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APPROXIMATING THE HARD SQUARE ENTROPY CONSTANT
WITH PROBABILISTIC METHODS

BY RONNIE PAVLOV

University of British Columbia

For any two-dimensional nearest neighbor shift of finite type X and any
integer n ≥ 1, one can define the horizontal strip shift Hn(X) to be the set of
configurations on Z × {1, . . . , n} which do not contain any forbidden pairs of
adjacent letters for X. It is always the case that the sequence htop(Hn(X))/n

of normalized topological entropies of the strip shifts converges to htop(X),
the topological entropy of X. In this paper, we combine ergodic theoretic
techniques with methods from percolation theory and interacting particle
systems to show that for the two-dimensional hard square shift H, the se-
quence htop(Hn+1(H)) − htop(Hn(H)) also converges to htop(H), and that
the rate of convergence is at least exponential. As a corollary, we show that
htop(H) is computable to any tolerance ε in time polynomial in 1/ε. We
also show that this phenomenon is not true in general by defining a block
gluing two-dimensional nearest neighbor shift of finite type Y for which
htop(Hn+1(Y )) − htop(Hn(Y )) does not even approach a limit.

1. Introduction. Some of the most studied objects in the field of symbolic
dynamics are shifts of finite type (or SFTs). A Z

d SFT is defined by specifying a
finite set A, called the alphabet, and a set of forbidden configurations. For any such
specification, the associated Z

d SFT is the set of configurations in AZ
d

in which no
forbidden configuration appears. In this paper, we will mostly concern ourselves
with nearest neighbor SFTs, which are SFTs for which all forbidden configurations
are just pairs of adjacent letters.

To any Z
d SFT X, one can assign a real number htop(X), called its topological

entropy. Informally, htop(X) measures the exponential growth rate of the number
of configurations which appear in points of X. (We postpone a formal definition
until Section 2.) Topological entropy is quite easy to compute for Z SFTs; to any
Z SFT X, one can associate a 0–1 matrix called its transition matrix, and htop(X)

is just the logarithm of the Perron eigenvalue of this matrix. For a general intro-
duction to one-dimensional symbolic dynamics and topological entropy, see [30].

In general, it is much harder to compute htop(X) for Z
2 SFTs. In fact, there are

very few nondegenerate examples of Z
2 SFTs for which the topological entropy

has a known closed form [1, 24, 26, 38]. However, one can approximate such a
topological entropy by using the easier to compute one-dimensional topological
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entropies. For any Z
2 nearest neighbor SFT X with alphabet A, one can define

Hn(X) to be the set of configurations on Z×{1, . . . , n} which contain no forbidden
pair of adjacent letters. Then Hn(X) can be considered as a Z nearest neighbor
SFT with alphabet the set of legal n-high columns in X, which we call An(X).

Two letters
an
.
.
.

a1

and
bn
.
.
.
b1

in An(X) may appear consecutively in Hn(X) if and only

if
anbn

.

.

.
a1b1

is legal in X. We can then define hn(X) := htop(Hn(X)), the topological

entropy of Hn(X) as a Z SFT. One can approximate htop(X) via hn(X); it turns
out to be true that hn(X)

n
→ htop(X) for any X. (This is Lemma 3.1 from Section 3,

and we postpone the proof until then.)
One well-studied example of a Z

2 nearest neighbor SFT is the Z
2 hard square

shift H, which is the Z
2 nearest neighbor SFT with alphabet A = {0,1} where the

only forbidden pairs of letters are two adjacent 1’s horizontally or vertically. Since
this is the main SFT we study in this paper, we denote htop(H) by h, hn(H) by hn,
Hn(H) by Hn and An(H) by An.

There is no known closed form for the topological entropy h of the hard square
model, which is also known as the hard square entropy constant. However, there
is quite a bit of literature regarding bounds and approximations to h (see [2, 7,
12, 13]). There is, for instance, an algorithm [35] that lets a computer generate the
transition matrix for Hn for any n. One can then use these matrices to compute
the sequence hn, and use the fact that hn

n
→ h to approximate h. Interestingly,

empirical data [12, 35] indicates that the differences hn+1 − hn converge much
more quickly to h; hn

n
seems to converge at a linear rate, whereas hn+1 −hn seems

to converge exponentially fast. To our knowledge, however, even a proof of the
convergence of hn+1 − hn has been an open problem. Our main result shows that
this convergence does in fact occur with exponential rate.

THEOREM 1.1. limn→∞ hn+1 −hn = h, and the rate of this convergence is at
least exponential.

Interestingly, to prove this entirely combinatorial or topological result, we will
be using an almost entirely probabilistic or measure-theoretic proof. We use several
techniques from the worlds of probability and interacting particle systems, whose
definitions and exposition are contained in Section 3. Our proof relies heavily on
some results and techniques from [41].

These techniques are quite powerful and have been used to prove results from
symbolic dynamics and ergodic theory before; see [5, 17, 18, 41]. It is our hope
that the applications of interacting particle system methods used in this paper will
inspire more work on the fascinating interplay between statistical mechanics and
symbolic dynamics.



2364 R. PAVLOV

REMARK. After acceptance of this paper, we became aware of [15], in which
a method is described for approximation of measure-theoretic entropy of special
measures called Gibbs measures on a certain class of nearest neighbor SFTs. Their
result also yields a technique for approximating the topological entropy h of the
hard square model, along with other SFTs in this class. Though the results in [15]
are quite different from ours, one commonality is that both methods give approxi-
mations to h in time polynomial in 1

ε
.

2. Definitions. We here lay out the necessary definitions and terminology for
the rest of the paper. An alphabet A will always be a finite set with at least two
elements.

DEFINITION 2.1. The Z
d full shift on the alphabet A is the set AZ

d
. For any

full shift AZ
d
, we define the Z

d -shift action {σv}v∈Zd on AZ
d

as follows: for any

v ∈ Z
d and x ∈ AZ

d
, (σv(x))(u) = x(v + u) for all u ∈ Z

d .

DEFINITION 2.2. A Z
d subshift on an alphabet A is a set X ⊆ AZ

d
with the

following two properties:

(i) X is shift-invariant, meaning that for any x ∈ X and v ∈ Z
d , σv(x) ∈ X;

(ii) X is closed in the product topology on AZ
d
.

When the value of d is clear, we will sometimes omit the Z
d and just use the

term subshift.
A configuration u on the alphabet A is any mapping from a nonempty subset S

of Z
d to A, where S is called the shape of u. For any configuration u with shape S

and any T ⊆ S, denote by u|T the restriction of u to T , that is, the subconfiguration
of u occupying T .

For any integers a < b, we use [a, b] to denote {a, a + 1, . . . , b}.

DEFINITION 2.3. A Z
d shift of finite type (or SFT) X is defined by specifying

a finite collection F of finite configurations on A, and then defining X = (AZ
d
)F

to be the set of x ∈ AZ
d

such that x|S /∈ F for all finite S ⊆ Z
d . For any fixed X,

the type of X is the minimum positive integer t such that for some F consisting
entirely of configurations with shape [1, t]d , X = (AZ

d
)F .

It is not hard to check that any SFT is a subshift.
Sites u, v ∈ Z

d are said to be adjacent if
∑d

i=1 |ui − vi | = 1. If a Z
d SFT X has

forbidden list F consisting entirely of pairs of adjacent letters, then X is called
a Z

d nearest neighbor SFT. In this paper, we will mostly concern ourselves with
d = 1 or d = 2, and all SFTs we consider will be nearest neighbor SFTs.
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DEFINITION 2.4. The Z
d hard square shift is the nearest neighbor SFT on the

alphabet {0,1} whose forbidden list F consists of all pairs of adjacent 1’s in any
of the d cardinal directions.

DEFINITION 2.5. In a nearest neighbor SFT X with alphabet A, a ∈ A is a
safe symbol if none of the forbidden configurations in F contain A. In other words,
a is a safe symbol if it may legally appear next to any letter of the alphabet in any
direction.

For example, 0 is a safe symbol for the Z
d hard square shift.

DEFINITION 2.6. For any Z
d SFT X with forbidden list F and any finite

configuration w with shape S, w is locally admissible in X if w|T /∈ F for all
T ⊆ S, and w is globally admissible in X if there exists x ∈ X for which x|S = w.

The difference between local and global admissibility is subtle but quite pro-
nounced. It is always quite easy to check whether a configuration is locally admis-
sible, and for Z SFTs also to check global admissibility. However, for Z

2 SFTs, the
question of whether or not a configuration is globally admissible is undecidable.
In other words, there does not exist an algorithm which takes as input the set of
forbidden configurations F and a locally admissible configuration w, and gives as
output an answer to the question of whether w is globally admissible [3, 43].

In this paper, we will mostly be concerning ourselves with the Z
2 hard square

shift, which we denote by H. All locally admissible configurations in H are glob-
ally admissible, since a locally admissible configuration in H can always be com-
pleted to a point of H by filling the rest of Z

2 with 0’s. For this reason, we will
just refer to any locally admissible or globally admissible configuration in H as
admissible.

DEFINITION 2.7. The language of a subshift X, denoted by L(X), is the set of
globally admissible configurations in X. The set of configurations with a particular
shape S which are in the language of X is denoted by LS(X).

DEFINITION 2.8. The local language of any Z
d SFT X with forbidden list F ,

denoted by LA(X), is the set of all locally admissible configurations in X. The set
of configurations with shape S which are in the local language of X is denoted by
LAS(X).

For any configuration u with shape S in L(X), denote by [u] the set {x ∈
X :x|S = u}, called the cylinder set of u.
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DEFINITION 2.9. The topological entropy of a Z
d subshift X, denoted by

htop(X), is defined by

htop(X) = lim
j1,j2,...,jd→∞

ln|L∏d
i=1[1,ji ](X)|

j1j2 · · · jd

.

To see why the limit exists, note that the function

f (j1, . . . , jd) := ln
∣∣L∏d

i=1[1,ji ](X)
∣∣

is subadditive in each coordinate, that is, for every i ∈ [1, d] and a, b > 0,

f (j1, . . . , ji−1, a + b, ji+1, . . . , jd)

≤ f (j1, . . . , ji−1, a, ji+1, . . . , jd)

+ f (j1, . . . , ji−1, b, ji+1, . . . , jd).

The classical Fekete subadditivity lemma implies that for any subadditive func-
tion f (n) of one variable, limn→∞ f (n)

n
exists. A multivariate version, which can

be found in [9], shows that for any function f (j1, . . . , jd) which is subadditive in
each variable,

lim
j1,...,jd→∞

f (j1, . . . , jd)

j1j2 · · · jd

exists (and is invariant of how each ji → ∞), and that the limit is equal to the infi-
mum. For Z

d SFTs, topological entropy may also be computed by using the local
language; that is, if L∏d

i=1[1,ji ](X) is replaced by LA∏d
i=1[1,ji ](X) in the definition

of topological entropy, the limit is unchanged [14, 20].
We will also need some definitions specific to the arguments used in this paper.
We will frequently consider Z

d as a graph, where two sites are connected by
an edge if they are adjacent. For any set S ⊆ Z

d , we identify S with the maximal
subgraph of Z

d with vertex set S, that is, the graph with vertex set S and edges
between all pairs of adjacent vertices in S.

