,
which was shown in [19]. It plays a crucial role in the proof of the Laplace asymp-
totic expansion. Note that no probability measure is involved in this subsection.
No new results are presented in this subsection.
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Before introducing the rough path space, let us first introduce some path spaces
in the usual sense and the norms on them. Let V be a real Banach space. Through-
out this paper, we assume dim V < ∞ and the time interval is [0,1]. In almost all
applications in later sections, either V = Rd or V = Mat(n, d) (the space of n × d

matrices). Let

C = C([0,1], V) = {k : [0,1] → V|continuous}
be the space of V -valued continuous functions with the usual sup-norm. For p ≥ 1,
Cp-var is the set of k ∈ C such that

‖k‖p-var;= |k0| +
(

sup
P

n∑
i=1

|kti − kti−1 |p
)1/p

< ∞,

where P runs over all the finite partition of [0,1]. If p,q ≥ 1 with 1/p + 1/q > 1
and k ∈ Cq-var(L(V, W )) and l ∈ Cp-var(V) with l0 = 0, then the Young integral

∫ t

s
ku dlu := lim|P|↘0

N∑
i=1

kti−1(lti − lti−1)

is well-defined. Here, L(V, W ) is the set of linear maps from V to W and P = {s =
t0 < t1 < · · · < tN = t} is a partition of [s, t]. Moreover, t �→ ∫ t

0 ku dlu ∈ Rn is of
finite p-variation and ‖ ∫ ·

0 ku dlu‖p-var ≤ const · ‖k‖q-var‖l‖p-var. More precisely, if
there is a control function ω such that |kt − ks | ≤ ω(s, t)1/q, |lt − ls | ≤ ω(s, t)1/p ,
then ∣∣∣∣

∫ t

s
kudlu − ks(lt − ls)

∣∣∣∣ ≤ const · ω(s, t)1/p+1/q .

In particular, if l̃ ∈ Cp-var(V) and k̃ ∈ Cq-var(W) with 1/p+1/q > 1, then
∫ t
s k̃u ⊗

dl̃u is well-defined.
Next we introduce the Besov space Wδ,p for p > 1 and 0 < δ < 1. For a mea-

surable function k : [0,1] → V , set

‖k‖Wδ,p = ‖k‖Lp +
(∫∫

[0,1]2

|kt − ks |p
|t − s|1+δp

ds dt

)1/p

.(3.1)

The Besov space Wδ,p is the totality of k’s such that ‖k‖Wδ,p < ∞. When 1/p < δ,
this Banach space is continuously imbedded in C and basically we only consider
such a case. The subspace of functions which start at 0 (i.e., k0 = 0) is denoted
by C0, Cα-hldr

0 , etc. When we need to specify the range of functions, we write

Cp-var(V), W
δ,p
0 (V), etc. (The domain is always [0,1] and, hence, is usually omit-

ted.)
Now we introduce the geometric rough path space. Let p ≥ 1 for a while. (In

later sections, however, only the case 2 < p < 4 will be considered.) Set � =
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{(s, t)|0 ≤ s ≤ t ≤ 1}. The p-variation norm of a continuous map A form � to a
real finite dimensional Banach space V is defined by

‖A‖p-var =
(

sup
P

n∑
i=1

|Ati−1,ti |pV
)1/p

,

where P runs over all the finite partition of [0,1]. A continuous map

X = (
1,X1,X2, . . . ,X[p]) :� → T [p](V) = R ⊕ V ⊕ V ⊗2 · · · ⊕ V ⊗[p]

is said to be a V -valued rough path of roughness p if it satisfies the following
conditions:

(a): For any s ≤ u ≤ t , Xs,t = Xs,u ⊗ Xu,t , where ⊗ denotes the tensor opera-
tion in the truncated tensor algebra T [p](V). In other words, X

j
s,t = ∑j

i=0 Xi
s,u ⊗

X
j−i
u,t for all 1 ≤ j ≤ [p]. This is called Chen’s identity.
(b): For all 1 ≤ j ≤ [p], ‖Xj‖p/j-var < ∞.

We usually omit the 0th component 1 and simply write X = (X1, . . . ,X[p]).
The first level path of X is naturally regarded as an element in C

p-var
0 (V) by t �→

X1
0,t . [We will abuse the notation to write X1 ∈ C

p-var
0 (V), e.g.] The set of all

the V -valued rough paths of roughness p is denoted by �p(V). With the distance

dp(X,Y ) = ∑[p]
i=1 ‖Xj − Y j‖p/j-var, it becomes a complete metric space.

A V -valued finite variational path x ∈ C1-var
0 (V) is naturally lifted as an element

of �p(V) by the following iterated Stieltjes integral:

X
j
s,t =

∫
s≤t1≤···≤tj≤t

dxt1 ⊗ dxt2 ⊗ · · · ⊗ dxtj .(3.2)

We say X is the smooth rough path lying above x. It is well known that the in-
jection x �→ X ∈ �p(V) is continuous with respect to the 1-variation norm. The
space of geometric rough path G�p(V) is the closure of C1-var

0 (V) with respect to
dp . Since V is separable, G�p(V) is a complete separable metric space.

Let us recall some properties of the q-variational path for 1 ≤ q < 2. For the
facts presented below, see Section 3.3.2 in Lyons–Qian [29] or Inahama [19], for
example. Since k ∈ C

q-var
0 (V) is Young integrable with respect to itself, the iterated

integral in (3.2) is still well-defined and k can be lifted to an element K ∈ G�p(V)

if p ≥ 2. This injection C
q-var
0 (V) ↪→ G�p(V) is continuous.

For any m = 1,2, . . . and any k ∈ C0(V), the mth dyadic piecewise linear ap-
proximation k(m) is defined by

k(m)t = k(l−1)/2m + 2m(
kl/2m − k(l−1)/2m

)(
t − (l − 1)/2m)

if t ∈
[
l − 1

2m
,

l

2m

]
.

If k is of q-variation (q ≥ 1), then k(m) converges to k in (q + ε)-variation norm
for any ε > 0. It implies that, if p ≥ 2 and k ∈ C

q-var
0 (V) for 1 ≤ q < 2, then K(m)

converges to K in G�p(V).



LAPLACE APPROXIMATION FOR RDE DRIVEN BY FBM 177

Suppose that if p ≥ 2,1 ≤ q < 2, and 1/p + 1/q > 1, then the shift

(X, k) ∈ G�p(V) × C
q-var
0 (V) �→ X + K ∈ G�p(V)

is well-defined by the Young integral and this map is continuous. Similarly,

(X, k) ∈ G�p(V) × C
q-var
0 (W) �→ (X,K) ∈ G�p(V ⊕ W)

is well-defined and continuous. These facts are well known. (See Section 9-4 in
Friz and Victoir’s book [16], e.g.) Note that the notation “X + K” above may
be somewhat misleading since the geometric rough path space is not an additive
group.

Let V and W be two finite dimensional real Banach spaces and let σ : W →
L(V, W) with some regularity condition, which will be specified later. We con-
sider the following differential equation in the rough path sense (rough differential
equation or RDE):

dYt = σ(Yt ) dXt , Y0 = y0 ∈ W .(3.3)

When there is a unique solution Y for given X, it is denoted by Y = �(X) and the
map � :G�p(V) → G�p(W) is called the Itô map.

The following is called Lyons’ continuity theorem (or universal limit theorem)
and is most important in the rough path theory. (See Section 6.3, Lyons–Qian [29].
For a proof of continuity when the coefficient σ also varies, see Inahama [19], e.g.)

THEOREM 3.1. (i) Let p ≥ 2 and assume that σ ∈ C
[p]+1
b (V, W). Then, for

given X ∈ G�p(V) and an initial value y0 ∈ W , there is a unique solution Y ∈
G�p(W) of RDE (3.3). Moreover, there is a constant CM > 0 for M > 0 such
that, if

|y0| ≤ M,

[p]∑
j=1

‖Xj‖p/j-var ≤ M,

[p]+1∑
j=0

sup
y∈W

‖∇jσ (y)‖ ≤ M,

then
∑[p]

j=1 ‖Y j‖p/j-var ≤ CM .
(ii) Keep the same assumption as above. Assume that Xl → X in G�p(V) and

yl
0 → y0 in W as l → ∞. Assume further that σl, σ ∈ C

[p]+1
b (V, W) satisfy that

sup
l≥1

[p]+1∑
j=0

sup
y∈W

‖∇jσl(y)‖ ≤ M

for some constant M > 0 and

lim
l→∞

[p]+1∑
j=0

sup
|y|W ≤N

‖∇jσl(y) − ∇jσ (y)‖ = 0

for each fixed N > 0. Then, Yl → Y in G�p(W), where Yl is the solution of
RDE (3.3) corresponding to (Xl, y

l
0, σl).
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In this paper we consider the following RDE indexed by small parameter ε > 0.
Let σ ∈ C∞

b (Rn,Mat(n, d)) and β ∈ C∞
b ([0,1] × Rn,Rn). For fixed ε ∈ [0,1],

consider

dY ε
t = σ(Y ε

t )ε dXt + β(ε,Y ε
t ) dt, Y ε

0 = 0.(3.4)

[This is the same RDE as in (1.1)]. If we define σ̂ε : Rn,Mat(n, d + 1) by

σ̂ε(y)x′ = σ(y)x + β(ε, y)xd+1, x′ = (x, xd+1) ∈ Rd ⊕ R,

then Y ε = �̂ε(εX,λ). Here, λt = t and �̂ε :G�p(Rd+1) → G�p(Rn) is the Itô
map which corresponds to σ̂ε . Note that σ̂ε converges to σ̂ε′ in the sense of Theo-
rem 3.1(ii) as ε → ε′.

Now we consider the (stochastic) Taylor expansion around γ ∈ C
q-var
0 (Rd) with

1/p + 1/q > 1. Consider �̂ε(εX + γ,λ) or, equivalently, the solution of the fol-
lowing RDE:

dỸ ε
t = σ(Ỹ ε

t )(ε dXt + dγt ) + β(ε, Ỹ ε
t ) dt, Ỹ ε

0 = 0.(3.5)

We will write φ(ε) = (Ỹ ε)1 (the first level path). Note that �̂0(γ, λ) is lying above
φ0 = �(γ ) ∈ C

q-var
0 (Rn) which is defined by

dφ0
t = σ(φ0

t ) dγt + β(0, φ0
t ) dt, φ0

0 = 0.(3.6)

In the following theorem, we consider the asymptotic expansion of φ(ε)−φ0. By
formally operating (m!)−1(d/dε)m|ε=0 on both sides of (3.5), we get an RDE for
the mth term φm (see [19] for detail). Note that φm depends on X,γ (although γ

is basically fixed in this paper), but independent of ε. (The superscript m does not
denote the level of the path φm. Here we only consider the usual paths or the first
level paths.)

In what follows, we will use the following notation; for a geometric rough
path X of roughness p,

ξ(X) = ‖X1‖p-var + ‖X2‖1/2
p/2-var + · · · + ∥∥X[p]∥∥1/[p]

p/[p]-var.(3.7)

THEOREM 3.2. Let p ≥ 2, 1 ≤ q < 2 with 1/p + 1/q > 1 and let the notation
be as above. Then, for any m = 1,2, . . . , we have the following expansion:

φ(ε) = φ0 + εφ1 + · · · + εmφm + Rm+1
ε .

