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RANDOM DIRICHLET ENVIRONMENT VIEWED FROM THE
PARTICLE IN DIMENSION d ≥ 31

BY CHRISTOPHE SABOT

Université de Lyon

We consider random walks in random Dirichlet environment (RWDE),
which is a special type of random walks in random environment where the
exit probabilities at each site are i.i.d. Dirichlet random variables. On Zd ,
RWDE are parameterized by a 2d-tuple of positive reals called weights. In
this paper, we characterize for d ≥ 3 the weights for which there exists an ab-
solutely continuous invariant probability distribution for the process viewed
from the particle. We can deduce from this result and from [Ann. Inst. Henri
Poincaré Probab. Stat. 47 (2011) 1–8] a complete description of the ballistic
regime for d ≥ 3.

1. Introduction. Multidimensional random walks in random environment
have received a considerable attention in the last ten years. Some important
progress has been made in the ballistic regime (after the seminal works [11, 29,
30, 32]) and for small perturbations of the simple random walk [5, 31]. We refer
to [34] for a detailed survey. Nevertheless, we are still far from a complete descrip-
tion, and some basic questions are open such as the characterization of recurrence,
ballisticity. The point of view of the environment viewed from the particle has
been a powerful tool to investigate the random conductance model; it is a key in-
gredient in the proof of invariance principles [13, 15, 18, 28] but has had a rather
little impact on the nonreversible model. The existence of an absolutely continuous
invariant measure for the process viewed from the particle (the so called “equiv-
alence of the static and dynamical point of view”) is only known in a few cases:
for dimension 1, cf. Kesten [12] and Molchanov [19] pages 273–274; in the case
of balanced environment of Lawler [16]; for “nonnestling” RWRE in dimension
d ≥ 4 at low disorder, cf. Bolthausen and Sznitman [4]; and in a weaker form
for ballistic RWRE (equivalence in half-space), cf. [23, 24]. Note that invariance
principles have nevertheless been obtained under special assumptions: under the
ballistic assumption [2, 24] and for weak disorder in dimension d ≥ 3, [6, 31].

Random walks in Dirichlet environment (RWDE) is a special case where at
each site the environment is chosen according to a Dirichlet random variable. One
remarkable property of Dirichlet environments is that the annealed law of RWDE
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is the law of a directed edge reinforced random walk as remarked initially in Pe-
mantle’s Ph.D. thesis [20, 21], the idea of reinforced random walks going back to
Diaconis and Coppersmith; cf. [22] for a survey. While this model of environment
is fully random (the support of the distribution on the environment is the space
of weakly elliptic environment itself), it shows some surprising analytic simpli-
fications; cf. [8, 9, 25–27]. In particular, in [25], the author proved that RWDE
are transient on transient graphs; cf. [25] for a precise result. This result uses in
a crucial way a property of statistical invariance by time reversal; cf. Lemma 1
of [25].

RWDE are parametrized by 2d reals called the weights (one for each direction
in Zd ) which govern the behavior of the walk. In this paper we characterize on
Zd , d ≥ 3, the weights for which there exists an invariant probability measure for
the environment viewed from the particle, which is absolutely continuous with re-
spect to the law of the environment. More precisely, it is shown that there is an
absolutely continuous invariant probability exactly when the parameters are such
that the time spent in finite size traps has finite expectation. Together with previous
results on directional transience [27] it leads, using classical results on stationary
ergodic sequences, to a complete description of the ballistic regimes for RWDE in
dimension larger or equal to 3. Besides, we think that the proof of the existence of
an absolutely continuous invariant distribution for the environment viewed from
the particle could be a first step toward an implementation of the technics devel-
oped to prove functional central limit theorems; cf., for example, [14].

2. Statement of the results. Let (e1, . . . , ed) be the canonical base of Zd ,
and set ej = −ej−d , for j = d + 1, . . . ,2d . The set {e1, . . . , e2d} is the set of unit
vectors of Zd . We denote by ‖z‖ = ∑d

i=1 |zi | the L1-norm of z ∈ Zd . We write
x ∼ y if ‖y − x‖ = 1. We consider elliptic random walks in random environment
to nearest neighbors. We denote by � the set of environments

� =
{
ω = (ω(x, y))x∼y ∈]0,1]E,

such that for all x ∈ Zd ,
2d∑
i=1

ω(x, x + ei) = 1

}
.

An environment ω defines the transition probability of a Markov chain on Zd , and
we denote by P ω

x the law of this Markov chain starting from x.

P ω
x [Xn+1 = y + ei |Xn = y] = ω(y, y + ei).

The classical model of nonreversible random environment corresponds to the
model where at each site x ∈ Zd the environment (ω(x, x + ei))i=1,...,2d is chosen
independently according to the same law. Random Dirichlet environment corre-
sponds to the case where this law is a Dirichlet law. More precisely, we choose
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some positive weights (α1, . . . , α2d), and we define λ = λ(α) as the Dirichlet law
with parameters (α1, . . . , α2d). It means that λ(α) is the law on the simplex{

(x1, . . . , x2d) ∈]0,1]2d,

2d∑
i=1

xi = 1

}
(2.1)

with density

�(
∑2d

i=1 αi)∏2d
i=1 �(αi)

( 2d∏
i=1

x
αi−1
i

)
dx1 · · · dx2d−1,(2.2)

where � is the usual Gamma function �(α) = ∫ ∞
0 tα−1e−t dt . [In the previous ex-

pression dx1 · · · dx2d−1 represents the image of the Lebesgue measure on R2d−1

by the application (x1, . . . , x2d−1) → (x1, . . . , x2d−1,1 − (x1 + · · · + x2d−1)]. Ob-
viously, the law does not depend on the specific role of x2d .) We denote by P(α)

the law obtained on � by picking at each site x ∈ Zd the transition probabilities
(ω(x, x + ei))i=1,...,2d independently according to λ(α). We denote by E(α) the ex-
pectation with respect to P(α) and by P