For any subset G of Z
d , and any set S ⊆ G, the boundary of S within G, which

is denoted by ∂(S,G), is the set of p ∈ G \ S which are adjacent to some q ∈ S. If
we refer to simply the boundary of a set S, or write ∂S, then G is assumed to be
all of Z

d .
For any integer i, we define Ri = Z × {i}, the row at height i.
For any partition ξ of a set S, and for any s ∈ S, we use ξ(s) to denote the

element of ξ in which s lies. If ξ is a partition of the alphabet A of a Z
d subshift X,

then φξ is the factor map from X to ξZ
d

defined by (φξx)(v) = ξ(x(v)) for all
v ∈ Z

d .
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3. Some preliminaries. We begin by justifying a claim from the Introduction.

LEMMA 3.1. For any X, limn→∞ hn(X)
n

= htop(X).

PROOF. As was remarked in Definition 2.9,

htop(X) = inf
m,n→∞

ln|L[1,m]×[1,n](X)|
mn

,

and therefore |L[1,m]×[1,n](X)| ≥ ehtop(X)mn for all m,n ∈ N. By the definition of

hn(X), hn(X) = limm→∞ ln|L[1,m]×[1,n](X)|
m

. Therefore, hn(X)
n

≥ htop(X) for all n.
Fix any ε > 0. By definition of htop(X), there exists N so that for any m,n > N ,
|L[1,m]×[1,n](X)| ≤ e(htop(X)+ε)mn. This means that hn(X)

n
≤ htop(X)+ε for n > N .

Since ε was arbitrary, we are done. �

We use several measure-theoretic or probabilistic tools in the proof of Theo-
rem 1.1, chiefly the concepts of percolation, measure-theoretic entropy, stochas-
tic domination, Gibbs measures and the −d metric. We define these notions and
state some fundamental theorems relating them in this section. All measures on
subshifts considered in this paper are Borel probability measures for the product
topology on AZ

d
.

We begin by giving some notation and facts about independent site percolation
which will be necessary for our proof. For a detailed introduction to percolation
theory, see [16].

DEFINITION 3.2. For any 0 < p < 1 and any infinite connected graph G =
(V (G),E(G)), the independent site percolation measure on G, denoted by Pp,G,
is the measure on {0,1}V (G) which independently assigns a 1 with probability p

and 0 with probability 1 − p at every site in V (G).

Often a site with a 1 is said to be open, and a site with a 0 is said to be closed. We
define the event A where there exists an infinite connected cluster of 1’s in G, and
say that A is the event where percolation occurs. One of the foundational princi-
ples of percolation theory is that for any countable locally finite graph, there exists
a probability pc(G), called the critical probability for site percolation on G, such
that for any p < pc(G), Pp,V (G)(A) = 0, and for any p > pc(G), Pp,V (G)(A) > 0.
We most often take G to be the graph representation of Z

2 as described earlier,
which is often called the square lattice in the literature. For this reason, the no-
tation Pp with no graph G will always be understood to represent Pp,Z2 , and pc

will represent pc(Z
2). It was shown in [19] that pc > 0.5, and there have been

successive improving lower bounds on pc since then [32, 39, 40, 44].
In this paper, we will be concerned only with the case p < pc, where percolation

occurs with probability 0. If G is the square lattice, then this of course implies that



2368 R. PAVLOV

Pp(0 ↔ ∂([−n,n]2)) → 0 as n → ∞, where for any S ⊆ Z
2, 0 ↔ S represents

the event where there is a connected path of 1’s starting at 0 and ending at a point
in S. In fact, an even stronger statement can be made. The following is a classical
theorem from percolation theory, proved by Menshikov [31].

THEOREM 3.3. On the square lattice, for any p < pc, there exist A and B so
that Pp(0 ↔ ∂([−n,n]2)) < Ae−Bn for all n.

We now turn to measure-theoretic entropy and conditional measure-theoretic
entropy, beginning with finite partitions. For any finite measurable partitions ξ and
η of a measure space (X,μ), we make the definitions

Hμ(ξ) = − ∑
A∈ξ

μ(A) logμ(A)

and

Hμ(ξ | η) = − ∑
A∈ξ,C∈η

μ(A ∩ C) ln
(

μ(A ∩ C)

μ(C)

)
,

where terms with μ(A) = 0 are omitted from the first sum, and terms with μ(A ∩
C) = 0 are omitted from the second sum.

The following decomposition result can be found in any standard book on er-
godic theory (such as [42]):

THEOREM 3.4. For any measure space (X,μ), any measurable partition η of
X and any partition ξ of X which is a refinement of η, Hμ(ξ) = Hμ(η)+Hμ(ξ | η).

For any measure μ on a Z
d subshift which is stationary, that is, μ(B) = μ(σvB)

for all v ∈ Z
d and measurable B , we may define its entropy.

DEFINITION 3.5. For any finite alphabet A and stationary measure μ on AZ
d
,

the measure-theoretic entropy of μ is

h(μ) = lim
j1,j2,...,jd→∞

1

j1j2 · · · jd

Hμ

( ∨
v∈∏d

i=1[1,ji ]
σv P

)
,

where P is the partition of X into cylinder sets determined by the letter at x(0)

(i.e., each element of P is [a] for some a ∈ A).

Again, this limit exists (independently of how each ji → ∞) and is equal to
its infimum by the coordinatewise subadditivity of the function g(j1, . . . , jd) :=
Hμ(

∨
v∈∏d

i=1[1,ji ] σv P) and the already mentioned multivariate generalization of
Fekete’s subadditivity lemma found in [9].
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Alternatively, we can write measure-theoretic entropy more concretely.

h(μ) = lim
j1,j2,...,jd→∞

−1

j1j2 · · · jd

∑
w∈A

∏d
i=1[1,ji ]

μ([w]) lnμ([w]),

where terms with μ([w]) = 0 are omitted.
We will also deal with measure-theoretic conditional entropy.

DEFINITION 3.6. For any finite alphabet A, any stationary measure μ on AZ
d

and any measurable partition ξ of AZ
d
, the measure-theoretic conditional entropy

of μ with respect to ξ is

h(μ | ξ) = lim
j1,j2,...,jd→∞

−1

j1j2 · · · jd

Hμ

( ∨
v∈∏d

i=1[1,ji ]
σv P

∣∣∣ ∨
v∈∏d

i=1[1,ji ]
σvξ

)
,

where again P represents the partition of X into cylinder sets determined by the
letter at x(0).

Note that when ξ is the partition {∅,X} (i.e., ξ “contains no information”)
h(μ | ξ) = h(μ).

Again there is a more concrete representation for conditional measure-theoretic
entropy. We will only deal with the case where ξ is a coarser partition than P , in
which case ξ corresponds to some partition of A in an obvious way, and we will
say ξ was induced by this partition of A. For such ξ ,

h(μ | ξ) = lim
j1,j2,...,jd→∞

−1

j1j2 · · · jd

× ∑
w∈A

∏d
i=1[1,ji ]

μ([w]) ln
(

μ([w])
μ((

∨
v∈∏d

i=1[1,ji ] σ
vξ)[w])

)
,

where terms with μ((
∨

v∈∏d
i=1[1,ji ] σ

vξ)[w]) = 0 are omitted.

We note that for any measure μ on a full shift AZ
d

and any partition ξ of AZ
d

induced by a partition of A, the push-forward φξ (μ) of μ under the factor map φξ

[i.e., the measure φξ (μ) defined by (φξ (μ))(C) = μ(φ−1
ξ C) for all C ⊂ ξZ

d
for

which φ−1
ξ C is measurable] is a measure on ξZ

d
. The following proposition fol-

lows immediately from Theorem 3.4 and the definitions of h(μ), h(μ | ξ) and φξ :

PROPOSITION 3.7. For any finite alphabet A, any stationary measure μ on
AZ

d
and any partition ξ of A,

h(μ) = h(μ | ξ) + h(φξ (μ)).



2370 R. PAVLOV

Measure-theoretic entropy and topological entropy are related by the following
variational principle; see [33] for a proof.

THEOREM 3.8. For any Z
d subshift X, htop(X) = suph(μ), where μ ranges

over measures whose support is contained in X. This supremum is achieved for
some such μ.

DEFINITION 3.9. A stationary measure μ supported on a subshift X is called
a measure of maximal entropy if h(μ) = htop(X).

Measures of maximal entropy will be useful in the proof of Theorem 1.1, since
we can rewrite the topological entropies in the theorem as measure-theoretical en-
tropies with respect to measures of maximal entropy. Measures of maximal entropy
on nearest neighbor SFTs also have another extremely useful property.

DEFINITION 3.10. For any finite alphabet A and countable locally finite
graph G = (V (G),E(G)), a measure μ on AV (G) is called a G-Markov ran-
dom field (or G-MRF) if, for any finite S ⊂ V (G), any η ∈ AS , any finite
T ⊂ (V (G) \ S) s.t. ∂(S,G) ⊆ T and any δ ∈ AT with μ([δ]) �= 0,

μ
(
x|S = η | x|∂(S,G) = δ|∂(S,G)

) = μ(x|S = η | x|T = δ).

Informally, μ is an MRF if, for any finite S ⊂ V (G), the sites in S and the
sites in V (G) \ (S ∪ ∂(S,G)) are μ-conditionally independent given the sites on
∂(S,G). We note that our definition of MRF differs slightly from the usual one,
where the right-hand side would involve conditioning almost surely on an entire
configuration on V (G) \ S rather than arbitrarily large finite subconfigurations of
it. However, the definitions are equivalent and the finite approach leads to simpler
calculations and proofs.

PROPOSITION 3.11 ([6], page 281, Proposition 1.20). For any Z
d nearest

neighbor SFT X, all measures of maximal entropy for X are Z
d -MRFs, and for

any such measure μ and any finite shape S ⊆ Z
d , the conditional distribution of μ

on S given any δ ∈ L∂(S,Zd )(X) is uniform over all configurations x ∈ LS(X) such
that the configuration y defined by y|S = x and y|∂(S,Zd ) = δ is locally admissible
in X.

In fact we will only use Proposition 3.11 for d = 1, where it is a much more
classical fact [34], but we state it in full generality here because the conclusion
of Proposition 3.11 is related to the well-studied Gibbs measures from statistical
physics. In [41], they study a more general class of measures; in their language,
a measure on a Z

d hard square shift satisfying the conclusion of Proposition 3.11
is called a hard-core measure with all activities ai equal to 1.
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DEFINITION 3.12. For any connected subgraph G of the square lattice, μ is
a uniform hard-core Gibbs measure on G if it is a G-MRF such that for any finite
connected set B ⊂ G and any admissible δ ∈ L∂(B,G)(H), μ(x|B = α | x|∂(B,G) =
δ) is uniform over all α ∈ AB which are admissible given δ, that is, the configura-
tion y defined by y|B = α and y|∂(B,G) = δ is in L(H).

THEOREM 3.13. For every infinite connected subgraph G of the square lat-
tice, there is a unique uniform hard-core Gibbs measure on S.