The maps (X,γ ) ∈ G�p(Rd) × C
q-var
0 (Rd) �→ φk,Rm+1

ε ∈ C
p-var
0 (Rn) are con-

tinuous (0 ≤ k ≤ m). Moreover, the following estimates (a), (b) hold:

(a) For any r1 > 0, there exists C1 > 0 which depends only on r1 such that, if
‖γ ‖q-var ≤ r1, then ‖φk‖p-var ≤ C1(1 + ξ(X))k holds.

(b) For any r2, r3 > 0, there exists C2 > 0 which depends only on r2, r3 such
that, if ‖γ ‖q-var ≤ r2 and ξ(εX) ≤ r3, then ‖Rm+1

ε ‖p-var ≤ C2(ε + ξ(εX))m+1

holds.
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3.2. Fractional Brownian rough paths. First we introduce fractional Brownian
motion (fBM for short) of Hurst parameter H . There are several books and surveys
on fBM (see [8, 9, 33], e.g.). In this paper we only consider the case 1/4 < H <

1/2. A real-valued continuous stochastic process (wH
t )t≥0 starting at 0 is said to a

fBM of Hurst parameter H if it is a centered Gaussian process with

E[wH
t wH

s ] = 1
2 [t2H + s2H − |t − s|2H ] (s, t ≥ 0).

This process has stationary increments E[(wH
t −wH

s )2] = |t − s|2H (s, t ≥ 0), and
self-similarity, that is, for any c > 0, (c−HwH

ct )t≥0 and (wH
t )t≥0 have the same law.

Note that (w
1/2
t )t≥0 is the standard Brownian motion. For d ≥ 1, a d-dimensional

fBM is defined by (w
H,1
t , . . . ,w

H,d
t )t≥0, where wH,i (i = 1, . . . , d) are indepen-

dent one-dimensional fBM’s. Its law μH is a probability measure on C0(Rd). [Ac-
tually, it is a probability measure on C

p-var
0 (Rd) for p > 1/H .]

Let H ∈ (1/4,1/2). We denote by wH(m) the mth dyadic piecewise linear
approximation of wH , that is, piecewise linear approximation associated with
the partition {j2−m|0 ≤ j ≤ 2m}. The existence of a fractional Brownian rough
path (fBRP for short) was shown by Coutin–Qian [10] as an almost sure limit
of WH(m) as m → ∞, where WH(m) is the smooth rough path lying above
wH(m) ∈ C1-var

0 (Rd). More precisely, they proved

E

[ ∞∑
m=1

‖WH(m + 1)j − WH(m)j‖p/j-var

]
< ∞ (1 ≤ j ≤ [p]).

In particular, WH(m) converges to WH in the L1-sense, too. When 1/3 < H <

1/2, [p] = 2 and when 1/4 < H ≤ 1/3, [p] = 3.
Now we prove a theorem of Fernique-type for fBRP for later use. We give a

direct proof here for readers’ convenience by using a useful estimate in Millet and
Sanz-Sole [32]. (The case H = 1/2 is shown in [18], e.g.) It should be noted,
however, that (i) this proposition is included in Theorems 15.22 and 15.42, [16]
and (ii) Friz and Oberhauser [12] recently showed this kind of integrability for a
wider class of Gaussian rough paths, by using isoperimetric inequality.

PROPOSITION 3.3. Let 1/4 < H < 1/2 and WH be a d-dimensional fBRP as
above.

(1) Then, there exists a positive constant c such that

E[exp(cξ(WH )2)] =
∫
G�p(Rd )

exp(cξ(X)2)PH (dX) < ∞,

where ξ is given in (3.7) and P
H denotes the law of WH .

(2) For any r > 0 and 1 ≤ j ≤ [p], limm→∞ E[‖WH(m)j −WH,j‖r
p/j-var] = 0.
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PROOF. In this proof, c1, c2, . . . are positive constants which may change from
line to line. For a rough path X of roughness p and γ > p − 1, set

Dj,p(X,Y ) =
( ∞∑

n=1

nγ
2n∑
l=1

∣∣Xj
(l−1)/2n,l/2n − Y

j
(l−1)/2n,l/2n

∣∣p/j

)j/p

(1 ≤ j ≤ [p]).
When Y = 0, we write Dj,p(X) = Dj,p(X,Y ) for simplicity. From Section 4.1 in
Lyons–Qian [29], the following estimates hold:

‖X1 − Y 1‖p
p-var ≤ c1D1,p(X,Y )p

‖X2 − Y 2‖p/2
p/2-var

≤ c1
[
D2,p(X,Y )p/2 + D1,p(X,Y )p/2(

D1,p(X)p + D1,p(Y )p
)1/2]

‖X3 − Y 3‖p/3
p/3-var(3.8)

≤ c1
[
D3,p(X,Y )p/3 + D2,p(X,Y )p/3(

D1,p(X)p + D1,p(Y )p
)1/3

+ D1,p(X,Y )p/3(
D2,p(X)p/2 + D2,p(Y )p/2)2/3

+ D1,p(X,Y )p/3(
D1,p(X)p + D1,p(Y )p

)2/3]
.

Proposition 2 in [32] states that there is a sequence {am} of positive numbers
converging to 0 such that, for any r > p,

E[Dj,p(WH(m),WH)r ]1/r ≤ amrj/2

holds. For simplicity, set Fm = Dj,p(WH(m),WH)2/j . Then, from the above in-
equality,

P(N < Fm) ≤ N−N
E[FN

m ] ≤ cN
2 aN

m

for N = 4,5, . . . . Therefore,

E[ecFm] ≤
∞∑

N=0

ec(N+1)
P(N < Fm ≤ N + 1)

≤ (ec + · · · + c4c) + ec
∞∑

N=4

ecN
P(N < Fm)

≤ (ec + · · · + c4c) + ec
∞∑

N=4

exp[N(c + log c2 − logam)].

For given c > 0, there exists m0 such that m ≥ m0 implies c + log c2 − logam < 0.
Thus, we obtain

sup
m≥m0

E[ecFm] ≤ sup
m≥m0

E[exp(cDj,p(WH(m),WH)2/j )] < ∞.
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On the other hand, it is easy to see that, for each fixed m0, there is a constant
c′(m0) > 0 such that Dj,p(WH(m0))

1/j ≤ c′(m0)‖wH ‖∞. Hence, the usual Fer-
nique theorem for Gaussian measures applies and Dj,p(WH(m0))

1/j is square
exponentially integrable. Using (3.8) and the triangle inequality for Dj,p , we
prove (1). In a similar way, we see that

sup
m≥1

E[Dj,p(WH(m))r ] < ∞, sup
m≥1

E[‖WH(m)j‖r
p/j-var] < ∞.

This implies (2). �

Let HH be the Cameron–Martin subspace of fBM [i.e., k ∈ C0(Rd) is an el-
ement of HH if and only if μH and μH(· + k) are mutually absolutely continu-
ous]. When H = 1/2, it is easy to see k ∈ H1/2 is of finite 1-variation. But, when
H ∈ (1/4,1,2), does k ∈ HH have a similar nice property in terms of variation
norm? The following theorem answers this question. As a result, HH is continu-
ously (and compactly) embedded in G�p(Rd) for p ≥ 2.

PROPOSITION 3.4 (Friz–Victoir [13]).

(i) Let 0 < δ < 1 and p ≥ 1 such that α = δ − 1/p > 0 and set q = 1/δ. Then,
we have a continuous embedding

Wδ,p ⊂ Cq-var, Wδ,p ⊂ Cα-hldr.

More precisely, for h ∈ Wδ,p ,

ω(s, t) = ‖h‖q

Wδ,p;[s,t](t − s)αq, 0 ≤ s ≤ t ≤ 1

becomes a control function in the sense of Lyons–Qian [29], page 16, and h is
controlled by a constant multiple of ω [i.e., |ht − hs | ≤ const × ω(s, t)1/q ].

(ii) Let the Hurst parameter H ∈ (0,1/2). If 1/2 < δ < H + 1/2, then
HH � W

δ,2
0 (compact embedding). Therefore, for any α ∈ (0,H) and q ∈ ((H +

1/2)−1,2),

HH � Cα-hldr
0 , HH � C

q-var
0 .

We give a theorem of a Cameron–Martin type for fBRP WH . (For BRP, see [18],
e.g.) Let 1/4 < H < 1/2 and 1/H < p < [1/H ] + 1. Then, fBRP WH exists on
G�p(Rd) and its law is a probability measure on G�p(Rd). By Proposition 3.4,
there exists 1 ≤ q < 2 such that HH � C

q-var
0 ⊂ G�p(Rd) and 1/p + 1/q > 1.

Hence, the shift X �→ X + K for k ∈ HH is well-defined in G�p(Rd), where K

is the lift of k as usual.
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PROPOSITION 3.5. Let ε > 0 and let P
H
ε be the law of εWH . Then, for any k ∈

HH , P
H
ε and P

H
ε (· +K) are mutually absolutely continuous and, for any bounded

Borel function f on G�p(Rd),∫
G�p(Rd )

f (X + K)PH
ε (dX)

=
∫
G�p(Rd )

f (X) exp
(

1

ε2 〈k,X1〉 − 1

2ε2 ‖k‖2
HH

)
P

H
ε (dX).

Here, 〈k,X1〉 is the measurable linear functional associated with k ∈ HH =
(HH)∗ for the fBM t �→ X1

0,t (i.e., the element of the first Wiener chaos of the

fBM X1 associated with k).

PROOF. Since WH(m) → WH in G�p(Rd) and k(m) → k in q-variation
norm as m → ∞, respectively, WH + K = limm→∞[WH(m) + K(m)]. On the
other hand, WH(m) + K(m) is the lift of wH(m) + k(m) = (wH + k)(m). Hence,
the problem reduces to the usual Cameron–Martin theorem for fBM wH . �

In the end of this subsection we give a Schilder-type large deviation principle
for the law of εWH as ε ↘ 0. This was shown by Millet and Sanz-Sole [32] (and
by Friz–Victoir [13, 14]).

PROPOSITION 3.6. Let P
H
ε be the law of εWH as above (1/4 < H < 1/2).

As before, 1/H < p < [1/H ] + 1 and G�p(Rd) is equipped with the p-variation
metric. Then, as ε ↘ 0, {PH

ε }ε>0 satisfies a large deviation principle with a good
rate function I , which is given by

I (X) =
{

1
2‖k‖2

HH (if X is lying above k ∈ HH ),
∞ (otherwise).

4. Hilbert–Schmidt property of Hessian. In this section we consider the Itô
map restricted on the Cameron–Martin space HH of the fBM with Hurst parameter
H ∈ (1/4,1/2) and prove that its Hessian is a symmetric Hilbert–Schmidt bilinear
form.

Throughout this section we set β0(y) = β(0, y) for simplicity. Consider the
following RDE:

dYt = σ(Yt ) dXt + β0(Yt ) dt, Y0 = 0.(4.1)

The Itô map X ∈ G�p(Rd) �→ �̂0(X,λ) = Y ∈ G�p(Rn) restricted on the
Cameron–Martin space HH of fBM is denoted by � , that is, �(k) = �̂0(K,λ)

for k ∈ HH . Here, K is a geometric rough path lying above k and λt = t . (Since k

is of finite q-variation for some q < 2, as we will see below, this is well-defined.
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Regularity of k ∈ HH in a p-variational setting is studied by Friz–Victoir [13]. For-
tunately, h is of finite q-variation for some q < 2 and, hence, the Young integral is
possible.)

The aim of this section is to prove the following theorem. Let F and p′ be as in
Assumption (H1).

THEOREM 4.1. ∇2(F ◦ �)(γ )〈·, ·〉 is a symmetric Hilbert–Schmidt bilinear
form on HH for any γ ∈ HH .