(α)
x [·] = E(α)[P (ω)

x (·)] the annealed law of
the process starting at x. This type of environment plays a special role since the
annealed law corresponds to a directed edge reinforced random walk with an affine
reinforcement, that is,

P(α)
x [Xn+1 = Xn + ei |σ(Xk, k ≤ n)] = αi + Ni(Xn,n)∑2d

k=1 αk + Nk(Xn,n)
,

where Nk(x,n) is the number of crossings of the directed edge (x, x + ek) up to
time n. This is just a consequence of the fact that the Dirichlet law is the mixing
measure of Polya urns so that at each site the annealed process choose a direction
following a Polya urn with parameters (αi)i=1,...,2d ; cf. [20] or [21]. When the
weights are constant equal to α, the environment is isotropic: when α is large, the
environment is close to the deterministic environment of the simple random walk,
when α is small the environment is very disordered. The following parameter κ is
important in the description of the RWDE:

κ = 2

( 2d∑
i=1

αi

)
− max

i=1,...,d
(αi + αi+d).

If i0 ∈ {1, . . . , d} realizes the maximum in the last term, then κ is the sum of the
weights of the edges exiting the set {0, ei0} (or {0,−ei0}). The real κ must be
understood as the strength of the trap {0, ei0}: indeed, if G̃ω(0,0) is the Green
function at (0,0) of the Markov chain in environment ω killed at its exit time of
the set {0, ei0}, then G̃ω(0,0)s is integrable if and only if s < κ [33]. In [25] it has
been proved for d ≥ 3 that the same is true for the Green function G(0,0) on Zd

itself: it has integrable s-moment if and only if s < κ .
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Denote by (τx)x∈Zd the shift on the environment defined by

τxω(y, z) = ω(x + y, x + z).

Let Xn be the random walk in environment ω. The process viewed from the particle
is the process on the state space � defined by

ωn = τXnω.

Under P
ω0
0 , ω0 ∈ � (resp., under P0), ωn is a Markov process on state space �

with generator R given by

Rf (ω) =
2d∑
i=1

ω(0, ei)f (τei
ω),

for all bounded measurable function f on �, and with initial distribution δω0 (resp.,
P); cf., e.g., [3]. Compared to the quenched process, the process viewed from the
particle is Markovian. Since the state space is huge, one needs to take advantage
of this point of view, to have the existence of an invariant probability measure,
absolutely continuous with respect to the initial measure on the environment. The
following theorem solves this problem in the special case of Dirichlet environment
in dimension d ≥ 3 and is the main result of the paper.

THEOREM 1. Let d ≥ 3 and P(α) be the law of the Dirichlet environment with
weights (α1, . . . , α2d). Let κ > 0 be defined by

κ = 2

( 2d∑
i=1

αi

)
− max

i=1,...,d
(αi + αi+d).

(i) If κ > 1, then there exists a unique probability distribution Q(α) on � abso-
lutely continuous with respect to P(α) and invariant by the generator R. Moreover
dQ(α)

dP(α) is in Lp(P(α)) for all 1 ≤ p < κ .
(ii) If κ ≤ 1, there does not exist any probability measure invariant by R and

absolutely continuous with respect to the measure P(α).

We can deduce from this result and from [27, 33], a characterization of ballis-
ticity for d ≥ 3. Let dα be the mean drift at first step

dα = E
(α)
0 (X1) = 1∑2d

i=1 αi

2d∑
i=1

αiei .

THEOREM 2. Let d ≥ 3.

(i) (cf. [33]) If κ ≤ 1, then

lim
n→∞

Xn

n
= 0, P

(α)
0 a.s.
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(ii) If κ > 1 and dα = 0, then

lim
n→∞

Xn

n
= 0, P

(α)
0 a.s.

and for all i = 1, . . . , d

lim infXn · ei = −∞, lim supXn · ei = +∞, P
(α)
0 a.s.

(iii) If κ > 1 and dα 	= 0, then there exists v 	= 0 such that

lim
n→∞

Xn

n
= v, P

(α)
0 a.s.

Moreover, for the integers i ∈ {1, . . . , d} such that dα · ei 	= 0 we have

(dα · ei)(v · ei) > 0.

For the integers i ∈ {1, . . . , d} such that dα · ei = 0

lim infXn · ei = −∞, lim supXn · ei = +∞, P
(α)
0 a.s.

REMARK 1. This answers in the case of RWDE for d ≥ 3 the following ques-
tion: is directional transience equivalent to ballisticity? The answer is formally
“no” but morally “yes”: indeed, it is proved in [27] that for all i such that dα ·ei 	= 0,
Xn ·ei is transient; hence, for κ ≤ 1 directional transience and zero speed can coex-
ist. But, it appears in the proof of [33] that the zero speed is due to finite size traps
that come from the nonellipticity of the environment. When κ > 1, the expected
exit time of finite boxes is always finite (cf. [33]) and in this case (ii) and (iii) in-
deed tell that directional transience is equivalent to ballisticity. For general RWRE
(and for RWDE in dimension 2) this is an important unsolved question. Partial
important results in this direction have been obtained by Sznitman in [29, 30] for
general uniformly elliptic environment for d ≥ 2.

REMARK 2. A law of of large number (with eventually random or null veloc-
ity) has been proved for general (weakly) elliptic RWRE by Zerner (cf. [35]) using
the technics of regeneration times developed by Sznitman and Zerner in [32]. Nev-
ertheless, when the directional 0–1 law is not valid it is still not known whether
there is a deterministic limiting velocity (this was solved for d ≥ 5 by Berger, [1]).