PROOF. Theorem 2.3 in [41] implies (in the case where all ai = 1 in their
notation) that for any such G, there is a unique uniform hard-core Gibbs measure
on G if percolation occurs with probability 0 with respect to P0.5,G. We recall that
pc > 0.5, and since G ⊆ Z

2, clearly pc(G) ≥ pc > 0.5, and by definition of pc(G)

we are done. �

In fact, we will eventually be able to represent uniform hard-core Gibbs mea-
sures on infinite subgraphs G of Z

2 as weak limits of uniform hard-core Gibbs
measures on finite S, but for this we will need the notion of stochastic dominance.
We first need to define the notion of a coupling of a finite set of measures.

DEFINITION 3.14. For any n and any probability spaces (Xi,μi), i ∈ [1, n],
a coupling of μ1,μ2, . . . ,μn is a measure λ on

∏n
i=1 Xi such that for any j ∈ [1, n]

and any μj -measurable B ⊆ Xj ,

λ

(j−1∏
i=1

Xi × B ×
n∏

k=j+1

Xk

)
= μj(B).

We present two equivalent definitions of stochastic dominance, both of which
depend on a partial order ≤ on the compact space AS for some set S. We will al-
ways assume ≤ to be closed, that is, {(x, y) :x ≤ y} ⊂ (AS)2 is closed. The equiv-
alence of these definitions is originally due to a result of Strassen (Theorem 11
in [37], where in his language, S = T and ε = 0); also see [27] for a shorter proof
of this equivalence (Theorem 2.4 in [27]) and a general introduction to interacting
particle systems.

DEFINITION 3.15. For any set S, any partial ordering ≤ on AS and any mea-
sures μ and ν on AS , μ ≤ ν (μ is stochastically dominated by ν with respect to ≤)
if there exists a coupling λ of μ and ν for which λ({(x, y) ∈ (AS)2 :x ≤ y}) = 1.

DEFINITION 3.16. For any set S, any partial ordering ≤ on AS , and any mea-
sures μ and ν on AS , μ ≤ ν (μ is stochastically dominated by ν with respect to ≤)
if for any increasing bounded continuous function f from AS to R [f is increasing
if f (x) ≤ f (y) if x ≤ y], Eμ(f ) ≤ Eν(g).
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We will repeatedly make use of three important properties of stochastic domi-
nance.

LEMMA 3.17. For a partial ordering ≤ on AS , define a relation ≤T on AT

by restricting ≤ to T (i.e., x ≤T y if there exist x′, y′ ∈ AS such that x′|T = x,
y′|T = y and x′ ≤ y′). If ≤T is a partial order, then for any measures μ ≤ ν on
AS , μ|T ≤T ν|T .

PROOF. This is an obvious consequence of the first definition of stochastic
dominance; simply marginalize the coupling λ from the first definition of stochas-
tic dominance to get a coupling λT of μ|T and ν|T with support contained in
{(x, y) ∈ (AT )2 :x ≤T y}. �

LEMMA 3.18. Stochastic dominance is preserved under weak limits; that is,
if μn → μ, νn → ν weakly, and μn ≤ νn for all n, then μ ≤ ν.

PROOF. This is an obvious consequence of the second definition of stochastic
dominance. �

LEMMA 3.19. If a sequence of measures {μn} on AS is stochastically mono-
tone (i.e., either μn ≤ μn+1 for all n or μn+1 ≤ μn for all n), then {μn} approaches
a weak limit μ.

PROOF. We assume that {μn} is a stochastically increasing sequence, since
the proof is nearly identical for the decreasing case. Since AS is compact, there
exists a subsequence of μn which approaches a weak limit. Consider any two sub-
sequences of {μn} which each approach weak limits, say μnk

→ μ and μmk
→ μ′.

Then, by passing to subsequences again if necessary, we can assume that n1 <

m1 < n2 < m2 < · · · . Since μn is stochastically increasing, μni
≤ μmi

for all i

and μmi
≤ μni+1 for all i.

By Lemma 3.18, this means that μ′ ≤ μ and μ ≤ μ′, so μ = μ′. This means
that all weakly convergent subsequences of {μn} approach the same limit, and so
the sequence itself weakly converges. �

We now define a partial order which is particularly relevant to H. We think of
Z

2 as being colored like a checkerboard; (x, y) ∈ Z
2 is colored black if x + y is

even and white if x + y is odd. We define a site-dependent ordering of {0,1}; for
any v ∈ Z

2, �v is defined as 0 �v 1 if v is black and 1 �v 0 if v is white. We use
this site-dependent ordering to define a partial ordering on {0,1}S for any S ⊆ Z

2:
for any x, x′ ∈ {0,1}S , x � x′ if x(v) �v x′(v) for all v ∈ S. This in turn defines
the stochastic dominance partial ordering on measures on AS with respect to �,
which we also denote by �.
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For any rectangle R and δ ∈ L∂R(H), we define a probability measure μδ

on {0,1}R which assigns equal probability to all configurations x such that the
configuration y ∈ {0,1}R∪∂R defined by y|R = x and y|∂R = δ is admissible.
(Note that by Proposition 3.11, μδ is just the conditional probability distribution
on R, given δ, w.r.t. the measure of maximal entropy μ for H.) We define a spe-
cial class of examples: for any u,d, �, r ∈ {0,+,−} and any rectangle R, define
δ
u,d,�,r
R ∈ L∂R(H) as follows: the symbols u,d, �, r determine boundary condi-

tions adjacent to the top, bottom, left and right edges of R. A + means that the
sites adjacent to that edge of R are maximal with respect to �, that is, 0 on white
squares and 1 on black squares. A − means that the sites adjacent to that edge of R

are minimal with respect to �, that is, 1 on white squares and 0 on black squares.
A 0 means that the sites adjacent to that edge of R are all 0. We then define μ

u,d,�,r
R

to be μδ
u,d,�,r
R .

The following theorem states that for the partial order �, comparability between
two admissible boundary configurations implies stochastic dominance comparabil-
ity between their associated measures. The theorem is a corollary of Lemma 3.1
from [41], and the proof is similar to that of Holley’s theorem [21] for the Ising
model.

THEOREM 3.20. For any rectangle R and δ, η ∈ L∂R(H) such that δ � η,
μδ � μη.

We can use Theorem 3.20 to derive stochastic dominance relationships between
some of the measures μ

u,d,�,r
R for different-sized rectangles.

THEOREM 3.21. For any integers k′ ≤ k < � ≤ �′ and m′ ≤ m < n, de-
fine rectangles R = [k, �] × [m,n] and R′ = [k′, �′] × [m′, n]. Then μ

0,+,+,+
R �

μ
0,+,+,+
R′ |R and μ

0,−,−,−
R � μ

0,−,−,−
R′ |R .

PROOF. We prove only the first inequality, as the second is similar. Our proof
mirrors the proof of Proposition 2.5 from [5]. Since R ⊆ R′, we may write

μ
0,+,+,+
R′ |R = μ

δ
0,+,+,+
R′ |R as a weighted average of the measures μη, where η

ranges over all admissible configurations in H on ∂R whose top edge is labeled
by 0’s. By Theorem 3.20, each term in this weighted average is stochastically dom-
inated by μ

0,+,+,+
R with respect to �, and therefore μ

0,+,+,+
R � μ

0,+,+,+
R′ |R . �

The proofs of the following two theorems are almost identical.

THEOREM 3.22. For any integers k′ ≤ k < � ≤ �′ and m < n ≤ n′, define rect-
angles S = [k, �]× [m,n] and S′ = [k′, �′]× [m,n′]. Then μ

+,0,+,+
S � μ

+,0,+,+
S′ |S

and μ
−,0,−,−
S � μ

−,0,−,−
S′ |S .
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THEOREM 3.23. For any integers k′ ≤ k < � ≤ �′ and m < n, define rectan-
gles T = [k, �] × [m,n] and T ′ = [k′, �′] × [m,n]. Then μ

0,0,+,+
T � μ

0,0,+,+
T ′ |T .

We will also make use of the −d topology on probability measures on a full
shift AZ. There are many different definitions for the −d metric (for a thorough
introduction to the subject, see [36]), but the one which we will find most useful is
the following.

DEFINITION 3.24. For any stationary measures μ and μ′ on AZ,

−d(μ,μ′) = min
λ∈C(μ,μ′)

∫
d1(x(0), y(0)) dλ(x, y),

where C(μ,μ′) is the set of stationary couplings of μ and μ′ and d1 is the 1-letter
Hamming distance given by d1(a, a) = 0 and d1(a, b) = 1 for a �= b.

The −d metric is useful for our purposes because of the nice behavior of measure-
theoretic entropy in the −d topology. We first need a definition:

DEFINITION 3.25. A stationary measure μ on a Z subshift X is ergodic if for
any shift-invariant measurable set A ⊂ X, that is, a measurable set A for which
μ(A�σnA) = 0 for all n, μ(A) is 0 or 1.

The following is Theorem 7.9 from [36].

THEOREM 3.26. For any finite alphabet A and ergodic stationary measures
μ and ν on AZ, if −d(μ, ν) = ε, then |h(μ) − h(ν)| ≤ ε ln|A| − ε ln ε − (1 − ε) ×
ln(1 − ε).

4. Main body. We now restrict our attention to the hard square shift H
and will use our preliminaries to prove some results about measures of max-
imal entropy on the Z nearest neighbor shifts of finite type Hn. By Theo-
rems 3.21 and 3.22, for any fixed m ≤ n and any fixed K , the sequences
(μ

0,+,+,+
[−k,k]×[m,n])|[−K,K]×[m,n] and (μ

+,0,+,+
[−k,k]×[m,n])|[−K,K]×[m,n] are monotonically

decreasing in the stochastic dominance ordering � as k → ∞. By Lemma 3.19,
this implies that for any K , these sequences approach weak limits, and so

μ
0,+,+,+
[−k,k]×[m,n] and μ

+,0,+,+
[−k,k]×[m,n] approach weak limits, denoted by μ

0+
m,n and

μ
+
0
m,n, respectively. An almost identical proof (but with monotonically decreasing

marginalizations) shows that μ
0,−,−,−
[−k,k]×[m,n] and μ

−,0,−,−
[−k,k]×[m,n] also approach weak

limits as k → ∞, which we denote by μ
0−
m,n and μ

−
0
m,n, respectively. Finally, by

using Theorem 3.23 instead of Theorems 3.21 and 3.22, we see that μ
0,0,+,+
[−k,k]×[m,n]
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approaches a weak limit as k → ∞, which we denote by μ
0
0
m,n. (Note: Technically,

to discuss weak limits, we need all measures to live on the same space; to deal
with this, we could extend each measure to {0,1}Z×[m,n] by simply appending 0’s
to every configuration in the support.)

LEMMA 4.1. For any integer n, μ
0−
1,n � μ

0
0
1,n � μ

0+
1,n and μ

−
0
1,n � μ

0
0
1,n � μ

+
0
1,n.

PROOF. We prove the first set of inequalities only, as the second is similar.
For any fixed k, μ

0,−,−,−
[−k,k]×[1,n] � μ

0,0,+,+
[−k,k]×[1,n] � μ

0,+,+,+
[−k,k]×[1,n] by Theorem 3.20. By

letting k → ∞ and using Lemma 3.18, μ
0−
1,n � μ

0
0
1,n � μ

0+
1,n. �

LEMMA 4.2. For any integer n, μ
0−
1,n � μ

0
0
0,n|Z×[1,n] � μ

0+
1,n and μ

−
0
1,n �

μ
0
0
1,n+1|Z×[1,n] � μ

+
0
1,n.

