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SHY COUPLINGS, CAT(0) SPACES, AND THE LION AND MAN!

BY MAURY BRAMSON, KRZYSZTOF BURDZY AND WILFRID KENDALL
University of Minnesota, University of Washington and University of Warwick

Two random processes X and Y on a metric space are said to be e-shy
coupled if there is positive probability of them staying at least a positive dis-
tance ¢ apart from each other forever. Interest in the literature centres on
nonexistence results subject to topological and geometric conditions; moti-
vation arises from the desire to gain a better understanding of probabilis-
tic coupling. Previous nonexistence results for co-adapted shy coupling of
reflected Brownian motion required convexity conditions; we remove these
conditions by showing the nonexistence of shy co-adapted couplings of re-
flecting Brownian motion in any bounded CAT(0) domain with boundary
satisfying uniform exterior sphere and interior cone conditions, for example,
simply-connected bounded planar domains with c? boundary.

The proof uses a Cameron—Martin—Girsanov argument, together with a
continuity property of the Skorokhod transformation and properties of the
intrinsic metric of the domain. To this end, a generalization of Gauss’ lemma
is established that shows differentiability of the intrinsic distance function
for closures of CAT(0) domains with boundaries satisfying uniform exterior
sphere and interior cone conditions. By this means, the shy coupling question
is converted into a Lion and Man pursuit—evasion problem.

1. Introduction.

1.1. Results and motivation. Benjamini, Burdzy and Chen (2007) introduced
the notion of shy coupling: a coupling of Brownian motions X and Y (more gener-
ally, of two random processes X and Y on a metric space) is said to be shy if there
is an € > 0 such that P[dist(X (), Y (¢)) > ¢ for all 1] > 0. For example consider
Brownian motion X on the circle: if Y is produced from X by a nontrivial rotation
then X and Y exhibit a shy coupling, since dist(X, Y) is then constant. Interest
in the existence or nonexistence of such couplings arises from the study of cou-
plings of reflected Brownian motions, which occur in various contexts. Benjamini,
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Burdzy and Chen (2007) discussed existence and nonexistence of shy couplings
for Brownian motions on graphs and for reflected Brownian motions in domains
(connected open subsets of Euclidean space) satisfying suitable boundary regular-
ity conditions. They restricted attention to Markovian couplings and we will do
essentially the same, by restricting attention to co-adapted couplings. (This is only
slightly more general, but is more convenient for expression in terms of stochastic
calculus.) In particular the results in Benjamini, Burdzy and Chen (2007) showed
that no shy co-adapted couplings can exist for reflected Brownian motion in convex
bounded planar domains with C? boundary satisfying a strict convexity condition
(namely, that the boundary contains no line segments). Their argument used a large
deviations argument bearing some resemblance to methods from differential game
theory. Kendall (2009) showed that neither differentiability nor strict convexity is
required for the planar result, and also generalized the result to convex bounded
domains in higher dimensions whose boundaries need no longer be smooth but still
satisfy the regularity condition requiring triviality of all line segments contained
in the boundary. These more recent results are based on direct proofs using ideas
from stochastic control.

The work described below both generalizes the above results and also shows
that absence of shyness is not confined to the case of convexity. We consider a
bounded domain with boundary satisfying uniform exterior sphere and interior
cone conditions and that satisfies a CAT(0) condition (see Definition 4) when fur-
nished with the intrinsic metric, and we show that such domains cannot support shy
co-adapted couplings of reflected Brownian motions. We do this by establishing a
rather direct connection between (the nonexistence of) Brownian shy co-adapted
couplings and deterministic pursuit—evasion problems. As part of this process, we
generalize Gauss’ lemma (on the differentiability of the distance function) to the
case of closures of CAT(0) domains furnished with the intrinsic metric and satis-
fying uniform exterior sphere and interior cone conditions. It may not be evident
to the reader exactly how the stochastic and undirected notion of Brownian motion
can be connected to the deterministic and intentional notion of a pursuit—evasion
problem, and it was not initially evident to us [though, in retrospect, this is latent
in Benjamini, Burdzy and Chen (2007)], but nonetheless the connection is both
immediate and useful.

The pursuit—evasion problem in question is a well-known problem concerning
a Lion chasing a Man in a disk, both travelling at unit speed: R. Rado’s cele-
brated “Lion and Man” problem. Our shy coupling problem leads us to consider
the generalization in which the Lion chases the Man in a bounded domain which
is CAT(0) in its intrinsic metric. Isaacs (1965) is the classic reference for pursuit—
evasion problems; Nahin (2007) provides an accessible exposition of the special
case of the Lion and Man problem in the unit disk. Littlewood [(1986), pages 114—
117 in Bollobas’ extended edition] provides a brief description of the Lion and
Man problem with an indication of its history, including a presentation of Besi-
covitch’s celebrated proof that in the disc the Man can evade the Lion indefinitely,
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even though the distance between Lion and Man may tend to zero. A generaliza-
tion of discrete-time pursuit—evasion to bounded CAT(0) domains is dealt with in
Alexander, Bishop and Ghrist (2006); we summarize concepts from metric geom-
etry and develop results required for the continuous-time variant in Section 2, and
it is here that we generalize the Gauss lemma to the case of closures of CAT(0)
domains with sufficient boundary regularity (Proposition 14).

In particular, Section 2 rigorously develops the geometric results required to
reason with these concepts in the context of the intrinsic metric for the domain D
(determined by lengths of paths restricted to lie within D). On a first reading one
should feel free to note only the general ideas of Section 2, and then to pass quickly
on to the probabilistic arguments in the remaining sections of the paper.

In Section 3, we describe how continuous-time pursuit—evasion problems can be
solved in CAT(0) domains. We obtain an upper bound for the time of e-capture,
expressed in terms of domain geometry. Simultaneously with and independently
of our research project, Chanyoung Jun developed in his Ph.D. thesis [Jun (2011)]
a theory of continuous pursuit in CAT () spaces that overlaps somewhat with our
results.

Pursuit—evasion games involve control of the velocity of the pursuer so as to
bring it arbitrarily close to the evader, regardless of what strategy may be adopted
by the evader. In order to show nonexistence of Brownian shy couplings, we in-
vestigate the possibility of bringing the Brownian pursuer (the Brownian Lion)
arbitrarily close to the Brownian evader (the Brownian Man), regardless of how
the Brownian motion of the Brownian Man is coupled to that of the Brownian
Lion. The connection between coupling and deterministic Lion and Man problems
is described in Section 4: a suitable pursuit strategy generates a vector field x on
the configuration manifold generated by the locations of Brownian Lion and Man.
(More pedantically, it generates a section of the pullback of the tangent bundle of D
to the configuration space of the pursuer and evader before capture.) If this pur-
suit strategy can be guaranteed to bring the Lion within ¢/2 of Man by a bounded
time ¢, in the deterministic problem, then a Cameron—Martin—Girsanov argument
together with a continuity property for the Skorokhod transformation shows that
the Brownian Lion has a positive probability of getting within distance ¢ of the
Brownian Man, whatever coupling strategy might be adopted by the Brownian
Man.

The paper concludes with Section 5, which discusses possible extensions of
these results, further questions, and conjectures.

We now state the main results of this paper, using terms defined in Section 2.
Here and elsewhere in the paper, we consider only domains in Euclidean space of
dimensions 2 or higher.

THEOREM 1. Suppose that D is a bounded domain with boundary satisfying
uniform exterior sphere and interior cone conditions, and which is CAT(0) in its
intrinsic metric. There can be no shy co-adapted coupling for reflected Brownian
motion in D.
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F1G. 1. A CAT(0) example which is the union of five dumbbells.

Examples of CAT(0) domains include convex domains and domains that are the
unions of a pair of convex domains. See, for instance, Bridson and Haefliger (1999)
and Alexander, Bishop and Ghrist (2006), where more general examples are also
provided; in particular, a large range of examples follows from iterated application
of the result that if two CAT(0) domains have a geodesically convex intersection
then their union is CAT(0). The exterior sphere and interior cone conditions in
the theorem are required in order to apply the results of Saisho (1987) to generate
reflected diffusions using the Skorokhod transformation.

The three-dimensional domain in Figure 1 is CAT(0). There are two different
ways to see this. First, it is easy to see that for every point on the boundary of the
domain, at most one of the principal curvatures is negative. An alternative way to
see that the domain is CAT(0) is to observe that a single dumbbell (the union of
two spheres and the connecting tube) is a CAT(0) domain. The whole set is the
union of five dumbbells. The nonempty intersections of the dumbbells are balls.

Remarkably, all bounded simply-connected planar domains are CAT(0) in their
intrinsic metrics. Thus, in the planar case, there is an immediate consequence of
Theorem 1 which is a strikingly powerful result depending principally on topolog-
ical conditions:

THEOREM 2. Suppose that D is a simply-connected bounded planar domain
with boundary satisfying uniform exterior sphere and interior cone conditions.
There can be no shy co-adapted coupling for reflected Brownian motion in D.

1.2. Some basic tools for probabilistic coupling. All probabilistic couplings
considered here are co-adapted couplings, which are defined for general Markov
processes in Kendall (2009). In essence, a co-adapted coupling of two Markov
processes is a construction of the two Markov processes on the same probability
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space, which are adapted to the same filtration such that each process possesses
the prescribed transition functions with respect to the common filtration.

In this paper, it suffices to work with co-adapted couplings of d-dimensional
Brownian motions: B and B are said to be co-adaptively coupled Brownian mo-
tions if they are defined on the same probability space and adapted to the same
filtration {F;:¢ > 0} and if, in addition, both satisfy an independent increments
property taken with respect to the common filtration:

B; ¢ — By is independent of F; for all 7, s > 0,
§t+s — Et is independent of F; for all z, s > 0.

Note that B;¢ — B; and §,+ s — Et need not be independent of each other. Kendall
[(2009), Lemma 6] shows that one may represent such a coupling using stochas-
tic calculus, possibly at the cost of augmenting the filtration by adding a further
independent Brownian motion C': there exist (d x d)-matrix-valued predictable
random processes J and K such that

E:/JTdB+/KTdc;

moreover, one may choose J'J 4+ K"K to be equal to the (d x d) identity matrix
at all times.

A pair of processes X and X is said to form a co-adapted coupling if they can
be defined by strong solutions of stochastic differential equations driven by B,
B, respectively. In the paper, we will employ the stochastic differential equation
obtained from the Skorokhod transformation for reflected Brownian motion in a
domain D of suitable boundary regularity, such as under uniform exterior sphere
and uniform interior cone conditions, as discussed in Section 2. For r > 0, set
Nyr={ve R?:|v| =1, B(x +rv,r) N D = @&}. The vectors v can be be viewed
as “exterior normal unit vectors at x € dD”; note that there may be more than
one such vector at a particular point x € d D. The set NV, , is decreasing in r, and
the uniform exterior sphere condition asserts that » can be chosen so that, for all
x € D, Ny, # @, with N , = N, for 0 < s < r. Under uniform exterior sphere
and uniform interior cone conditions, Saisho (1987) has shown that, given a driving
Brownian motion B, there exists a unique solution pair (X, LX) satisfying

dX =dB — vy dL”,
LX is nondecreasing and increases only when X € D,
vy € NX,r-

Thus LX may be viewed as the local time of the reflected Brownian motion X on
the boundary 9 D.