REMARK 3. In case (i), it would be interesting to understand the behavior of
Xn · ei depending on the value of dα · ei as in (ii) and (iii). It is not yet possible due
to the absence of absolutely continuous invariant measure for the process viewed
from the particle. We nevertheless think that this question should be settled in a
further work.
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3. Proof of Theorem 1(i). Let us first recall a few definitions and give some
notations. By a directed graph we mean a pair G = (V ,E) where V is a countable
set of vertices and E the set of (directed) edges is a subset of V ×V . For simplicity,
we do not allow multiple edges or loops [i.e., edges of the type (x, x)]. We denote
by e, respectively e, the tail and the head of an edge e ∈ E, so that e = (e, e).
A directed path from a vertex x to a vertex y is a sequence σ = (x0 = x, . . . , xn =
y) such that for all i = 1, . . . , n, (xi−1, xi) is in E. The divergence operator is the
function div : RE 
→ RV defined for θ ∈ RE by

∀x ∈ V, div(θ)(x) = ∑
e∈E,e=x

θ(e) − ∑
e∈E,e=x

θ(e).

We consider Zd as a directed graph: GZd = (Zd,E) where the edges are the pair
(x, y) such that ‖y − x‖ = 1. On E we consider the weights (α(e))e∈E defined by

∀x ∈ Zd, i = 1, . . . ,2d, α
(
(x, x + ei)

) = αi.

Hence, under P(α), at each site x ∈ Zd , the exit probabilities (ω(e))e=x are inde-
pendent and distributed according to a Dirichlet law with parameters (α(e))e=x .

When N ∈ N∗, we denote by TN = (Z/NZ)d the d-dimensional torus of size N .
We denote by GN = (TN,EN) the associated directed graph image of the graph
G = (Zd,E) by projection on the torus. We denote by d(·, ·) the shortest path
distance on the torus. We write x ∼ y if (x, y) ∈ EN . Let �N be the space of
(weakly) elliptic environments on TN

�N =
{
ω = (ω(x, y))(x,y)∈EN

∈]0,1]EN ,

such that ∀x ∈ TN,

2d∑
i=1

ω(x, x + ei) = 1

}
.

�N is naturally identified with the space of the N -periodic environments on Zd .
We denote by P

(α)
N the Dirichlet law on the environment obtained by picking in-

dependently at each site x ∈ TN the exiting probabilities (ω(x, x + ei))i=1,...,2d

according to a Dirichlet law with parameters (αi)i=1,...,2d .
For ω in �N we denote by (πω

N(x))x∈TN
the invariant probability measure of

the Markov chain on TN with transition probabilities ω (it is unique since the
environments are elliptic). Let

fN(ω) = Ndπω
N(0),

and

Q
(α)
N = fN · P

(α)
N .

Thanks to translation invariance, Q
(α)
N is a probability measure on �N . Theorem 1

is a consequence of the following lemma.
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LEMMA 1. Let d ≥ 3. For all p ∈ [1, κ[
sup
N∈N

‖fN‖
Lp(P

(α)
N )

< ∞.

Once this lemma is proved, the proof of Theorem 1 is routine argument; cf., for
example, [3], pages 18 and 19. Indeed, we consider P

(α)
N and Q

(α)
N as probability

measures on N -periodic environments. Obviously, P
(α)
N converges weakly to the

probability measure P(α). By construction, Q
(α)
N is an invariant probability measure

for the process of the environment viewed from the particle. Since � is compact,
we can find a subsequence Nk such that Q

(α)
Nk

converges weakly to a probability

measure Q(α) on �. The probability Q(α) is invariant for the process viewed from
the particle, as a consequence of the invariance of Q

(α)
N . Let g be a continuous

bounded function on �: we have for p such that 1 < p < κ and q = p
p−1∣∣∣∣

∫
gdQ(α)

∣∣∣∣ =
∣∣∣∣ lim
k→∞

∫
gfNk

dP
(α)
Nk

∣∣∣∣
≤ lim sup

k→∞

(∫
|g|qdP

(α)
Nk

)1/q(∫
f

p
Nk

dP
(α)
Nk

)1/p

≤ cp‖g‖Lq(P(α)),

where

cp = sup
N∈N

‖fN‖
Lp(P

(α)
N )

< ∞.

As a consequence, Q(α) is absolutely continuous with respect to P(α) and∥∥∥∥dQ(α)

dP(α)

∥∥∥∥
Lp(P(α))

≤ cp.

The uniqueness of Q(α) is classical and proved, for example, in [3], page 11.

PROOF OF LEMMA 1. The proof is divided into three steps. The first step
prepares the application of the property of “time reversal invariance” (Lemma 1
of [25] or Proposition 1 of [27]). The second step is a little trick to increase the
weights in order to get the optimal exponent. The third step makes a crucial use
of the “time-reversal invariance” and uses a lemma of the type “max-flow min-cut
problem” proved in the next section.

Step 1: Let (ωx,y)x∼y be in �N . The time-reversed environment is defined by

w̌x,y = πω
N(y)ωy,x

1

πω
N(x)
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for x, y in TN , x ∼ y. At each point x ∈ TN

∑
e=x

α(e) = ∑
e=x

α(e) =
2d∑

j=1

αj .

It implies by Lemma 1 of [25] that if (ωx,y) is distributed according to P(α), then w̌

is distributed according to P(α̌) where

∀(x, y) ∈ EN, α̌(x,y) = α(y,x).

Let p be a real, 1 ≤ p < κ

(fN)p = (Ndπω
N(0))p

=
(

πω
N(0)

1/Nd
∑

y∈TN
πω

N(y)

)p

(3.1)

≤ ∏
y∈TN

(
πω

N(0)

πω
N(y)

)p/Nd

,

where in the last inequality we used the arithmetico-geometric inequality. If θ :
EN → R+, we define θ̌ by

θ̌(x,y) = θ(y,x) ∀x ∼ y.