PROOF. We again prove the first set of inequalities only. For any fixed k,

μ
0,−,−,−
[−k,k]×[1,n] � μ

0,−,−,−
[−k,k]×[0,n]|[−k,k]×[1,n] � μ

0,0,+,+
[−k,k]×[0,n]|[−k,k]×[1,n]

� μ
0,+,+,+
[−k,k]×[0,n]|[−k,k]×[1,n] � μ

0,+,+,+
[−k,k]×[1,n]

by Theorems 3.20 and 3.21. By letting k → ∞ and using Lemma 3.18, μ
0−
1,n �

μ
0−
0,n|Z×[1,n] � μ

0
0
0,n|Z×[1,n] � μ

0+
0,n|Z×[1,n] � μ

0+
1,n, and by removing the second and

fourth expressions we are done. �

THEOREM 4.3. For any n, μ
0
0
1,n is the unique measure of maximal entropy

on Hn, and is ergodic.

PROOF. By Proposition 3.11, for any measure μ of maximal entropy on
a Z nearest neighbor SFT Y and for any a, b letters in the alphabet of Y ,
μ(x|[m+1,n−1] = α | x(m) = a, x(n) = b) is uniform over all admissible config-
urations α given a and b. We claim that this implies that any measure of max-
imal entropy μ on the Z nearest neighbor SFT Hn, when considered as a mea-
sure on {0,1}Z×[1,n], is a uniform hard-core Gibbs measure on Z × [1, n]. To
see this, consider any finite configurations w,w′ ∈ {0,1}S∪∂(S,Z×[1,n]) for some
finite S ⊆ Z × [1, n] such that w|∂(S,Z×[1,n]) = w′|∂(S,Z×[1,n]). Then, choose any
interval [l, r] so that S ∪ ∂(S,Z × [1, n]) ⊆ [l, r] × [1, n], and any configurations
L ∈ {0,1}{l−1}×[1,n] and R ∈ {0,1}{r+1}×[1,n] so that μ([L] ∩ [R]) > 0. Then, by
Proposition 3.11, all configurations in L[l−1,r+1]×[1,n](H) which have L on the
left edge and R on the right have the same μ-measure, and so μ([w] ∩ [L] ∩ [R])
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depends only the proportion of such configurations which have restriction w on
S ∪ ∂(S,Z × [1, n]). However, since H is a nearest neighbor SFT, this propor-
tion depends only on the letters on ∂(S,Z × [1, n]), and so μ([w] ∩ [L] ∩ [R]) =
μ([w′] ∩ [L] ∩ [R]). By summing over all such L,R, we see that μ([w]) =
μ([w′]), and so μ is a uniform hard-core Gibbs measure on Z × [1, n].

By its definition as a weak limit, it is not hard to check that μ
0
0
1,n is also a uniform

hard-core Gibbs measure on Z × [1, n], and by Theorem 3.13, there is only one

such measure. Therefore, μ
0
0
1,n is the unique measure of maximal entropy on Hn.

It is a standard fact [34] that when a Z SFT has a unique measure of maximal
entropy, it is ergodic. �

By the definition of ergodicity, any marginalization μ
0
0
1,n|⋃a∈A Ra

is also ergodic

for A ⊆ [1, n]; a shift-invariant set with nontrivial measure for μ
0
0
1,n|⋃a∈A Ra

would

yield a shift-invariant set with nontrivial measure for μ
0
0
1,n.

THEOREM 4.4. For any k,n, any even i ∈ [1, n], and any even j ∈ [−k, k],
0 ≤ μ

0,−,−,−
[−k,k]×[1,n]

(
x(j, i) = 0

) − μ
0,+,+,+
[−k,k]×[1,n]

(
x(j, i) = 0

)
≤ 2P0.5

(
(j, i) ↔ ∂

(
([−k, k] × [1, n]),Z × (−∞, n]))

and

0 ≤ μ
−,0,−,−
[−k,k]×[1,n]

(
x(j, i) = 0

) − μ
+,0,+,+
[−k,k]×[1,n]

(
x(j, i) = 0

)
≤ 2P0.5

(
(j, i) ↔ ∂

(
([−k, k] × [1, n]),Z × [1,∞)

))
.

The order of the terms in the central differences are reversed when the parity of i

or j changes.

PROOF. We prove only the first set of inequalities, as the second is completely
analogous. For ease of notation, we write μ = μ

0,−,−,−
[−k,k]×[1,n] and μ′ = μ

0,+,+,+
[−k,k]×[1,n].

Since μ � μ′ by Theorem 3.20, and since the function χ{x(j,i)=0} is a decreas-
ing bounded continuous function on H with respect to �, the inequality 0 ≤
μ(x(j, i) = 0) − μ′(x(j, i) = 0) is clear by the second definition of stochastic
dominance.

The second inequality μ(x(j, i) = 0) − μ′(x(j, i) = 0) ≤ 2P0.5,Z×(−∞,n]((j,
i) ↔ ∂(([−k, k] × [1, n]),Z × (−∞, n])) will be proved in two steps. We first
note that Proposition 3.3 from [41] (where in their notation �n = [−k, k] × [1, n]
and the underlying graph G is the subgraph Z × (−∞, n] of the square lattice)
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implies that

μ
(
x(j, i) = 0

) − μ′(x(j, i) = 0
)

= (μ × μ′)
(∃ disagreement path from (j, i)(1)

to ∂
(
([−k, k] × [1, n]),Z × (−∞, n])),

where a disagreement path for a pair (x, y) ∈ ({0,1}[−k,k]×[1,n])2 is simply a path
of vertices P for which x(p) �= y(p) for all p ∈ P .

It now suffices to prove that

(μ × μ′)
(∃ disagreement path from (j, i) to ∂

(
([−k, k] × [1, n]),Z × (−∞, n]))

≤ 2P0.5
(
(j, i) ↔ ∂

(
([−k, k] × [1, n]),Z × (−∞, n])).

Our proof is just a version of the argument used to prove Corollary 2.2
from [41], adapted to the finite graph [−k, k]× [1, n]. We point out first that by the
definitions of μ and μ′, they are MRFs on [−k, k] × [1, n]. The fundamental ob-
servation we make is that for any (j ′, i′) ∈ [−k, k] × [1, n] and any configurations
η,η′ ∈ {0,1}∂({(j ′,i′)},[−k,k]×[1,n]),

(μ × μ′)
(
x(j ′, i ′) �= y(j ′, i ′) :x|∂({(j ′,i′)},[−k,k]×[1,n]) = η,

y|∂({(j ′,i′)},[−k,k]×[1,n]) = η′)
≤ 0.5.

This is easy to check; from the definitions of μ and μ′, the conditional distributions

μ
(
x(j ′, i ′) | x|∂({(j ′,i′)},[−k,k]×[1,n]) = η

)
,

μ′(y(j ′, i ′) | y|∂({(j ′,i′)},[−k,k]×[1,n]) = η′)
are always either uniformly distributed between the letters 0 and 1, or entirely
concentrated on the letter 0.

Then we note that since μ and μ′ are MRFs, for any (j ′, i ′) ∈ ([−k, k]×[1, n])\
{(i, j)} and admissible δ, δ′ ∈ {0,1}([−k,k]×[1,n])\{(j ′,i′)},

(μ × μ′)
(
(x, y) has a disagreement path from (j, i)

to (j ′, i ′) | x|([−k,k]×[1,n])\{(j ′,i′)} = δ,

y|([−k,k]×[1,n])\{(j ′,i′)} = δ′)
(2)

≤ (μ × μ′)
(
x(j, i) �= y(j, i) | x|([−k,k]×[1,n])\{(j ′,i′)} = δ,

y|([−k,k]×[1,n])\{(j ′,i′)} = δ′)
≤ 0.5.

Therefore, the probability measure on {0,1}([−k,k]×[1,n])\{(j,i)} which marks dis-
agreement paths to (j, i) w.r.t. μ × μ′ by 1’s is stochastically dominated by
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the Bernoulli measure P0.5,([−k,k]×[1,n])\{(j,i)} with respect to the standard order-
ing ≤ on {0,1}, that is, 0 ≤ 1. More rigorously, if we define a factor map τ

from ({0,1}([−k,k]×[1,n])\{(j,i)})2 to {0,1}([−k,k]×[1,n])\{(j,i)} by (τ (x, y))(v) = 1 iff
(x, y) has a disagreement path from v to (j, i), then

τ(μ × μ′) ≤ P0.5,([−k,k]×[1,n])\{(j,i)}.
[This is proved by constructing a coupling of τ(μ×μ′) and P0.5,([−k,k]×[1,n])\{(j,i)}
where the Bernoulli trials for P0.5 always dominate, which is straightforward
by (2).] Then

(μ × μ′)
(∃ disagreement path from (j, i) to ∂

(
([−k, k] × [1, n]),Z × (−∞, n]))

≤ (μ × μ′)
(∃ path �, not containing (j, i), from a neighbor of (j, i)

to ∂
(
([−k, k] × [1, n]),Z × (−∞, n]) such that

for each p ∈ �, there is a disagreement path from p to (j, i)
)

≤ P0.5,([−k,k]×[1,n])\{(j,i)}
(∃ path of 1’s from a neighbor of (j, i)

to ∂
(
([−k, k] × [1, n]),Z × (−∞, n]))

= 2P0.5
(
(j, i) ↔ ∂

(
([−k, k] × [1, n]),Z × (−∞, n])).

Combining this with (1) completes the proof. �

COROLLARY 4.5. For any n, any i ∈ [1, n] and any j ,∣∣μ0+
1,n

(
x(j, i) = 0

) − μ
0−
1,n

(
x(j, i) = 0

)∣∣
≤ 2P0.5

(
(j, i) ↔ ∂

(
(Z × [1, n]),Z × (−∞, n]))

and ∣∣μ+
0
1,n

(
x(j, i) = 0

) − μ
−
0
1,n

(
x(j, i) = 0

)∣∣
≤ 2P0.5

(
(j, i) ↔ ∂

(
(Z × [1, n]),Z × [1,∞)

))
.

PROOF. We again prove only the first inequality, as the proof of the second

is similar. Let k → ∞ in Theorem 4.4 and use the definitions of μ
0+
1,n and μ

0−
1,n as

weak limits. Then note that it is obvious that P0.5,S(v ↔ T ) ≤ P0.5(v ↔ T ) for any
S ⊂ Z

2, v ∈ Z
2 and T ⊆ S, since enlarging the universal set S to Z

2 only allows
for more possible paths of 1’s from v to T . �

Our next result regards closeness of the measures μ
0
0
1,n and μ

0
0
1,n+1 in the −d met-

ric when restricted to horizontal strips which are two rows high. We will consider
such restrictions as measures on the full shift ({0,1}{0}×{0,1})Z for the purposes of
the −d metric.
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COROLLARY 4.6. For any n and any integer i ∈ [1, n − 1],
−d(μ

0
0
1,n|Ri∪Ri+1,μ

0
0
1,n+1|Ri∪Ri+1)

≤ 4P0.5
(
(0, i) ↔ ∂

(
(Z × [1, n]),Z × [1,∞)

))
+ 4P0.5

(
(0, i + 1) ↔ ∂

(
(Z × [1, n]),Z × [1,∞)

))
and

−d(μ
0
0
1,n|Ri∪Ri+1,μ

0
0
1,n+1|Ri+1∪Ri+2)

≤ 4P0.5
(
(0, i) ↔ ∂

(
(Z × [1, n]),Z × (−∞, n]))

+ 4P0.5
(
(0, i + 1) ↔ ∂

(
(Z × [1, n]),Z × (−∞, n])).