REMARK 4.2. The reader may find arguments in this section a little bit messy.
So, we give a brief summary here. The most difficult part in proving the above
theorem is to show that the bilinear functional

(f, k) ∈ HH × HH �→
∫ ·

0
fu ⊗ dku ∈ C

p-var
0 (Rd ⊗ Rd)

is “Hilbert–Schmidt.” To compute the Hilbert–Schmidt norm, we need a simple
orthonormal basis. However, we do not know a good basis of HH . Therefore, we
first imbed HH into a larger Hilbert space L

δ,2
real, since it has a very simple or-

thonormal basis of cosine functions, and then prove the Hilbert–Schmidt property
for the norm of L

δ,2
real. [See (4.2) below for the definition of p and δ = 1/q .]

Note that

∇2(F ◦ �)(γ )〈f, k〉 = ∇F(�(γ ))〈∇2�(γ )〈f, k〉〉
+ ∇2F(�(γ ))〈∇�(γ )〈f 〉,∇�(γ )〈k〉〉.

ODEs for ∇�(γ )〈k〉 and ∇2�(γ )〈f, k〉 will be given in (4.5)–(4.7) below.
Now we set conditions on parameters. First we have the Hurst parameter H ∈

(1/4,1/2). Then, we can choose p and q = δ−1 such that

1

p′ ∨ 1

[1/H ] + 1
<

1

p
< H,

3

4
<

1

q
< H + 1

2
,

(4.2)
1

p
+ 1

q
> 1,

1

q
− 1

p
>

1

2
.

For example, 1/p = H − 2ε and 1/q = H + 1/2 − ε for sufficiently small ε > 0
satisfy (4.2). Indeed,

1

p
+ 1

q
= 1 + 2

(
H − 1

4

)
− 3ε,

1

q
− 1

p
= 1

2
+ ε.

For this p and q = δ−1, the fBM with the Hurst parameter H can be lifted to
G�p(Rd) and its Cameron–Martin space HH satisfies Proposition 3.4 above. In
particular, the Young integral of k ∈ HH with respect to itself is possible since
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q < 2. The shift and the pairing of X ∈ G�p(Rd) by k ∈ HH can be defined since
1/p + 1/q > 1. In what follows we always assume (4.2).

The Banach space Wδ,p is defined by (3.1). In Adams [1], its original definition
is given by a kind of real interpolation (precisely, the trace space of J. L. Lions,
see paragraph 7.35, [1]) of W 1,p and W 0,p = Lp . Those are equivalent Banach
spaces (paragraph 7.48, [1]). On the other hand, Lδ,p is defined by the complex
interpolation of (the complexification of) W 1,p and W 0,p = Lp , that is, Lδ,p =
[W 1,p,Lp]1−δ . If p = 2, Lδ,2 and (the complexification of) Wδ,2 are equivalent
Hilbert spaces (not unitarily equivalent, see paragraph 7.59, [1]). As a result , L

δ,2
real

and Wδ,2 are equivalent real Hilbert spaces, where L
δ,2
real is the subspace of Rd -

valued functions in Lδ,2.

THEOREM 4.3. The following functions of t ∈ [0,1] form an orthonormal ba-
sis of L

δ,2
real and of Lδ,2 = L

δ,2
real ⊗ C:

{1 · ei |1 ≤ i ≤ d} ∪
{ √

2

(1 + n2)δ/2 cos(nπt)ei

∣∣∣n ≥ 1,1 ≤ i ≤ d

}
.

Here, {e1, . . . , ed} is the canonical orthonormal basis of Rd .

PROOF. It is sufficient to prove the case d = 1. Note that

W 1,2 =
{
f = c0 +

∞∑
n=1

cn

√
2 cos(nπt)

∣∣∣cn ∈ C,

∞∑
n=0

(1 + n2)|cn|2 < ∞
}

and ‖f ‖2
W 1,2 = ∑∞

n=0(1 + n2)|cn|2. Similarly,

L2 =
{
f = c0 +

∞∑
n=1

cn

√
2 cos(nπt)

∣∣∣cn ∈ C,

∞∑
n=0

|cn|2 < ∞
}

and ‖f ‖2
L2 = ∑∞

n=0 |cn|2. Therefore, W 1,2 and L2 are unitarily isometric to l
(1)
2

and l
(0)
2 = l2, respectively, where

l
(δ)
2 =

{
c = (cn)n=0,1,2,... ∈ C∞∣∣∣‖c‖2

l
(δ)
2

=
∞∑

n=0

(1 + n2)δ|cn|2
}

(δ ∈ R).

Thus, the problem is reduced to the complex interpolation of two Hilbert spaces of
sequences. A simple calculation shows that [l(1)

2 , l2]1−δ = l
(δ)
2 . This implies

Lδ,2 =
{
f = c0 +

∞∑
n=1

cn

√
2 cos(nπx)

∣∣∣cn ∈ C,

∞∑
n=0

(1 + n2)δ|cn|2 < ∞
}

with ‖f ‖2
Lδ,2 = ∑∞

n=0(1 + n2)δ|cn|2, which ends the proof. �
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We compute the p-variation norm of cosine functions. The following lemma
is taken from Nate Eldredge’s unpublished manuscripts [11]. Before stating it,
we introduce some definitions. Let x be a one-dimensional continuous path with
x0 = 0. We say that s ∈ [0,1] is a forward maximum (or forward minimum) if xs =
maxx|[s,1] (or xs = minx|[s,1], resp.). Suppose x is piecewise monotone with local
extrema {0 = s0 < s1 < s2 < · · · < sn = 1}. (For simplicity, we assume s0, s2, . . .

are local minima and s1, s3, . . . are local maxima. The reverse case is easily dealt
with by just replacing x with −x.) If s2, s4, . . . are not only local minima but
also forward minima, and s1, s3, . . . are not only local maxima but also forward
maxima, then we say x is jog-free. (Note that x0 is not required to be a forward
extremum.)

PROPOSITION 4.4. Let p ≥ 1. (i) If a one-dimensional continuous path x with
x0 = 0 is jog-free with extrema {0 = s0 < s1 < s2 < · · · < sn = 1}, then

‖x‖p-var =
(

n∑
i=1

|xsi − xsi−1 |p
)1/p

.

(ii) In particular, the p-variation norm of cn(t) = cos(nπt) − 1 is given by
‖cn‖p-var = 2n1/p.

PROOF. (ii) is immediate from (i). We show (i). For a continuous path y and
a partition P = {0 = t0 < t1 < t2 < · · · < tn = 1}, we set Vp,P (y) = (

∑n
i=1 |yti −

yti−1 |p)1/p . Then, ‖y‖p-var = supP Vp,P (y). First, note that if y is monotone in-
creasing (or decreasing) on [ti−1, ti+1], then it is easy to see that Vp,P\{ti}(y) ≥
Vp,P (y). In other words, intermediate points in monotone intervals should not be
included.

Let x be jog-free with extrema Q = {0 = s0 < s1 < s2 < · · · < sn = 1} as in the
statement of (i) and let P = {0 = t0 < t1 < t2 < · · · < tn = 1} be a partition which
does not include all the sj ’s. We will show below that there exists an sj such that
Vp,P∪{sj }(x) ≥ Vp,P (x).

Let sj be the first extremum not contained in P . (For simplicity, we assume
it is local and forward maximum.) Let ti be the last element of P less than sj .
Then, sj−1 ≤ ti ≤ sj ≤ ti+1. Since x is increasing on [sj−1, sj ] and xsj is forward
maximum,

xsj − xti ≥ xti+1 − xti , xsj − xti+1 ≥ xti − xti+1,

which yields that |xsj − xti |p + |xsj − xti+1 |p ≥ |xti+1 − xti |p. Therefore,
Vp,P∪{sj }(x) ≥ Vp,P (x).

For any ε > 0, there exists P such that Vp,P (x) ≥ ‖x‖p-var − ε. First by adding
all the sj ’s, then by removing all the intermediate points (i.e., ti ’s which are not
one of sj ’s), we get Vp,Q(x) ≥ ‖x‖p-var − ε. Letting ε ↘ 0, we complete the proof
of (i). �
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Now we calculate the Hessian of � , which is defined in (4.1). For q < 2, ODE
like (4.1) is well-defined in the q-variation sense, thanks to the Young integral.
The continuity of � is well known. Smoothness of the Itô map in the q(< 2)-
variation setting is studied in Li–Lyons [28]. The explicit form of the derivatives
are obtained in a similar way to the case of (stochastic) Taylor expansion.

Let q ∈ [1,2) for a while and fix γ ∈ C
q-var
0 . Then φ0 = �(γ ) is also of finite

q-variation, which takes values in Rn. Set

d�t = ∇σ(φ0
t )〈·, dγt 〉 + ∇β0(φ

0
t )〈·〉dt.

Then, � is an End(Rn)-valued path of finite q-variation. Next, consider the fol-
lowing End(Rn)-valued ODE in the q-variation sense:

dMt = d�t · Mt, M0 = Idn.(4.3)

Its inverse satisfies a similar ODE:

dM−1
t = −M−1

t · d�t, M−1
0 = Idn,(4.4)

although the coefficients of these ODEs are not bounded, thanks to their special
forms, to a unique solution [For this kind of equation with unbounded coefficients,
existence of a local solution and uniqueness are easier. The problem is existence
of a global solution. If M is a local solution of (4.3) and a ∈ GL(n,R), then Ma

is a local solution to (4.3) with a initial condition M0 = a. This fact, combined
with existence of a local solution, implies existence of a global solution.] The map
γ �→ M in the q-variational setting is locally Lipschitz continuous. (In this paper,
however, γ is always fixed and, hence, so are � and M .) If γ is controlled by a
control function ω, then M and M−1 are controlled by ω̂(s, t) = C(ω(s, t) + (t −
s)), where C > 0 is a constant which depends on q and ω(0,1). A rigorous proof
for this paragraph can be found in [19], for instance.

Set χ(k) = (∇�)(γ )〈k〉 for simplicity. This is a continuous path of finite q-
variation, if k is of finite q-variation. Then, it satisfies an Rn-valued ODE:

dχt − ∇σ(φ0
t )〈χt , dγt 〉 − ∇β0(φ

0
t )〈χt 〉dt = σ(φ0

t ) dkt , χ0 = 0.(4.5)

From this, we can obtain an explicit expression as follows:

χ(k)t = (∇�)(γ )〈k〉t = Mt

∫ t

0
M−1

s σ (φ0
s ) dks.(4.6)

Note that the right-hand side is a Young integral and k �→ χ(k) extends to a con-
tinuous map from C

p-var
0 (Rd) to C

p-var
0 (Rn).

In a similar way, ψt = ∇2�(γ )〈k, k〉t satisfies the following ODE:

dψt − ∇σ(φ0
t )〈ψt, dγt 〉 − ∇β0(φ

0
t )〈ψt 〉dt

= 2∇σ(φ0
t )〈χ(k)t , dkt 〉 + ∇2σ(φ0

t )〈χ(k)t , χ(k)t , dγt 〉(4.7)

+ ∇2β0(φ
0
t )〈χ(k)t , χ(k)t 〉dt, ψ0 = 0.
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From this and by polarization, we see that

∇2�(γ )〈f, k〉t
= Mt

∫ t

0
M−1

s {∇σ(φ0
s )〈χ(f )s, dks〉 + ∇σ(φ0

s )〈χ(k)s, dfs〉}

+ Mt

∫ t

0
M−1

s {∇2σ(φ0
t )〈χ(f )s,χ(k)s, dγs〉(4.8)

+ ∇2β0(φ
0
s )〈χ(f )s,χ(k)s〉ds}

=: V1(f, k)t + V2(f, k)t .