In this paper, all vectors are assumed to be column vectors unless specified
otherwise.
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2. CAT(0) geometry and the deterministic pursuit—evasion problem. Re-
call that the intrinsic metric for a domain D is generated by the infimum of Eu-
clidean lengths len(y) of smooth connecting paths y lying wholly within the do-
main. (The definition is typically formulated in the context of general metric spaces
and regularizable paths.)

DEFINITION 3. The intrinsic distance between two points x and y in a do-
main D is given by

(1) distipee(x, y) = inf{len(y) : v is a smooth path connecting x and y in D}.

For a domain D, a standard compactness argument shows that paths attaining
the infimum of (1) will always exist in the closure of the domain: these are called
intrinsic geodesics.

As described in Bridson and Haefliger [(1999), Section II.1, Definition 1.1] [see
also Burago, Burago and Ivanov (2001)], one can define simple curvature condi-
tions for metric spaces such as (D, distjy), based on the behaviour of geodesic
triangles. We first give the case of comparison with flat Euclidean space (which
has zero curvature).

DEFINITION 4. We say that (D, distjn) is a CAT(0) domain if the following
triangle comparison holds: Suppose that I'y 5, I'4 - and Iy, . are unit-speed intrinsic
geodesics for D, connecting points a to b, a to ¢ and b to c, respectively. Then, for
all such geodesic triangles,

diStintr(Fa,b(s)’ Fa,c(t)) <r(s,t),

where 7 (s, 1) is the distance between points at distance s, respectively, 7, from d
along the side ab, respectively, ac, of an ordinary Euclidean triangle abc that has
the same side lengths.

Consequently, chords of triangles in (D, distjyy) are shorter than comparable
chords of the comparable Euclidean triangles, as illustrated in Figure 2.

Bridson and Haefliger [(1999), Section II.1, Definition 1.1] actually introduces
the more general notion of a CAT(x) domain [see also Alexander, Bishop and
Ghrist (2010), Appendix A]. Here we describe the case when comparisons are

c

FI1G. 2.  Illustration of the CAT(0) condition.
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drawn with triangles on a sphere of radius 1//k, for ¥ > 0 (hence the sphere has
curvature ). It is necessary here to restrict attention to suitably small triangles, as
measured by perimeter.

DEFINITION 5. We say that D is a CAT(x) domain for « > 0O if any two
distinct points with distance less than 7/,/k are joined by a geodesic and the
distance between any two points of any geodesic triangle A pgr of perimeter less
than 27 /,/k is no greater than the distance between the corresponding points of
the model triangle A pg7 with the same sidelengths in the 2-dimensional Euclidean
sphere of radius 1/4/k.

REMARK. Gromov introduced the acronym CAT, standing for Cartan, Alek-
sandrov, Toponogov. In this paper, we will mostly consider spaces CAT (k) with
k = 0. We include some results concerning the CAT(x) case with k¥ > 0 because
they will be used in the forthcoming paper Bramson, Burdzy and Kendall (2011).

REMARK. As noted in Bridson and Haefliger [(1999), Proposition I1.3.1] [see
also Burago, Burago and Ivanov (2001), Section 4.3], in CAT(x) spaces the notion
of angle is well-defined for (locally) minimal geodesics.

Consequently, geodesics in a CAT(0) space diverge at most as fast as corre-
sponding geodesics in Euclidean space. Note that CAT(0) is a global condition,
applying to all possible geodesic triangles. In particular it can be shown that
CAT(0) spaces are always simply-connected and indeed contractible [Bridson and
Haefliger (1999), Proposition I1.1.4, or Alexander, Bishop and Ghrist (2010), Ap-
pendix A].

Remarkably, bounded planar domains are CAT(0) if they are simply-connected;
see Bishop (2008) for a careful proof. Readers may convince themselves of this
at an intuitive level by drawing pictures (as exemplified in Figure 3); as is the
case with other foundational results in metric spaces, the rigorous proof requires
delicate reasoning.

) .\

b

F1G. 3. lllustration of the CAT(0) property for a bounded simply-connected planar domain. The
effect of the boundary is to make the triangle “skinnier” than its Euclidean counterpart, thus estab-
lishing the CAT(0) comparison property.
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We now introduce two complementary notions of boundary regularity following
Saisho (1987). An exterior sphere condition (also called weak convexity) requires
that every boundary point is touched by at least one external sphere. Here and in
the following, let B(y, s) denote the open Euclidean ball of radius s centered on y.

DEFINITION 6 [Uniform exterior sphere condition, from Saisho (1987), Sec-
tion 1, Condition (A)]. A domain D is said to satisfy a uniform exterior sphere
condition, based on radius r if, for every x € dD, the set of “exterior normals”
Nor={veRy: v =1,Bx +rv,r) N D = 3} is nonempty, with Ny , = Ny
forO<s<r.

Thus a uniform exterior sphere condition allows one to move a fixed ball all
the way around the outside of the domain boundary. In particular, D can have no
“inward-pointing corners”. Here is a simple observation which will be useful later
and corresponds to the intuition about being able to move a fixed ball about D;
such D may be represented as intersections of complements of balls, in a manner
entirely analogous to the representation of a convex set as the intersection of half-
planes (so justifying the alternative term “weak convexity”).

LEMMA 7. Suppose that the domain D satisfies a uniform exterior sphere
condition based on radius r. Then

D =(\{B(z.r):B(z,r)ND=a}.

PROOF. Let the Minkowski sum A & B of two Euclidean sets A and B be
A®B={x+y:xe A, ye B}. Certainly F =({B(z,r)‘:B(z,r) N D =} is
closed, since B(z, r) is an open ball. Moreover D C F; hence D C F. Furthermore
F € D & B(o, r), where o is the origin of the ambient Euclidean space.

Following Saisho [(1987), Remark 1.3], because of the uniform exterior sphere
condition, we can define a projection x > X from D @ B(o, r) onto D using the
Euclidean metric. Consider x € D @ (o, r). Then the projection X € D is defined;
moreover, if x € 0D and x ¢ D, then

X—Xx

€ Nx.r

X — x|
is a unit vector whose offset produces a tangent sphere of radius r at x [using the
argument of Saisho (1987)]. But this implies that if x € (D & B(o,r)) \ D then

X—Xx
xeB(Y—r_ ,r)
|x — x|

and so x ¢ F. Accordingly D = F as required. [J

On the other hand, a uniform interior cone condition requires that any boundary
point supports a bounded cone truncated to the boundary of a ball, and moreover
that the cone may be translated locally within the domain.
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DEFINITION 8 [Uniform interior cone condition, from Saisho (1987), Section 1,
Condition (B’)]. A domain D is said to satisfy a uniform interior cone condition,
based on radius § > 0 and angle o € (0, /2], if, for every x € d D, there is at least
one unit vector m such that the cone C(m) = {z: (z, m) > |z| cos«} satisfies

(y+C@m))NB(x,8) D forall y e DN B(x,§).
We say that the cone y 4+ C(m) is based on y and angle o € (0, 7 /2].

Thus a uniform interior cone condition implies that the “outward-pointing cor-
ners”” must not be too sharp. Note that Saisho actually uses a slightly weaker condi-
tion with less intuitive content [Saisho (1987), Condition (B)]; we do not consider
this weaker notion further in what follows.

In fact, the property of a domain satisfying a uniform interior cone condition is
equivalent to it being a Lipschitz domain.

DEFINITION 9 (Lipschitz domain). Recall that a function f:R4~1 — R is
Lipschitz, with constant ) < 00, if | f(x) — f(y)| < A|x — y| for all x, y € R4~
A domain D is said to be Lipschitz, with constant X, if there exists § > 0 such that,
for every x € 0D, there exists an orthonormal basis ey, es, ..., ez and a Lipschitz
function f:R¢~! — R, with constant A, such that

Bx,5)ND={yeB(x,8): f(y1,...,Ya-1) < Ya},

where we write y; = (y, e1), ..., ya = (v, eq).

The equivalence of Definitions 8 and 9 depends on the fact that the cone axis
vector in Definition 8 is chosen to be the same for all y € B(x,§), and so can
be used as e; in the orthonormal basis for B(x, §) required in Definition 9. The
constants A and o in Definitions 8 and 9 are related by A = cota, while the two 4’s
of Definitions 8 and 9 may be taken to be equal. Note too that if the uniform
interior cone/Lipschitz domain property holds for a given é > 0, then evidently it
also holds for all smaller §.

If a domain satisfies a uniform interior cone condition, then the intrinsic metric
and Euclidean metric properties are closely related.

LEMMA 10. A domain D that is bounded in Euclidean metric and satisfies a
uniform interior cone condition must have finite intrinsic diameter.

PROOF. Certainly distj(x, y) is a continuous function of (x, y) in the open
set D x D and takes only finite values there. Note that the domain D is path-
connected, being an open connected subset of Euclidean space.

Suppose that D satisfies a uniform interior cone condition based on radius § > 0
and angle o € (0, 7/2]. If m is a unit vector for the interior cone condition at
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x € 0D then geometrical arguments show that x 4 %8m is at least %8 sin @ from the

exterior D¢. Choosing 8" with 0 < §’ < %8 sina, it follows that any such x + %Sm
belongs to

Do Bo,8) Y (D@ B(o,8)) = {x e D: B(x,8") C D},
which itself is closed. Inheriting boundedness from D, it is therefore compact
in the Euclidean topology, and hence also in the topology derived from the in-
trinsic metric, since the two metrics are locally equal away from the boundary
of D. Hence {distip(x, y):x,y € D © B(o, §')} attains a maximum value, which
is therefore finite. However, for any x’, y’ € D, we have

(2) disting (x', y') < 8 + sup{distine(x, y) : x, y € D © B(o, §")},

because we have used the uniform interior cone condition to ensure that from
each point on the boundary there is a straight-line segment of length %6 to
{distine(x, y) : x, y € D © B(0, §')}. Hence the intrinsic diameter must be bounded
by the right-hand side of (2). [

The full force of the uniform interior cone condition is not required for the above
result; the proof does not require coordination of the directions of interior cones at
different base-points. The full force of the uniform interior cone condition assures
us that any path of finite length leading in D to a point x on the boundary of D can
be deformed continuously in D into one which in its final phase is the segment on
which the interior cone at x is based. Moreover, the lengths of the curves through-
out this deformation can be constrained to be arbitrarily close to the length of the
original path. This allows us to view D as a topological manifold with boundary,
which is continuously embedded in the ambient Euclidean space. More than this, it
shows that the completion D of D under the intrinsic metric can be identified with
the Euclidean closure D and moreover that the intrinsic metric and the Euclidean
metric actually endow D with the same topology. Finally, Bridson and Haefliger
[(1999), Corollary 11.3.11] show that the closure D, viewed as the completion D
of D in intrinsic metric, inherits CAT(0) structure from D.