PROOF. We begin with the first inequality. The proof is fairly similar to
that of Lemma 3 from [23], but we cannot apply this directly due to the site-

dependence of the ordering �. By Lemmas 4.1 and 4.2, μ
−
0
1,n � μ

0
0
1,n � μ

+
0
1,n and

μ
−
0
1,n � μ

0
0
1,n+1|Z×[1,n] � μ

+
0
1,n. By Lemma 3.17, the same inequalities hold when

all four measures are restricted to Ri ∪ Ri+1. Then, by using the first definition of
stochastic dominance, the following four couplings exist:

λ1: coupling of μ
−
0
1,n|Ri∪Ri+1 , μ

0
0
1,n|Ri∪Ri+1 supported on {(w,x) :w � x};

λ2: coupling of μ
0
0
1,n|Ri∪Ri+1 , μ

+
0
1,n|Ri∪Ri+1 supported on {(x, z) :x � z};

λ3: coupling of μ
−
0
1,n|Ri∪Ri+1 , μ

0
0
1,n+1|Ri∪Ri+1 supported on {(w,y) :w � y};

λ4: coupling of μ
0
0
1,n+1|Ri∪Ri+1 , μ

+
0
1,n|Ri∪Ri+1 supported on {(y, z) :y � z}.

By taking the relatively independent coupling of λ1 and λ2 over the common

marginal μ
0
0
1,n|Ri∪Ri+1 , one arrives at a coupling λ5 of μ

−
0
1,n|Ri∪Ri+1 , μ

0
0
1,n|Ri∪Ri+1 ,

and μ
+
0
1,n|Ri∪Ri+1 supported on {(w,x, z) :w � x � z}.

By taking the relatively independent coupling of λ3 and λ4 over the com-

mon marginal μ
0
0
1,n+1|Ri∪Ri+1 , one arrives at a coupling λ6 of μ

−
0
1,n|Ri∪Ri+1 ,

μ
0
0
1,n+1|Ri∪Ri+1 , and μ

+
0
1,n|Ri∪Ri+1 supported on {(w,y, z) :w � y � z}.

Finally, by taking the relatively independent coupling of λ5 and λ6 over the

common marginal μ
−
0
1,n|Ri∪Ri+1 × μ

+
0
1,n|Ri∪Ri+1 , one arrives at a coupling λ of

μ
−
0
1,n|Ri∪Ri+1 , μ

0
0
1,n|Ri∪Ri+1 , μ

0
0
1,n+1|Ri∪Ri+1 and μ

+
0
1,n|Ri∪Ri+1 supported on

{(w,x, y, z) :w � x � z,w � y � z} ⊂ ({0,1}Ri∪Ri+1)4.
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The measures μ
−
0
1,n and μ

+
0
1,n are not σ(1,0)-invariant; in fact their definitions as

weak limits imply that σ(1,0)μ
−
0
1,n = μ

+
0
1,n. They are, however, σ(2,0)-invariant, and

so we will consider them as measures on ({0,1}{0,1}2
)Z so that we may treat them

as stationary measures. By replacing λ by any weak limit of a subsequence of the
sequence 1

n

∑n−1
i=0 σ(2i,0)λ, we may also assume that λ is σ(2,0)-invariant. We for

now assume that i is even and claim that∫
d1(w(0), z(0)) dλ(w, z)

≤ (
μ

−
0
1,n

(
x(0, i) = 0

) − μ
+
0
1,n

(
x(0, i) = 0

))
+ (

μ
+
0
1,n

(
x(0, i + 1) = 0

) − μ
−
0
1,n

(
x(0, i + 1) = 0

))
+ (

μ
+
0
1,n

(
x(1, i) = 0

) − μ
−
0
1,n

(
x(1, i) = 0

))
+ (

μ
−
0
1,n

(
x(1, i + 1) = 0

) − μ
+
0
1,n

(
x(1, i + 1) = 0

))
,

where w and z represent sequences on the alphabet {0,1}{0,1}2
, but x represents a

configuration on the alphabet {0,1}. In fact this is fairly straightforward; we may
assume in the integral that w � z. This means that w(0) �= z(0) only when at least
one of the inequalities

(w(0))(0,0) < (z(0))(0,0), (w(0))(0,1) > (z(0))(0,1),

(w(0))(1,0) > (z(0))(1,0), (w(0))(1,1) < (z(0))(1,1)

holds. However, since w and z are configurations on Ri ∪ Ri+1, it should be clear
that

λ
({(w(0))(0,0) < (z(0))(0,0)}) = μ

−
0
1,n

(
x(0, i) = 0

) − μ
+
0
1,n

(
x(0, i) = 0

)
,

λ
({(w(0))(0,1) > (z(0))(0,1)}) = μ

+
0
1,n

(
x(0, i + 1) = 0

) − μ
−
0
1,n

(
x(0, i + 1) = 0

)
,

λ
({(w(0))(1,0) > (z(0))(1,0)}) = μ

+
0
1,n

(
x(1, i) = 0

) − μ
−
0
1,n

(
x(1, i) = 0

)
and

λ
({(w(0))(1,1) < (z(0))(1,1)}) = μ

−
0
1,n

(
x(1, i + 1) = 0

) − μ
+
0
1,n

(
x(1, i + 1) = 0

)
.

Since μ
−
0
1,n = σ(1,0)μ

+
0
1,n, the right-hand sides of the first and third inequalities each

equal (μ
−
0
1,n(x(0, i) = 0) − μ

+
0
1,n(x(0, i) = 0)), and the right-hand sides of the sec-

ond and fourth inequalities each equal (μ
+
0
1,n(x(0, i + 1) = 0)−μ

−
0
1,n(x(0, i + 1) =
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0)). Then, since λ is supported on 4-tuples (w,x, y, z) for which w � x � z and
w � y � z, and since clearly for such 4-tuples w(0) = z(0) ⇒ w(0) = x(0) =
y(0) = z(0),

−d(μ
0
0
1,n|Ri∪Ri+1,μ

0
0
1,n+1|Ri∪Ri+1)

≤
∫

d1(x(0), y(0)) dλ(x, y) ≤
∫

d1(w(0), z(0)) dλ(w, z)

≤ 2
(
μ

−
0
1,n

(
x(0, i) = 0

) − μ
+
0
1,n

(
x(0, i) = 0

))
+ 2

(
μ

+
0
1,n

(
x(0, i + 1) = 0

) − μ
−
0
1,n

(
x(0, i + 1) = 0

))
,

which by Corollary 4.5 is bounded from above by

4P0.5
(
(0, i) ↔ ∂

(
(Z × [1, n]),Z × [1,∞)

))
+ 4P0.5

(
(0, i + 1) ↔ ∂

(
(Z × [1, n]),Z × [1,∞)

))
.

Due to the earlier rescaling forced by the nonshift invariance of μ
−
0
1,n and μ

+
0
1,n, this

is in fact a bound on the −d distance between μ
0
0
1,n|Ri∪Ri+1 and μ

0
0
1,n+1|Ri∪Ri+1 as

measures on ({0,1}{0,1}2
)Z rather than ({0,1}{0}×{0,1})Z, but clearly the −d distance

in the latter case is even smaller.

To prove the second inequality, simply use μ
0
0
0,n instead of μ

0
0
1,n+1, and note that

μ
0
0
0,n|Ri∪Ri+1 = μ

0
0
1,n+1|Ri+1∪Ri+2 .

The proofs when i are odd are almost identical, except that the orders of all
differences above need to be switched, which does not affect the final inequality.

�

Since 0.5 < pc on the square lattice, the following is clear from Theorem 3.3
and Corollary 4.6.

THEOREM 4.7. There exist A,B > 0 so that for any n and i ∈ [1, n − 1],
−d(μ

0
0
1,n|Ri∪Ri+1,μ

0
0
1,n+1|Ri∪Ri+1) ≤ Ae−B(n−i)

and

−d(μ
0
0
1,n|Ri∪Ri+1,μ

0
0
1,n+1|Ri+1∪Ri+2) ≤ Ae−Bi.

We note that clearly Theorem 4.7 also implies that

−d(μ
0
0
1,n|Ri

,μ
0
0
1,n+1|Ri

) ≤ Ae−B(n−i) and −d(μ
0
0
1,n|Ri

,μ
0
0
1,n+1|Ri+1) ≤ Ae−Bi;
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either inequality can be proved by considering a restriction of the coupling λ that
achieves the analogous −d distance in Theorem 4.7 and noting that restricting from
a strip two rows high to a single row cannot introduce new disagreements.

Now, we can prove Theorem 1.1 by using measure-theoretic conditional en-
tropies. We first need some notation and a preliminary theorem. For any Hn, any
stationary measure μ on Hn and any adjacent intervals I, J ⊆ [1, n], we partition
the alphabet An = L{0}×[1,n](H) of Hn by the letters on I ∪ J , and call this parti-
tion ξI∪J . We also partition An by the letters on I , and call this partition ξI . Then
we use the notation

hμ

(⋃
i∈I

Ri

)
:= h(φξI

(μ))

and

hμ

(⋃
j∈J

Rj

∣∣∣ ⋃
i∈I

Ri

)
:= h(φξI∪J

(μ) | ξI ).

[For the sake of completeness, we note that for any I , φξI
(μ) is essentially just

μ|⋃
i∈I Ri

; we use the partition notation to more easily apply Proposition 3.7.] We
note that hμ(

⋃
i∈I Ri) can also be thought of as h(μ|⋃

i∈I Ri
). We also note that by

Proposition 3.7, for any I and J ,

hμ

( ⋃
k∈I∪J

Rk

)
= hμ

(⋃
i∈I

Ri

)
+ hμ

(⋃
j∈J

Rj

∣∣∣ ⋃
i∈I

Ri

)
.

For uniform hard-core Gibbs measures on Z × [1, n], we will prove an important
fact about these conditional measure-theoretic entropies, which can be thought of
as a two-dimensional entropic analog of the fact that the future and past of a one-
dimensional Markov chain are conditionally independent given the present.

THEOREM 4.8. For any n and any adjacent intervals I, J ⊆ [1, n],

h
μ

0
0
1,n

(⋃
j∈J

Rj

∣∣∣ ⋃
i∈I

Ri

)
= h

μ
0
0
1,n

(⋃
j∈J

Rj

∣∣∣ Ri

)
,

where i ∈ I is the element of I adjacent to J .

PROOF. We will only prove the theorem for the case where J is above I , that
is, I = [i′, i] and J = [i + 1, j ], as the other case is trivially similar. Also, for this
proof, given a finite set of configurations αi ∈ ASi , 1 ≤ i ≤ k, for which the shapes
Si are pairwise disjoint, we denote by α1α2 · · ·αk the concatenation of the αi , that
is, the configuration on

⋃k
i=1 Si for which (α1α2 · · ·αk)|Si

= αi for 1 ≤ i ≤ k.
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For readability, we abbreviate μ
0
0
1,n by μ in this proof. By definition, since the

support of μ is contained in Hn,

hμ

(⋃
j∈J

Rj

∣∣∣ ⋃
i∈I

Ri

)

= lim
k→∞

1

2k + 1

∑
w∈L[−k,k]×I (H),

x∈L[−k,k]×J (H)

μ([w] ∩ [x]) ln
(

μ([w])
μ([w] ∩ [x])

)

= lim
k→∞

1

2k + 1

∫
Hn

ln
(

μ([w])
μ([w] ∩ [x])

)
dμ(w,x).