It is obvious that

(f, k) ∈ C
q-var
0 (Rd) × C

q-var
0 (Rd) �→ ∇2�(γ )〈f, k〉 ∈ C

q-var
0 (Rn)

is a symmetric bounded bilinear functional.
Note that χ(k) and ψ(k, k)/2 are similar to φ1 and φ2, respectively, when

X = k. Indeed, they are the first and the second term in the Taylor expan-
sion for �̂0(εX + γ,λ). [See (6.3) and (6.5) below and compare.] Therefore,
k �→ χ(k),ψ(k, k) extend to continuous maps from G�p(Rd) to C

p-var
0 (Rn). We

will write χ(X),ψ(X,X) for X ∈ G�p(Rd).

LEMMA 4.5. Let 1/4 < H < 1/2 and choose p and q as in (4.2) Then, for
any bounded linear functional α ∈ C

p-var
0 (Rn)∗, the symmetric bounded bilinear

form α ◦ V2〈·, ·〉 on the Cameron–Martin space HH is of trace class. In particu-
lar, if p′ ≥ p, ∇F(φ0) ◦ V2 is of trace class for a Fréchet differentiable function

F :Cp′-var
0 (Rn) → R. Moreover, α ◦ V2 extends to a bounded bilinear form on

C
p-var
0 (Rd). A similar fact holds for ∇2F(φ0)〈χ(·),χ(·)〉, too.

PROOF. Since t �→ Mt and t �→ M−1
t σ (φ0

t ) are of finite q-variation, the map
h �→ χ(h) extends to a bounded linear map from C

p-var
0 (Rd) to C

p-var
0 (Rn), thanks

to the Young integral. By using the Young integral again, we see that (h, k) �→
V2(h, k) extends to a bounded bilinear map from C

p-var
0 (Rd) × C

p-var
0 (Rd) to

C
q-var
0 (Rn) ⊂ C0(Rd).
On the other hand, μH (the law of the fBM with the Hurst parameter H ) is sup-

ported in C
p-var
0 (Rd). In other words, (X , HH ,μH) is an abstract Wiener space,

where X is the closure of HH with respect to the p-variation norm. [According
to Jain and Monrad [21], pages 47–48, C

p-var
0 (Rd) is not separable and, conse-

quently, HH cannot be dense in C
p-var
0 (Rd). So, we use X instead of C

p-var
0 (Rd),

because an abstract Wiener space must be separable by definition.]
Therefore, α ◦ V2 is a bounded bilinear form on an abstract Wiener space. By

Goodman’s theorem (Theorem 4.6, Kuo [23]), its restriction on the Cameron–
Martin space is of trace class. �
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Now we compute V1.

LEMMA 4.6. Let 1/4 < H < 1/2 and choose p and q as in (4.2). Then, for
any bounded linear functional α ∈ C

p-var
0 (Rn)∗, the symmetric bounded bilinear

form α ◦ V1〈·, ·〉 on the Cameron–Martin space HH is Hilbert–Schmidt. In par-
ticular, if p′ ≥ p, ∇F(φ0) ◦ V1 is Hilbert–Schmidt for a Fréchet differentiable

function F :Cp′-var
0 (Rn) → R. Moreover, if αl is weak* convergent to α as l → ∞

in C
p-var
0 (Rn)∗, then αl ◦ V1 converges to α ◦ V1 as l → ∞ in the Hilbert–Schmidt

norm.

The rest of this section is devoted to proving this lemma. An integration by parts
yields that

V1〈f, k〉 = R1〈f, k〉 + R1〈k, f 〉 − (R2〈f, k〉 + R2〈k, f 〉),
where, from (4.6),

R1〈f, k〉t = Mt

∫ t

0
M−1

s ∇σ(φ0
s )〈σ(φ0

s )fs, dks〉,

R2〈f, k〉t = Mt

∫ t

0
M−1

s ∇σ(φ0
s )

〈
Ms

∫ s

0
d[M−1

u σ (φ0
u)]fu, dks

〉
.

LEMMA 4.7. Let R2 be as above and α ∈ C
p-var
0 (Rn)∗. Then, as a bilinear

form on HH , α ◦ R2 is of trace class. Moreover, if αl is weak* convergent to α

as l → ∞ in C
p-var
0 (Rn)∗, then αl ◦ R2 converges to α ◦ R2 as l → ∞ in the

Hilbert–Schmidt norm.

PROOF. We use the Young integral. Since u �→ M−1
u σ (φ0

u) is of finite q-
variation, we see that∥∥∥∥

∫ ·
0

d[M−1
u σ (φ0

u)]fu

∥∥∥∥
q-var

≤ c1‖M−1· σ(φ0· )‖q-var‖f ‖p-var ≤ c2‖f ‖p-var.

Similarly, since s �→ M−1
s ∇σ(φ0

s ),Ms are of finite q-variation,∥∥∥∥M·
∫ ·

0
M−1

s ∇σ(φ0
s )

〈
Ms

∫ s

0
d[M−1

u σ (φ0
u)]fu, dks

〉∥∥∥∥
p-var

(4.9)
≤ c3‖f ‖p-var‖k‖p-var.

Thus, (f, k) �→ R2〈f, k〉 is a bounded bilinear map from C
p-var
0 (Rd)×C

p-var
0 (Rd)

to C
p-var
0 (Rn) ⊂ C0(Rn). In particular, α ◦ R2 is a bounded bilinear form on

C
p-var
0 (Rn). Again, by Goodman’s theorem (Theorem 4.6, [23]), its restriction on

the Cameron–Martin space is of trace class.
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Now we prove the convergence. Note that (4.9) still holds even when f or k do
not start at 0. Consider the following continuous inclusions (see Proposition 3.4.
Below, all the function space is Rd -valued):

HH ↪→ W
δ,2
0

∼= L
δ,2
0,real ↪→ L

δ,2
real ↪→ Cq-var ↪→ Cp-var,

where δ = 1/q and ∼= denotes isomorphism (but not unitary) of Hilbert spaces.
Let us first consider R2|Lδ,2

real×L
δ,2
real

. We will show that, for an ONB {fk}k=1,2,...

of L
δ,2
real, it holds that

∑∞
k,j=1 ‖R2〈fk, fj 〉‖2

p-var < ∞. As in Theorem 4.3, we

set f0,i(t) = 1 · ei and fm,i(t) = (1 + m2)−δ/2
√

2 cos(mπt)ei (m = 1,2, . . .). By
Proposition 4.4,

‖fm,i‖p-var ≤ (1 + m2)−δ/2
√

2(1 + 2m1/p) ≤ c

(
1

1 + m

)1/q−1/p

for some constant c > 0. From this and (4.9),

d∑
i,i′=1

∞∑
m,m′=0

‖R2〈fm,i, fm′,i′ 〉‖2
p-var

≤ c

d∑
i,i′=1

∞∑
m,m′=0

‖fm,i‖2
p-var‖fm′,i′‖2

p-var

≤ c

∞∑
m=0

(
1

1 + m

)2(1/q−1/p) ∞∑
m′=0

(
1

1 + m′
)2(1/q−1/p)

< ∞,

because 1/q − 1/p > 1/2. Here, the constant c > 0 may change from line to line.
By the Banach–Steinhaus theorem, ‖αl −α‖Cp-var,∗ ≤ c for some constant c > 0.

Hence,

|(αl − α) ◦ R2〈fm,i, fm′,i′ 〉|2 ≤ c2‖R2〈fm,i, fm′,i′ 〉‖2
p-var.

By the dominated convergence theorem, ‖αk ◦ R2 − α ◦ R2‖HS−L
δ,2
real

→ 0 as k →
∞. (The norm denotes the Hilbert–Schmidt norm.) This implies that

‖αl ◦ R2 − α ◦ R2‖HS−HH ≤ ‖ι‖op‖ι∗‖op‖αl ◦ R2 − α ◦ R2‖HS−L
δ,2
real

→ 0

as l → ∞, where ι : HH ↪→ L
δ,2
real denotes the inclusion. �

LEMMA 4.8. Let R1 be as above and α ∈ C
p-var
0 (Rn)∗. Then, as a bilinear

form on HH , α ◦ R1 is Hilbert–Schmidt. Moreover, if αl is weak* convergent to α

as l → ∞ in C
p-var
0 (Rn)∗, then αl ◦ R1 converges to α ◦ R1 as l → ∞ in the

Hilbert–Schmidt norm.
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PROOF. The proof is similar to the one for Lemma 4.7. It is sufficient to show
that

d∑
i,i′=1

∞∑
m,m′=0

‖R1〈fm,i, fm′,i′ 〉‖2
p-var < ∞.(4.10)

In this proof, c > 0 is a constant which may change from line to line.
It is easy to see that, if m �= m′,

√
2 cos(mπt)d

[√
2 cos(m′πt)

] = −2m′π cos(mπt) sin(m′πt) dt

= −m′π
{
sin

(
(m′ + m)πt

) + sin
(
(m′ − m)πt

)}
dt

= m′d
[

cos((m′ + m)πt)

m′ + m
+ cos((m′ − m)πt)

m′ − m

]
,

and that, if m = m′,
√

2 cos(mπt)d[√2 cos(mπt)] = d[cos(2mπt)]/2.

In the following, fix i, i ′. First, we consider the case m = m′:
R1〈fm,i, fm,i′ 〉t

= Mt

∫ t

0
M−1

s ∇σ(φ0
s )〈σ(φ0

s )ei , ei′ 〉
√

2
cos(mπs)

(1 + m2)1/2q
d

[√
2 cos(mπs)

(1 + m2)1/2q

]

= 1/2

(1 + m2)1/q
Mt

∫ t

0
M−1

s ∇σ(φ0
s )〈σ(φ0

s )ei , ei′ 〉 d[cos(2mπs)].
By the Young integral and Proposition 4.4, we see that

‖R1〈fm,i, fm,i′ 〉‖2
p-var ≤ c

(1 + m2)2/q
‖ cos(2mπ ·) − 1‖2

p-var

≤ cm2/p

(1 + m2)2/q
≤ c

(1 + m)4/q−2/p
.

Since 4/q − 2/p > 1,
∞∑

m=0

‖R1〈fm,i, fm,i′ 〉‖2
p-var < ∞.(4.11)

Next we consider the case m �= m′:
R1〈fm,i, fm′,i′ 〉t

= Mt

∫ t

0
M−1

s ∇σ(φ0
s )〈σ(φ0

s )ei , ei′ 〉
√

2
cos(mπs)

(1 + m2)1/2q
d

[√
2 cos(m′πs)

(1 + m′2)1/2q

]

= m′

(1 + m2)1/2q(1 + m′2)1/2q(m′ + m)

× Mt

∫ t

0
M−1

s ∇σ(φ0
s )〈σ(φ0

s )ei , ei′ 〉d
[
cos

(
(m′ + m)πs

)]
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+ m′

(1 + m2)1/2q(1 + m′2)1/2q(m′ − m)

× Mt

∫ t

0
M−1

s ∇σ(φ0
s )〈σ(φ0

s )ei , ei′ 〉d
[
cos

(
(m′ − m)πs

)]
=: R̂i,i′

1 (m,m′)t + R̂
i,i′
2 (m,m′)t .