2.1. Regularity for geodesics. We wish to consider pursuit—evasion in a
bounded CAT(0) domain. Lion and Man both move with unit speed, with the
Lion seeking to draw closer to the Man by using a “greedy” pursuit strat-
egy (which is not necessarily optimal). This Lion strategy can be phrased in
terms of an R%-valued field x of unit vectors defined on the configuration space
(D x D)\ {(x, x):x € D}, such that y (x, y) is the initial velocity of the unit-speed
geodesic moving from x to y. (This is the vector field described pedantically in
Section 1 as a section of the pullback of the tangent bundle of D to the configura-
tion space of the pursuer and evader before capture.)

We first show that the combination of uniform exterior sphere and uniform inte-
rior cone/Lipschitz conditions implies that, working locally, every boundary point
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B(y,r)

FIG. 4.  Illustration of interior cone C; and exterior ball B(y,r) at z € D.

of the intersection of the domain D with a suitable 2-plane will support an exterior
sphere, albeit with smaller radius.

LEMMA 11. Suppose that D is a domain satisfying a uniform exterior sphere
condition based on radius r > 0, and a uniform interior cone condition based
on radius § > 0 and angle o € (0, w/2]). Suppose that z € dD and ey is the dth
vector in the orthonormal basis corresponding to z as in Definition 9. Let P be a
2-plane intersecting D and containing z and z + e;. Then there exists w € P, with
|w — z| =dist(w, DN P) =rsina and B(w, rsinae) N (DN P) = .

Since the interior cone condition is uniform, the lemma shows that every point
in the boundary of D N P near z must support an exterior sphere of radius r sinc.

PROOF OF LEMMA 11. Suppose that z € 9 D with e, defined as above. Let P
be a 2-plane containing z and z + e4. Since z € 9D, there is an exterior sphere
touching z, defined by a ball B(y, r) € D¢ with z € B(y, r). By Definition 9, the
cone

C,={w:{w—2z,e4)>|w—2z|cosa}
lies locally in D, in the sense that C, N 3(z, 8) C D (see Figure 4). If % + B is the
angle between e4 and y — z, then two-dimensional geometry (Figure 5) shows that
min{|y — (veg +2)|:y € R} =rcosB.

But 8 >aif C,NB(z,8) € D and B(y, r) C D¢, moreover, the line {ye;+z:y €
R} must lie in P. Hence the distance from y to P is at most r cos 8 < rcosa.
Consequently the radius of the disk B(y, r) N P is at least r sina; since z € (D N
P) and B(y,r) N P is an exterior sphere to z in P, the lemma follows. [J

We can now establish some important technical consequences of the uniform
exterior sphere and interior cone conditions together with the CAT(0) condition;
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FI1G. 5. Two-dimensional section of Figure 4 illustrating the underlying two-dimensional geometry.

namely, that the Euclidean and intrinsic distances are locally comparable, and that
the vector field x is continuous with reference to the common topology of the
Euclidean metric and the intrinsic metric, and hence is uniformly continuous over
regions for which the two arguments are well-separated. This is spelled out in the
following proposition. In fact we state and prove a generalization of the result for
CAT(x) domains with ¥ > 0, so that we can apply it in the forthcoming paper
Bramson, Burdzy and Kendall (2011).

PROPOSITION 12. Suppose that D is a CAT (k) domain with k > 0, bounded
in the Euclidean metric and satisfying a uniform exterior sphere condition based
on radius v > 0, and a uniform interior cone condition based on radius § > 0
and angle o € (0, /2]. We can and will assume without loss of generality that
A =cota > 1.

(1) Suppose a, b € D are close in the Euclidean metric, in the sense that

3) la — b] < min{§/(4)), 2r sina}.
Then
disting (@, b .
(4) 2r sina sin(M) <|a — b| < distyy (@, b).
2r sin«

(2) Suppose that k = 0. Intrinsic geodesics for D [necessarily minimal, by the
CAT(0) condition] are continuously differentiable and their direction fields satisfy
a Lipschitz property with constant % L that therefore holds uniformly for all

2rsina

minimal intrinsic geodesics in D and hence in D [since CAT(0) geodesics depend
continuously on their endpoints]. For k > 0, the same conclusion holds for minimal
intrinsic geodesics with endpoints in D which are separated by intrinsic distance
strictly less than 7w /\/k .

3) Forx,yin D with disting(x, y) < 7/+/k (as usual, 71/\/(_) =00), let x(x,y)
be the unit vector at x pointing along the unique intrinsic geodesic y*Y) from x
to y. Then x(x,y) depends continuously on (x,y) in A={(x,y) e D x D:0 <
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disting (x, ¥) < 7w/+/k} and hence is uniformly continuous over compact subre-
gions of A.

PROOF OF PART (1). Definitions 8 and 9 are equivalent, so the domain D
is Lipschitz with constant A = cot«. For each ball of radius §, we may therefore
construct a coordinate system ey, ..., eg and a Lipschitz function f to implement
the Lipschitz property of D.

Consider a, b € D with |a — b| < min{§/(41), 2r sina}. If the line segment S
between a and b does not intersect d D, then it must form the (unique, minimal)
intrinsic geodesic between a and b, and (4) follows immediately. If S does not
intersect int(D€), then we can cover the intersection S N d D with a single B(z, §)
(for z € 3 D) and use the unit vector e, corresponding to the ball (equivalently, the
unit vector defining the cone for the ball) to perturb S to a regularizable path in D
(save for the endpoints) with length arbitrarily close to that of S. Hence S is the
intrinsic geodesic between a and b, and therefore (4) follows immediately. So we
can confine our attention to the case when a # b and § intersects int(D°).

Applying Definition 9 to B(a, 8), there is a Lipschitz function f:R?~! — R,
with Lipschitz constant A = cote, and an orthonormal basis ey, ..., e4, such that

&) B(a,8)ND={yeB(a,d): f(y,...,yi-1) < ya},
where y| = (y,e1), ..., Ya = (¥, e4). Consider
Cla)={y R :(Iy1 —a1’ + -+ ya—1 —aa—11)"* < 8/(4n),
|ya — adql < 8/2}

and note that, since A > 1, it is a consequence of (5) that C(a) C B(a, §). More-
over f has Lipschitz constant A, so we can control the behaviour of that part of the
boundary of D lying within C(a):

eR:(y1 — a1’ +--- 4 [ya—1 — ag-1 ) < 8/(4n),
(6) JOL - Ya-1) = ya}
={yeC@: f(y1,...,Yi—1) = ya} = 9D NC(a).
Applying Lemma 11 to the 2-plane
P =a + linear span{b — a, ez},

every boundary point of D N P N C(a) supports an exterior disk of radius 7 sinc.
[Note that the Lipschitz representation implies that (0 D)N P NC(a) = (DN P)N
C(a).] We shall use these exterior disks to construct a short path between a and b.

It follows from (3) and (6) that the two rays from a and b along the direction e,
must lie in P N D until they leave C(a):

Clan{a+yes:y>0CPND,
(7)
ClayN{b+yeq:y >0 PND.
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C(a)

FI1G. 6. Illustration of proof of Proposition 12, part (1). The aspect ratio is not realistic—the height
of C(a) must be at least twice its horizontal diameter.

We set u, v to be the intersections of these rays with dC(a). For each n € (0, 1),
consider the point na + (1 — n)b and the open segment which is the intersection
of the corresponding ray with C(a), namely

Cla)N{na+ (1 —n)b+yey:y >0}.
It follows from (3) and (6) that a nonempty final sub-segment

Clan{na+ A —-nb+yes:y >yl

must lie in D N P. But then any exterior disk for na + (1 — n)b + y,eq has to
avoid the rays defined in (7) as well as the above nonempty final sub-segments;
it must not intersect the segments [a, u] and [b, v], and also may not intersect
that portion of dC(a) which intersects rays {na + (1 — n)b 4+ yeq:y > 0} (see
Figure 6). Consequently (since |a — b| < 2r sin«) such an exterior disk must have
center lying on the side of the line through a and b which is opposite to the side
containing # and v, and must not intersect the complement of the segment § in the
line through a and b.

The envelope of the boundaries of all such disks of radius 7 sine in D N P is
formed by the complement of the segment S in the line through a and b together
with the minor arc A of the circle of radius r sin« running through a and b. We
can use A to generate a short path between a and b in D as follows. If A does not
intersect one of the rays in (7) then A itself suffices; otherwise a still shorter path
may be formed which lies wholly in D by making a short-cut using the relevant
ray. In any case a small perturbation of A or the short-cut version, using the vector
eq, will provide a path in D from a to b of length less than the length of A plus an
arbitrarily small increment. Calculation of the length of the minor arc A now leads
to the desired bounds on distjy(a, b) as given in (4). [

PROOF OF PART (2). Consider points a, b and ¢ in D, lying in this order along
an intrinsic geodesic I' in D. We will need the geodesic I" to be minimal. This is
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immediate in case k = 0; in the case xk > 0 it follows if we require that the length of
[ is strictly less than 7 //k . For some positive r < min{8/(4A), 2r sina}, suppose
that the intrinsic distances between a and b and between b and c¢ are both equal
to ¢. Since I' is a minimal geodesic, the intrinsic distance between a and ¢ must
be 2t. Let p1 = |a — b|, p» = |b — c| and p3 = |a — c| be the Euclidean distances
between these three pairs of points and let 7 — 6 be the interior angle at b in the
Euclidean triangle abc. By the cosine formula,

PP =P PP

2002 20102

cosd = —cos(m —0) =

The upper bound on # means we can apply (4) to the intrinsic and Euclidean dis-
tances between a, b and c¢. Hence p; <t, pp <t and

o 2t 1/ ¢t \?
p322rsmasm< - )zZt(l——( . ) )
2r sina 6\ rsina

where the last step uses sina > o — a3 /6 if @ > 0. Together with the cosine for-
mula, these bounds for p1, o2 and p3 yield

@2t (1 — (1/6)(¢/(r sina))?))? — p? — p3

cosf >
2p102
. (2t (1 — (1/6)(t/(r sinw))?))? — 2¢2 _2< 1( t )2>2 |
- 212 o 6\ rsina ’
hence

0 1( t )2
cos—>1—— - .
2 6 \rsina

Considering ¢ < min{3/(41), 2r sin«}, it follows by calculus that there exists a c(¢)
tending to zero with ¢ such that

®)

4 t t
0 < — 1 t .
- ﬁerina( + )2rsina>

Suppose now that the intrinsic geodesic I" has total length K. For any positive
integer m > K/ min{§/(4A), 2r sina}, let ap =a, ay, ..., am—1, am =b be m + 1
points equally spaced along the geodesic, so that distiny(a;—1,a;) =1t for j =
1,...,m. Define g,, :[0, K] — R4 to be the piecewise-linear curve interpolating
gn(jK/m)=aj for j =0,...,m. By (8), all the angles between successive line-
segments of the trajectory of g,, are bounded above by

4 t t
— 1 t .
ﬁerina( el )erina)
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Define the directional unit vector field of the curve g, by w,, (s) = g,,(s)/1g,,(s)|
for s where g,,(s) is linear, and extend to all s using left-limits for s > 0 and the
right-limit for s = 0. Then, by the triangle inequality,

4 t t |S2—Sl| )
B 4 1 ¢ 1).
| (52) — Wm(s1) _ﬁerina< +el )2rsina>< t "