We make the decomposition

μ([w] ∩ [x]) = ∑
L∈L{−k−1}×[1,n](H),

R∈L{k+1}×[1,n](H)

μ([w] ∩ [x] ∩ [L] ∩ [R]).(3)

We recall from its definition as a weak limit that μ is a uniform hard-core Gibbs
measure on Z × [1, n], and so for any such L and R,

μ([w] ∩ [x] ∩ [L] ∩ [R])
μ([L] ∩ [R])

= |{u ∈ L[−k,k]×([1,i′−1]∪[j+1,n])(H) :LuwxR ∈ L(X)}|
|{u ∈ L[−k,k]×([1,n])(H) :LuR ∈ L(H)}| .

In Figure 1, {u ∈ L[−k,k]×([1,i′−1]∪[j+1,n])(H) :LuwxR ∈ L(X)} is the set of
configurations which can legally fill the shaded area.

We may similarly decompose μ([w]):
μ([w]) = ∑

L∈L{−k−1}×[1,n](H),

R∈L{k+1}×[1,n](H)

μ([w] ∩ [L] ∩ [R]).(4)

FIG. 1. w, x, L and R.
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Since μ is a uniform hard-core Gibbs measure on Z×[1, n], for any such L and R

μ([w] ∩ [L] ∩ [R])
μ([L] ∩ [R]) = |{u ∈ L[−k,k]×([1,i′−1]∪[i+1,n])(H) :LuwR ∈ L(X)}|

|{u ∈ L[−k,k]×([1,n])(H) :LuR ∈ L(H)}| .

By (3) and (4), for any L and R such that μ([L] ∩ [R]) > 0,

μ([w] ∩ [L] ∩ [R])
μ([w] ∩ [x] ∩ [L] ∩ [R])

(5)

= |{u ∈ L[−k,k]×([1,i′−1]∪[i+1,n])(H) :LuwR ∈ L(X)}|
|{u ∈ L[−k,k]×([1,i′−1]∪[j+1,n])(H) :LuwxR ∈ L(X)}| .

Since H is a nearest neighbor SFT,∣∣{u ∈ L[−k,k]×([1,i′−1]∪[i+1,n])(H) :LuwR ∈ L(X)
}∣∣

= (∣∣{u′ ∈ L[−k,k]×[1,i′−1](H) :Lu′wR ∈ L(X)
}∣∣)

× (∣∣{u′′ ∈ L[−k,k]×[i+1,n](H) :Lu′′wR ∈ L(X)
}∣∣)

and ∣∣{u ∈ L[−k,k]×([1,i′−1]∪[j+1,n])(H) :LuwxR ∈ L(X)
}∣∣

= (∣∣{u′ ∈ L[−k,k]×[1,i′−1](H) :Lu′wR ∈ L(X)
}∣∣)

× (∣∣{u′′ ∈ L[−k,k]×[j+1,n](H) :Lu′′xR ∈ L(X)
}∣∣).

Therefore, (5) implies

μ([w] ∩ [L] ∩ [R])
μ([w] ∩ [x] ∩ [L] ∩ [R]) = |{u ∈ L[−k,k]×[i+1,n](H) :LuwR ∈ L(X)}|

|{u ∈ L[−k,k]×[j+1,n](H) :LuxR ∈ L(X)}| .(6)

In Figure 2, we see that since 0 is a safe symbol of H, any configuration
u ∈ L[−k+1,k−1]×[i+1,n](H) for which uw ∈ L(H) may be extended in at least
one way to a configuration u′ ∈ L[−k,k]×[i+1,n](H) for which Lu′wR ∈ L(H)

(by placing columns of 0’s to the left and right), and any configuration u ∈
L[−k+1,k−1]×[j+1,n](H) for which ux ∈ L(H) may be extended in at least one way

FIG. 2. Extending configurations with 0 symbols.
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to a configuration u′ ∈ L[−k,k]×[j+1,n](H) for which Lu′xR ∈ L(H) (by placing
columns of 0’s to the left and right). Also, clearly there are at most 22(n−i) possible
such extensions in the first case and at most 22(n−j) possible such extensions in the
second. Therefore,∣∣{u ∈ L[−k+1,k−1]×[j+1,n](H) :ux ∈ L(X)

}∣∣
≤ ∣∣{u ∈ L[−k,k]×[j+1,n](H) :LuxR ∈ L(X)

}∣∣
≤ 22(n−j)

∣∣{u ∈ L[−k+1,k−1]×[j+1,n](H) :ux ∈ L(X)
}∣∣

and ∣∣{u ∈ L[−k+1,k−1]×[i+1,n](H) :uw ∈ L(X)
}∣∣

≤ ∣∣{u ∈ L[−k,k]×[i+1,n](H) :LuwR ∈ L(X)
}∣∣

≤ 22(n−i)
∣∣{u ∈ L[−k+1,k−1]×[i+1,n](H) :uw ∈ L(X)

}∣∣.
Then by (6), for any choices of L,R for which μ([L] ∩ [R]) > 0,(

μ([w] ∩ [L] ∩ [R])
μ([w] ∩ [x] ∩ [L] ∩ [R])

)/( |{u ∈ L[−k+1,k−1]×[i+1,n](H) :uw ∈ L(X)}|
|{u ∈ L[−k+1,k−1]×[j+1,n](H) :ux ∈ L(X)}|

)
is in the interval [2−2(n−i),22(n−j)], and so by (3) and (4),(

μ([w])
μ([w] ∩ [x])

)/( |{u ∈ L[−k+1,k−1]×[i+1,n](H) :uw ∈ L(X)}|
|{u ∈ L[−k+1,k−1]×[j+1,n](H) :ux ∈ L(X)}|

)
is also in the interval [2−2(n−i),22(n−j)].

The original conditional entropy hμ(
⋃

j∈J Rj | ⋃
i∈I Ri) is

lim
k→∞

1

2k + 1

∫
Hn

ln
(

μ([w])
μ([w] ∩ [x])

)
dμ(w,x),

which is equal to

lim
k→∞

1

2k + 1

∫
Hn

ln
( |{u ∈ L[−k+1,k−1]×[i+1,n](H) :uw ∈ L(X)}|

|{u ∈ L[−k+1,k−1]×[j+1,n](H) :ux ∈ L(X)}|
)

dμ(w,x)

since the difference between the functions inside the integrals is bounded as
k → ∞.

We now note that this expression does not depend on the left endpoint i ′ of I ,
and so

hμ

(⋃
j∈J

Rj

∣∣∣ ⋃
i∈I

Ri

)
= hμ

(⋃
j∈J

Rj

∣∣∣ Ri

)
. �
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PROOF OF THEOREM 1.1. By Theorem 4.3, hn+1 = h(μ
0
0
1,n+1) and hn =

h(μ
0
0
1,n). By using Proposition 3.7, we may decompose these entropies as follows:

hn = h(μ
0
0
1,n)

= h
μ

0
0
1,n

(
R�n/2�

) +
n∑

j=�n/2�+1

h
μ

0
0
1,n

(
Rj

∣∣∣ j−1⋃
i=�n/2�

Ri

)

+
�n/2�−1∑

k=1

h
μ

0
0
1,n

(
Rk

∣∣∣ n⋃
i=k+1

Ri

)

and

hn+1 = h(μ
0
0
1,n+1)

= h
μ

0
0
1,n+1

(
R�n/2�

) + h
μ

0
0
1,n+1

(
R�n/2�+1 | R�n/2�

)

+
n+1∑

j=�n/2�+2

h
μ

0
0
1,n+1

(
Rj

∣∣∣ j−1⋃
i=�n/2�

Ri

)

+
�n/2�−1∑

k=1

h
μ

0
0
1,n+1

(
Rk

∣∣∣ n+1⋃
i=k+1

Ri

)
.

By Theorem 4.8, these decompositions may be rewritten as

hn = h(μ
0
0
1,n)

= h
μ

0
0
1,n

(
R�n/2�

) +
n∑

j=�n/2�+1

h
μ

0
0
1,n

(Rj | Rj−1)

+
�n/2�−1∑

k=1

h
μ

0
0
1,n

(Rk | Rk+1)

and

hn+1 = h(μ
0
0
1,n+1)

= h
μ

0
0
1,n+1

(
R�n/2�

) + h
μ

0
0
1,n+1

(
R�n/2�+1 | R�n/2�

)

+
n+1∑

j=�n/2�+2

h
μ

0
0
1,n+1

(Rj | Rj−1) +
�n/2�−1∑

k=1

h
μ

0
0
1,n+1

(Rk | Rk+1).
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By taking the difference, we see that

hn+1 − hn

= h
μ

0
0
1,n+1

(
R�n/2�

) − h
μ

0
0
1,n

(
R�n/2�

)
(7)

+
n∑

j=�n/2�+1

(
h

μ
0
0
1,n+1

(Rj+1 | Rj) − h
μ

0
0
1,n

(Rj | Rj−1)
)

(8)

+
�n/2�−1∑

k=1

(
h

μ
0
0
1,n+1

(Rk | Rk+1) − h
μ

0
0
1,n

(Rk | Rk+1)
)

(9)

+ h
μ

0
0
1,n+1

(
R�n/2�+1 | R�n/2�

)
.(10)

Theorem 4.3 implies that the measures μ
0
0
1,n+1|R�n/2� and μ

0
0
1,n|R�n/2� are ergodic.

Then by Theorems 4.7 and 3.26, it is clear that (7) is exponentially small in n, that
is, there exist constants Q and R independent of n so that (7) < Qe−Rn. We may
rewrite any term in sum (8) by Proposition 3.7:

h
μ

0
0
1,n+1

(Rj+1 | Rj) − h
μ

0
0
1,n

(Rj | Rj−1)

= (
h

μ
0
0
1,n+1

(Rj+1 ∪ Rj) − h
μ

0
0
1,n

(Rj ∪ Rj−1)
)

− (
h

μ
0
0
1,n+1

(Rj ) − h
μ

0
0
1,n

(Rj−1)
)
.

By Theorem 4.7,

−d(μ
0
0
1,n+1|Rj

,μ
0
0
1,n|Rj−1),

−d(μ
0
0
1,n+1|Rj+1∪Rj

,μ
0
0
1,n|Rj∪Rj−1) ≤ Ae−Bj .

Since j > �n
2�, and all of the relevant measures are ergodic, (8) is exponentially

small in n by Theorem 3.26. The proof that (9) is also exponentially small in n is
similar.

All that remains is to show that the leftover term (10) approaches h at rate which
is at least exponential in n. It suffices to show that (10) approaches any limit at all
with rate at least exponential in n; by Lemma 3.1, hn+1 − hn approaches h in the
Cesàro limit, and hn+1 − hn differs from (10) by an exponentially small amount.
So, if (10) approaches a limit at all, it must be h.