By using the estimate for the Young integral again, we see that

‖R̂i,i′
1 〈fm,i, fm,i′ 〉‖2

p-var

≤ cm′2

(1 + m2)1/q(1 + m′2)1/q |m′ + m|2
∥∥cos

(
(m′ + m)π ·) − 1

∥∥2
p-var

≤ cm′2|m′ + m|2/p

(1 + m2)1/q(1 + m′2)1/q |m′ + m|2

≤ c|(m′ + m) − m|2(1−1/q)

(1 + |m|)2/q |m′ + m|2(1−1/p)

≤ c

(1 + |m|)2/q(1 + |m′ + m|)2(1/q−1/p)

+ c

(1 + |m|)4(1/q−1/2)(1 + |m′ + m|)2(1−1/p)
.

It is easy to see that 2/q > 1 and 2(1−1/p) > 1 hold. From (4.2), 2(1/q −1/p) >

1 and 4(1/q − 1/2) > 1. (The condition 1/q > 3/4 is used here.) Therefore,∑
0≤m,m′<∞,m�=m′

‖R̂i,i′
1 〈fm,i, fm,i′ 〉‖2

p-var

≤ c
∑

m,m′∈Z

(
1

(1 + |m|)2/q(1 + |m′ + m|)2(1/q−1/p)

+ 1

(1 + |m|)4(1/q−1/2)(1 + |m′ + m|)2(1−1/p)

)
(4.12)

= c
∑
m∈Z

1

(1 + |m|)2/q

( ∑
m′∈Z

1

(1 + |m′ + m|)2(1/q−1/p)

)

+ c
∑
m∈Z

1

(1 + |m|)4(1/q−1/2)

( ∑
m′∈Z

1

(1 + |m′ + m|)2(1−1/p)

)
< ∞.

In the same way as above,∑
0≤m,m′<∞,m�=m′

‖R̂i,i′
2 〈fm,i, fm,i′ 〉‖2

p-var < ∞.(4.13)

From (4.11), (4.12) and (4.13), we have (4.10), which completes the proof. �
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5. A probabilistic representation of Hessian. Throughout this section we
assume (4.2). Let (X , HH ,μH) be the abstract Wiener space for the fBM as in
the previous section. Here, X is the closure of the Cameron–Martin space HH in
C

p-var
0 (Rd). A generic element of X is denoted by wH . Under μH , (wH

t )0≤t≤1 is
the canonical realization of d-dimensional fBM.

Any 〈k, ·〉 ∈ (HH)∗ extends to a measurable linear functional on X , which is
denoted by 〈k,wH 〉 with a slight abuse of notation. It satisfies∫

X
e
√−1〈k,wH 〉μH(dwH) = e

‖k‖2
HH /2

.

For a cylinder function F(wH ) = f (〈k1,w
H 〉, . . . , 〈km,wH 〉), where f : Rm → R

is a bounded smooth function with bounded derivatives, we set

DkF(wH ) =
m∑

j=1

∂jf (〈k1, b〉, . . . , 〈km, b〉)(kj , k)HH , k ∈ HH ,

and

DF(wH) =
m∑

j=1

∂jf (〈k1,w
H 〉, . . . , 〈km,wH 〉)kj .

Note that DF is an HH -valued function.
Let Cn = Cn(μ

H )(n = 0,1,2, . . .) be the nth Wiener chaos of wH . It is well
known that Cn are mutually orthogonal and L2(μH ) = ⊕∞

n=0 Cn. For example,
C0 = {constants} and C1 = {〈k, ·〉|k ∈ HH }. The second Wiener chaos C2 is unitar-
ily isometric with the space of symmetric Hilbert–Schmidt operators (or symmet-
ric Hilbert–Schmidt bilinear forms) HH ⊗sym HH in a natural way.

LEMMA 5.1. Let V1 be as in (4.8) and consider V1(w
H (m),wH (m))t , where

wH(m) denotes the mth dyadic polygonal approximation of wH . Then, for k, k̂ ∈
HH ,

1
2DkV1(w

H (m),wH (m))t = V1(k(m),wH (m))t ,

1
2D

k̂
DkV1(w

H (m),wH (m))t = V1(k(m), k̂(m))t .

Moreover, as m → ∞, the right-hand sides of the above equations converge to

V1(k,wH )t and V1(k, k̂)t

almost surely and in L2(μH ). [Note that the above quantities are well-defined
since wH is of finite p-variation and k, k̂ is of finite q-variation with 1/p + 1/q >

1. Since k, k̂ are of finite (q − ε)-variation for sufficiently small ε > 0, k(m), k̂(m)

converge to k, k̂ in q-variation norm, resp.]



LAPLACE APPROXIMATION FOR RDE DRIVEN BY FBM 193

PROOF. On [(l −1)/2m, l/2m], dwH(m)t = 2n(wH
l/2m −wH

(l−1)/2m) dt . There-
fore,

DkdwH(m)t = 2nDk

(
wH

l/2m − wH
(l−1)/2m

)
dt = 2n(

kl/2m − k(l−1)/2m

)
dt = dk(m)t .

From this, we see that

Dkχ(wH(m))t = Mt

∫ t

0
M−1

s σ (φ0
s )Dk dwH(m)s

= Mt

∫ t

0
M−1

s σ (φ0
s ) dk(m)s = χ(k(m))t .

Since ‖k(m) − k‖q-var as m → ∞ and k �→ χ(k) is bounded linear from
C

q-var
0 (Rd) to C

q-var
0 (Rd), ‖χ(k(m)) − χ(k)‖q-var as m → ∞. [Note that, for

sufficiently small ε > 0, k ∈ C
(q−ε)-var
0 still holds.] In a similar way,

1

2
DkV1(w

H (m),wH (m))t

= Mt

∫ t

0
M−1

s {∇σ(φ0
s )〈Dkχ(wH(m))s, dwH(m)s〉

+ ∇σ(φ0
s )〈χ(wH (m))s,Dk dwH(m)s〉}

= Mt

∫ t

0
M−1

s {∇σ(φ0
s )〈χ(k(m))s, dwH(m)s〉

+ ∇σ(φ0
s )〈χ(wH(m))s, dk(m)s〉}

= V1(k(m),wH (m))t .

Since ‖wH (m) − wH‖p-var → 0 as m → ∞ almost surely and in Lr for any r > 0
(see [32]), (1/2)DkV2(w

H (m),wH (m))t → V1(k,wH )t almost surely and in L2.
Finally,

(1/2)D
k̂
DkV2(w

H (m),wH (m))t = V1(k(m), k̂(m))t ,

which is nonrandom and clearly converges to V1(k, k̂)t as m → ∞. �

PROPOSITION 5.2. Let V1 be as in (4.8) and consider V1(w
H (m),wH (m))it .

Here, i stands for the ith component (1 ≤ i ≤ n). Then, for each fixed t ,
V1(w

H (m),wH (m))it converges almost surely and in L2(μH ) as m → ∞. More
precisely,

lim
m→∞V1(w

H (m),wH (m))it = �i
t + �i

t .

Here, �i
t is an element in C2 which corresponds to the symmetric Hilbert–Schmidt

bilinear form V1(•,•)it and t �→ �i
t := limm→∞ E[V1(w

H (m),wH (m))it ] is of fi-
nite p-variation.
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PROOF. First note that V1(x, x) has a rough path representation. Recall the
(stochastic) Taylor expansion of the Itô map (4.1) around γ . Then, V1(x, x) was
essentially calculated in computation for the second Taylor term. There is a con-
tinuous map V ′ :G�p(Rd) → G�p(Rn) such that V1(x, x) = V ′(X)1 for all
x ∈ C

q-var
0 (Rd). Here, the superscript means the first level path and X ∈ G�p(Rd)

is the lift of x. Moreover, since the integral that defines V1 or V ′ in (4.8) is of sec-
ond order, V ′ has the following property: there exists a constant c > 0 such that,
for all X,Y ∈ G�p(Rd),

‖V ′(X)1‖p-var ≤ c
(
1 + ξ(X)2)

,

‖V ′(X)1 − V ′(Y )1‖p-var ≤ c
(
1 + ξ(X)c

) [p]∑
j=1

‖Xj − Y j‖p/j-var.

Here, ξ(X) = ∑[p]
j=1 ‖Xj‖1/j

p/j-var. From this, a.s.-convergence of V1(w
H (m),

wH (m)) = V ′(wH (m)))1 to V ′(WH))1 is obvious.
It is shown in [10] that E[‖WH(m)j − WH,j‖p/j-var] → 0 as m → ∞. From

Proposition 3.3, supm E[‖WH(m)j‖r
p/j-var] < ∞ for any r > 0 and 1 ≤ j ≤ [p].

Then, we easily see from these and Hölder’s inequality that

E[‖V ′(WH(m))1 − V ′(WH)1‖2
p-var] → 0 as m → ∞.

This implies the L2-convergence. Since V ′(WH) = limm→∞ V1(w
H (m),wH (m))

is a C
p-var
0 (Rn)-valued random variable,

‖E[V ′(WH)1]‖p-var ≤ E[‖V ′(WH)1‖p-var] < ∞,

which shows that � is of finite p-variation.
By Lemma 5.1 and the closability of the derivative operator D in L2(μH ),

1
2DkV

′(WH)
1,i
t = V1(k,wH )it ,

1
2D

k̂
DkV

′(WH)
1,i
t = V1(k, k̂)it ,

where the superscript i denotes the ith component of Rn. These equality imply
that V ′(WH)

1,i
t − E[V ′(WH)

1,i
t ] is in C2, which corresponds to V1(•,•)it . �

LEMMA 5.3. Let p′ > p and F :Cp′-var
0 (Rn) be a Fréchet differentiable func-

tion. Let

�t = lim
m→∞V1(w

H (m),wH (m))t − E
[

lim
m→∞V1(w

H (m),wH (m))t

]
be as in Proposition 5.2. Then, ∇F(φ0)〈�〉 ∈ C2(μ

H ) which corresponds to
the symmetric Hilbert–Schmidt bilinear form ∇F(φ0) ◦ V1 = ∇F(φ0)〈V1(•,•)〉
on HH .

PROOF. Denote by gK the element of C2(μ
H ) which corresponds to a sym-

metric Hilbert–Schmidt bilinear form (or, equivalently, operator) K and set

M := {α ∈ C
p-var
0 (Rn)∗|α〈�(w)〉 = gα◦V1(w) a.a. w (μH )}.
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Obviously, M is a linear subspace. Moreover, from Lemma 4.6, M is closed under
weak*-limit. By Lemma 5.2, the evaluation map evi

t (t ∈ [0,1],1 ≤ i ≤ n) defined
by evi

t 〈y〉 = yi
t is in M . Denote by πm :Cp-var

0 (Rn) → C
p-var
0 (Rn) the projection

defined by π(m)y = y(m), where y(m) is the mth dyadic piecewise linear approx-
imation of y ∈ C

p-var
0 (Rn). Note that ∇F(φ0)〈π(m)y〉 can be written as a linear

combination of yi
k/2m (1 ≤ k ≤ 2m,1 ≤ i ≤ n). Hence, ∇F(φ0)◦π(m) ∈ M . Since

p′ > p, y(m) → y in p′-variation norm. This implies that ∇F(φ0) ◦ π(m) →
∇F(φ0) in the weak*-topology. Hence, ∇F(φ0) ∈ M . �

Let A1 be a self-adjoint Hilbert–Schmidt operator on HH which corresponds to

∇F(φ0)〈V1(•,•)〉.
Then, A−A1 is a self-adjoint Hilbert–Schmidt operator on HH which corresponds
to

∇F(φ0)〈V2(•,•)〉 + ∇2F(φ0)〈χ(•),χ(•)〉.
Obviously, this bilinear form extends to one on C

p-var
0 (Rd) and, hence, is of trace

class by Goodman’s theorem. See (4.8) for the definition of V1,V2. Combining
these all, we see that

k ∈ HH �→ 〈Ak, k〉HH = ∇F(φ0)〈ψ(k, k)〉 + ∇2F(φ0)〈χ(k),χ(k)〉
extends to a continuous map on G�p(Rd) and we denote it by 〈AX,X〉 for X ∈
G�p(Rd).