For two functions γ and β on EN (resp., on TN ), we write γ β for
∏

e∈EN
γ (e)β(e)

(resp.,
∏

x∈TN
γ (x)β(x)). We clearly have

ω̌θ̌

ωθ
= ∏

e∈EN

(ω(e)πN(e)πN(e)−1)θ(e)

ω
θ(e)
e

= ∏
x∈TN

πN(x)
∑

e,e=x θ(e)−∑
e,e=x θ(e)(3.2)

= π
div(θ)
N .

Hence, for all θ : EN 
→ R+ such that

div(θ) = p

Nd

∑
y∈TN

(δ0 − δy)(3.3)

we have, using (3.1) and (3.2),

f
p
N ≤ ω̌θ̌

ωθ
.(3.4)

Step 2: Considering that 1 = ∑
‖e‖=1 ω(0, e), we have

1 = 1κ ≤ (2d)κ
2d∑
i=1

ω(0, ei)
κ .
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Hence, we get

E(α)(f
p
N ) ≤ (2d)κ

2d∑
i=1

E(α)(ω(0, ei)
κf

p
N ).

Hence, we need now to prove that for all i = 1, . . . ,2d,

sup
N∈N

E(α)(ω(0, ei)
κf

p
N ) < ∞.(3.5)

Considering (3.4), we need to prove that for all i = 1, . . . ,2d, we can find a se-
quence (θN), where θN : EN 
→ R+ satisfies (3.3) for all N , such that

sup
N∈N

E(α)

(
ωκ

(0,ei )

ω̌θ̌N

ωθN

)
< ∞.(3.6)

Step 3: This is related to the max-flow min-cut problem; cf., for example, [17],
Section 3.1 or [10]. Let us first recall the notion of minimal cut-set sums on the
graph GZd . A cut-set between x ∈ Zd and ∞ is a subset S of E such that any
infinite simple directed path (i.e., an infinite directed path that does not pass twice
by the same vertex) starting from x must pass through one (directed) edge of S.
A cut-set which is minimal for inclusion is necessarily of the form

S = ∂+(K) = {e ∈ E,e ∈ K,e ∈ Kc},(3.7)

where K is a finite subset of Zd containing x such that any y ∈ K can be reached
by a directed path in K starting at x. Let (c(e))e∈E be a set of nonnegative reals
called the capacities. The minimal cut-set sum between 0 and ∞ is defined as the
value

m((c)) = inf{c(S), S is a cut-set separating 0 and ∞},
where c(S) = ∑

e∈S c(e). Observe that the infimum can be taken only on minimal
cut-set, that is, cut-set of the form (3.7).

The proof uses the following lemma, whose proof is deferred to the next section
since it is of a different nature.

LEMMA 2. Let d ≥ 3. Let (c(e))e∈E be such that

inf
e∈E

c(e) > 0; sup
e∈E

c(e) < ∞.

There exists a constant c1 > 0 such that for N large enough there exists a function
θN : EN 
→ R+ such that

div(θN) = m((c))
1

Nd

∑
x∈TN

(δ0 − δx),

(3.8)
‖θN‖2

2 = ∑
e∈EN

θN(e)2 < c1
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and such that

θN(e) ≤ c(e) ∀e ∈ EN,(3.9)

when we identify EN with the edges of E such that e ∈ [−N/2,N/2[d .

The strategy now is to use this result to find a sequence (θN) which satis-
fies (3.6). Let (α(i)(e))e∈E be the weights obtained by increasing the weight α

by κ on the edge (0, ei), and leaving the other values unchanged

α(i)(e) =
{

α(i)(e) = α(e), if e 	= (0, ei),
α(i)((0, ei)) = α((0, ei)) + κ = αi + κ.

Let us first note that for all i = 1, . . . ,2d,

m
((

α(i))) ≥ κ.(3.10)

Take i = 1, . . . , d: if S contains the edge (0, ei), then α(i)(S) ≥ α
(i)
(0,ei )

≥ κ . Other-
wise, for all j = 1, . . . , d , j 	= i, S must intersect the paths (kej )k∈N, (−kej )k∈N,
(0, ei, (ei +kej )k∈N), (0, ei, (ei −kej )k∈N). These intersections are disjoints, and it
gives two edges with weights (αj ) and two edges with weights (αj+d). Moreover,
S must intersect the paths (kei)k∈N, (−kei)k∈N. It gives one edge with weight αi

and one with weight αi+d . Hence,

α(i)(S) ≥ 2

( 2d∑
j=1

αj

)
− (αi + αi+d) ≥ κ.

The same reasoning works for i = d + 1, . . . ,2d .
Let us now prove (3.6) for i = 1; the same reasoning works for all. We apply

Lemma 2 with c(e) = α(1)(e). It gives for N large enough a function θ̃N : EN 
→
R+ which satisfies

div(θ̃N) = m(α(1))

Nd

∑
y∈TN

(δ0 − δy),

and θ̃N (e) ≤ α(1)(e) and with bounded L2 norm. It implies that θN = p

m(α(1))
θ̃N

satisfies

div(θN) = p

Nd

∑
y∈TN

(δ0 − δy),

and by (3.10) that θN(e) ≤ p
κ
θ̃N(e) ≤ p

κ
α(1)(e) and that θN has a bounded L2-

norm.
Let r, q be positive reals such that 1

r
+ 1

q
= 1 and pq < κ . Using Hölder in-

equality and Lemma 1 of [25], we get

E(α)

(
ω(0, e1)

κ ω̌θ̌N

ωθN

)
≤ E(α)(ω(0, e1)

qκω−qθN )1/qE(α)(ω̌rθ̌N )1/r

= E(α)(ω(0, e1)
qκω−qθN )1/qE(α̌)(ωrθ̌N )1/r .
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We set α(x) = ∑
e=x α(e) and θN(x) = ∑

e=x θN(e). Observe that α(x) = α̌(x) =∑2d
j=1 αj for all x ∈ TN . We set α0 = ∑2d

j=1 αj . For any function ξ : EN 
→ R we
have

E(α)(ωξ ) = ∏
x∈TN

( ∏2d
i=1 �(αi + ξ(x, x + ei))