We note that for any n, �n+1
2 � is either equal to �n

2� or �n
2� + 1. But by Theo-

rem 4.7, in either event,

−d
(
μ

0
0
1,n+2|R�(n+1)/2�∪R�(n+1)/2�+1,μ

0
0
1,n+1|R�n/2�∪R�n/2�+1

)
< Ae−B(n/2).
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Then h
μ

0
0
1,n+2

(R�(n+1)/2�+1 | R�(n+1)/2�) − h
μ

0
0
1,n+1

(R�n/2�+1 | R�n/2�) is exponen-

tially small in n by ergodicity and Theorem 3.26, implying that (10) is exponen-
tially Cauchy, and therefore it approaches a limit with rate at least exponential in n,
and we are done. �

One application of Theorem 1.1 is to the computability of the real number h.
We first need to define our notion of computability.

DEFINITION 4.9. A real number α is computable in time f (n) if there exists
a Turing machine which, on input n, outputs a pair (pn, qn) of integers such that
|pn

qn
−α| < 1

n
, and if this procedure takes less than f (n) operations for every n. We

say that α is computable if it is computable in time f (n) for some function f (n).

Informally speaking, a real number α is computable if it is possible to give
a finite description of α which allows someone to reconstruct as many digits of
the decimal expansion of α as desired. For instance, e is computable since we
can describe it as the sum of the reciprocals of the factorials of nonnegative num-
bers. All algebraic numbers are computable, but there are many more computable
numbers than algebraic (though still only countably many). For an introduction to
computability theory, see [25].

THEOREM 4.10. h is computable in polynomial time. [There exists a polyno-
mial p(n) for which h is computable in time p(n).]

PROOF. Recall from Section 1 that for any Z nearest neighbor SFT X, htop(X)

is the logarithm of the Perron eigenvalue of an associated matrix called its transi-
tion matrix. Since we will need a few relevant properties of these matrices, we
quickly define them for Z nearest neighbor SFTs. Given a Z nearest neighbor SFT,
which we assume without loss of generality to have alphabet [1, |A|], the transition
matrix B is a square 0–1 matrix with size |A|, where bij is 0 if the adjacency ij is
not allowed and 1 if the adjacency ij is allowed.

Define, for any n, Bn to be the transition matrix for Hn = Hn(H). Then Bn is
a square matrix with size sn := LA{1}×[1,n]. Since the horizontal adjacency condi-
tions for H are symmetric (ij is legal if and only if ji is legal), the same is true
for Hn, and so all Bn are symmetric. For H, the algorithm from [35] mentioned
in Section 1 for generating any Bn takes exponential time in n. (Briefly, one con-
structs Bn+1 from Bn by arranging four copies of Bn in a square, and then by re-
placing the right half of the upper-right copy of Bn, the upper half of the lower-left
copy of Bn and the entire lower-right copy of Bn by 0’s. The number of operations
taken to generate this matrix is of the same order as the number of operations it
takes to write down the entries, of which there are exponentially many in n.) Also,
Bn is nonnegative real and symmetric, and therefore it has all real eigenvalues,
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which we denote by λn,1, λn,2, . . . , λn,sn , where λn,1 ≥ |λn,2| ≥ · · · ≥ |λn,sn |. For
any positive integer k, tr((Bn)

k) = ∑sn
i=1 λk

n,i , and so if we assume k to be even,
then

λk
n,1 ≤ tr((Bn)

k) ≤ snλ
k
n,1.

Since sn ≤ 2n,

λn,1 ≤ [tr((Bn)
k)]1/k ≤ 2n/kλn,1.

If we choose k = 8n, then k ≥ n4n, and so

λn,1 ≤ [tr((Bn)
8n

)]1/8n ≤ 24−n

λn,1.

Since Bn is a 0–1 matrix, λn,1 is less than or equal to the size sn of Bn, which
is in turn less than 2n. Combining this with the fact that 24−n ≤ 1 + 4−n yields
|λn,1 − [tr((Bn)

8n
)]1/8n | < 2−n. Also, the calculation of [tr((Bn)

8n
)]1/8n

takes ex-
ponentially many steps in n; one simply needs to start with Bn and square 3n times,
then add the diagonal entries and take the result to the 1

8n power.
Therefore, by investing exponentially many steps in n, it is possible to achieve

approximations h̃n+1 and h̃n which are exponentially close to hn+1 and hn, re-
spectively, and then by Theorem 1.1, h̃n+1 − h̃n is exponentially close to h.

In other words, there exist C, D, E and F so that for every n, there is an ap-
proximation, computable in less than CeDn steps, which is within Ee−Fn of h. But
then for any integer m, Ee−F(n+1) ≤ 1

m
≤ Ee−Fn for some n, and so one can ap-

proximate h to within 1
m

in at most CeD(n+1) steps. Since m ≥ 1
E

eFn, the number

of steps required for the approximation is at most CeD(mE)D/F , which is clearly
a polynomial in m. �

The fact that h is computable follows from a more general result in [20], but
the proof there gives no information about the rate. Another consequence of [20]
is that there exist Z

2 SFTs whose entropies are computable with arbitrarily poor
time (along with entropies which are not computable at all!), so Theorem 4.10 at
least implies that h is “nice” within the class of entropies of SFTs. Though not
as good as a closed form, this is still satisfying; since H is the simplest possible
nondegenerate Z

2 SFT, one would hope for its entropy to be a relatively simple
number.

As mentioned in the Introduction, it is also shown in [15] that h is computable
in polynomial time.

5. A counterexample. Interestingly, it is not true for all Z
2 SFTs that

hn+1(X) − hn(X) converges to a limit. This was shown by an example in [35].
However, this example was somewhat degenerate in that it was periodic, and in
particular not topologically mixing.
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DEFINITION 5.1. A Z
d subshift X is topologically mixing if for any finite

rectangular prisms S,T ⊂ Z
d , there exists RS,T so that for any translations S′ and

T ′ of S and T , respectively, such that ‖s ′ − t ′‖∞ > RS,T for all s′ ∈ S′ and t ′ ∈ T ′,
and for any globally admissible configurations u ∈ LS′(X) and v ∈ LT ′(X), there
exists x ∈ X such that x|S′ = u and x|T ′ = v.

In other words, X is topologically mixing if it is possible to see any two globally
admissible configurations at any desired locations within the same point of X, pro-
vided that you allow enough distance between them. Topological mixing is a strong
condition for Z SFTs, and is a sufficient hypothesis for many theorems. However,
for Z

d SFTs with d > 1, topological mixing is a somewhat weak property. For
many theorems in Z

d symbolic dynamics (see [10, 11, 22, 28, 29]), it is necessary
to assume a uniform mixing property, that is, one where the distance required to
see two globally admissible configurations simultaneously is independent of their
size. There is a hierarchy of uniform mixing conditions in Z

d , including block
gluing, corner gluing, the uniform filling property, strong irreducibility and square
filling mixing; see [4] for definitions of, and some exposition on, the conditions in
this hierarchy.

We can modify the example from [35] to see that the weakest uniform mixing
condition, block gluing, is not enough to ensure convergence of hn+1(X)−hn(X).

DEFINITION 5.2. A Z
d subshift X is block gluing if there exists R such that

for any finite rectangular prisms S,T ⊂ Z
d satisfying ‖s − t‖∞ > R for all s ∈ S

and all t ∈ T , and for any globally admissible configurations u ∈ LS(X) and v ∈
LT (X), there exists x ∈ X such that x|S = u and x|T = v. We call the minimum
such R the filling length of X.

We will not define any other uniform mixing conditions except to say that the
stronger conditions have the same spirit, but enlarge the class of configurations
which are considered. For instance, strong irreducibility is defined by considering
any pair of globally admissible configurations, whether their shapes are rectangular
prisms or something more complicated.

THEOREM 5.3. There exists a block gluing Z
2 nearest neighbor SFT Y for

which limn→∞ hn+1(Y ) − hn(Y ) does not exist.

We begin by defining Y , which is a slightly different version of the SFT X
(N)
MS

defined in [4]. The alphabet A of Y consists of the integers 0,1, . . . , k for any k >

(8 · 482)2 = 339,738,624, along with the symbols s1, s2, s3, s4, s5, s6 (illustrated in
Figure 3), which we call grid symbols. The legal adjacent pairs of grid symbols
are those where the line segments which meet the edges “match up,” and which do
not yield parallel line segments at a unit distance which do not meet. For instance,
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FIG. 3. Grid symbols in the alphabet A.

s1s2 is forbidden since the horizontal line segment meeting the right edge of s1

does not match up with any horizontal line segment meeting the left edge of s2,
and the pairs s2s6 and s3s4 are forbidden since each pair would contain a pair of
vertical line segments at unit distance which do not meet. Adjacencies between
integers are as follows: 0 may only appear horizontally adjacent to 0, 0 may not
appear vertically adjacent to 0 and non-0 integers may not be vertically adjacent.
The only integer allowed to appear above a grid symbol is 0, and there are no other
restrictions on adjacencies between grid symbols and nongrid symbols.

The net effect of all of this is that any point y ∈ Y has grid symbols partitioning
the plane into rectangles (possibly infinite), and on each rectangle y is labeled with
integers, where the rows alternate between rows of all 0’s and rows of arbitrary
strings of non-0 integers between 1 and k. In any such rectangle (finite or infinite)
with a bottom row, this row must be labeled with 0’s.

First, we will verify that Y is block gluing with filling length 9. Consider any
two rectangular configurations w and w′ which are globally admissible in Y . With-
out loss of generality, we assume that both w and w′ have shape [1, n]2. For any
v ∈ Z

2 with ‖v‖∞ > n + 9, we will construct x ∈ AZ
2

for which x|[1,n]2 = w and
x|[1,n]2+v = w′. First, place w and w′ at the corresponding locations, as in Fig-
ure 4. Clearly either the horizontal separation or vertical separation between w

and w′ is greater than 9, and for now we assume that it is the vertical separation.

FIG. 4. w and w′.
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First, we will extend each of w and w′ to a slightly larger square. We describe
the procedure only for w, as the corresponding procedure for w′ is completely
analogous. We begin by placing grid symbols on the border of [−3, n + 4]2, that
is, at a distance of 4 from w. The top and bottom edges are labeled with horizontal
lines (the symbol s1), the left and right edges are labeled with vertical lines (the
symbol s2), the lower two corners are labeled with the symbol s3 and the upper
two corners are labeled with the symbol s5. Denote the square [−3, n + 4]2 by B .
For each edge of w, look for any grid symbols which contain a line segment which
hits the boundary of w, and extend such segments to the corresponding edge of B

by using a string of grid symbols s1 or s2 (along with the proper “joining” symbol
s3, s4, s5 or s6 when this string hits the edge). This partitions B into rectangles,
which we would like to fill with integers. Any empty rectangles are easy to fill,
and we can almost just complete the rectangles which already contain some in-
tegers from w in a locally admissible way, but there is one slight problem; when
continuing the pattern of alternating rows of 0’s and rows of non-0 integers begun
by a partially filled rectangle, we could end up with a non-0 integer above one of
the horizontal line grid symbols along the bottom edge of B , which is illegal. This
is easily addressed though: before filling in any rectangles, consider any interval
of integers on the bottom edge of w. If such an interval is made up of 0’s, place a
horizontal line of grid symbols below it to end its rectangle. If an interval is made
up of non-0 integers, place a row of 0’s below it, and then place a horizontal line
of grid symbols below that. Again extend any incomplete paths to the boundary
of B , and since each rectangle intersecting the bottom edge of B is now empty, it
is possible to fill all rectangles with integers, without changing w, in a locally ad-
missible way. The resulting configuration on B (and the corresponding one on B ′)
is locally admissible. To fill the rest of Z

2, we simply extend the segments of hor-
izontal line grid symbols on the top and bottom edges of both B and B ′ infinitely
to the left and right, and fill in the resulting empty infinite rectangles with integers
in any locally admissible way. (This procedure is illustrated in Figure 5.)