LEMMA 5.4. Let α ≥ 1 be such that IdHH +αA is strictly positive in the form
sense. Then, ∫

X
exp

(
−α

2
〈AWH ,WH 〉

)
μH(dwH)

=
∫
G�p(Rd )

exp
(
−α

2
〈AX,X〉

)
P

H (dX) < ∞.

In particular, e−〈A•,•〉/2 is in Lr(G�p(Rd),P
H) for some r > 1.

PROOF. As a functional of wH , 〈(A − A1)W
H ,WH 〉 is a sum of Tr(A − A1)

and the second order Wiener chaos corresponding to A−A1. From Proposition 5.2
and Lemma 5.3, 〈AWH ,WH 〉 is a sum of a constant Tr(A − A1) + ∇F(φ0)〈�〉
and the second order Wiener chaos corresponding to A (which is denoted by �A

below). It is well known (see Remark 5.5 below) that

E[e−α�A/2] = det
2

(IdHH + αA)−1/2,

where det2 stands for the Carleman–Fredholm determinant. �
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REMARK 5.5. Let (X̂ , Ĥ , μ̂) be any abstract Wiener space. For a symmetric
Hilbert–Schmidt operator Â : Ĥ → Ĥ , we denote by �̂ the corresponding element
in the second Wiener chaos Ĉ2. If Â > −Id in the form sense, then

E[e−�̂/2] = det
2

(Id + Â)−1/2

(
:=

∞∏
j=1

{(1 + λj )e
−λj }−1/2

)
.(5.1)

Here, {λj }j=1,2,... are eigenvalues of Â.
This fact is well known. For the reader’s convenience, however, we give a simple

(and somewhat heuristic) proof below. Suppose X̂ = Ĥ = Rl and μ̂ is the standard
normal distribution. Let Â be such that 〈Âξ, η〉 = ∑l

j=1 λj ξjηj , (ξ, η ∈ Rl). We

assume that λj > −1 for all j . In this case, �̂ is given by the following Hermite
polynomial: �̂(u) = ∑l

j=1 λj (u
2
j − 1) (u ∈ Rl). This clearly corresponds to Â be-

cause (1/2)DξDη�̂(u) = 〈Âξ, η〉. (Recall that this is the way we identified sym-
metric Hilbert–Schmidt operators with elements of second Wiener chaos in the
previous argument.) A simple calculation shows that

E[e−�̂/2] =
∫

Rl
e−�̂(u)/2

l∏
j=1

1√
2π

e
−u2

j /2
duj

=
l∏

j=1

1√
2π

∫
Rl

exp
(λj − (1 + λj )u

2
j

2

)
duj =

l∏
j=1

{(1 + λj )e
−λj }−1/2.

We can easily do a similar computation in the case of (R∞, l2,μ∞), where μ∞
denotes the countable product of the one-dimensional standard normal distribution.
The general case reduces to the case of R∞, after Â is diagonalized.

Another method to verify (5.1) is to use an explicit formula for the characteristic
function of the quadratic Wiener functional, which has been studied extensively.
Let B : Ĥ → Ĥ be any symmetric Hilbert–Schmidt operator and let �B be the
corresponding element in the second Wiener chaos Ĉ2. Then, we have∫

X̂
exp((ζ/2)�B)dμ̂ = det

2
(Id − ζB)−1/2 for any ζ ∈ C with |ζ | < 1/‖B‖op.

For example, see Janson [22], page 78, or Taniguchi [37], page 13. The for-
mula (5.1) immediately follows from this.

6. Proof of Laplace approximation.

6.1. Large deviation for the law of Y ε as ε ↘ 0. In this section we prove
the main theorem (Theorem 2.1). Let Y ε be a solution of RDE (3.4). The law of
(Y ε)1 = Y ε,1 is the probability measure on C

p-var
0 (Rn) for any p > 1/H . Then, by

Theorem 3.1 and Proposition 3.6 we can use the contraction principle to see that
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the law of {Y ε,1}ε>0 satisfies large deviation as ε ↘ 0. The good rate function is
given as follows:

I (y) =
{

inf{‖k‖2
HH /2|y = �̂0(k, λ)1} (if y = �̂0(k, λ)1 for some k ∈ HH ),

∞ (otherwise).

Here, �̂ε is the Itô map corresponding to RDE (3.4) and λt = t . For a bounded
continuous function F on C

p-var
0 (Rn), it holds that

lim
ε↘0

ε2 log E
[
exp

(−F(Y ε,1)/ε2)] = − inf{F(y) + I (y)|y ∈ C
p-var
0 (Rn)}.

Now, let us consider Laplace’s method, that is, the precise asymptotic behavior
of the following integral:

E
[
exp

(−F(Y ε,1)/ε2)] =
∫
G�p(Rd )

exp
(−F(�̂ε(εX,λ)1)/ε2)

P
H(dX)

=
∫
G�p(Rd )

exp
(−F(�̂ε(X,λ)1)/ε2)

P
H
ε (dX)

as ε ↘ 0 under Assumptions (H1)–(H4).
Let γ ∈ HH ⊂ G�p(Rd) be the unique element at which F(�̂0(·, λ)) +

‖ · ‖2
HH /2 attains minimum (F�(γ ) =: a) as in (H2). By a well-known argument,

for any neighborhood of O ⊂ G�p(Rd) of γ , there exist positive constants δ,C

such that∫
Oc

exp
(−F(�̂ε(X,λ)1)/ε2)

P
H
ε (dX) ≤ Ce−(a+δ)/ε2

, ε ∈ (0,1].
This decays very fast and does not contribute to the asymptotic expansion.

6.2. Computation of α0. In this subsection we compute the first term α0 in the
asymptotic expansion when G ≡ 1 (constant) and show α0 > 0. To do so, we need
the (stochastic) Taylor expansion (Theorem 3.2) up to order m = 2. Once this is
done, expansion up to higher order terms can be obtained rather easily.

For ρ > 0, set Uρ = {X ∈ G�p(Rd)|ξ(X) < ρ}, where ξ is given in (3.7). Then,
taking O = γ +Uρ , we see from the theorem of the Cameron–Martin type (Propo-
sition 3.5) that∫

γ+Uρ

exp
(−F(�̂ε(X,λ)1)/ε2)

P
H
ε (dX)

=
∫
Uρ

exp
(−F

(
�̂ε(X + γ,λ)1)

/ε2)
(6.1)

× exp
(
− 1

ε2 〈γ,X1〉 − 1

2ε2 ‖γ ‖2
HH

)
P

H
ε (dX)

=
∫
{ξ(εX)<ρ}

exp
(
−F(φ(ε))

ε2 − 1

ε
〈γ,X1〉 − 1

2ε2 ‖γ ‖2
HH

)
P

H (dX).
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As we will see, 〈γ, ·〉 extends to a continuous linear functional on C
p-var
0 (Rd) and,

in particular, everywhere defined.
For sufficiently small ρ (i.e., ρ ≤ ρ0 for some ρ0), φ(ε) is in the neighborhood

of φ0 as in Assumption (H3). So, from the Taylor expansion for F ,

F(φ(ε)) = F(φ0) + ∇F(φ0)
〈
φ(ε) − φ0〉 + 1

2
∇2F(φ0)

〈
φ(ε) − φ0, φ(ε) − φ0〉

+ 1

6

∫ 1

0
dθ∇3F

(
θφ(ε) + (1 − θ)φ0)〈

φ(ε) − φ0, φ(ε) − φ0, φ(ε) − φ0〉

= F(φ0) + ∇F(φ0)〈εφ1 + ε2φ2〉 + 1

2
∇2F(φ0)〈εφ1, εφ1〉 + Q3

ε.

Here, the remainder term Q3
ε satisfies the following estimates: there exists a posi-

tive constant C = C(ρ0) such that

|Q3
ε| ≤ C

(
ε + ξ(εX)

)3 on the set {ξ(εX) < ρ0}.(6.2)

Note that C is independent of the choice of ρ (ρ ≤ ρ0).
Now we compute the shoulder of exp on the right-hand side of (6.1). Terms of

order −2 are computed as follows:

− 1

ε2

(
F(φ0) + 1

2
‖γ ‖2

HH

)
= − a

ε2 .

Since k ∈ HH �→ F(�0(k, λ)) + ‖k‖2
HH /2 takes its minimum at k = γ , we see

that

〈k, γ 〉HH + ∇F(φ0)〈χ(k)〉 = 0,

where χ(k) is given by (4.5) or (4.6). By (4.6) and the Young integral, k �→
∇F(φ0)〈χ(k)〉 extends to a continuous linear map from C

p-var
0 (Rd) and so does

〈γ, ·〉HH . Hence, the measurable linear functional (i.e., the first Wiener chaos) as-
sociated with γ is this continuous extension.

An ODE for φ1 = φ1(k) = φ1(k, γ ) is as follows [k ∈ C
q-var
0 (Rd)]:

dφ1
t − ∇σ(φ0

t )〈φ1
t , dγt 〉 − ∇yβ(0, φ0

t )〈φ1
t 〉dt

(6.3)
= σ(φ0

t ) dkt + ∇εβ(0, φ0
t ) dt, φ1

0 = 0.

Note that both φ1 and χ extend to a continuous map from G�p(Rd). The dif-
ference θ1

t := φ1
t (X) − χt(X) is independent of X (i.e., nonrandom), of finite q-

variation, and satisfies

dθ1
t − ∇σ(φ0

t )〈θ1
t , dγt 〉 − ∇yβ(0, φ0

t )〈θ1
t 〉dt

(6.4)
= ∇εβ(0, φ0

t ) dt, θ1
0 = 0.
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Or, equivalently, θ1
t = Mt

∫ t
0 M−1

s ∇εβ(0, φ0
s ) ds. Consequently, terms of order −1

are computed as follows:

−1

ε

(∇F(φ0)〈φ1〉 + 〈γ,X1〉) = −∇F(φ0)〈θ1〉
ε

.

Now we compute terms of order 0. The second term φ2 = φ2(k) = φ2(k, γ ) in
the expansion in Theorem 3.2 satisfies the following ODE (see [19], e.g.):

dφ2
t − ∇σ(φ0

t )〈φ2
t , dγt 〉 − ∇yβ(0, φ0

t )〈φ2
t 〉dt

= ∇σ(φ0
t )〈φ1

t , dkt 〉 + 1
2∇2σ(φ0

t )〈φ1
t , φ

1
t , dγt 〉

(6.5)
+ 1

2∇2
yβ(φ0

t )〈φ1
t , φ

1
t 〉dt

+ ∇y∇εβ(φ0
t )〈φ1

t 〉dt + 1
2∇2

ε β(0, φ0
t ) dt, φ2

0 = 0.

Let χ and ψ be as in (4.5) and (4.7), respectively. By the same argument for
(stochastic) Taylor expansion (Theorem 3.2), those extend to continuous maps
from G�p(Rd) and we write χ(X) and ψ(X) = ψ(X,X). If we set θ2(k) :=
φ2(k) − ψ(k)/2, then θ2 satisfies the following ODE:

dθ2
t − ∇σ(φ0

t )〈θ2
t , dγt 〉 − ∇yβ(0, φ0

t )〈θ2
t 〉dt

= ∇σ(φ0
t )〈θ1

t , dkt 〉 + 1
2∇2σ(φ0

t )〈θ1
t , θ1

t , dγt 〉 + ∇2σ(φ0
t )〈θ1

t , χt , dγt 〉
(6.6)

+ 1
2∇2

yβ(φ0
t )〈θ1

t , θ1
t 〉dt + ∇2

yβ(φ0
t )〈θ1

t , χt 〉dt

+ ∇y∇εβ(φ0
t )〈θ1

t + χt 〉dt + 1
2∇2

ε β(0, φ0
t ) dt, θ2

0 = 0.