�(
∑2d

i=1 αi + ξ(x, x + ei))

�(α0)∏2d
i=1 �(αi)

)
(3.11)

if ξ(x, x + ei) > −αi for all x ∈ TN , i = 1, . . . ,2d , and +∞, otherwise. Indeed,
using the explicit form of Dirichlet distribution (2.2) and the independence at each
site, we get for any ξ : EN 
→ R,

E(α)(ωξ ) =
(

�(α0)∏2d
i=1 �(αi)

)|TN | ∏
x∈TN

∫ 2d∏
i=1

x
αi+ξ(x,x+ei)−1
i dx1 · · · dx2d−1

where the last integrals are on the simplex {(x1, . . . , x2d), xi > 0,
∑

xi = 1}. These
integrals are Dirichlet integrals which are finite if and only if αi + ξ(x, x + ei) > 0
for all x and i. There explicit value [cf. (2.2)] gives formula (3.11). A straightfor-
ward application of (3.11) gives

E(α)(ω(0, e1)
qκω−qθN )

=
(∏

e∈EN
e 	=(0,e1)

�(α(e) − qθN(e))∏
x∈TN
x 	=0

�(α0 − qθN(x))

)(
�(α1 + qκ − qθN((0, e1)))

�(α0 + qκ − qθN(0))

)

×
( ∏

x∈TN
�(α0)∏

e∈EN
�(α(e))

)
.

Observe that all the terms are well defined since qθN ≤ pq
κ

α(1) and qp < κ . We
have the following inequalities:

α1

(
1 − qp

κ

)
≤ α1 + qκ − qθN((0, e1)) ≤ α1 + qκ

and

α0

(
1 − qp

κ

)
≤ α0 + qκ − qθN(0) ≤ α0 + qκ,

which imply that

E(α)(ω(0, e1)
qκω−qθN )1/q

≤ A1

(∏
e∈EN

e 	=(0,e1)

�(α(e) − qθN(e))∏
x∈TN
x 	=0

�(α0 − qθN(x))

)1/q( ∏
x∈TN
x 	=0

�(α0)∏
e∈EN

e 	=(0,e1)

�(α(e))

)1/q

,

where

A1 =
(

�(α0)

�(α1)

sups∈[α1(1−qp/κ),α1+qκ] �(s),

infs∈[α0(1−qp/κ),α0+qκ] �(s)

)1/q

.
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Similarly, we get

E(α̌)(ωrθ̌N ) =
( ∏

e∈EN
�(α̌(e) + rθ̌N(e))∏

x∈TN
�(α̌(x) + rθ̌N(x))

)(∏
x∈TN

�(α̌(x))∏
e∈EN

�(α̌(e))

)

=
(∏

e∈EN
�(α(e) + rθN(e))∏

x∈TN
�(α0 + rθ̌N(x))

)( ∏
x∈TN

�(α0)∏
e∈EN

�(α(e))

)
,

where in the last line we used that α̌((x, y)) = α((y, x)) and θ̌ ((x, y)) = θ((y, x))

and that α̌(x) = ∑
e=x αe = α(x) = α0 for all x. Note that θ̌ (0) = θ(0) − p and

θ̌ (x) = θ(x) + p

Nd for x 	= 0, thanks to (3.3). We have the following inequalities:

α1 ≤ α((0, e1)) + rθN((0, e1)) ≤ α1(1 + r) + rκ,

α0 ≤ α(0) + rθ̌N(0) ≤ α0(1 + r) + rκ.

This gives that

E(α̌)(ωrθ̌N )1/r

≤ A2

( ∏
e∈EN

e 	=(0,e1)

�(α(e) + rθN(e))∏
x∈TN
x 	=0

�(α0 + rθN(x) + pr/Nd)

)1/r( ∏
x∈TN
x 	=0

�(α0)∏
e∈EN

e 	=(0,e1)

�(α(e))

)1/r

,

where

A2 =
(

�(α0)

�(α1)

sups∈[α1,α1(1+r)+rκ] �(s)

infs∈[α0,α0(1+r)+rκ] �(s)

)1/r

.

Combining these inequalities it gives

E(α)

(
ω(0, e1)

κ ω̌θ̌N

ωθN

)

≤ A1A2 exp

( ∑
e∈EN

e 	=(0,e1)

ν(α(e), θN(e)) − ∑
x∈TN

x 	=0

ν̃(α0, θN(x))

)
,

where

ν(α,u) = 1

r
ln�(α + ru) + 1

q
ln�(α − qu) − ln�(α)

and

ν̃(α,u) = 1

r
ln�

(
α + ru + pr

Nd

)
+ 1

q
ln�(α − qu) − ln�(α).

Let α = minαi , α = maxαi . By Taylor’s inequality and since α ≤ α(e) ≤ α for all
e ∈ EN , qθN(e) ≤ qp

κ
α(e) for all e 	= (0, e1) and qp < κ , we can find a constant

c > 0 such that for all e 	= (0, e1),

|ν(α(e), θ(e))| ≤ cθ(e)2
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and for all x 	= 0,

|ν̃(α0, θ(x))| ≤ c

(
θ(x)2 + p

Nd

)
.

Hence, we get a positive constant C > 0 independent of N > N0 such that

E(α)

(
ω(0, e1)

κ ω̌θ̌N

ωθN

)
≤ exp

(
C

( ∑
e∈EN

θN(e)2 + ∑
x∈TN

θN(x)2
))

.