From (4),

2rsina_< t ><|,()|<1
sin S :
t 2rsina ) — Em -

hence we obtain the inequality

181 (52) = & (S| < @i (52) — @ (51| + | (52) — &3, (52)]

+ 18, (s1) — @m(s1)]

- 4 t <l+ 0 t ><|sz—sl|+l>
— C

~ /3 2rsina 2r sina t

2r si t
+2(1— rsm“m( : ))
t 2r sino

from which there follows a uniform bound on the absolute variation of the g;,
functions. Thus we can apply Helly’s selection theorem to deduce that g, will
converge along a subsequence, both pointwise and locally in L', to a continuous
limit A. It is immediate that g, converges uniformly to I', and I' must be almost
everywhere differentiable with limit 2 = I'". Moreover, from (9) [and bearing in
mind that ¢(z) — 0 with 7], we may deduce that the derivative I'” is Lipschitz with
constant

(€))

4 1
V3 2rsina’

and indeed that I" is continuously differentiable. [J

PROOF OF PART (3). As noted above, the CAT(k) property of D im-
plies that all geodesics between points x and y satisfying 0 < distipe(x, y) <
7/+/k are unique and minimal. Consider (x, y), (xn, y») € {(v,2) € D xD:0<
disting (v, z) < 7/+/k} with x, — x and y, — y in the Euclidean metric; taking
subsequences we may suppose that x (x,, y,) converges to a limit. Part (2) of
the lemma establishes the uniform Lipschitz property of the direction fields of
all minimal geodesics in D so, by the Arzela—Ascoli theorem, we can find a sub-
sequence (X, Yn,) such that the geodesics from x,, to y,, must converge to a
curve from x to y whose direction field is the limit of the direction fields of these
minimal geodesics; hence its direction at x must be limy x (X, y»,). By minimal-
ity of the geodesics from x,, to y,, and taking limits, the length of the limiting
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curve can be no greater than that of the unique minimal geodesic from x to y;
therefore the limiting curve must also be a minimal geodesic from x to y. By
the CAT (k) property, the two minimal geodesics from x to y must therefore be
equal, and therefore it follows that limg x (Xp,, yn,) = x (x, y). It follows that any
subsequence of (x,, y,) — (x,y) (convergence in Euclidean metric) must pos-
sess a further subsequence for which limy x (xy,, yo,) = x(x,y), and therefore
lim,, x (x,, y») = x(x, y) must hold. This establishes continuity of y with refer-
ence to the Euclidean metric. [

REMARK. Part (1) of Proposition 12 may be used to show that x(a, b) is
H@lder(%) in its second argument b when a and b are well-separated. We omit this
argument, as the result is not used in this paper.

REMARK. Setting p = |a — b| and ¢ = distin(a, b), Inequality (4) can be

rewritten as
2rsino | t
sin . <
d 2r sin«

The following is a trivial but useful consequence of the above estimates: for some
c1 > 0, depending on D, and all a, b € D, with |x — y| <cy,

~ |

<l1.

(10) la — D| < distiny (@, b) <2|a —D|.
Moreover, since sin¢ > ¢ — %¢3 if ¢ >0,

1 2

- <
6 4r2sin*a

Nlb

<I.

The last inequality and (10) imply that for some ¢, c3 < 0o, depending on &, r
and «, and for p < min{§, 2r sina},

(11) l<=<l+4ct?<1+cp’

Proposition 12 makes it possible to quantify the extent to which short intrinsic
geodesics may be approximated by Euclidean segments.

COROLLARY 13. Suppose the assumptions on Proposition 12 hold, and that '
is a unit-speed intrinsic geodesic with intrinsic length t < min{§/(4)), 2r sina}.
Then

2

, 4
P =TO) =T 0] = 35—
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PROOF. Set p = |I'(¢) — I'(0)] equal to the Euclidean distance between the
two end-points of I'; then p is bounded above by the intrinsic length ¢. Let 6 be
the angle between I''(0) and I"(z) — I'(0).

Proposition 12(2) tells us that '’ is Lipschitz with constant % 1

2rsina Hence

(12) <F/()F/<0)>—1—1|r/()—r/(o>|2>1_l<i s )2
Y B 2 Y - 2\ /3 2rsina

and this integrates to

, g 72
(L@ —rO),10)=> (1 - —7>t.

9 4r2sin’ o

Consequently

IT(t) — T(0) — T'(0)¢]* = [T (t) — T(0)|* + [T (0)¢|* — 2(I'(t) — T'(0), ['(0)¢)

<p+1 2(1 5_ 1 >t2<16 &
=r 9 4r2sin% o = 9 42sina’

The result follows by taking square roots. [

At this point we revert to considering CAT(0) spaces only, since generaliza-
tion of the following proofs to the CAT (k) case would extend the exposition. We
recall Gauss’ lemma from Riemannian geometry, that the exponential map is a ra-
dial isometry. Cheeger and Ebin [(2008), Chapter 1, Section 2] observe that, for
smooth Riemannian manifolds, it is equivalent to the assertion that the Rieman-
nian distance distjn(x, ¥) is continuously differentiable in x when x # y and y
does not lie in the cut-locus of x, with the gradient being given by the tangent of
the geodesic running from y to x. Proposition 12 and Corollary 13 can be used to
prove the following Gauss lemma for CAT(0) domains with sufficient boundary
regularity. Here, grad, distjn(x, y) refers to the Euclidean gradient with respect
to x, with grad distjp(x, y) being the gradient with respect to both variables.

Note also that a consequence of Proposition 12 is that intrinsic geodesics have
continuously varying directions, and therefore that it makes sense to speak of the
angle between a geodesic and a Euclidean segment.

PROPOSITION 14. Suppose that D is a CAT(0) domain, bounded in the Eu-
clidean metric, satisfying a uniform exterior sphere condition based on radius
r > 0, and a uniform interior cone condition based on radius § > 0 and angle
a € (0, 7/2]. For every c1 > 0, there exist ¢y, c3 < 00 such that, if x, y € D with
disting (x, y) > ¢y and /lu — x|V |lu — x| < 3, then

(13) |disting (2, y) — (disting (x, ¥) + |u — x| cos0)| < c3lu — x|*/2,
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FIG. 7. Illustration of the configuration of the triangle referred to in the statement of Proposi-
tion 14. The sides running from y to u and from y to x (and of intrinsic lengths dy, and dyy, resp.)
are intrinsic geodesics. The side running from x to u is a Euclidean segment.

where 0 is the angle between the geodesic from y to x and the Euclidean segment
Jrom x to u that is exterior to the direction from y to x (see Figure 7). Consequently,
ifx,y € Dwithx #y, then

(14) grad, disting (x, y) = —x(x, y).
Moreover,
(15) grad disting (x, y) = (—x (x, ), —x (¥, x)).

Note that Bieske (2010) establishes a similar result for Carnot—Carathéodory
spaces. In both cases, the relevant distance function satisfies an eikonal equation.

PROOF OF PROPOSITION 14. In order to demonstrate (13), we establish upper
and lower bounds on the difference

(16) disting (y, u) — distinee(y, X)

when u is close to x. We abbreviate, setting dy, = distine(y, X), etc.

Let 0’ be the exterior angle between the geodesic from x to y and the geodesic
from x to u. By the CAT(0) property, the Euclidean triangle with the same side
lengths as a triangle in the intrinsic metric has larger interior angles and therefore
smaller exterior angles. [The elementary argument for this is given in Bridson and
Haefliger (1999), Chapter II.1, Proposition 1.7(4).] Thus if 6” is the exterior angle
of the comparison triangle for x, y and u corresponding to the exterior angle 6’,
then 8” < 6’, and so

dyy = \Jd2, + d2, + 2dydy 080" > \Jd2, + d2, + 2dyxdyy oSO

> \/de +d2,c0s?0" + 2dyydyy, cos0’ = dyy + dyy, cos 6’

> dyy + |u — x| cos 6’
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Corollary 13 implies that |§ — 0’| < c4dy, for small d,,,. Hence, |0 — 0| < c5|u — x|
and | cos@ — cos 8’| < cslu — x|. We obtain for |u — x| < ¢, for some ¢ > 0,

dyy > dyx +|u — x| cos’ > dy, + |u — x|cosf — |u — x||cosf — cos'|
(17)
> dyy + |u — x| cos@ — cslu — x|

This provides a lower bound on (16) and a bound for one direction of (13).

We now establish an upper bound on (16). Fix a point w on the intrinsic geodesic
from y to x. Then dyy = dyy + dyy and dy, < dy + dy,,. We shall require w to
be close to x, but not as close as u, with |w — x| = 4/Ju — x| being assumed.

Because w is close to x and thus also close to u, we may replace the intrinsic
geodesics from w to u# and from w to x by Euclidean segments, without greatly
altering lengths and segments. Let 6* be the exterior angle at x for the Euclidean
triangle with sides dy ), dy , and dy, 4. From (11),

dwu

(18) u — w| < dyy = lu —w| < (1 +cglu —w|?|u —wl,
lu — w|
dwx 2
(19 |x—w| <dy, = e E Wl = (sl —w)x —wl,

when |u — w|, |x — w| < 2r sina.
As before, by Corollary 13, |6 — 0*| < ¢7dy, for small d,,,. Hence, |6 — 0*| <
cglw — x| and

(20) |cosf® — cosO*| < cglw — x|.

These computations allow use to establish an upper bound for distjne(y, ) —
distiner (v, x). First note that

dyy < dyw + dyy < dyyy + (1 + colu — w|*)|u — w
<dyy +|u—w|+celu — wl3
< dyy + |u— w| + co(lu — x| + |w — x])*.

Now apply the cosine formula to control |# — w|, using (20):

lu — wl z\/lw—xlz—i- lu — x|?2 4+ 2|lw — x]||u — x| cos 6%

= ((jw — x| + |u — x| cos ) + |u — x|*sin* @

+ 2w — x||u — x|(cos8* — cos )"/
<|w—x|+|u—x|cosd

lu — x|?sin? 6 |lw — x||u — x|(cos0* — cos )

1
§|w—x|+|u—x|cos9 |lw— x|+ |u — x| cos6
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lu — x|%sin® @

<|w-—x|+|u—x|cosb + =
2w —x|—|u—x|

lw—x||lu — x|

w—x— _x|08|w —x|.
If we take |w — x| = /[u — x|, with |u — x| < cg for a suitably small cg > 0, then
lu —w| <|w—x|4+|u—x|cosf 4+ ciolu —x|3/2.
Combining these bounds implies
dyu < dyy + | — w| + co(lu — x| + |w — x])°

<dyy+|w—x|+|u—x|cost + ciolu —x|3/2 4+ co(lu — x|+ |w —xl)3
< dyy +dy 5+ lu—x|cosb +ci|u —x|3/?
=dyy +|u —x|cost +cii|u —x|3/2,

which provides an upper bound on (16). It follows from the above inequality
and (17) that

\dyy — (dyx + lu — x| cos0)| < c3lu — x|*/2,
which yields the bound in (13). The formula in (14), for the gradient of the intrinsic
distance distjy(x, ¥) with respect to x, follows immediately.