Or, equivalently,

θ2
t = Mt

∫ t

0
M−1

s

(
∇σ(φ0

s )〈θ1
s , dks〉 + 1

2
∇2σ(φ0

s )〈θ1
s , θ1

t , dγs〉

+ ∇2σ(φ0
s )〈θ1

s , χs, dγs〉
+ 1

2
∇2

yβ(φ0
s )〈θ1

s , θ1
s 〉ds + ∇2

yβ(φ0
s )〈θ1

s , χt 〉ds

+ ∇y∇εβ(φ0
s )〈θ1

t + χs〉ds + 1

2
∇2

ε β(0, φ0
s ) ds

)
.

This is just a Young integral and k �→ θ2(k) extends to a continuous map from
C

p-var
0 (Rd) or from G�p(Rd) to C

p-var
0 (Rn). Moreover, θ2 is of first order,

that is, for some constant C > 0, ‖θ2(X)‖p-var ≤ C(1 + ξ(X)) holds for any
X ∈ G�p(Rd). In particular, by the Fernique-type theorem (Proposition 3.3),
(a constant multiple of) θ2 is exponentially integrable.
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Hence, terms of order 0 on the shoulder of exp on the right-hand side of (6.1)
are as follows:

∇F(φ0)〈φ2〉 + 1
2∇2F(φ0)〈φ1, φ1〉

= 1
2 [∇F(φ0)〈ψ〉 + ∇2F(φ0)〈χ,χ〉] + ∇F(φ0)〈θ2〉(6.7)

+ 1
2∇2F(φ0)〈θ1, θ1〉 + ∇2F(φ0)〈θ1, χ〉.

Note that the last three terms on the right-hand side are dominated by C(1+ ξ(X))

and that the first term is 〈AX,X〉/2 as in Lemma 5.4. By Proposition 3.3 and
Lemma 5.4,

exp
(−∇F(φ0)〈φ2〉 − 1

2∇2F(φ0)〈φ1, φ1〉) ∈ Lr(G�p(Rd),P
H)

for some r > 1.

If ρ > 0 is chosen sufficiently small, then exp[2Cρ(1 + ξ(X))2] ∈ Lr ′
(G�p(Rd),

P
H) for the conjugate exponent r ′, that is, 1/r +1/r ′ = 1. (We determine ρ, here.)

We easily see that, if ε ≤ ρ,

1{ξ(εX)<ρ} exp
(−∇F(φ0)〈φ2〉 − 1

2∇2F(φ0)〈φ1, φ1〉) exp(−ε−2Q3
ε)

(6.8)
≤ exp

(−∇F(φ0)〈φ2〉 − 1
2∇2F(φ0)〈φ1, φ1〉) exp

[
2Cρ

(
1 + ξ(X)

)2]
.

The right-hand side is integrable and independent of ε. So, we may use the domi-
nated convergence theorem to obtain that

lim
ε↘0

∫
{ξ(εX)<ρ}

exp
(
−∇F(φ0)〈φ2〉 − 1

2
∇2F(φ0)〈φ1, φ1〉 − 1

ε2 Q3
ε

)
P

H(dX)

=
∫
G�p(Rd )

exp
(
−∇F(φ0)〈φ2〉 − 1

2
∇2F(φ0)〈φ1, φ1〉

)
P

H(dX).

By Lemma 5.4, the right-hand side exists. Thus, we have computed (the asymp-
totics of) (6.1) up to α0.

6.3. Asymptotic expansion up to any order. In this subsection we obtain the
Laplace asymptotic expansion up to any order. Since this is routine once α0 is
obtained, we only give a sketch of the proof.

By combining the (stochastic) Taylor expansions for F,G and φ(ε), we get

F
(
φ(ε)) − F(φ0) ∼ εη1 + · · · + εnηn + Qn+1

ε as ε ↘ 0,

G
(
φ(ε)) − G(φ0) ∼ εη̂1 + · · · + εnη̂n + Q̂n+1

ε as ε ↘ 0.

Here, the remainder terms Qn+1
ε , Q̂n+1

ε satisfy similar estimates to (6.2).
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From this we see that∫
γ+Uρ

G(�̂ε(X,λ)1) exp
(−F(�̂ε(X,λ)1)/ε2)

P
H
ε (dX)

= e−a/ε2
e−∇F(φ0)〈θ1〉/ε

(6.9)

×
∫
{ξ(εX)<ρ}

G
(
φ(ε)) exp

(
−∇F(φ0)〈φ2〉 − 1

2
∇2F(φ0)〈φ1, φ1〉

)

× exp(−Q3
ε/ε

2)PH(dX)

can easily be expanded. Note that
∣∣∣∣eu −

(
1 + u

1! + · · · + un−1

(n − 1)!
)∣∣∣∣ ≤ e|u||u|n

n! (with u = −Q3
ε/ε

2)

and that Q3
ε = ε3η3 + · · · + εnηn + Qn+1

ε . Thus, we have shown the main theorem
(Theorem 2.1).

7. Fractional order case: with an application to short time expansion. In
this section we consider an RDE, which involves a fractional order term of ε. As
a result, a fractional order term of ε appears in the asymptotic expansion. By time
change, this has an application to the short time problems for the solutions of the
RDE driven by fBRP.

First we see the scale invariance of fBRP. It is well known that, for 0 < c ≤ 1,
(c−HwH

ct )0≤t≤1 and wH have the same law. A similar fact holds for the law of
fBRP WH = (WH

s,t )0≤s≤t≤1. This is not so obvious from the scale invariance of
fBM wH , since fBRP WH is constructed via the dyadic partition of [0,1].

PROPOSITION 7.1. Let H ∈ (1/4,1/2) and 0 < c ≤ 1. Then, (c−H ×
WH

cs,ct )0≤s≤t≤1 and WH have the same law.

PROOF. (i) Baudoin and Coutin showed this statement in [6].
(ii) Friz and Victoir [15] showed the following: If a sequence of partitions of

[0,1] whose mesh tending to zero satisfies a condition called “nested,” then the lift
of wH via this sequence gives the same WH again. Combining this result with the
scaling property of wH , we can easily see the Proposition holds at least for c ∈ Q.
For c /∈ Q, just take a limit. �

Let H ∈ (1/4,1/3) ∪ (1/3,1/2). For simplicity, we consider the following
RDE:

dY ε
t = σ(Y ε

t )ε dXt + ε1/H β̂(Y ε
t ) dt, Y ε

0 = 0.(7.1)
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Here, σ is as in Theorem 2.1, but we assume that a C∞
b -function β̂ : Rn → Rn and

the drift term is of this special form in this case. Set β(ε, y) = ε1/H β̂(y). We also
consider the following RDE, which is independent of ε:

dVt = σ(Vt ) dXt + β̂(Vt ) dt, V0 = 0.(7.2)

Basically, when we introduce randomness, we always set X = WH in (7.1)
and (7.2). Then, by the scale invariance of WH (see Proposition 7.1 below),
(Vε1/H s,ε1/H t )0≤s≤t≤1 and (Y ε

s,t )0≤s≤t≤1 have the same law. In particular, for each

fixed T ∈ (0,1], the Rn-valued random variables V 1
0,T and (Y T H

)1
0,1 have the same

law. Therefore, the short time asymptotics for V 1
0,t is related to the small asymp-

totics of (Y ε)1.
Let us fix some notation for fractional order expansions. For

M =
{
n1 + n2

H

∣∣∣n1, n2 = 0,1,2, . . .

}
,

let 0 = κ0 < κ1 < κ2 < · · · be all elements of M in increasing order. More con-
cretely, leading terms are as follows:

(κ0, κ1, κ2, . . .)

=
(

0,1,2,
1

H
,3,1 + 1

H
,4,2 + 1

H
,5 ∧ 2

H
, . . .

)
if H ∈ (1/3,1/2),

(7.3)
(κ0, κ1, κ2, . . .)

=
(

0,1,2,3,
1

H
,4,1 + 1

H
,5, . . . ,

)
if H ∈ (1/4,1/3).

As in the previous sections, we write Y ε = �̂ε(εX), Ỹ ε = �̂ε(εX + γ ), and
φε = (Ỹ ε)1 for the solution of (7.1). By slightly modifying Theorem 3.2, we can
prove the (stochastic) Taylor expansion (around γ ) for

φ(ε) = φ0 + εκ1φκ1 + εκ2φκ2 + · · · + εκmφκm + Rκm+1
ε .

In this case, φ0 satisfies the following ODE (in q-variation sense):

dφ0
t = σ(φ0

t ) dγt , φ0
0 = 0.(7.4)

REMARK 7.2. Although (d/dε)m|ε=0 does not operate on the right-hand side
of the following (formal) ODE,

dφ
(ε)
t = σ

(
φ

(ε)
t

)
d(εXt + γ ) + ε1/H β̂

(
φ

(ε)
t

)
dt, Ỹ ε

0 = 0,(7.5)

the proof of expansion in [19], which is similar to Azencott’s argument in [4], does
not use the ε-derivative and can be easily modified to our case.

Roughly and formally speaking, the proof goes as follows. First, combine

φ(ε) − φ0 = εκ1φκ1 + · · · + εκmφκm + · · ·
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and the Taylor expansion of σ and β̂ around φ0
t . Next, pick up the terms of order

αm(m = 1,2, . . .). Then, we obtain a very simple ODE of first order for φκm re-
cursively. This, in turn, can be used to rigorously define φκm . In the end, we prove
growth of the remainder term is of an expected order. (This part is nontrivial and
requires much computation.) Note that this method can be used both in integer
order and in fractional order cases.

In the same way as in the previous sections, we have the following modification
of the main theorem (Theorem 2.1).

THEOREM 7.3. Let the coefficients σ : Rn → Mat(n, d) and β̂ : Rn → Rn

be C∞
b and consider the RDE (7.1) with X = WH , where H ∈ (1/4,1/3) ∪

(1/3,1/2). For simplicity, assume (H1)–(H4) for any order m. Then, we have
the following asymptotic expansion as ε ↘ 0: there are real constants c and
ακ0(= α0), ακ1, ακ2, . . . such that

E
[
G(Y ε,1) exp

(−F(Y ε,1)/ε2)]
= exp

(−F�(γ )/ε2)
exp(−c/ε) · (

ακ0 + ακ1ε
κ1 + · · · + ακmεκm + O(εκm+1)

)
for any m ≥ 0.

REMARK 7.4. It is important to note that, in (7.3), indices up to degree two
(i.e., κ0, κ1, κ2) are the same as in the previous sections. The most difficult part
of the proof of Theorem 2.1 is obtaining α0 [or checking that α0 ∈ (0,∞) when
G ≡ 1], in which the (stochastic) Taylor expansion of φ(ε) up to φ2 is used (see
Section 6.2). Therefore, the proof in Section 6.2 holds true without modification
in this case, too. Higher order terms are different in the fractional order case. But,
the argument in Section 6.3 is simple anyway and can easily be modified. Thus,
we can prove Theorem 7.3 without much difficulty.

As a corollary, we have the following short time expansion. In the following,
ev1 denotes the evaluation map at time 1, that is, ev1(x) = x1 for an Rn-valued
path x.