Thus (3.6) is true, and this proves Lemma 1. �

4. Proof of Lemma 2. The strategy is to apply the max-flow min-cut theo-
rem (cf. [17], Section 3.1 or [10]) to an appropriate choice of capacities on the
graph GN . We first need a generalized version of the max-flow min-cut theorem.

PROPOSITION 1. Let G = (V ,E) be a finite directed graph. Let (c(e))e∈E be
a set of nonnegative reals (called capacities). Let x0 be a vertex and (px)x∈V be a
set of nonnegative reals. There exists a nonnegative function θ : E 
→ R+ such that

div(θ) = ∑
x∈V

px(δx0 − δx) ,(4.1)

∀e ∈ E, θ(e) ≤ c(e),(4.2)

if and only if for all subset K ⊂ V containing x0 we have

c(∂+K) ≥ ∑
x∈Kc

px,(4.3)

where ∂+K = {e ∈ E,e ∈ K,e ∈ Kc} and c(∂+K) = ∑
e∈∂+K c(e). The same is

true if we restrict condition (4.3) to the subsets K such that any y ∈ K can be
reached from 0 following a directed path in K .

PROOF. If θ satisfies (4.1), then∑
e,e∈K,e∈Kc

θ(e) − ∑
e,e∈K,e∈Kc

θ(e) = ∑
x∈K

div(θ)(x) = ∑
x∈Kc

px.

It implies (4.3) by (4.2) and positivity of θ .
The reversed implication is an easy consequence of the classical max-flow min-

cut theorem on finite directed graphs ([17], Section 3.1 or [10]). Suppose now
that (c) satisfies (4.3). Consider the new graph G̃ = (V ∪ δ, Ẽ) defined by

Ẽ = E ∪ {(x, δ), x ∈ V }.
We consider the capacities (c̃(e))

e∈Ẽ
defined by c(e) = c̃(e) for e ∈ E and

c((x, δ)) = px . The strategy is to apply the max-flow min-cut theorem with ca-
pacities c̃ and with source x0 and sink δ. Any minimal cut-set between x0 and δ in
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the graph G̃ is of the form ∂G̃+K where K ⊂ V is a subset containing x0 but not δ

and such that any point y ∈ K can be reached from x0 following a directed path
in K . Observe that

c̃(∂G̃+K) = c(∂G+K) + ∑
x∈K

px.

Hence, (4.3) implies

c̃(∂G̃+K) ≥ ∑
x∈V

px.

Thus the max-flow min-cut theorem gives a flow θ̃ on G̃ between x0 and δ with
strength

∑
x∈V px and such that θ̃ ≤ c̃. This necessarily implies that θ̃ ((x, δ)) =

px . The function θ obtained by restriction of θ̃ to E satisfies (4.2) and (4.1). �

LEMMA 3. Let d ≥ 3. There exists a positive constant C2 > 0, such that for all
N > 1, and all x, y in TN there exists a unit flow θ from x to y (i.e., θ : EN → R+
and div(θ) = δx − δy) such that for all z ∈ TN ,

θ(z) = ∑
e=z

θ(e) ≤ 1 ∧ (
C2

(
d(x, z)−(d−1) + d(y, z)−(d−1))).(4.4)

PROOF. By translation and symmetry, we can consider only the case where
x = 0 and y ∈ [N/2,N[d when TN is identified with [0,N[d . We construct a flow
on GZd supported by the set

Dy = [0, y1] × · · · × [0, yd ]
as an integral of sufficiently dispersed path flows. It thus induces by projection
a flow on TN with the same L2 norm. Let us give some definitions. A sequence
σ = (x0, . . . , xn) is a path from x to y in Zd if x0 = x, xn = y and ‖xi+1 − xi‖1 =
1 for all i = 1, . . . , n. We say that σ is a positive path if moreover xi+1 − xi ∈
{e1, . . . , ed} for all i = 1, . . . , n. To any path from x to y we can associate the unit
flow from x to y defined by

θσ =
n∑

i=1

1(xi−1,xi ).

For u ∈ R+, we define Cu by

Cu =
{
z = (z1, . . . , zd) ∈ Rd+,

d∑
i=1

zi = u

}
.

Clearly if y ∈ Nd and if σ = (x0 = 0, . . . , xn = y) is a positive path from 0 to y,
then n = ‖y‖1 and xk ∈ Ck for all k = 0, . . . ,‖y‖.
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Set

�y = Dy ∩
{
u = (u1, . . . , ud) ∈ Rd+,

d∑
i=1

ui = ‖y‖1

2

}
.

For u ∈ �y , let Lu be the union of segments

Lu = [0, u] ∪ [u,y].
We can consider Lu as the continuous path lu : [0,‖y‖] 
→ Dy from 0 to y defined
by

{lu(t)} = Lu ∩ Ct .

Observe that u ∈ Dy implies that lu(t) is nondecreasing on each coordinate. There
is a canonical way to associate with lu a discrete positive path σu from 0 to y such
that for all k = 0, . . . ,‖y‖,

‖lu(k) − σu(k)‖ ≤ 2d.(4.5)

Indeed, let l̃u(t) be defined by taking the integer part of each coordinate of lu(t).
At jump times of l̃u(t) the coordinates increase at most by 1. We define σu(k) as
the positive path which follows the successive jumps of l̃u(t): if at a time t there
are jumps at several coordinates, we choose to increase first the coordinate on e1,
then on e2. . . We have by construction k − d ≤ ‖l̃u(k)‖ ≤ k, hence l̃u(k) ∈ {σu(k −
d), . . . , σu(k)}, so ‖σu(k) − l̃u(k)‖ ≤ d . Since ‖lu(k) − l̃u(k)‖ ≤ d it gives (4.5).
We then define

θu = θσu,

and

θ = 1

|�z|
∫
�z

θu du

(where |�z| = ∫
�z

du), which is a unit flow from 0 to y. Clearly, θ(z) ≤ 1 for all
z ∈ TN . For k = 0, . . . ,‖y‖1 and z ∈ Hk , we have

θ(z) ≤ 1

|�z|
∫
�z

1‖lu(k)−z‖≤2d du.