We still need to demonstrate the formula in (15). Let ¢q, ¢» and c3 be as in the
statement of (13). Fix x, y € D and suppose that distj (x, y) > 2c1. Suppose that
u,veD, Ju—x[Viu—x|<cyAci/4dand JTv—y[V|v—y| <c2Aci/4
Let 6, be the exterior angle between the geodesic from x to y and the Euclidean
segment from x to u. Similarly, let 6, be the exterior angle between the geodesic
from y to x and the Euclidean segment from y to v. Also, let 6’ be the exterior
angle between the geodesic from y to # and the Euclidean segment from y to v.
Then by the above reasoning

1) |disting (1, y) — (distine(x, ¥) + |4 — x| cosOy)| < c3]u — x|>/?

and
(22)  |disting (v, u) — (disting(y, ) 4 [v — y|cos0')| < c3]v — y|*/%

Recall that the Euclidean triangle with the same side lengths as a triangle in
intrinsic metric has larger interior angles. Using a triangle inequality for angles,
|6y, — 0’| is less than the angle at the vertex corresponding to y in the Euclidean
triangle with sides dyy,dy, and dy,. It follows that [0, — 9| < cr2dyy/dyy <
c13|lu — x| and therefore | cos 6, — cos0’| < c13|u — x|. This and (22) yield

23) |di5tintr(va u) — (diStintr(y, u) + v — y|cos ey)‘
<clv—yP? 4 erslu —x|jv —yl.
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The triangle inequality applied to the left-hand sides of (21) and (23) implies that
|disting (v, u) — (disting(x, ¥) + [v — y| cos by + [u — x| cosby)|
< eslu — 2P+ e3lo = y P2+ erzlu — xllv -y,

Consequenﬂ& grgl distine(x, ¥) exi_sts when distip(x, y) is viewed as a function
of (x,y) € (D x D)\ {(u4,u):u € D} and is given by

grad distine (x, y) = (—x (x, ¥), —x (¥, x)). O

In Proposition 15, we consider solutions of the differential equation dx =
X (x, y) dt for pursuit and evasion. Proposition 12 established partial regularity for
x (x, ¥), which does not automatically guarantee well-posedness of solutions (as
defined below). However, the CAT(0) property, together with boundary regularity,
will imply well-posedness, even for some discontinuous driving paths y.

Suppose that y(¢), ¢ € [0, T1], is cadlag, of bounded variation on finite intervals,
and takes values in D. We will say that x(t), ¢t € [0, T1], is a weak solution to
dx = x(x,y)drif x(r) = x(0) + f(g x(x(s), y(s))ds for all t € [0, Ty].

PROPOSITION 15. Let D be a CAT(0) domain satisfying uniform exterior
sphere and interior cone conditions. For distinct x,y € D, let x(x, y) be the unit
tangent vector at x of the geodesic from x to y. We consider the differential equa-
tion

(24) dx = x(x,y)ds

defined in the weak sense for absolutely continuous paths {x(t) :t > 0} in D, driven
by paths {y(t) :t > 0}, up until the first time that x and y are equal. The problem
is well-posed, in the sense that solutions x exist, are uniquely determined by initial
values x(0), and depend continuously on the initial value x(0) and the driving
process {y(t) :t > 0} (using the uniform distance metric in both cases).

PROOF. The argument is based on the simpler case when the path y is constant
in time, which we for the moment assume. In this case, existence follows directly
from the existence of intrinsic geodesics in CAT(0) domains. To show uniqueness,
note that, for two solutions x and X of (24), since x and X are absolutely continuous
and satisfy the differential equation weakly, for almost all s, the time-derivatives
of x(s) and X (s) must exist and be given by x (x(s), y) and x (X(s), ¥). Exploiting
the differentiability of the intrinsic distance given by Proposition 14, for x(s) # y
and X(s) # y, one has

(25) [d%distimr(x(s—}-t),f(s+t))} =[%distimr(F(s)(t),IN‘(S)(I))}

=0 t=0
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where I'®), T'®) are unit-speed geodesics running from x(s), X(s) to y. We will
show that

(26) [i disting (T (1), 1"“'“)@))} <0.

dr =0
Consider a Euclidean triangle abc with side lengths satisfying |ab| =
disting(I'®(0), y), |eb] = distine(T'®(0), y) and |be| = distine (I (0), T (0)).
Let z(#) € ab be a point such that |7(¢) — a| = ¢, and let Z(¢) € bc be a point such
that |Z(¢) — c¢| = . Then Definition 4 implies that

disting (0 (2), T (1)) < |2(t) = Z(2)] < 12(0) — Z(0)| = disting (T (0), T (0)).

This implies (26). It follows that the derivative on the left-hand side of (25) is
nonpositive; therefore x = X if x(0) = X(0), and so uniqueness holds.

By considering the behaviour over disjoint time intervals, existence and unique-
ness follow for the case when y is piecewise-constant, in which case the solution
curve x is piecewise-geodesic.

We will establish continuous dependence on the initial position x(0) and the
driving process y, when y is piecewise constant. Suppose that y, y are two
piecewise-constant paths in D, and x, X solve

dx = x (x, y)dr, dx = x(x, y)dr

for prescribed initial positions x(0) # y(0) and X(0) # y(0). The solutions x,
X satisfy the differential equations weakly, and therefore, for almost all s, the
time-derivatives of x(s) and X(s) must exist and are given by x (x(s), y(s)) and
x (X(s), ¥(s)). Arguing as before, for x(s) ## y(s) and X(s) # y(s), we may con-
struct a CAT(0) comparison for the two triangles defined by (a) vertices x(s),
X(s), y(s) and (b) vertices X (s), y(s), y(s) (see Figure 8). Using this comparison,
and continuing until either x(¢) = y(¢) or X(¢) = y(¢), the function distj(x, X)
is dominated by its Euclidean counterpart for a two-dimensional quadrilateral
which is based on a pair of opposing sides of lengths distin(x(s), X(s)) and
distiner (Y (5), Y(5)).

In detail, and using boldface symbols to indicate corresponding Euclidean com-
parison points, we may argue as follows (see Figure 8). Because side-lengths of
comparison triangles agree,

disting (x(5), y(8)) = [X(s) —y(8)],
disting (X (s), y(s)) = [X(s) — y(5)I,
disting(x (5), X(5)) = [x(8) —X(8)],
disting (X (5), ¥(5)) = [X(s) — ¥(5)I,
disting: (¥ (5), ¥(5)) = [y(s) — ¥(s)|.

Locating x(¢) according to distance from x(s) along the intrinsic geodesic from
x(s) to y(s), and X(¢) according to distance from X (s) along the intrinsic geodesic
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y(s)
X(t)
x(s)
x(s) x(1) y(s)
P ¥(s)
x(s
Z
x(s) x(0) ¥(s)

FI1G. 8. [llustration of the CAT(0) comparison argument applied to the triangles defined by vertices
(@) x(s), X(s), y(s) and (b) X(s), Y(s), y(s). The corresponding Euclidean triangles have vertices
marked with boldface symbols.

from X (s) to ¥(s) (and locating comparison Euclidean points in the corresponding
way), we find

disting (x (5), x(2)) = [x(s) — x(B)],
distingr (X (5), X (1)) = [X(8) — X(D)].

Now locate the Euclidean point z at the intersection of the Euclidean line segments
X(s), y(s) and x(t), X(t), and locate z on the intrinsic geodesic from X(s) to y(s) so
that

disting (X (5), 2) = [X(s) — z|.

Using comparison arguments and the nature of the Euclidean parallelogram
X(8)X(s)¥(s)y(s), we then see that

distingr (x (), X (1)) < distine(x(2), 2) + distine (2, X (7))
< Ix(t) —z| + [z = X(H)| = [x(t) —X(1)]
< max({[x(s) —X(s)|, [y(s) — ¥(s)[}
= max{disting (x (5), X(5)), distinir (y (s), Y(s))}.

This comparison can also be justified by use of Reshetnyak majorization, however
we have chosen to present an explicit elementary proof.

We now consider general y in (24). There exist piecewise-constant functions y,
converging to y uniformly on compact intervals; let x, be the corresponding so-
lutions to (24), with x,,(0) = x(0) € D. If |y,,(t) — yu(t)| < c1 for t € [0, T1, then
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|xn (£) — x;, ()] < c1 by the argument given above. Since the sequence y, is Cauchy
in the uniform norm on [0, T'], so is the sequence x,, which therefore converges to
a function x.

Recall that we are assuming x(0) # y(0). Choose fixed €1,&, > 0 and let
T =inf{t > 0:|x(t—) — y(t—)| < 2¢1}. By part (3) of Proposition 12, there exists
&1 > O such that, if |Lt1 —u2| =&, |v1 — v2| > €1, |u1 —v1| < é1 and |u2—v2| <4éq,
then |y (uy,u2) — x(vi,v2)| < e/T. Suppose that n is large enough so that
[y (t) — y(2)| <81 Aep fort €0, T]. Then |x,(¢t) —x(t)| <1 Aeyfort €[0,T]
and | x (x(2), y(#)) — x (xn (1), yn(2))| < &2/T. We obtain, fort < T,

t
x(r)—x<0>—/0 X (e(s), y(s)) ds

t
< (1) — 2] + a(8) — x(0) —/0 X Con (), v () ds

t t
4 ‘ [ x @0 ds = [ xxs) v ds

t
<d +0+/0 [X (xXn($), yn(s)) — x (x(s), y(s))|ds
<81 +é&2.

Since €1, &2 and §; can be chosen arbitrarily small, we see that x(¢) = x(0) +
fé x(x(s), y(s))ds forall t < inf{t > 0:|x(t—) — y(t—)| = 0}. Hence, x is a solu-
tion to (24).

Uniqueness of the solution of (24), for given x(0) and general y, follows by
reasoning as in (25) and (26). The continuous dependence of solutions on x(0)
and y, for general y, follows from the above estimates by approximating y by
piecewise constant driving processes. [l

3. CAT(0) and pursuit—-evasion. We consider the Lion and Man problem in
a bounded CAT(0) domain D satisfying the uniform exterior sphere and interior
cone conditions. Alexander, Bishop and Ghrist (2006) showed that &/2-capture,
for given ¢ > 0, must occur for the discrete-time variant of this problem. As we
will see in Section 4, the Lion and Man trajectories x and y will be weak limits
of couplings of reflected Brownian motions, with drift and small noise, that arise
from our capture problem.

We therefore modify the Alexander, Bishop and Ghrist (2006) argument to
apply to continuous time; the modified argument also supplies an explicit upper
bound on the capture time. We will only need to consider trajectories x and y that
are Lipschitz with constant 1. Note that Lipschitz trajectories are absolutely con-
tinuous, so that the directions dx/d¢ and dy/d¢ are defined for almost all times .
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One can express the trajectories of Lion x and Man y as functions of time ¢ in
the following differential form:

dx = x(x,y)dr —v,dL”,
(27

dy=Hdr —v,dL".
Here, H is assumed to be a pre-assigned, time-varying unit length vector generat-
ing the motion of the Man, x (x, y) generates the motion of the Lion and is defined
as in Proposition 12, for x # y, as the unit tangent at x for the corresponding in-
trinsic geodesic, while v, € N , and vy € Ny, (for r > 0 satisfying the exterior
sphere condition of D as given in Definition 6) determine the reflection off of
the boundary d D. The vector H is assumed to be measurable in ¢; on account of
Proposition 12, x is continuous on x # y. The terms v, dL", respectively, vy, dL”,
are differentials arising from Skorokhod transformations and are differentials of
functions of bounded variation that increase only when x, respectively, y, belong
to d D, and are then directed along an outward-pointing unit normal so as to cancel
exactly with the outward-pointing component of the drifts x dz, respectively, H dt.