If instead the horizontal separation between w and w′ was at least 9, then the
only changes to the above construction would be to use grid symbols s4 and s6 on
the corners of B and B ′, and to extend the segments of vertical line grid symbols
on the left and right edges of B and B ′ infinitely upwards and downwards instead.
Since w and w′ must have been in one of these two situations, we have proved that
Y is block gluing.

We will now verify that limn→∞ hn+1(Y )−hn(Y ) does not exist. The basic idea
is that most of the entropy is contributed only by the integer symbols in A, and
that the entropy contributed by these symbols grows a lot when transitioning from
a strip of height 2n to a strip of height 2n + 1, and not as much when transitioning
from a strip of height 2n − 1 to a strip of height 2n.

Fix any n,m ∈ N. We will bound |LA[1,m]×[1,2n−1](Y )| from above and below.
The lower bound is easy: by considering configurations labeled by alternating rows
of 0’s and non-0 integers with non-0 rows on the top and bottom, we quickly
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FIG. 5. Interpolating between w and w′.

see that |LA[1,m]×[1,2n−1](Y )| ≥ kmn. For the upper bound, we have to work a bit
harder. Consider any configuration w ∈ LA[1,m]×[1,2n−1](Y ) which contains g grid
symbols for some g ∈ [1, (2n − 1)m]. We first bound from above the number of
ways that these grid symbols can be placed.

The key point in our argument is that since, in points of Y , each grid symbol
must be adjacent to at least two other grid symbols, and there are no grid sym-
bols consisting of only a corner, there are no locally admissible closed finite loops
of grid symbols. Therefore, any grid symbol in the interior of a locally admis-
sible configuration with shape [1,m] × [1,2n − 1] is part of a path of adjacent
grid symbols which hits the boundary of [1,m] × [1,2n − 1] at least twice (once
entering, once leaving). This enables us to design an algorithm which allows a Tur-
ing machine to recreate any locally admissible configuration of g grid symbols on
[1,m]× [1,2n−1] given a specific piece of input consisting of a finite ordered list
L of coordinates on the boundary of [1,m]×[1,2n−1] and a g-tuple I of instruc-
tions taken from a set of 48 different commands. The list L consists of sites on the
border of the rectangle [1,m]×[1,2n−1]. Every instruction in I is itself a 3-tuple
(ai, fi, di) (1 ≤ i ≤ m), where ai ∈ {s1, s2, s3, s4, s5, s6} represents one of the six
grid symbols in the alphabet of Y , fi ∈ {0,1} is a flag that signals either “revert”
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or “continue” and di ∈ {up,down, right, left} is one of the four standard directions
in Z

2. Now the Turing machine processes its input and puts down grid symbols on
[1,m] × [1,2n − 1] as follows: the machine starts by moving its writing-head to
the coordinate given by the first entry in the list L (if L is empty, the algorithm
stops here). There it puts down the symbol a1 from the first instruction in I start-
ing a finite part of some path. If f1 is “continue,” it moves its writing-head one
step in the direction given by d1, where it executes the next instruction in the same
manner. If some fi is “revert,” the machine moves back along the grid symbols
written so far until it comes to the first junction (one of the symbols {s3, s4, s5, s6})
where one of the three branches is a dead-end (i.e., the branch points to a place
still inside [1,m] × [1,2n − 1] where the machine has not already placed another
grid symbol). From there, the machine moves one step in the direction specified
by di and continues with the (i + 1)th instruction. If there is no dead-end, the ma-
chine moves its writing-head to the next coordinate from the list L, where it starts
another path of grid symbols using the next instruction from I . After executing all
commands in I , the machine has placed exactly g nonblanks.

We claim that every locally admissible configuration w consisting of g grid
symbols can be created by our Turing machine using some input. If g = 0, clearly
the empty input suffices. If g > 0, then there is some grid symbol on the border of
[1,m] × [1,2n − 1], which we can take to be the first site in L. Then, follow any
path of adjacent grid symbols in w, recording the proper entries of I , until you
either run into the border of [1,m] × [1,2n − 1], or will be forced to run into an
already visited grid symbol. If you have visited all g grid symbols in w, then you
are done. Since w does not contain closed finite loops, if there are still unvisited
grid symbols in w, then they are all either connected to an already visited grid
symbol or connected to the border of [1,m] × [1,2n − 1] by a path of adjacent
grid symbols. So, we can record an entry of I with fi “revert,” and either move
back to the first place along your path where you could continue to unvisited grid
symbols, or, if this is impossible, begin with an unvisited grid symbol on the border
of [1,m] × [1,2n − 1], append this site to L, and continue. In this fashion, we can
eventually visit all g grid symbols in w, simultaneously recording the input which
will recreate w.

Therefore, the number of different input “programs” gives an upper bound on
the number of ways to place g grid symbols on [1,m] × [1,2n − 1] in a locally
admissible way. By overestimating the number of lists L by the number of subsets
of the boundary of [1,m] × [1,2n − 1], we get an upper bound of 24n+2m−648g .

Now, fix any locally admissible assignment of g grid symbols. We wish to
bound from above the number of ways to fill in the leftover rectangles with integers
in a locally admissible way. For any w ∈ LA[1,m]×[1,2n−1](Y ), consider a column
of w which has h grid symbols in it. This column consists of alternating intervals
of integers and grid symbols. Due to the restriction that non-0 integers cannot ap-
pear above grid symbols, each one of these intervals of integers has at most half
non-0 integers, except possibly for the bottom-most interval, which could have one
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more non-0 integer than 0. This means that the total number of non-0 integers in
the column is at most n − 0.5h. Since the only choice for each interval of integers
is whether its bottom-most integer is 0 or non-0 and which non-0 integers to use,
and since only the bottom-most interval admits a choice about whether its bottom-
most integer is 0 or non-0, this implies that the total number of ways of filling the
leftover portion of this column with integers is at most 2 · kn−0.5h. Therefore, the
total number of ways to extend any fixed locally admissible grid symbol config-
uration containing g grid symbols to a locally admissible configuration on all of
[1,m] × [1,2n − 1] is at most 2mkmn−0.5g , and so

∣∣LA[1,m]×[1,2n−1](Y )
∣∣ ≤

(2n−1)m∑
g=0

24n+2m−648g2mkmn−0.5g

≤ (
(2n − 1)m + 1

)
24n+3m−6kmn.

(Here the last inequality uses the fact that k > 482.) Combining with the earlier
lower bound on |LA[1,m]×[1,2n−1](Y )|, taking logarithms, dividing by m and let-
ting m → ∞ yields the bounds n lnk ≤ h2n−1(Y ) ≤ n lnk + ln 8.

We will now achieve similar bounds on |LA[1,m]×[1,2n](Y )|. Again, we may
arrive at a lower bound by considering only configurations of integers:
|LA[1,m]×[1,2n](Y )| ≥ kmn. By the same proof as before, the number of ways that
g grid symbols can be placed on [1,m]× [1,2n] in a locally admissible way is less
than 24n+2m−448g . Also by the same proof, the number of ways to fill a column
with h grid symbols in a locally admissible way is at most 2 · kn−0.5(h−1). We
note that if h = 0, then the number of ways to fill the column is clearly 2kn, and
so our upper bound is min(2kn,2 · kn−0.5(h−1)). The number of ways to complete
a fixed locally admissible grid symbol configuration containing g grid symbols
to a locally admissible configuration on all of [1,m] × [1,2n] is then at most
min(2mkmn,2mkmn−0.5(g−m)), and we get the upper bound

∣∣LA[1,m]×[1,2n](Y )
∣∣ ≤

2nm∑
g=0

24n+2m−448g2m min
(
kmn, kmn−0.5(g−m))

≤ 24n+3m−4

[ 2m∑
g=0

482mkmn +
2mn∑

g=2m+1

48gkmn−0.25g

]

≤ 24n+3m−4(2mn + 1)482mkmn.

(The last inequality uses the fact that k > 484.) Combining with the earlier lower
bound on |LA[1,m]×[1,2n](Y )|, taking logarithms, dividing by m and letting m →
∞ yields the bounds n lnk ≤ h2n(Y ) ≤ n lnk + ln(8 · 482). But then for any n,
h2n+1(Y )−h2n(Y ) ≥ ln k − ln(8 ·482) and h2n(Y )−h2n−1(Y ) ≤ ln(8 ·482). Since
k > (8 · 482)2, this means that there exists ε > 0 so that h2n+1(Y ) − h2n(Y ) >

h2n(Y ) − h2n−1(Y ) + ε for all n, and so hn+1(Y ) − hn(Y ) does not approach a
limit as n → ∞.
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6. Questions. There are several questions which suggest themselves from this
work. First, though we have shown that hn+1 − hn → h at a rate which is at least
exponential, we have not been able to give any explicit bound for this rate.

QUESTION 6.1. Is it possible to give explicit values of A and B for which
hn+1 − hn < Ae−Bn?

The answer to this question would be interesting both because it might allow us
to improve the known bounds on h and also because it would allow us to give an
explicit polynomial upper bound on the time of computability of h. In order to find
such A and B , it would be sufficient to give an explicit such A and B for p = 0.5
in Theorem 3.3, but it seems that finding these is somewhat difficult. We note that
for much smaller percolation probabilities than 0.5, giving explicit values for A

and B is easy. For instance, if p < 0.25, then since there are less than 4t paths
from 0 to ∂([−n,n]2) of length t for any t , Pp(0 ↔ ∂([−n,n]2)) <

∑∞
t=n(4p)t =

1
1−4p

(4p)n.

QUESTION 6.2. Is it possible to extend these methods to a larger class of Z
2

SFTs?

The difficulty here is that our proof relies on two important properties of H.
First, there must be some (possibly site-dependent) ordering on the alphabet for
which the fundamental Theorem 3.20 is true, and this does not seem to be true for
all shifts of finite type. Second, in order to use the methods of [41] to prove expo-
nential closeness of the relevant measures with respect to −d , the SFT must satisfy
a quite restrictive property related to conditional probability of disagreement at a
pair of sites given their neighbors. (For most Z

2 SFTs, the 0.5 in Theorem 4.4
becomes a number larger than pc, which means that we cannot show exponential
decay.) So far, we have not been able to find any nondegenerate Z

2 SFTs besides
the hard square shift which have both of these properties, but it is possible that
with a slightly different method, one could consider a wider class of systems.

QUESTION 6.3. Is it possible to apply these methods to the Z
d hard square

shift for d > 2?

The difficulty here is that already pc(Z
d) < 0.5 for d = 3 [8], which causes a

problem with using Theorem 4.4 to imply exponential decay of −d distance.
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