Hence, we have for k such that 1 < k ≤ ‖y‖
2 ,

θ(z) ≤ 1

|�z|
∫
�z

1‖u−z‖y‖/(2k)‖≤d‖y‖/k du.

Since y ∈ [N/2,N[d , there is a constant C2 > 0 such that

θ(z) ≤ C2k
−(d−1).
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Similarly, if ‖y‖/2 ≤ k < ‖y‖,

θ(z) ≤ C2(‖y‖ − k)−(d−1).

Moreover θ(z) is null on the complement of Dy . By projection on GN it gives a
function on EN with the right properties. This proves Lemma 3. �

We are ready to prove Lemma 2. Let (c(e)) be such that 0 < C′ < c(e) < C ′′ <
∞. For all y ∈ TN we denote by θ0,y a unit flow from 0 to y satisfying the condi-
tions of Lemma 3. We set

θ̃N = m(c)

Nd

∑
y∈TN

θ0,y .

The strategy is to apply proposition 1 to a set of capacities constructed from θ̃N

and c. Clearly,

div(θ̃N) = m(c)

Nd

∑
y∈TN

(δ0 − δy),(4.6)

and by simple computation we get that

θ̃N (z) ≤ C2m(c)

(
1 ∧ (

d(0, z)−(d−1)) + d2d

Nd−1

)
.(4.7)

This implies that

∑
z∈TN

θ̃2
N(z) ≤ 2C2

2m(c)2
∑

z∈TN

(
1 ∧ (

d(0, z)−2(d−1)) + (d2d)2

N2(d−1)

)

≤ 2C2
2m(c)2

(
(d2d)2N−d+2 + ∑

z∈Zd

1 ∧ (
d(0, z)−2(d−1))).

Considering that the number of points z at distance k from 0 is smaller than
2d(2k + 1)d−1, we get that

∑
z∈TN

θ̃2
N(z) ≤ 2C2

2m(c)2

(
(d2d)2N−d+2 + 1 +

∞∑
k=1

k−2d+2(2d)(2k + 1)d−1

)
.

Hence,

∑
z∈TN

θ̃2
N(z) ≤ 2C2

2m2(c)(d2d)

(
1 +

∞∑
k=1

k−(d−1)

)
+ 2C2

2m2(c)(d2d)2N−(d−2),

and there is a constant C3 > 0 depending solely on C′,C′′, d such that∑
z∈TN

θ̃2
N(z) ≤ C3,

∑
e∈EN

θ̃2
N(e) ≤ C3.
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By (4.6) we know that for all K ⊂ TN containing 0 we have
∑

e∈EN,e∈K,e∈Kc

θ̃N(e) − ∑
e∈EN,e∈K,e∈Kc

θ̃N(e) = m(c)
|Kc|
Nd

,

hence,

θ̃N (∂+K) ≥ m(c)
|Kc|
Nd

.(4.8)

The strategy is to modify θ̃N locally around 0 in order to make it lower or equal
to c but large enough to be able to apply Proposition 1. Let us fix some notations.
For a positive integer r , BE(x0, r) denotes the set of edges

BE(x0, r) = {e ∈ E,e ∈ B(x0, r), e ∈ B(x0, r)}
and

BE(x0, r) = {e ∈ E,e ∈ B(x0, r)}.
By (4.7), there exist some positive integer η0 and Ñ0, such that for all N ≥ Ñ0 and
e /∈ BE(0, η0), we have

|θ̃N (e)| ≤ C′

2
.(4.9)

Choose now η1 > η0 such that

η1 − η0 ≥ 4
m(c)

C′ + 2.(4.10)

Finally we can find an integer N0 ≥ max(Ñ0,2η1) large enough to satisfy

Nd
0 ≥ m(c)

|B(0, η1)|
C′ .(4.11)

We consider (c̃N (e))e∈EN
defined by{

c̃N (e) = c(e), if e or e ∈ B(0, η1),

c̃N (e) = θ̃N (e), otherwise.

Note that, thanks to (4.9), for all e ∈ EN , c̃N (e) ≤ c(e) when we identify EN with
the edges of E, which starts in [−N/2,N/2[d . In the rest of the proof we prove
that for all N ≥ N0 and for all K ⊂ TN that contains 0 and which are such that any
y ∈ K can be reached from 0 following a directed path in K , we have

c̃N (∂+K) ≥ m(c)
|Kc|
Nd

.(4.12)

By application of Proposition 1, it would give a flow θN , which satisfies (3.8)
and (3.9), and with a bounded L2 norm, indeed,∑

e∈EN

θN(e)2 ≤ C3 + |BE(0, η1)|(C′′)2.
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We only need to check inequality (4.12) for K such that Kc has a unique connected
component. Indeed, if Kc has several connected components, say R1, . . . ,Rk, then

∂−Ri = {e ∈ EN, e ∈ Ri, e ∈ Rc
i } = {e ∈ EN, e ∈ Ri, e ∈ K}.

Hence, ∂+K is the disjoint union of

∂+K =
k⊔

i=1

∂−Ri.

Hence if we can prove (4.12) for Ki = Rc
i , we can prove it for K . Thus we assume,

moreover, that Kc has a unique connected component in the graph GN . There are
four different cases:

• If K ⊂ B(0, η1), then

c̃N (∂+K) = c(∂+K).

Moreover, viewed on Zd (when TN is identified with [−N/2,N/2[) ∂+K is a
cut-set separating 0 from ∞ (indeed, N ≥ N0 ≥ 2η1), thus

c(∂+K) ≥ m(c) ≥ m(c)
|Kc|
Nd

.