We note that Skorokhod transformations are uniquely defined for a domain sat-
isfying uniform exterior sphere and interior cone conditions [Saisho (1987)] [also
compare earlier results of Lions and Sznitman (1984)], and they then depend con-
tinuously on the driving processes (using the uniform path metric). In fact, by the
definition of x, vy dL" vanishes identically, while vy, dL” vanishes identically if
(H,v) <0 whenever y € dD. In particular, Proposition 15 applies and guarantees
the existence of x and its approximation by piecewise-geodesic paths for y deter-
mined by H. [We include both the Skorokhod transformation differentials in (27)
as they will both appear in the stochastic version in Section 4.]

We base our argument on Alexander, Bishop and Ghrist [(2006), Theorem 12].
The proof analyzes the greedy pursuit strategy arising from the definition of
the vector field x, with the Lion always directing its motion along the intrinsic
geodesic from Lion to Man. The CAT(0) property forces the distance between
Lion and Man to be nonincreasing, and the Man must run directly away from the
Lion in order to prolong successful evasion. Since the domain is bounded, this will,
however, not be achievable indefinitely.

In order to demonstrate the main result in this section, Proposition 17, we will
employ the following lemma.

LEMMA 16. Under the greedy pursuit strategy described above, in a CAT(0)
domain satisfying uniform exterior sphere and interior cone conditions, and at a
time t at which Lion and Man locations x(t) and y(t) are differentiable in t,

d
T disting (x (1), y(1)) = —(1 — [y () | cos (1)),

where a(t) is the angle between the Man’s velocity y'(t) and the geodesic running
Jfrom Lion to Man.
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PROOF. This follows immediately from the generalization of Gauss’ lemma
to such domains, as was established in Proposition 14. [J

Alternatively, Lemma 16 follows directly from the first variation formula in
CAT(0) spaces [Bridson and Haefliger (1999), page 185, Burago, Burago and
Ivanov (2001), Exercise 4.5.10].

PROPOSITION 17. Suppose that D is a bounded CAT(0) domain that satisfies
a uniform exterior sphere condition based on a radius r > 0 and a uniform interior
cone condition based on a radius § > 0 and angle o € (0, w/2]. Under the greedy
pursuit strategy described above, there is a positive constant t. depending only on
the diameter of D and € > 0 [and not on H in (27)] such that the Lion will come
within distance ¢ /2 of the Man before time t., regardless of their starting positions
within D.

REMARK. We use ¢/2 here rather than ¢, since a further distance /2 will be
required by the stochastic part of the argument.

PROOF OF PROPOSITION 17. This proof follows Alexander, Bishop and
Ghrist (2006), but is modified (a) to account for the continuous time context and
(b) because we need to derive a specific upper bound 7, on the time of ¢/2-capture.
Below, we abbreviate by setting £(¢) = distin (x(2), y(2)).

Let « be the angle defined in Lemma 16. Note that this is defined for almost all
times ¢, since the paths x(¢), y(¢) are Lipschitz and are therefore differentiable for
almost all 7. Evidently, the Lion will have come within ¢/2 of the Man by time ¢
unless

(28) /Ol(l —cosa)ds < L(0) — &/2 < diamj (D) — /2.

Now consider the total curvature of the Lion’s path. By Proposition 15, the Lion’s
path is uniformly approximated by pursuit paths driven by discretized approxima-
tions to the Man’s path. If x™ is the Lion’s path driven by a discretized Man’s
path y® . then the Lion’s path is piecewise-geodesic, with total absolute curva-
ture given by the sum of the exterior angles formed at the points that connect
the geodesics that occur when x ™ changes direction. CAT(0) comparison bounds
then show the total curvature of x™ is bounded above by

ina®™
sina” )

29 A s
(29) diStintr(x(n)a y(n)) Y

where summation is over the jumps of the discretized path y™, and o« is the
exterior angle that the jump Ay contributes to the geodesic running from x
to y™.
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The total curvature of a path is a lower-semicontinuous function of the path (us-
ing the uniform topology) for CAT(0) spaces. [This is a special case of a CAT (k)
result of Karuwannapatana and Maneesawarng (2007), referred to in Alexander,
Bishop and Ghrist (2010), Theorem 18.] For the sake of completeness, we indi-
cate the short proof for the CAT(0) case. Consider a curve g of finite length in
a CAT(0) space. Its total curvature TC(g) is the supremum of sums of exterior
angles of piecewise-geodesic curves interpolating ¢; a CAT(0) comparison argu-
ment shows that these sums of exterior angles increase as the interpolating mesh is
refined. Let ¢” be a sequence of curves converging uniformly to ¢g. Furthermore,
let g™ be the piecewise-geodesic curve interpolating ¢” at the points k27" for
k=0,1,.... Then, by definition of total curvature,

TC(g"™™) 7 TC(q¢") as m — 00.

Bridson and Haefliger [(1999), Chapter I1.3 Proposition 3.3] observe that the
CAT(0) property implies that interior angles are continuous functions of their end
vertices and upper-semicontinuous functions of their centre vertices. This upper-
semicontinuity translates into lower-semicontinuity for exterior angles, and hence

limsup TC(¢™"™) > TC(¢>"™),
n—oo

00,m m

where ¢ is the uniform limit of ¢ as n — oo [here we use the CAT(0)
property again] and is a piecewise-geodesic interpolation of ¢ at the points k27"
fork=0,1,....Since TC(g) = lim TC(g°*™), lower-semicontinuity now follows
from

limsup TC(g") > limsup TC(g"*"™) > TC(¢g*>"") — TC(q) as m — 00.

n—oo n—o0

Consequently, the upper bound (29) provides an upper bound on the total ab-
solute curvature of the Lion’s path in the limit. Bearing in mind the Lipschitz(1)
property of y, the total absolute curvature 7 () incurred by x between times O and ¢
therefore satisfies

I]sina(s)]

(30) r = [T

L(s)
Assume that £(s) > ¢/2 for s < t. By the Cauchy—Schwarz inequality and (28),

2 2 1
r(t)s—/ |sina|ds < = t/ sin? o ds
£ J0O & 0

< 2—ﬁ\/t/t(l —cosa)ds < 2‘—5\/diamimr(0) —e/2- 1.
& 0 &

Next, we follow Alexander, Bishop and Ghrist (2006) in applying Reshet-
nyak majorization [ReSetnjak (1968); see also the telegraphic description in
Berestovskij and Nikolaev (1993), Section 7.4] to generate a lower bound on the

€2y
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total absolute curvature of {x(s):0 <s < t}. We provide details for the sake of
completeness.

We argue as follows. Reshetnyak majorization asserts that for every closed
curve ¢ in D [more generally, in any CAT(0) space], one can construct a convex
planar set C, bounded by a closed unit-speed curve ¢, and a distance-nonincreasing
continuous map ¢ :C — D such that ¢ o { = ¢; moreover, ¢ preserves the arc-
length distances along ¢ o ¢ and ¢. Consequently, ¢ restricted to dC will not in-
crease angles and the pre-images under ¢ of geodesic segments in ¢ must them-
selves be Euclidean geodesics (i.e., line segments).

By our assumptions about ¢, the total absolute curvature of {x(s):0 <s <t} is
finite [see (31)]. Fix an arbitrarily small §; € (0, w/2). It follows from the defi-
nitions of length and curvature of a path that, for each n, we can approximate the
unit-speed curve {x(s):0 < s <t} by a piecewise-geodesic curve {z(s):0 <s <1’}
with the following properties:

The curve z is parametrized using arc-length.

— Note that x and y are continuous, so is x (x, y), by Proposition 12(3). Hence,
we can choose 0 =1y < 1| < --- <1, =t such that the total absolute curvature
of {x(s):ti_1 <s <t;}isequal to w/2 — §; for all i, with the possible exception
of i =n.

— For every i, there exist #; =tl-0 <tl.1 <. <tl.mi =t;+1 and s; =sl-0 <sl-1 <<
sl'."i = s;i4+1 such that z(sl-j) = x(tl.]) and z is geodesic on [sij, si]H], for all i
and j. (Notice that the curve z is inscribed in the curve x.)

— The total absolute curvature of {z(s):s;—1 <s <s;} is less than /2. In other
words, the sum (over j) of exterior angles between {z(s) :sij - <s< sij } and
{z(s) :sl-] <s< siJH} at si] is less than /2. [This is a consequence of z being
inscribed in x and the CAT(0) property.]

— The difference between the lengths of {z(s):0 <s <} and {x(s):0 <s <t}is

less than §.

Then we have
(32) total absolute curvature({x(s):0 <s <r}) > (% — 51>(n —1).

We apply Reshetnyak majorization to the closed curve formed by {z(s):s;_1 <
s < s;} and its chord [the geodesic running from z(#;) back to z(¢;—)]. Reshetnyak
majorization guarantees that the total absolute curvature of {z(s):s;_1 <s < s;}
dominates the curvature of its pre-image in the boundary of a convex planar
set C;. Moreover, the perimeter of its pre-image in the boundary C; has length
len({z(s):si—1 <s <s;}), while the remainder of the boundary of C; must be a
line segment of length distine (z(s;), 2(si—1)).

The two-dimensional pre-image of {z(s):s;—_1 <s <s;} therefore has total cur-
vature bound of 7. By two-dimensional Euclidean geometry, we can maximize



SHY COUPLINGS, CAT(0), AND LION AND MAN 773

the ratio of the length of the pre-image of {z(s):s;—1 <s < s;} to the length
disting(2(si), z(si—1)) of its chord by considering the case of an isoceles right-
angled triangle, in which case the ratio is +/2. Accordingly, we obtain the upper
bound

len({z(s) :si—1 <5 < s1}) < V2disting (z(5:), 2(5i-1)) < v/2 diamiper (D).

It follows that a portion of the piecewise geodesic curve z which turns no more
than 7 cannot have length exceeding /2 times the intrinsic diameter of the region.
(Note this is related to the Euclidean diameter by Lemma 10.) This implies that we
can control the total length of z and thus the total length of x, with

t—38 =len({x(s):0<s <t}) =&
(33)
<len({z(s):0 < s <t}) < V2 diamjy (D) x n.
Combining inequalities (32) and (33), we deduce that

total absolute curvature({x(s):0 <s <r})

(34) - (3 —51)<n —1

g t— 961
) i)
2 \/i diamiye (D)
Recall that 7(¢) = total absolute curvature({x(s):0 < s <t}) and len({x(s):0 <
s <t}) =t. Letting 61 — 0 in (34), it follows that

(1) - z( 1 _ l)
r T2 \/Ediamintr(D) t)

In combination with (31), this yields

2
B < ——./diamjy (D) — &/2 -
2 \/E diamipe (D) ! € \/ e /

n( 1 1) 272 1

&

t

and hence the quadratic inequality for ¢ = /7,

T 1 2 22 = ‘ T
(5 ﬁdiamimr(D))q - (T\/dlammtr(D) - 8/2)q 3 <0.