COROLLARY 7.5. Let the coefficients σ : Rn → Mat(n, d) and β̂ : Rn → Rn

be C∞
b and consider the RDE (7.2) above with X = WH , where H ∈ (1/4,1/3) ∪

(1/3,1/2). Let f and g be real-valued C∞
b -functions on Rn such that F :=

f ◦ ev1 and G := g ◦ ev1 satisfy Assumptions (H1)–(H4). Then, we have the
following asymptotic expansion as t ↘ 0: there are real constants c and α̂κ0(=
α̂0), α̂κ1, α̂κ2, . . . such that

E
[
g(V 1

0,t ) exp
(−f (V 1

0,t )/t2H )]
= exp

(−F�(γ )/t2H )
exp(−c/tH )

× (
α̂κ0 + α̂κ1 t

κ1H + · · · + α̂κmtκmH + O(tκm+1H )
)
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for any m ≥ 0.

REMARK 7.6. Very roughly speaking, in [5, 34], they studied the sort time
asymptotics of the following quantity under mild assumptions:

E[g(V 1
0,t )].

If f is identically zero in Corollary 7.5, then it is the same short time problems
studied in [5, 34], at least formally. (It does not seem to the author that either [5,
34] or the Corollary 7.5 implies the other.)

REFERENCES

[1] ADAMS, R. A. (1975). Sobolev Spaces. Academic Press, New York–London. MR0450957
[2] AIDA, S. (2007). Semi-classical limit of the bottom of spectrum of a Schrödinger opera-

tor on a path space over a compact Riemannian manifold. J. Funct. Anal. 251 59–121.
MR2353701

[3] ALBEVERIO, S., RÖCKLE, H. and STEBLOVSKAYA, V. (2000). Asymptotic expansions for
Ornstein–Uhlenbeck semigroups perturbed by potentials over Banach spaces. Stochastics
Stochastics Rep. 69 195–238. MR1760977

[4] AZENCOTT, R. (1982). Formule de Taylor stochastique et développement asymptotique
d’intégrales de Feynman. In Seminar on Probability, XVI, Supplement. Lecture Notes in
Math. 921 237–285. Springer, Berlin. MR0658728

[5] BAUDOIN, F. and COUTIN, L. (2007). Operators associated with a stochastic differential
equation driven by fractional Brownian motions. Stochastic Process. Appl. 117 550–574.
MR2320949

[6] BAUDOIN, F. and COUTIN, L. (2008). Self-similarity and fractional Brownian motions on Lie
groups. Electron. J. Probab. 13 1120–1139. MR2424989

[7] BEN AROUS, G. (1988). Methods de Laplace et de la phase stationnaire sur l’espace de Wiener.
Stochastics 25 125–153. MR0999365

[8] BIAGINI, F., HU, Y., ØKSENDAL, B. and ZHANG, T. (2008). Stochastic Calculus for Frac-
tional Brownian Motion and Applications. Springer, London. MR2387368

[9] COUTIN, L. (2007). An introduction to (stochastic) calculus with respect to fractional Brown-
ian motion. In Séminaire de Probabilités XL. Lecture Notes in Math. 1899 3–65. Springer,
Berlin. MR2408998

[10] COUTIN, L. and QIAN, Z. (2002). Stochastic analysis, rough path analysis and fractional
Brownian motions. Probab. Theory Related Fields 122 108–140. MR1883719

[11] ELDREDGE, N. (2005). Computing p-variation. Unpublished manuscript. Univ. California,
San Diego.

[12] FRIZ, P. and OBERHAUSER, H. (2010). A generalized Fernique theorem and applications.
Proc. Amer. Math. Soc. 138 3679–3688. MR2661566

[13] FRIZ, P. and VICTOIR, N. (2006). A variation embedding theorem and applications. J. Funct.
Anal. 239 631–637. MR2261341

[14] FRIZ, P. and VICTOIR, N. (2007). Large deviation principle for enhanced Gaussian processes.
Ann. l’Inst. Henri Poincaré Probab. Stat. 43 775–785.

[15] FRIZ, P. and VICTOIR, N. (2010). Differential equations driven by Gaussian signals. Ann. Inst.
Henri Poincaré Probab. Stat. 46 369–413. MR2667703

[16] FRIZ, P. K. and VICTOIR, N. B. (2010). Multidimensional Stochastic Processes as Rough
Paths: Theory and Applications. Cambridge Studies in Advanced Mathematics 120. Cam-
bridge Univ. Press, Cambridge. MR2604669

http://www.ams.org/mathscinet-getitem?mr=0450957
http://www.ams.org/mathscinet-getitem?mr=2353701
http://www.ams.org/mathscinet-getitem?mr=1760977
http://www.ams.org/mathscinet-getitem?mr=0658728
http://www.ams.org/mathscinet-getitem?mr=2320949
http://www.ams.org/mathscinet-getitem?mr=2424989
http://www.ams.org/mathscinet-getitem?mr=0999365
http://www.ams.org/mathscinet-getitem?mr=2387368
http://www.ams.org/mathscinet-getitem?mr=2408998
http://www.ams.org/mathscinet-getitem?mr=1883719
http://www.ams.org/mathscinet-getitem?mr=2661566
http://www.ams.org/mathscinet-getitem?mr=2261341
http://www.ams.org/mathscinet-getitem?mr=2667703
http://www.ams.org/mathscinet-getitem?mr=2604669


LAPLACE APPROXIMATION FOR RDE DRIVEN BY FBM 205

[17] GUBINELLI, M. and LEJAY, A. (2009). Global existence for rough differential equations under
linear growth condition. Preprint.

[18] INAHAMA, Y. (2006). Laplace’s method for the laws of heat processes on loop spaces. J. Funct.
Anal. 232 148–194. MR2200170

[19] INAHAMA, Y. (2010). A stochastic Taylor-like expansion in the rough path theory. J. Theoret.
Probab. 23 671–714. MR2679952

[20] INAHAMA, Y. and KAWABI, H. (2007). Asymptotic expansions for the Laplace approximations
for Itô functionals of Brownian rough paths. J. Funct. Anal. 243 270–322. MR2291439

[21] JAIN, N. C. and MONRAD, D. (1983). Gaussian measures in Bp . Ann. Probab. 11 46–57.
MR0682800

[22] JANSON, S. (1997). Gaussian Hilbert Spaces. Cambridge Tracts in Mathematics 129. Cam-
bridge Univ. Press, Cambridge. MR1474726

[23] KUO, H. H. (1975). Gaussian Measures in Banach Spaces. Lecture Notes in Math. 463.
Springer, Berlin. MR0461643

[24] KUSUOKA, S. and OSAJIMA, Y. (2008). A remark on the asymptotic expansion of density
function of Wiener functionals. J. Funct. Anal. 255 2545–2562. MR2473267

[25] KUSUOKA, S. and STROOCK, D. W. (1991). Precise asymptotics of certain Wiener function-
als. J. Funct. Anal. 99 1–74. MR1120913

[26] KUSUOKA, S. and STROOCK, D. W. (1994). Asymptotics of certain Wiener functionals with
degenerate extrema. Comm. Pure Appl. Math. 47 477–501. MR1272385

[27] LEJAY, A. (2003). An introduction to rough paths. In Séminaire de Probabilités XXXVII. Lec-
ture Notes in Math. 1832 1–59. Springer, Berlin. MR2053040

[28] LI, X.-D. and LYONS, T. J. (2006). Smoothness of Itô maps and diffusion processes on path
spaces. I. Ann. Sci. Éc. Norm. Supér. (4) 39 649–677. MR2290140

[29] LYONS, T. and QIAN, Z. (2002). System Control and Rough Paths. Oxford Univ. Press, Oxford.
MR2036784

[30] LYONS, T. J. (1998). Differential equations driven by rough signals. Rev. Mat. Iberoam. 14
215–310. MR1654527

[31] LYONS, T. J., CARUANA, M. and LÉVY, T. (2007). Differential Equations Driven by Rough
Paths. Lecture Notes in Math. 1908. Springer, Berlin. MR2314753

[32] MILLET, A. and SANZ-SOLÉ, M. (2006). Large deviations for rough paths of the fractional
Brownian motion. Ann. Inst. Henri Poincaré Probab. Stat. 42 245–271. MR2199801

[33] MISHURA, Y. S. (2008). Stochastic Calculus for Fractional Brownian Motion and Related
Processes. Lecture Notes in Math. 1929. Springer, Berlin. MR2378138

[34] NEUENKIRCH, A., NOURDIN, I., RÖSSLER, A. and TINDEL, S. (2009). Trees and asymp-
totic expansions for fractional stochastic differential equations. Ann. Inst. Henri Poincaré
Probab. Stat. 45 157–174. MR2500233

[35] ROVIRA, C. and TINDEL, S. (2000). Sharp Laplace asymptotics for a parabolic SPDE.
Stochastics Stochastics Rep. 69 11–30. MR1751716

[36] TAKANOBU, S. and WATANABE, S. (1993). Asymptotic expansion formulas of the Schilder
type for a class of conditional Wiener functional integrations. In Asymptotic Problems in
Probability Theory: Wiener Functionals and Asymptotics (Sanda/Kyoto, 1990). Pitman
Res. Notes Math. Ser. 284 194–241. Longman Sci. Tech., Harlow. MR1354169

[37] TANIGUCHI, S. (2008). Quadratic Wiener functionals of square norms on measure spaces.
Commun. Stoch. Anal. 2 11–26. MR2446908

GRADUATE SCHOOL OF MATHEMATICS

NAGOYA UNIVERSITY

FUROCHO, CHIKUSA-KU, NAGOYA 464-8602
JAPAN

E-MAIL: inahama@math.nagoya-u.ac.jp

http://www.ams.org/mathscinet-getitem?mr=2200170
http://www.ams.org/mathscinet-getitem?mr=2679952
http://www.ams.org/mathscinet-getitem?mr=2291439
http://www.ams.org/mathscinet-getitem?mr=0682800
http://www.ams.org/mathscinet-getitem?mr=1474726
http://www.ams.org/mathscinet-getitem?mr=0461643
http://www.ams.org/mathscinet-getitem?mr=2473267
http://www.ams.org/mathscinet-getitem?mr=1120913
http://www.ams.org/mathscinet-getitem?mr=1272385
http://www.ams.org/mathscinet-getitem?mr=2053040
http://www.ams.org/mathscinet-getitem?mr=2290140
http://www.ams.org/mathscinet-getitem?mr=2036784
http://www.ams.org/mathscinet-getitem?mr=1654527
http://www.ams.org/mathscinet-getitem?mr=2314753
http://www.ams.org/mathscinet-getitem?mr=2199801
http://www.ams.org/mathscinet-getitem?mr=2378138
http://www.ams.org/mathscinet-getitem?mr=2500233
http://www.ams.org/mathscinet-getitem?mr=1751716
http://www.ams.org/mathscinet-getitem?mr=1354169
http://www.ams.org/mathscinet-getitem?mr=2446908
mailto:inahama@math.nagoya-u.ac.jp

	Introduction
	Statement of main result
	Assumption and main result
	A heuristic "proof"

	A review of fractional Brownian rough paths
	Geometric rough paths, Lyons' continuity theorem and Taylor expansion of Itô maps
	Fractional Brownian rough paths

	Hilbert-Schmidt property of Hessian
	A probabilistic representation of Hessian
	Proof of Laplace approximation
	Large deviation for the law of Yepsilon as epsilon0
	Computation of alpha0
	Asymptotic expansion up to any order

	Fractional order case: with an application to short time expansion
	References
	Author's Addresses