• If B(0, η0) ⊂ K , by (4.8) and (4.9), then

c̃N (∂+K) ≥ θ̃N (∂+K) ≥ m(c)
|Kc|
Nd

.

• If Kc ⊂ B(0, η1), then by (4.11),

|Kc|
Nd

≤ |B(0, η1)|
Nd

0

≤ C′

m(c)
,

hence,

c̃N (∂+K) = c(∂+K) ≥ C′ ≥ m(c)
|Kc|
Nd

,

since ∂Kc 	= ∅.
• Otherwise K contains at least one point x1 in B(0, η1)

c, and Kc contains at
least one point y0 in B(0, η0) and one point y1 in B(0, η1)

c. Hence there is
a path between y0 and y1 in Kc and a directed path between 0 and x1 in K .
Let S(0, i) denote the sphere with center 0 and radius i for the shortest path
distance in GN . It implies that we can find a sequence zη0, . . . , zη1 such that
zi ∈ K ∩ S(0, i) and a sequence z′

η0
, . . . , z′

η1
such that z′

i ∈ Kc ∩ S(0, i). Since
there is a directed path in S(0, i) ∪ S(0, i − 1) between zi and z′

i , and a directed
path in K between 0 and zi , it implies that there exists at least �1

2(η1 − η0)�
different edges in ∂+K ∩ BE(0, η1). Hence

c̃N (∂+K) ≥ ⌊1
2(η1 − η0)

⌋
C′ ≥ m((c)).

This concludes the proof of (4.12) and of the lemma.
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5. Proof of Theorem 1(ii) and Theorem 2. These results are based on clas-
sical results on ergodic stationary sequence; cf. [7], pages 343–344. Let us start
with the following lemma.

LEMMA 4. Suppose that there exists an invariant probability measure Q(α),
absolutely continuous with respect to P(α) and invariant for R. Then Q(α) is equiv-
alent to P(α) and the Markov chain (wn) with generator R, and the initial law Q(α)

is stationary and ergodic. Let (�i)i≥1 be the sequence

�i = Xi − Xi−1.

Under the invariant annealed measure Q
(α)
0 (·) = Q(α)(P ω

0 (·)), the sequence (�i)

is stationary and ergodic.

PROOF. The first assertion on Q(α) is classical and proved, for example, in [3],
Theorem 1.2. Since Q(α) is an invariant probability measure for ωn, it is clear that
(�i) is stationary. The ergodicity of (�i) is a consequence of the ergodicity of
(ωn). Indeed, since the environment is i.i.d. and not deterministic, there exists a
measurable function f : � × � 
→ Z such that a.s. �i = f (ωi−1,ωi) (indeed, for
P(α) almost all ω, τx(ω) = ω if and only if x = 0, which means that the increment
�i is almost surely uniquely determined by the observation of ωi−1 and ωi). This
implies the ergodicity of the sequence (�i). �

PROOF OF THEOREM 1(II). Suppose that there exists an invariant probability
measure Q(α), absolutely continuous with respect to P(α) and invariant for R. Since
(Xn) is P

(α)
0 a.s. (hence, Q

(α)
0 a.s.) transient ([25], Theorem 1), it implies that

EQ(α)(
P ω

0 (H+
0 = ∞)

)
> 0,

where H+
0 is the first positive return time of Xn to 0. Let Rn be the number of

points visited by (Xk) at time n − 1

Rn = |{Xk, k = 0, . . . , n − 1}|.
Theorem 6.3.1 of [7] and Lemma 4 tell that

P
(α)
0 a.s.,

Rn

n
→ EQ(α)(

P ω
0 (H+

0 = ∞)
)
> 0.(5.1)

Let i0 ∈ {1, . . . , d} be a direction which maximizes αi + αi+d . Theorem 3 of [33]
tells that if κ ≤ 1, then the expected exit time under P

(α)
0 of the finite subset {0, ei0}

or {0,−ei0} is infinite. By independence of the environment under P(α), we can

easily get that Rn

n
→ 0, P

(α)
0 a.s. This contradicts (5.1). �

PROOF OF THEOREM 2. (i) is Proposition 12 of [33]. Under the annealed
invariant law Q

(α)
0 , (�k) is a stationary ergodic sequence with values in Zd (hence
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for any i ∈ {1, . . . ,2d}, �k · ei is also a stationary ergodic sequence with values
in Z). Birkhoff’s ergodic Theorem ([7], page 337) gives for free the law of large
number

P
(α)
0 a.s.,

Xn

n
→ EQ(α)

(Eω
0 (X1)).

If dα · ei = 0 then by symmetry of the law of the environment it implies that
EQ(α)

(Eω
0 (X1)) · ei = 0, hence by Theorem 6.3.2 of [7], we have that Xn · ei = 0

infinitely often. By Lemma 4 of [36] it implies (ii) and the last assertion of (iii).
For l ∈ Rd , we set Al = {Xn · l → ∞}. If l 	= 0 and if P

(α)
0 (Al) > 0, then

Kalikow 0–1 law ([11], [36], Proposition 3) tells that P
(α)
0 (Al ∪ A−l) = 1. Sup-

pose now that dα · ei > 0 for an integer i in {1, . . . ,2d}. In [27] we proved that
P

(α)
0 (Aei

) > 0, this implies that Xn · ei visits 0 a finite number of times Q
(α)
0 a.s.

By Theorem 6.3.2 of [7] it implies that

EQ(α)

(Eω
0 (X1)) · ei 	= 0.

Moreover, we know that

P
(α)
0 a.s.,

Xn

n
→ EQ(α)

(Eω
0 (X1)).

Hence, P(α)(A±ei
) = 1, where ± corresponds to the sign of EQ(α)

(Eω
0 (X1)) · ei .

Since we know that P
(α)
0 (Aei

) > 0, it implies that

EQ(α)

(Eω
0 (X1)) · ei > 0. �
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