The left-hand side is negative for ¢ = 0 and the coefficient of ¢ is positive, so
there is exactly one positive root g, [which can be written out explicitly in terms
of diamjp (D) and ¢]. Combining this with our earlier arguments, it follows that
the Lion will come within /2 of the Man by time ¢, := qcz. U
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4. From Brownian shy couplings to deterministic pursuit problems. This
section is devoted to the proof of Theorem 1. Consider a co-adapted coupling of
reflecting Brownian motions X and Y in the bounded domain D € R? satisfying
uniform exterior sphere and interior cone conditions. Saisho (1987) showed that
the reflected Brownian motions can be realized by means of a Skorokhod trans-
formation as strong solutions of stochastic differential equations driven by free
Brownian motions. As discussed in Section 1.2, we can use arguments embedded
in the folklore of stochastic calculus, and stated explicitly in Emery (2005) and in
Kendall [(2009), Lemma 6], to represent this coupling as

(35) dX =dB — vy dLX,
(36) dY =J"dB +K"dA) —vydL?,

where A and B are independent d-dimensional Brownian motions, and J, K are
predictable (d x d)-matrix processes such that

(37) JTT+ K"K = (d x d) identity matrix.

Here LX and LY are the local times of X and Y on the boundary.

The advantage of this explicit representation of the coupling is that we can track
what happens to X and Y when we modify the Brownian motion B by adding a
drift. We will see that the effect of adding a very heavy drift based on the vector
field x (X, Y) will be to convert (35) and (36) into a stochastic approximation of
the deterministic Lion and Man pursuit—-evasion equations (27) over a short time-
scale.

PROPOSITION 18. Suppose that D C R? is CAT(0), is bounded in the Eu-
clidean metric, and satisfies a uniform exterior sphere condition and uniform in-
terior cone condition. For any € > 0 and X and Y satisfying (35) and (36) with
X(0), Y(0) € D, there exists t > 0 such that

(38) ]P’[ sup  disting (X (), Y (5)) 58] > 0.

t/2<s<t
PROOF. Consider the following modification of (35) and (36),
t
X0 = XO +BO) + [ nx(X"(5). ¥ () ds
t xn
- /o vxn(s) dLy

t
Y"(t) =Y (0) + fo () dB(s) + K, dA(s))

39)

(40) t t
+ f nIT % (X" (s), Y (s)) ds — f vynndLY".
0 0
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By the Cameron—Martin—Girsanov theorem, the distributions of the solutions
of (35) and (36) and (39) and (40) are mutually absolutely continuous on ev-
ery fixed finite interval. We will show below that, after rescaling time, paths of
(X" (-), Y™(-)), for large n, will be uniformly close to those for the corresponding
Lion and Man problem. Application of Proposition 17 will then enable us to finish
the proof.

We will make the followmg substitutions, X" (t) = X" (nt), Y'(t) = yn (nt),
B(t) = B"(nt)//n, A(t) = A"(nt)//n, J(t) = T (nr), K(r) = K™ (nt). Then
(39) and (40) take the form

~ 1 ~ ! ~ ~ ! vn
41)  X"(t)=X(0)+ —B"(t +/ X" (s), Y"(s ds—/ Vign (o ALY,
(41) (1) ) N () OX( (), Y"(s)) | Vi AL
?n _ 1 ! TN T 1pn >\ T 4 an
O =YO0) +— [ ((J{) dB"(s) + (K{) dA"(s))
v Jo
(42) t t ~
+ /0 TNV x (X" (s), T (5)) ds — /0 Vgn(sy ALY .
Note that B" and A" are Brownian motions.
Consider the analog of (41) and (42), but without boundary:

rin _L"‘n ! v v
(43) Y (t)—ﬁB (t)+/0 X (X7 (s), Y7(s)) ds,

V() = 1 /t((jgn))TdEn(s)+(K§n))TdAvn(s))
\/ﬁ 0
(44) .
+ [ AT xR ). 750 ds.

All components of the sextuplet

~ 1 ~ t ~ ~
W (1) = (U"(r), =B, [ x @), 7650 s,

~ 1 roo ~
(45) V”(t),ﬁ /0 ()T dB"(5) + (K™) T dA"(s)),

LA (%), T
/0 J5") " x (X" (s), Y"(s))ds)

are tight by the criterion given by Stroock and Varadhan [(1979), Section 1.4]
since the diffusion coefficients and the drifts are bounded by 1. So, on an appro-
priate subsequence, W” converges weakly to a limiting process W°. By abuse of
notation, we will denote this subsequence W”. In particular, U"(t) and V" (¢) con-
verge weakly, so, by Saisho [(1987), Theorem 4.1] (which applies because of the
conditions imposed on D), (X", Y") converges weakly to a limiting continuous
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process (X, YY) along the same subsequence. It follows that

- ~ ~ 1 -~ ro ~
7' ()= (X"(t),Y”(t),U"(t),ﬁB"(t),/O X (X" (s), Y"(s)) ds,

~ 1 oo ~ ~ ~
n O n O n
(46) 14 (t)’_ﬁ/() ((J§") " dB"(s) + (K{") * dA"™(s)),

! e ~ ~
/0 T 5 (X" (s), Y"(s))ds)

is tight and, therefore, converges weakly along a subsequence. Once again, we
will abuse the notation and assume that Z" converges weakly. By the Skorokhod
lemma [Ethier and Kurtz (1986), Section 3.1, Theorem 1.8] we can assume that
the sequence Z" converges a.s., uniformly on compact intervals.

The fourth and seventh components of Z" are Brownian motions run at rate %
so they converge to the zero process as n — oo. The fifth and eighth components
of Z" are both Lip(1); their limits are therefore also Li J)(l) These observations
and (43) and (44) imply that the limits Vo and U of V" and U" are Lip(D).

Let T7* =inf{r > 0: Xoo(t) = Yoo(t)} The bounded vector field X(X" Y") de-
pends continuously on X" and ¥" (Proposition 12). We may therefore apply the
dominated convergence theorem and (43) to deduce the following integral repre-
sentation for U e,

(47) ﬁoo(t)zftx()?oo(s),?‘x’(s))ds forr < T*.

Recall that, by the Skorokhod representation, we can assume that Xn @) and
Y (1) converge almost surely. Lemma 19 proved below shows that X,y
both still Lip(1), with respect to the intrinsic metric of D. Hence we can apply the
results on CAT(0) Lion and Man problems at the end of Section 2.

Fix an arbitrarily small ¢ > 0. It follows from (47) and from Proposi-
tion 17 that there exists #; < oo not depending on X (0), Y(0) or w, such that
disting (X (1), Y1) < g/2 for t > t;. We conclude that for some ng < oo, de-
pending on X (0) and Y (0), and all n > no,

IP’[ sup  disting (X" (1), 7"(1)) < g] > 0.
1 <t<2t
Changing the clock to the original pace, we obtain
IP[ sup  distine(X" (1), Y () < e] > 0.
t/n<t<2t;/n
By the Cameron—Martin—Girsanov theorem,
(48) IP[ sup  distine (X (1), Y (1)) < s] > 0.
t1/n<t<2t1/n

Since ¢ > 0 is arbitrary, this completes the proof. [
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LEMMA 19. Let D be a domain satisfying uniform exterior sphere and in-
terior cone conditions. Suppose that Z is a continuous process on D derived by
the Skorokhod transformation from a free process S that has Lip(1) sample paths.
Then Z itself has Lip(1) sample paths with respect to the intrinsic metric.

PROOF. Following Saisho [(1987), Section 3], consider the step function S,
obtained from S by sampling at instants k27", for k = 0, 1,.... Suppose that
27" < r, where r is the radius on which the uniform exterior sphere condition
is based. Let Z be the projection onto D described in Lemma 7. The Skorokhod
transformation of S, is Z,,, given by projecting increments back onto D:

Zim((k = 1)27™m) 4+ AS,, (k2—™),
(49) Zn(t) = fork2=" <t < (k+ 1)27"™,
Z0), forO0<t<?27™

On account of the Lip(1) property of S, this projection is defined when 27" < r.

From Saisho [(1987), Theorem 4.1], we know that Z,, — Z uniformly on
bounded time intervals. We compute the maximum possible Euclidean distance
between Z,,(s) and Z,,(¢), if 0 <t — s < 27™, when one or both of 2"y, 2"¢
are nonnegative integers. Since Z,, is constant on intervals [k27™", (k 4+ 1)27™), it
suffices to produce an argument for the case when 2™s =k — 1 and 2"t = k. We
therefore proceed to bound the Euclidean distance | Z,, (k27™") — Z,,, (k — 1)27™)|.
We will show that this can only exceed 27" by an amount which, for large m, will
make a negligible contribution to path length when summed over the whole path.

If Z,,(k27™) ¢ 9D, then there is nothing to prove, since the jump is
AS;; (k27™), which is bounded in length by 27 since S is Lip(1). So we in-
stead suppose that Z,,(k27"") € dD. For convenience, set y = Z,,(k27") —
(Zn((k — D27™) + AS,;(k27™)) to be the Skorokhod correction to be ap-
plied at this step, and set a = |AS,,,(k27")| to be the length of the uncorrected
jump. Finally, let 8 be the angle between the vector y and the negative jump
—AS;;, (k27™). These definitions are illustrated in Figure 9, together with the sup-
porting ball B at Z,,(k2™™) € d D whose centre is located at Z,,, (k27™) — Ly for
some A =r/|y| > 0 and whose existence is guaranteed by the construction of the
X > X projection map as described in Lemma 7.

First note that | Z,, (k27") — Z,,((k — 1)27™)| = \/az + y2 —2ay cosé (where
we abuse notation by letting y also stand for the length of the vector y). This
increases as 6 increases to m, so long as a, y, Z,,(k27") are held fixed. Thus we
can assume that 6 has increased to the point where Z,,((k — 1)27™), as well as
Zn (k27™), belong to d B. (This will happen if, as required above, 27" < r.) Now
observe that the distance |Z,, (k27"") — Z,,((k — 1)27™)| will be bounded above
by the smaller of the two distances from Z,,(k27™) to the intercepts of 9B by
a line parallel to y, and at distance a from Z,,(k27"). But two applications of
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Z (k2-m)
Z, ((k-1)2-™)

F1G. 9. Ilustration of the geometry underlying the argument of Lemma 19.

Pythagoras’ theorem show that this distance is given by

\/Clz-i-(r—\/r2—a2)2:\/2r2—2r\/r2—a2

=2r 1-]7 fr\/ (1+ (z*))

for some z* in the range [0 ]. (The last step arises from a second-order Taylor
series expansion.) Therefore

\/a2+(r—\/r7) <V2r ( +522> a(l-i-;%)

(using /14+z<1+ %z forz > —1).
Thus the total path length over the time interval (s, ¢) is bounded above by

—2m
r—)2"4+2) x 27" 1 ,
((t = $)2" +2) ( + 8r2)

which converges to t — s as m — oo. Hence we obtain
distinr(Z(s), Z(1)) <t — s,
thus establishing the Lip(1) property in intrinsic metric for Z. [
We will show that the bound in Proposition 18 is uniform over all X (0) and

Y (0). We will switch from the intrinsic distance to the Euclidean distance in the
formulation of the next proposition. This is legitimate in view of (10).
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PROPOSITION 20. Let D be a domain satisfying uniform exterior sphere and
interior cone conditions. Suppose that there exist t| > 0 and €1 > 0 such that, for
any X and Y satisfying (35) and (36) with X (0), Y (0) € D,

(50) IP’[ inf [X(1) =Y ()| 581] ~ 0.
0<t<t

Then

(51) B[ inf IX() =Y <e1]>pi
<1<t

for some py > 0 not depending on X (0) and Y (0).

PROOF. Suppose (51) does not hold. Then there exist #; > 0, 1 > 0, se-
quences {x;},>1, {yn}n>1 of points in D, random processes {A;,t >0}, {B;,t >
0}, {J7,t > 0} and {K}, ¢ > 0}, and solutions X" and Y" of (35) and (36) satisfying
the following properties. The processes A and B are d-dimensional Brownian mo-
tions starting from 0, and independent of each other. The (d x d)-matrix-valued
processes J" and K" are predictable with respect to the natural filtration of A
and B, such that (J) "]’ + (K")TK, is the (d x d) identity matrix at all times
t. Let X" and Y" denote solutions to (35) and (36) based on the Brownian mo-
tions A and B, using the predictable integrators J" and K”, and starting from
X"(0) =x, € D and Y"(0) =y, € D. Then

(52) IP[ inf |X"(t) — Y"(1)| >81] >1-27",
0<t<t

Let (M™!, M"?) = (Jo dBy, [§(IH T dBy+ 5 (KM T dAy). The processes M™!
and M™? are Brownian motions and so the sequence of pairs is tight, which there-
fore possesses a subsequence converging in distribution. By abuse of notation, we
assume that the whole sequence (M™!, M™?) converges in distribution to, say,
(M1 M°-2) Tt is clear that M°>! and M2 are Brownian motions.

Let F; = o((Msoo*l, MS°°'2), s <) be the natural filtration for (M1, M°:2).
We will show that (M1, M>2) are co-adapted Brownian motions relative to
{F:}. Since (M™Y, M™?) are co-adapted Brownian motions, for all 0 < 1] <1, <
<o <t, <t <s] < s, the random variable M;lz’l - M ;11,1 is independent of

((er;,l’ Mtri,Z), (Mn,l

rh

2 1 2
M), o (M M),
Independence is preserved by weak limits, so M SOZO’I — M;’lo’l is independent of

1 2 1 2 ! ?
(M7 M), (™, M™). - (M2, M 25)).

This implies that M;'zo’l — M;’lo’l is independent of F;. Since the same argument
applies to MSOZ"*2 — M;’lo’z, we see that (M1, M2) are co-adapted relative to
{F:}. Recall from Section 1.2 that this implies that there exist Brownian motions
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{AP°, 1 >0} and {B?°, t > 0} and processes {J7°, ¢ > 0} and {K°, ¢ > 0} such that
(M7, M%) = (f5 dBE, f5(I) T dBX + [§(K) T dA%).

Recall that (M™!, M™?) — (M°>!, M°®2) weakly in the uniform topology on
all compact intervals. Going back to the original notation, we see that

t t t
( [ as. [[anTas + | (K?)TdAs)
0 0 0
t t t
— ( f dB>, / J*)TdB> + f (K;?O)TdA;?°>
0 0 0

weakly in the uniform topology on all compact intervals. By the Skorokhod
lemma, we can assume that the processes converge a.s. in the supremum topol-
ogy on compact intervals.

Since D is compact, we can assume, passing to a subsequence if necessary, that
the initial points satisfy x, — xo € D and y, — Yoo € D as n — 00. In view of
the representation of coupled reflected Brownian motions using stochastic differ-
ential equations (35) and (36), established in Saisho [(1987), Theorem 4.1], and
employing the continuous dependence on driving Brownian motions established
there, we see that (X", Y"") — (X°°, Y*°) weakly in the uniform topology on all
compact intervals, where (X, Y°°) represents the solution to (35) and (36) with
X%°(0) = xx0, Y°(0) = yoo, corresponding to A%, B>, J* and K*. We obtain
from (52) and weak convergence of (X", Y™) to (X°°, Y*°) that, for every n,

IP’[ inf |X®(1) — Y1) > 81] >1-27"
0<t<n

Taking the limit as n — 00, this contradicts (50) in the statement of the Proposi-
tion. Consequently (51) must hold for some p;. O

We now complete the proof of Theorem 1, applying Proposition 20 together
with standard reasoning. Consider processes X and Y starting from any pair of
points in D and corresponding to any “strategy” J and K. Because of the uniform
bound in Proposition 20, the probability of X and Y not coming within distance &;
of each other on the interval [kt1, (k + 1)¢1], conditional on not coming within this
distance before kt1, is bounded above by 1 — p; for any k, by the Markov property.
Hence, the probability of X and Y not coming within distance 1 of each other on
the interval [0, kt{] is bounded above by (1 — pl)k. Letting k — oo, it follows
that X and Y are not 1-shy. Since € can be taken arbitrarily small, the proof of
Theorem 1 is complete.

We remark that the matrices J and K employed in (35) and (36) are predictable
and, consequently, the choice of the pursuer’s velocity is based strictly on past
information. This is in contrast to the pursuit—evasion problems and associated
paradoxes discussed by Bollobas, Leader and Walters (2012).
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5. Complements and conclusions. We conclude this paper by remarking on
some supplementary results and concepts, and by considering possibilities for fu-
ture work.

5.1. Comparison with previous methods. The fundamental idea in this paper
turns out in the end to resemble that of Benjamini, Burdzy and Chen (2007), but
uses simple notions of weak convergence and tightness, rather than detailed large
deviation estimates. Moreover, the use of metric geometry notions enables us to fi-
nesse many analytical technicalities. (Perhaps this is the first application of modern
metric geometry to Euclidean stochastic calculus?) On the other hand, the stochas-
tic control methods of Kendall (2009) are quite different. The stochastic control
approach uses potential theory to estimate the value function of an associated
stochastic game; consequently the methods of Kendall (2009) may be expected
to give sharper information (bounds on expectation of stopping times), but in more
limited cases (convexity of domain). However, one can observe that, at least in
principle, the stochastic game formulation still applies in the general case. For
example, there is a value function to be discovered for a stochastic control refor-
mulation of Theorem 1, and in principle it might be possible to estimate this value
function and so gain more information than is supplied by the weak geometric
bounds established above.

We note that many promising ideas based on stochastic calculus fail to show
nonshyness because they cannot be applied to “perverse” couplings with the prop-
erty that, on some time intervals, | X — Y| grows at a deterministic rate [see Exam-
ple 4.2 of Benjamini, Burdzy and Chen (2007)].

Also note that the proof in Kendall (2009), which works in convex domains,
does not appear to be (directly) extendable to calculations involving the intrinsic
metric—simple manipulation using symbolic Itd calculus [Kendall (2001)] shows
that the drift of distj,(X, Y) is unbounded at distances bounded away from zero.
In particular, Bessel-like divergences for distin (X, ¥Y) of magnitude a occur when
the geodesic from X to Y touches a concave part of 0D at x and |x — Y| =1/a.
The first-order differential geometry given in Proposition 14 (the generalization
of Gauss’ lemma) is the best we can do for CAT(0) domains satisfying uniform
exterior sphere and interior cone conditions.

5.2. Higher dimensions and the failure of CAT(0). For planar domains,
CAT(0) and simple-connectedness are equivalent, in which case, by Theorem 2,
there are no shy co-adapted couplings. In higher dimensions, it is natural to ask
whether the CAT(0) condition is essential for there to be no shy coupling. We do
not at all believe this to be the case. It is possible to give an argument suggest-
ing that star-shaped domains with smooth boundary conditions cannot support shy
couplings, by establishing the analogous result for a corresponding deterministic
pursuit—evasion problem. To apply this argument to the probabilistic case would
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require more careful arguments. We therefore leave this as a project for another
day.
As a spur to future work, we formulate a bold and possibly rash conjecture:

CONJECTURE 1. There can be no shy co-adapted coupling for reflecting
Brownian motions in bounded contractible domains in any dimension.

While resolution of the star-shaped case appears to be largely a technical matter,
we believe that new ideas will be required to make substantial progress toward
resolving the conjecture.

5.3. When can shyness exist? Many examples of shy couplings can be gen-
erated using suitable symmetries. However, we do not know of any examples in
which symmetries play no role. Accordingly we formulate a further conjecture:

CONJECTURE 2. Ifa bounded domain D supports a shy co-adapted coupling
for reflecting Brownian motions, then there exists a shy co-adapted coupling that
can be realized using a rigid-motion symmetry of the domain D.

A stronger form of the above conjecture, saying “If a bounded domain D sup-
ports a shy co-adapted coupling for reflecting Brownian motions, then the shy cou-
pling is realized using a rigid-motion symmetry of the domain D,” is false. To see
this, consider the planar annulus A = B(0, 2) \ B(0, 1) and let 7 be the symmetry
with respect the origin. Let X be reflected Brownian motion in A and ¥ = 7 (X).
Let D= A x (0, 1) and let Z be reflected Brownian motion in (0, 1), independent
of X and Y. Then (X, Z) and (Y, Z) form a shy coupling in D which cannot be
realized using a rigid-motion symmetry of D.

Note that Benjamini, Burdzy and Chen [(2007), Example 3.9] supplies an ex-
ample based on Brownian motion on graphs, for which there is no fixed-point-free
isometry and yet a shy coupling exists. However we do not see how to use the idea
of this construction to construct a counterexample to the above conjecture.

5.4. Further questions. We enumerate a short list of additional questions.

(1) Shyness is interesting for foundational reasons: coupling is an important
tool in probability, and shyness informs us about coupling. We do not know of any
honest applications of shyness. However, one can contrive a kind of cryptographic
context. Suppose one wishes to mimic a target ¥, which is a randomly evolving
high-dimensional structure, in such a way that the mimic X never comes within
a certain distance of the target Y. Shyness concerns the question, whether it is
possible to do this in a way that is perfectly concealed from an observer watching
the mimic X alone.
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(2) In this formulation, it is not clear why one should restrict consideration to
co-adapted couplings. Our methods do not lend themselves to the non-co-adapted
case, and the question is open whether or not results change substantially if one
is allowed to use such couplings. In particular, it seems possible that Conjecture 2
might have a quite different answer in this context.

(3) In further work [Bramson, Burdzy and Kendall (2011)] we plan to study
the deterministic pursuit—evasion problem, in conjunction with shy couplings, for
multidimensional CAT (x) domains possessing “stable rubber bands,” a condition
that is partly topological and partly geometric. As a corollary, we plan to prove
that there are no shy couplings in multidimensional star-shaped domains.

(4) The Lion and Man problem has been generalized to the case of multiple
Lions. [An early instance is given in Croft (1964).] Can one formulate and prove
useful results for a corresponding notion of multiple shyness?
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